
Journal of Computational Physics 302 (2015) 21–40
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Conservative interpolation of edge and face data on

n dimensional structured grids using differential forms

Alexander Pletzer, David Fillmore

Tech-X Corp., 5621 Arapahoe Ave., Boulder, CO 80303, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 January 2015
Received in revised form 30 May 2015
Accepted 22 August 2015
Available online 5 September 2015

Keywords:
Interpolation
Regridding
Whitney forms
Structured grid
Conservation laws
Stokes’ theorem
Mimetic
Differential form

Interpolation methods for edge and face centered data are described, which preserve
line and area integrals under regridding. These interpolation methods complement the
multilinear nodal and conservative interpolation methods, which are widely used in
climate data processing and other areas. The presented interpolation schemes ensure
that curl-free and divergence-free fields remain so after regridding. These edge and
face conservative interpolation methods are suitable for general curvilinear structured
grids, including those with singular points (poles). Support for masked (invalid) regions
is implicitly provided by attaching (partial) line/surface integral field values to cell
edges/faces.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Interpolation is an ubiquitous technique for inferring the values of a discretized field at user specified target loca-
tions. Many visualization packages, postprocessing tools, and partial differential equation solvers rely on interpolation.
For instance, streamline computations require fields to be evaluated along trajectories [1,2] and finite volume discretiza-
tions must estimate fluxes at cell boundaries [3]. Therefore, it is not surprising that most postprocessing tools [4–6],
infrastructure libraries [7,8], and scripting languages [9–11] support interpolation in one form or another. The Ultrascale
Visualization-Climate Data Analysis (UV-CDAT) tools project [12], with which the authors are familiar, is an example of such
a postprocessing tool. A recent survey of UV-CDAT users identified data interpolation from one grid to another as the sec-
ond most sought after feature [personal communication from C. Doutriaux, June 1st 2012], ahead of visualization, statistics,
parallel computing, and other postprocessing capabilities. The need for regridding arises in particular when comparing the
output from different climate models [13], each with its own grid and resolution. Interestingly, the ability to compute accu-
rate averages was the most important feature to users; we will see that interpolation and data averaging are in fact closely
related.

Here, we are concerned with conservative interpolation [14,15], which is applicable to density fields for which the target
element is not a point but a line, a surface, or a volume, depending on the type of field. By conservative interpolation, we
mean that quantities associated with geometric objects are preserved under regridding if the original and target grids occupy
the same n-dimensional space. Conserving fluids, materials, energy, voltage, and fluxes, is critical to many applications. In
the case of fluxes (magnetic, material, or otherwise), the geometric object is a surface; in the case of voltage it is a line.

E-mail address: alexander@gokliya.net (A. Pletzer).
http://dx.doi.org/10.1016/j.jcp.2015.08.029
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.08.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:alexander@gokliya.net
http://dx.doi.org/10.1016/j.jcp.2015.08.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.08.029&domain=pdf

22 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
Fig. 1. The Arakawa C and D grids used by some climate modeling codes place wind velocity on faces (left) or on edges (right). The finite difference time
domain method (FDTD) places the electric field on cell edges and the magnetic field on cell faces.

However, the idea is the same; integrating a quantify over a volume, surface, or line should give a consistent answer that
does not depend on how the volume, surface, or line is discretized.

Conservative interpolation has gained considerable traction in some application domains, notably in climate science.
Consider that climate change is the result of a tiny < 0.1% offset in the energy balance of the earth’s atmosphere [16].
Assessing the effect of climate change would be very difficult, or impossible, without the ability to capture such a small
discrepancy. It is therefore not surprising that, to our own estimate, 90% of the interpolation requests in UV-CDAT are
for conservative interpolation, despite the fact that conservative interpolation is more numerically demanding than point
interpolation.

In this article we argue that there are other types of interpolation schemes, which complement multilinear interpolation
for point data and conservative interpolation for centered data. The interpolation methods we present are applicable to dis-
cretized vector fields where components are placed onto cell edges or faces. Such staggerings arise in finite volume [17] and
mixed finite element discretization schemes [18–20]. In electromagnetism, the finite difference time domain (FDTD) method
[21] dictates that the electric field be edge centered and the magnetic field face centered. Face and edge centered field
arrangements are well known in the climate model community where they are referred to as Arakawa C/D grids (see Fig. 1).
In fluid dynamics, the fluid velocity is often placed on cell faces [22]. Generally speaking, different field arrangements can
lead to different numerical stability properties, with the consequence that misplacing fields can yield numerical pollution in
spectral codes [23] or the checkerboard instability in time advancing codes [24].

It is important to realize that the interpolation method, whether it is conserving volume, surface, line integrals, or is
a point interpolation method, is not a user choice but is entirely determined by the field properties. In other words, the
underlying physics dictates the choice of the interpolation method. Such a viewpoint is shared by a growing number of
people [25–27] who believe in mimetic, or structure preserving methods when solving partial differential equations (PDEs).
Our approach is similar in spirit to these efforts except that we focus on interpolation and regridding instead of solving
PDEs.

It has been known since the work of Whitney in 1957 how to recursively construct nodal, edge, face, and cell centered
interpolating basis functions on tetrahedral simplices [28]. These Whitney basis functions have been re-discovered several
times in the context of the finite element method [19,20]. However, it is only in the past 15 years that volume conservative
interpolation methods have become widely available [15] in the climate simulation and some other communities. There
appears to be no mention of surface and line conserving interpolation methods in climate and/or electromagnetic model-
ing. Therefore, one aim of this paper is to raise awareness of surface and line conserving interpolation methods in these
communities.

To address the interpolation needs of these application areas, we have developed the Node, Edge, Face, And Cell Ele-
ment (Neface) library, which implements exterior derivative calculus in spaces of arbitrary number of dimensions. Exterior
calculus is an extension of vector calculus with a single derivative operator replacing the gradient, curl, and divergence
operators. Exterior calculus relies on differential forms to represent fields and these are associated with integrals along an
infinitesimal path, area, or volume element. There is a one-to-one correspondence between the staggering of a field and its
integral representation. By expressing fields in terms of forms, one ensures that the gradient, Stokes’, and the divergence
theorems are satisfied. If in addition, line, surface, and volume integrals can be computed “exactly”, as is the case for basis
functions expressed as polynomials, then the basic elements are in place for interpolation schemes that conserve integrals
to near machine accuracy. This addresses the need for accurate averaging procedures in addition to interpolation.

This paper is organized as follows. In Section 2 we give a brief introduction to the theory of differential forms, empha-
sizing the key aspects of the theory for interpolation. In Section 3 we present nodal, edge, and face interpolating forms for
cuboid cells, which are suitable for general structured fields in n dimensions. In Section 4 we show how to project edge,
face, and cell centered data onto line segments, triangles, and tetrahedra. In Section 5 we discuss the property of conserva-
tion. In Section 6 we apply Neface to line and surface integrations of discretized fields on singular, curvilinear grids in two
to four dimensions. In Section 7 we summarize our results.

A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40 23
Table 1
Correspondence between the order of a differential form, the discretized field staggering, and vector calculus nota-
tion in 3D.

Order Staggering Differential form Vector calculus Example

0 Node
∫

f (= f) f Temperature
1 Edge

∫
α

∫
α · dx Electric field E

2 Face
∫

β
∫

β · dS Magnetic field B
3 Cell

∫
γ

∫
γ dV Mass density

2. Differential forms and the staggering of fields

The natural setting for conservative interpolation is the theory of differential forms and exterior calculus. Differential
forms have recently attracted considerable attention as a way to numerically capture physical phenomena to high ac-
curacy [29,30,25–27]. Compared to vector calculus, the language of differential forms has the advantage of extending to
arbitrarily high dimensionality, of unifying Stokes’ and Gauss’ theorems, and of preserving differential calculus identities
such as ∇ × ∇ = 0.

2.1. What are p-forms?

Let (x1, x2, · · · xn) denote the coordinates in an n dimensional space. A p-form

ω =
∑

ωi1,i2,···ip dxi1 ∧ dxi2 ∧ · · ·dxip (1)

is defined as a linear combination of dxi1 ∧ dxi2 ∧ · · ·dxip forms, each being a “wedge” product of 1-forms dxi . The term
dxi1 ∧ dxi2 ∧ · · ·dxip is analogous to an p-dimensional oriented hypervolume in n dimensions. Specifically, dxi is a line
element, dxi ∧ dx j a surface element, dxi ∧ dx j ∧ dxk a volume element, etc. Like the cross product, the wedge product of
two dx forms is anticommutative, dxi ∧ dx j = −dx j ∧ dxi . The anticommutative property implies (and takes automatically
into account) the orientation of edges and faces. Unlike the cross product in 3D, the wedge product can be defined in any
number of dimensions.

A zero form (0-form) is just a function of space and a 1-form,
∑

i ωidxi , corresponds to a vector field. Table 1 shows the
correspondence between differential form and vector calculus notation. Note that differential forms carry the differential
elements (e.g. dxi or dxi ∧ dx j) over which to integrate. Zero forms have no differential element attached and therefore the
integral applied to a 0-form has no effect (

∫
f = f).

In n dimensions, 1-forms are attached to the cells’ oriented edges. In 3D, 2-forms are attached to oriented faces and
3-forms to oriented volumes. The correspondence between p-forms and staggering comes out naturally by letting dxi rep-
resent the variation of coordinate xi along the edge of a cell. Hence, edge fields are line integrals of vector fields along cell
edges, face fields are area integrals of vector fields on cell faces, and cell centered fields are discrete, cell volume integrals
of densities. There is a one-to-one correspondence between the order of a form and its staggering (see Table 1).

From the definition of the gradient,
∫ ∇ f · dx = ∫

df , we see that ∇ f maps to df in differential form notation. Hence, ∑
i ωidxi → ∑

i ωi∇xi becomes an expansion in contravariant basis vectors ∇xi . In 3D, a 2-form
∑

i

∑
j>i ωi jdxi ∧ dx j rep-

resents an expansion in ∇xi × ∇x j basis vectors.
For many coordinates systems, expressions for ∇xi are known. In the case of a cylindrical coordinate system, (x1, x2, x2) =

(ρ, θ, z) for instance, we have ∇ρ = ρ̂ , ∇θ = θ̂/ρ , and ∇z = ẑ. For arbitrary coordinate systems on the other hand, the
contravariant basis vectors might need to be estimated numerically. Below we show how the ∇xi ’s can be expressed in
terms of the covariant basis vectors ∂x/∂xi , which approximate the cell edge lengths.

From

dxi = ∇xi · dx =
∑

	

∇xi · ∂x

∂x	

dx	, (2)

one gets the orthogonality relation

∇xi · ∂x

∂x	

= δi,	 (3)

between contravariant (∇xi) and covariant (∂x
∂x	

) basis vectors. Therefore,

∂x

∂xi
= J∇x j × ∇xk (4)

must be orthogonal to the contravariant ∇x j and ∇xk , with i, j, and k in cyclic order and

J−1 ≡ (∇xi × ∇x j) · ∇xk (5)

24 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
Table 2
Number of independent p-form terms (p = 0, 1, 2, 3, and 4) in 1D, 2D, 3D, and 4D. Regardless of the dimensionality,
a 0-form has a single component, its proxy is a scalar field. A 1-form has n components in n dimensions, its proxy
is a vector field. It is only in 3D that a 2-form has n components.

Dimensions Order 0 Order 1 Order 2 Order 3 Order 4

1D 1 1
2D 1 2 1
3D 1 3 3 1
4D 1 4 6 4 1

being the inverse Jacobian. Hence, the vector calculus proxy of
∑

i

∑
j>i ωi jdxi ∧ dx j is

∑
k ωi j J−1 ∂x

∂xk
. We emphasize that

(3) is valid for any coordinate systems, including non-orthogonal ones — contravariant and covariant vectors are always
mutually orthogonal.

Vector fields associated with 2-forms in 3D are sometimes called pseudo-vector or axial vector fields, to distinguish
them from “true” or “polar” vector fields (1-forms). Pseudo-vector fields do not obey the rules of physics under reflection.
An example is provided by a loop carrying a current, which generates a magnetic field. The reflection of the loop as seen
through a mirror would show a magnetic field that is opposite to the physically correct direction.

In more than three dimensions, it is no longer possible to associate 2-forms with vector fields. Because the wedge
product of a form with itself is zero, the number of possible terms in the expansion of a p-form is given by the binomial
coefficient n!

(n−p)!p! , see Pascal’s triangle (Table 2). We observe that in 4D a 2-form has six independent terms.

2.2. The exterior derivative

In place of the ∇ , ∇×, and ∇· operators, the language of differential forms has only a single derivative operator, d,
which can be regarded as the “usual” differential operator applying to 0-forms but now extended to p-forms. The exterior
derivative d is linear, d(ω1 +ω2) = dω1 +dω2, obeys Leibniz’s rule, d(ω1 ∧ω2) = dω1 ∧ω2 +ω1 ∧dω2, and applying twice d,
d(dα) = 0, yields a property analogous to ∇ × ∇ = 0 and ∇ · ∇× = 0. Operator d is called the exterior derivative because it
increases the order of the form, as in

d(ωdx j) = dω ∧ dx j =
∑

i

∂ω

∂xi
dxi ∧ dx j. (6)

In 3D, the familiar expressions for the gradient, curl, and divergence can be recovered. Applying d to a 0-form f yields
the gradient operator

df = ∂ f

∂x1
dx1 + ∂ f

∂x2
dx2 + ∂ f

∂x3
dx3. (7)

The exterior derivative applied to a 1-form α = α1dx1 + α2dx2 + α3dx3 amounts to taking the curl,

dα =
(

∂α2

∂x3
− ∂α3

∂x2

)
dx2 ∧ dx3

+
(

∂α3

∂x1
− ∂α1

∂x3

)
dx3 ∧ dx1 +

(
∂α1

∂x2
− ∂α2

∂x1

)
dx1 ∧ dx2. (8)

And applying d to a 2-form β = β1dx2 ∧ dx3 + β2dx3 ∧ dx1 + β3dx1 ∧ dx2 gives the divergence,

dβ =
(

∂β1

∂x1
+ ∂β2

∂x2
+ ∂β3

∂x3

)
dx1 ∧ dx2 ∧ dx3. (9)

2.3. Remarks

Some remarks are in order. First, expressions (7)–(9) naturally extend to n dimensions. Second, the forms for the gra-
dient, curl, and divergence operator do not change with the coordinate system. Differential forms therefore enforce a clear
separation between topology and geometry, making it possible to work in different coordinate systems without the need
to modify the underlying equations. This invariance derives from the fact, mentioned previously, that differential forms
carry the (line, area, volume) integration elements with them so that forms in some sense represent line, area, and volume
integrations. Because of this invariance, one is free to choose the coordinate system supporting the Whitney forms.

In Sections 6.1–6.3, we will see that working with forms, or their numerical approximation, brings additional benefits.
Unlike their proxy scalar and vector fields, forms are well behaved in the vicinity of coordinate singularities.

In the context of discretized fields attached to a mesh, the term dxi1 ∧ · · · xip represents a basis function, which is
different for nodal, edge-centered, face-centered, and cell-centered fields. Expressions for each type of basis function will be
provided in Section 3.

A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40 25
Fig. 2. Each grid element (node, edge, face, and cell) is uniquely identified with array σ taking one of three values. Indexing of nodes (left), edges (middle),
and faces (right). A cell has σ = [∗ ∗ ∗].

Finally, it is also noteworthy to mention that Stokes’ and the divergence theorems take a particularly elegant form,

∫
�

dω =
∮
∂�

ω. (10)

In the above, we have erased the distinction between the gradient, curl, and divergence operators, all these operators
behave in similar manner. The generalized Stokes’ theorem expresses the fact that the (hyper-)volume integral of an exterior
derivative applied to a form can be obtained by integrating the form over the boundary of the volume. In the next section
we will show how to construct basis functions that satisfy (10).

3. Interpolating basis functions on cuboids

In this section, we show how to generate basis functions for edge and face data starting from the well known multilinear
nodal basis function formulas. However, in order to accomplish this task, we must first devise a way to uniquely identify all
the nodes, edges, faces, which contribute to a cuboid in n dimensions.

Let σ = [σ1, · · ·σn] be a list where each σi takes one of three values, σi ∈ {0, 1, ∗}. We will use the value 0 to indicate
that an element is located on the low side of the cell, 1 if the element is on the high side of the cell, and ∗ if the element
varies along the axis. For instance, in 1D, the lower end vertex has σ = [0], the upper end vertex σ = [1], and the edge
σ = [∗]. Fig. 2 shows how a unique σ can be associated with each node (left), edge (middle), and face (right) of a 3D cell.
This numbering system generalizes to n dimensions.

The number of nodes, edges, faces, etc. depends on the number of combinations of 0’s, 1’s, and ∗’s. For a certain type of
element k where k = 0 for nodes, 1 for edges, 2 for faces, etc., there are k ∗’s in the σ list and the number of elements is
given by the formula

2n−kn!
(n − k)!k! . (11)

We can readily check that this formula yields the correct number of nodes in 3D: 8 nodes, 12 edges, and 6 faces. In 4D,
there are 16 nodes, 32 edges, 24 faces, and 8 hyper-faces.

Given this numbering system in place, we can write interpolation as the sum

f̄ =
∑
σ

wσ fσ (12)

where wσ are the interpolation weights and fσ the field values associated with cell element σ .
Two remarks are in order. First, it is important to realize that the fσ ’s are scalars regardless of whether the field is a

vector field or not. For edge centered fields, fσ represents a line integral along edge σ . In the case of face-centered data,
fσ is an area integral. For edge and face data, the interpolation weights will be expressed in terms of possibly nested
integrals (more about this in Section 4). Second, the target element of the interpolation varies according to the staggering.
The target is a point for nodal fields, a line for edge fields, an area for face fields, etc.

Finally, we will find it convenient to express the basis functions in terms of their parametric coordinate representation ξ ,
which is local to the cell (Fig. 3). Such a local coordinate system is widely used in the finite element community to com-
pute the stiffness matrix. Here, it will help us break the interpolation problem into (i) finding the cell that contains the
target element and (ii) computing the interpolation weights for each of the cell elements. The problem of locating the cell
containing a given target element will not be further discussed here since it is the same for any interpolation scheme.

We will start with nodal interpolation since most readers are familiar with this type of interpolation, moving to edge and
face interpolation in Sections 3.2 and 3.3. Cell interpolation can be covered in the same way as edge and face interpolation
although we will not dwelve on this since ample references exist on this subject, e.g. [15,31,32].

26 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
Fig. 3. The parametric coordinates 0 ≤ ξi ≤ 1 for a quadrilateral. For structured grids, the parametric coordinates are the differences between the index
position and the cell index set.

3.1. Nodal basis functions

For nodal interpolation, the weights are just the basis functions φσ evaluated at the target position x̂, i.e. w = φσ (x̂).
In Appendix A.1 we list the multilinear basis functions for the 3D case. These basis functions can be seen to generalize to n
dimensions with the formula

φσ =
n∏

i=1

[(1 − σi)(1 − ξi) + σiξi] . (13)

It can be seen that the wσ ’s have the property to be one on one node and zero on all other cell nodes,

φσ (xσ ′) = δσ ,σ ′ (14)

where xσ ′ are the coordinates of vertex σ ′ . In addition,
∑

σ wσ = 1.

3.2. Edge basis functions

Edge elements have the property that σ contains a single ∗ with all other σi being either 0 or 1. The index j for which
σ j = ∗ is the direction of the edge. Edge basis functions φ(1)

σ are sought which satisfy a property similar to (14)
∫
σ ′

φσ = δσ ,σ ′ (15)

except that the above is expressed in terms of line integrals along edges. Equation (15) states that the line integral of the
basis function attached to edge σ is zero on all edges σ ′ except on edge σ , where the integral is one.

Edge basis functions satisfying (15) can be constructed from (13) by replacing the jth term in the product by dξ j ,

φ
(1)
σ = [(1 − σ1)(1 − ξ1) + σ1ξ1] · · · [(1 − σ j−1)(1 − ξ j−1) + σ j−1ξ j−1

]
[
(1 − σ j+1)(1 − ξ j+1) + σ j+1ξ j+1

] · · · [(1 − σn)(1 − ξn) + σnξn]

dξ j . (16)

Note that in doing so, φ(1)
σ is no longer scalar but a 1-form (or equivalently a vector basis function after substituting dξ j

with ∇ξ j). Appendix A.2 lists the edge vector basis functions in 3D.

3.3. Face and other staggered basis functions

Face elements have two directions, j1 and j2, along which the element σ = [· · · , ∗, · · · , ∗, · · ·] varies. Face basis functions
can be obtained by replacing the two terms j1 and j2 by dξ j1 ∧ dξ j2 ,

φ
(2)
σ = [(1 − σ1)(1 − ξ1) + σ1ξ1] · · ·[

(1 − σ j1−1)(1 − ξ j1−1) + σ j1−1ξ j1−1
]

[
(1 − σ j1+1)(1 − ξ j1+1) + σ j1+1ξ j1+1

] · · ·[
(1 − σ j2−1)(1 − ξ j2−1) + σ j2−1ξ j2−1

]
[
(1 − σ j2+1)(1 − ξ j2+1) + σ j2+1ξ j2+1

] · · ·
[(1 − σn)(1 − ξn) + σnξn] dξ j ∧ dξ j . (17)
1 2

A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40 27
Fig. 4. Edge and face vector basis functions for a general hexahedral cell. Left: the edge basis function for the lower left edge is either zero or perpendicular
to all other edges. Right: the face basis function is zero or tangential to all other faces.

As in Section 2, the vector equivalent to (17) can be obtained by replacing dξ j1 ∧ dξ j2 by ∇ξ j1 × ∇ξ j2 in 3D (see Ap-
pendix A.3). The so obtained basis functions are compatible with the Van Welij [20] finite elements. Orthogonality condition
(15) applies to the φ(2) bases after interpreting the integral as extending over cell faces.

Clearly, the process of constructing staggered basis functions can be pursued for arbitrary k-elements (0 ≤ k ≤ n) by
replacing each ∗ in σ by dξ and wedging the result. Cell basis functions can in particular be obtained this way. In 3D,
there is a single basis function φ(3) = dξ1 ∧ dξ2 ∧ dξ3, or ∇ξ1 × ∇ξ2 · ∇ξ3 in vector notation, a quantity which is inversely
proportional to the volume of the cell in ξ space.

The general orthogonality property becomes integral

∫
σ ′

φ
(k)
σ = δσ ,σ ′ (18)

where the integral is taken over element σ ′ . Similar orthogonality properties exist for the Nédélec family of finite element
on triangles and tetrahedra [19].

Property (18) remains valid even in the case of highly distorted cells, i.e. cells for which edges intersect with non-
orthogonal angles. Fig. 4 shows that the requirement of vanishing integral on neighboring edges (faces) forces the field
to be either perpendicular to neighboring edges in the case of edge centering, or tangential to neighboring faces for face
centered basis functions. The vector basis function associated with an edge will generally not be tangent to the edge, and
the vector basis attached to a face will not typically be perpendicular to the face, except in the case of cells with orthogonal
axes.

The accuracy of linear face interpolation in 3D is similar to linear interpolation of a nodal field in 1D. Let F represent
the flux between two opposite faces then the maximum error F ≤ 1

8 h2 F ′′
max with F ′′ being the second order derivative of

the flux in the direction of variation and h the cell size in this direction. For edge interpolation, the error is comparable to
that of bilinear interpolation since in this case there are two directions where the line integral varies in 3D.

It is known that the error of nodal, edge, face, and cell centered fields can significantly degrade for cells that are not
affine transformations of the n-cube [33–35]. This is not an issue here as the edge and face interpolation target objects
are line and area integrals, which are invariant with respect to orientation preserving transformations, as discussed in
Section 2.3. Thus, any logically rectangular space will give the same integral and we are free to choose the space in which
we compute the integrals to our convenience (selecting for instance the index space where all the cells are cubes).

4. Analytic computation of integrals

In Section 3, the edge and face basis functions were derived for cuboids in n dimensions. Although these basis functions
can be employed to determine the flux density or other quantities at given points, it is often more important, from a
physical viewpoint, to project the basis forms onto geometric objects of dimensionality compatible with the order of the
form. For instance, one might want to estimate the total mass contained within a certain volume, or compute the total flux
across a given surface. In this section, we show how to analytically compute integrals of forms projected onto geometric
objects (1-forms onto lines, 2-forms onto areas, etc.). Specifically, the integration will not involve any quadrature scheme.
The target object will be a simplex that is fully contained within a grid cell.

28 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
Analytic integration of a p-form onto a p dimensional simplex can be performed if each component of the p-form is a
polynomial. Let ω(ξ)dξi1 ∧ · · ·dξip be one such component of the p-form (each component contributing linearly to the total
p-form projection), and

S(λ) ≡ ξ s0 +
p∑

j=1

λ j(ξ sj − ξ s0) (19)

be the parametric representation of the simplex in the local ξ -space of the cell with 0 ≤ λ1 < 1, 0 ≤ λ2 < 1 − λ1, · · · , 0 ≤
λp ≤ 1 −∑p−1

j=1 λ j , then

∫
ω(ξ) = V s

1∫
0

1−λ1∫
0

· · ·
1−∑p−1

j=1 λ j∫
0

ω ◦ S(λ) (20)

is a nested sequence of integrals, with ◦ denoting function composition, i.e. ω ◦ S(λ) is ω evaluated on simplex S(λ). In
the above, V s is equal to p! times the “volume” of the p dimensional simplex, this quantity can be computed from the
determinant

V s = det
(
ξ s1 − ξ s0, ξ s2 − ξ s0, · · · ξ sp − ξ s0

)
. (21)

For readers who are unfamiliar with differential forms and prefer the more traditional vector calculus approach, Appendix A
reproduces the above formula for nodal, edge, and face centered fields in 3D.

To see how (20) works, consider first the simple case of a 0-form projected onto a point in 2D and let ω represent one
of the nodal basis functions, e.g. ξ1(1 − ξ2), with the target simplex S(λ) = ξ s0 being just a point. Integral (20) then reduces
simply to evaluating ω at the location ξ s0. Thus, (20) collapses to what is generally known as the interpolation of a nodal
field.

Next, consider the 1-form ω = φ
(1)
1∗ = ξ1dξ2 projected onto line S(λ) = ξ s0 + λ1(ξ s1 − ξ s0). In this case (20) becomes

1∫
0

[
ξs0,1 + λ1(ξs1,1 − ξs0,1)

] (
ξs1,2 − ξs0,2

)
dλ1 = (ξs1,2 − ξs0,2)

1

2
(ξs0,1 + ξs1,1) (22)

where ξs0,1 is the first component of ξ s0, ξs1,2 is the second component of ξ s1, etc. Thus, we see that the integral represents
the projection of the vertical basis function field evaluated at the mid horizontal position of the segment. Integrals for other
basis functions, e.g. φ(1)

∗0 , can be obtained by switching indices and replacing ξ by 1 − ξ .
It should be observed that (20) can still be applied when the target is of dimensionality incompatible with the order of

the form, however the result will be zero. Projecting a 1-form onto a point, for instance, will be zero because there is no λ
to integrate over (or alternatively the λ range to integrate over is zero). Likewise projecting a 2-form such as dξ1 ∧ dξ2 onto
a line also gives zero, this time because dξ1 and dξ2 are ∝ dλ1 and hence

∫
dξ1 ∧ dξ2 ∝ ∫

dλ1 ∧ dλ1 = 0.
It should be apparent that projecting a p-form onto simplex follows a recursive pattern once a generic integration

procedure is written. Let the target be a p dimensional simplex, then the integrand will be a polynomial function of λ1,
λ2 · · ·λp , for which the primitive can easily be found. Each definite integration will thus remove a variable λ j , a process
which can be continued until no more variables to integrate over remain.

Equation (20) requires the target simplex to be fully inside a grid cell. For targets that extend over many cells, the target
must first be tessellated so that each tetrahedron entirely fits into a cell. Tessellation in n dimensions can be performed
using standard algorithms, for instance the Quickhull method of Ref. [36]. The additional face flipping step of Delaunay
tetrahedralization software can be dispensed with since we are not concerned with the quality of the generated tetrahedra,
our only requirement is that each tetrahedron be contained within a grid cell.

In order to tessellate, all the intersection points between the simplex and the grid cells must first be obtained. In 3D and
for a tetrahedron target, these points include the tetrahedron vertices, the intersections of the tetrahedron edges with cell
faces, the intersection of the tetrahedron faces with the cell edges, and the grid nodes contained within the tetrahedron.
We note that each simplex element (node, edge, face, ...) will intersect a cell element with complementary dimensionality,
which we term the co-cell element. The sum of the simplex element dimensionality and the co-cell element dimensionality
must add to the number of parametric grid dimensions n. By doing so we ensure that the system of equations to solve for
the intersection point is always n × n (see Algorithm 1). However, the system of equations can be singular when a target
simplex edge runs tangentially to the cell face for instance. To avoid such situations, we recommend to perturb the vertices
of the simplex by some small amount. The overall effect on interpolation of the vertex perturbations will remain negligible
provided the edge lengths and face areas are not significantly changed.

Each intersection point found by Algorithm 1 must in addition lie within the simplex element and the co-cell element
and we can check this by testing that the values of the simplex element parameters λ1 · · ·λk satisfy the tetrahedron condi-
tions 0 ≤ λ1 < 1, 0 ≤ λ2 < 1 −λ1, · · · , 0 ≤ λk < 1 −∑k−1

λk−1, and the co-cell element conditions 0 ≤ μ j < 1 (j = 1, · · ·n −k).
i=1

A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40 29
Algorithm 1 Computing the intersection point between a simplex element and a co-cell element.
1: function computeIntersectionPoint(se, ce)
2: � se is a simplex element (node, edge, etc.)
3: � ce is a co-cell element (cell, face, etc.)
4: k = getSimplexElementOrder(se) � 0 for nodes, 1 for edges, etc.
5: n = getCoCellElementOrder(ce) + k

6:
[
ξ

(0)
s , · · · ξ (k)

s

]
= getSimplexElementVertices(se)

7:
[
ξ

(0)
c , · · · ξ (n−k)

c

]
= getCoCellElementVertices(ce)

8: build system
[
ξ

(1)
s − ξ

(0)
s , · · · ξ (k)

s − ξ
(0)
s , ξ

(0)
c − ξ

(1)
c , · · · ξ (0)

c − ξ
(n−k)
c

]
· [λ1, · · ·λk,μ1 · · ·μn−k]T =

[
ξ

(0)
c − ξ

(0)
s

]
9: solve system

10: return [λ1, · · ·λk,μ1 · · ·μn−k]
11: end function

Algorithm 2 Finding all the intersection points between a simplex and a grid.
1: function findAllIntersectionPoints(simplex, grid)
2: points = [] � empty list
3: n = getNumberOfParametricDimensions(grid)

4: order = getOrder(simplex)
5: for gridCell in grid do
6: for k in 0 · · ·order do
7: simplexElements = getSimplexElements(simplex, k)

8: coCellElements = getCoCellElements(gridCell, n − k)

9: for se in simplexElements do
10: for ce in coCellElements do
11: point = computeIntersectionPoint(se, ce)
12: if point in se and point in ce then
13: append point to points
14: end if
15: end for
16: end for
17: end for
18: end for
19: return points
20: end function

Note that finite floating point accuracy could lead to double counting or misses for simplices that are co-linear to faces. To
reduce the sensitivity to floating point comparisons, we also recommend in this case to perturb the above conditions by a
number comparable to machine epsilon. With these caveats in mind, the intersection points can be collected using Algo-
rithm 2.

5. Conservative property of the edge and face interpolation

Expressions for the basis functions and formulas for projecting edge and face fields to a simplex were derived in
Sections 3 and 4. In this section we will apply these formulas to demonstrate that the edge and face interpolations are
conservative.

An interpolation is conservative if it preserves the physical properties of the field. Specifically, an edge interpolation
method applied to a gradient is conservative if the projection of the field’s gradient (df) along an arbitrary path S

∫
S

df ≈
∑
σ

fσ

∫
S

dφσ (23)

depends only on the field values at the integration endpoints [see (10)],

∑
σ

fσ

∫
S

dφσ =
∑
σ

fσ

∮
∂ S

φσ = f̄ (end) − f̄ (start) (24)

where σ runs across all the cell nodes and f̄ represents the nodal interpolated value of the zero-form f at the start and
end positions of S . Note that the above should also be equal to

∑
σ

fσ

∮
∂ S

φσ =
∑
σ ′

Fσ ′
∫
S

φ
(1)

σ ′ (25)

where σ ′ runs across all the cell edges and Fσ ′ are the line integrals of df along each edge σ ′ .

30 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
To show that (25) is satisfied, we need only consider the case where S is a straight line segment ξi = ξsi + λ(ξei − ξsi)

since it is always possible to approximate an arbitrary path as a collection of possibly infinitesimal straight segments. More-
over, we will concentrate on the 2D case where F∗0 = f10 − f00, F∗1 = f11 − f01, etc. — the calculation readily generalizes
to higher dimensions although the algebra becomes cumbersome.

Using (22) we get

∑
σ ′

Fσ ′
∫
S

φ
(1)

σ ′ = (f01 − f00)

[
1 − 1

2
(ξs1 + ξe1)

]
(ξe2 − ξs2)

+ (f11 − f10)
1

2
(ξs1 + ξe1)(ξe2 − ξs2)

+ (f10 − f00)

[
1 − 1

2
(ξs2 + ξe2)

]
(ξe1 − ξs1)

+ (f11 − f01)
1

2
(ξs2 + ξe2)(ξe1 − ξs1),

which, after some manipulations, reduces to
∑
σ ′

Fσ ′
∫
S

φ
(1)

σ ′ = f00 [(1 − ξe1)(1 − ξe2) − (1 − ξs1)(1 − ξs2)]

+ f01 [ξe1(1 − ξe2) − ξs1(1 − ξs2)]

+ f11 [ξe1ξe2 − ξs1ξs2] + f10 [ξe1(1 − ξe2) − ξs1(1 − ξs2)] ,

an expression that is clearly equivalent to (24).
To show that face interpolation is conservative, a similar approach is taken except that we now require

∑
σ

fσ

∫
S

dφ
(1)
σ =

∑
σ ′

Fσ ′
∫
S

φ
(2)

σ ′ (26)

with S being a triangle, ξi = ξsi + λ(ξui − ξsi) + μ(ξvi − ξsi), and φ(1) (φ(2)) being the edge (face) basis function. In 2D, we
have dφ

(1)
∗0 = −dφ

(1)
∗1 = −dφ

(1)
0∗ = dφ

(1)
1∗ = dξ1 ∧ dξ2 and thus (26) yields (f0∗ + f1∗ − f∗1 − f0∗)

∫
S dξ1 ∧ dξ2 = F∗∗V s/2 with

V s = (ξu1 − ξs1)(ξv2 − ξs2) − (ξv1 − ξs1)(ξu2 − ξs2) given by (21). We observe that F∗∗ is just the circulation of the edge field
f over the face, thus proving that the 1-form bases satisfy a conservation law. Similar formulas can be derived for 3D and
higher dimensions.

6. Applications

In the following, we provide examples of line and surface integrals in two, three, and four dimensions. In Sections 6.1–6.2
we focus on edge-centered fields in cylindrical and spherical geometry. In Section 6.3 we demonstrate face field interpolation
and conservation of the electrostatic flux. In Section 6.4 we show how to handle face-centered fields with partially valid
cells and in Section 6.5 we apply our conservative face interpolation to a four dimensional, space–time problem.

6.1. Line integral of an edge field on a polar grid

In our first test case, we integrate the magnetic 1-form∫
H =

∫
I

2π
dθ (27)

produced by a current filament I along some arbitrary path in polar (ρ, θ). Here, ρ is the radial distance from the filament
and θ the poloidal angle along the H field.

If we choose our grid to be aligned to the (ρ, θ) coordinates, then line integral (27) starting at (ρi, θi) and finishing at
(ρ f , θ f) simply reduces to evaluating I

2π (θ f − θi). In other words, the line integral, which does not depend on ρi or ρ f , can
be computed exactly in trivial manner.

Contrast this to using a point interpolation method, which requires segmenting the path and approximating the integral
using, e.g. the trapezoidal rule. Along each mid-segment location, we would evaluate the field H = I

2πρ θ̂ . Note that this field
is singular as ρ approaches zero, making the integral ill defined in this limit.

Fig. 5 shows the average error of the point interpolation method versus the radial number of grid cells along a radial
path starting at ρ = 0.01 and finishing at ρ = 1. The first node (ρ = 0.01) was chosen to be a small distance away from
the singularity. Large errors are found at coarse resolution — it is only when the resolution is finer than ρ = 0.01 that the
method exhibits quadratic convergence.

A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40 31
Fig. 5. Relative, L2-norm error of the point interpolation method for the current filament problem. Conservative interpolation is nearly exact (data not
shown).

This test demonstrates that conservative interpolation eliminates many of the problems associated with singular fields.
Although field values can grow infinitely large in the ρ → 0 limit, line integrals on the other hand are well behaved and do
not suffer from infinities. Thus, much higher accuracy and numerical stability can be expected when working with forms
instead of fields.

6.2. Line integral of an incompressible flow

An incompressible flow

v = dψ ∧ dr (28)

is prescribed on the surface of a sphere of radius r. Here, ψ = ψ(λ, θ) is the stream function expressed in longitude
0 ≤ λ ≤ 2π and latitude −π/2 ≤ θ ≤ π/2 coordinate angles (θ = π/2 at the north pole). The transformation from spherical
(λ, θ, r) to Cartesian coordinates (x, y, z) obeys

x = r cos θ cosλ

y = r cos θ sinλ

z = r sin θ

with

dx = xdr

r
− z cos λdθ − ydλ

dy = ydr

r
− z sin λdθ + xdλ

dz = zdr

r
+ r cos θdθ, (29)

dλ = − y

ρ2
dx + x

ρ2
dy

dθ = − xz

ρr2
dx − yz

ρr2
dy + ρ

r2
dz

dr = x

r
dx + y

r
dy + z

r
dz, (30)

ρ2 ≡ x2 + y2, and r2 ≡ ρ2 + z2.
Correspondence between (28) and a vector field is obtained by substituting d with ∇ and ∧ with the cross product ×,

yielding

v = ∇ψ × r̂ = 1

r

(
∂ψ

∂θ
λ̂ − 1

cos θ

∂ψ

∂λ
θ̂

)
(31)

where ∇λ = λ̂/r cos θ and ∇θ = θ̂/r.

32 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
Fig. 6. Left: stream function ψ = θ − cos θ sinλ. Right: line integration error obtained by evaluating dψ/dμ along the path λ = 2πμ and θ = π(μ − 1
2)

using the trapezoidal rule (dashed line). The cross shows the integration error of the conservative edge interpolation method.

From (28), it can readily be seen that the velocity field is divergence-free, i.e. dv = 0. By virtue of Stokes’ theorem, ∫
dv = ∮

v = 0, the flow across the surface of an arbitrarily bounded volume must therefore also vanish. Since dr �= 0 on all
spherical surfaces, one has

∮
v = ∮

dψ ∧ dr = (
∮

dψ) ∧ dr = 0, so that
∮

dψ must be zero along any closed contour and for
any ψ .

The flow across an open line,
∫ b

a v = (
∫ b

a dψ) ∧ dr = (ψ(b) − ψ(a)) ∧ dr is just the difference of the stream function
evaluated at the endpoints of the line. In other words, the flow integral can be computed to arbitrarily high precision if ψ
is known analytically.

To test the accuracy of line integrals, we choose as path the line λ = 2πμ and θ = −π/2 + πμ with μ the parametric
coordinate varying from μ = 0 at the starting point to μ = 1 at the end point. The stream function is chosen to be ψ =
θ − cos θ sin λ. It can be verified that the line integral should give π in this case. Two approaches are compared: (i)

∫
dψ

is approximated by the sum 1
Ns

∑Ns
i=1(dψ/dμ) with dψ/dμ the exact stream function derivative evaluated at the center

of each segment (trapezoidal quadrature rule) and (ii) by representing dψ as an edge field and integrating dψ over the
segment using the method described in Section 4. Given that ψ is edge centered, the integration along a segmented line
must amount to taking the difference between the end and start values.

Fig. 6 shows the error of the line integral obtained using both approaches. The non-conservative, trapezoidal error de-
creases proportionally to the square of the inverse of the number of segments. The conservative interpolation method on
the other hand computes the integral to near machine accuracy using only two segments (no error was detected when
using a single segment). Approximately 10 million segments would be required for the non-conservative method to achieve
the same accuracy.

6.3. Flux integral of the electric displacement field

The electric displacement field D (a 2-form) satisfies Gauss’ law

dD = ρ (32)

where ρ is the charge density (a 3-form). For a single point charge located at position (0, 0, 0), the displacement field can
be written as

D = 1

4πr
(xdy ∧ dz + ydz ∧ dx + zdx ∧ dy) (33)

in Cartesian coordinates (x, y, z), where r2 = x2 + y2 + z2. In spherical coordinates (λ, θ, r), the displacement field can be
rewritten as

D = 1
cos θdλ ∧ dθ. (34)
4π

A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40 33
Fig. 7. Convergence of flux integrals as the 3D grid resolution increases for the three surfaces shown in the left pane (flat plane at x = π/8, slanted plane,
and a spherical surface approximated with eight polar and azimuthal facets). A coarse 4 × 4 × 4 grid was used to show the tessellation resulting from
intersecting the surfaces with the uniform Cartesian grid. The convergence of the flux interpolation onto a flat surface follows the h−2 law for linear
interpolation. The slanted and spherical surface interpolations have very small error, comparable to machine accuracy.

It is straightforward to check that the integral over the surface of the sphere centered around point (0, 0, 0),
∫

sphere D =
1

4π

∫ 2π
0 dλ

∫ π/2
−π/2 dθ cos θ = 1.

For this numerical experiment, we choose a uniform rectilinear grid and set the field to be the integrated flux of (33)
over each face of grid cells. The integrals of the field over cell faces can be obtained analytically, e.g.

xi ,y j+1,zk+1∫
xi ,y j ,zk

xdy ∧ dz = 1

4π

⎡
⎢⎣arctan

⎛
⎜⎝ y j+1zk+1

xi

√
x2

i + y2
j+1 + z2

k+1

⎞
⎟⎠

− arctan

⎛
⎜⎝ y j zk+1

xi

√
x2

i + y2
j + z2

k+1

⎞
⎟⎠

− arctan

⎛
⎜⎝ y j+1zk

xi

√
x2

i + y2
j+1 + z2

k

⎞
⎟⎠

+ arctan

⎛
⎜⎝ y j zk

xi

√
x2

i + y2
j + z2

k

⎞
⎟⎠
⎤
⎥⎦ (35)

where y j+1 ≡ y j + h, zk+1 = zk + h and h is the cell size (the same in each direction). Other terms in (33) can be obtained
by cyclic rotation of x, y, and z.

In Fig. 7 we show the conservative interpolation error as the resolution of the 3D grid increases for three target surfaces:
a plane in the (y, z) direction, a slanted plane, and a partial spherical surface approximated by planar facets.

Given that the fluxes attached to each cell face are exact, there is no numerical interpolation error for fields projected
onto surfaces that are aligned to and in contact with cell faces. All the projection errors are the result of interpolating fluxes
between opposing faces. The error in this case is the same as that of a nodal 1D field, namely ∼ 1

8 f ′′
maxh2, where f ′′

max is the
maximum second derivative of the flux in the direction perpendicular to the faces.

The dependence of the interpolation error (∼ h2) on the grid resolution can be clearly observed for the case where the
target surface is the plane x = π/8 (dashed line). The small oscillations in the convergence are due to fluctuations in the
distance separating the plane from the nearest cell faces, the choice of location π/8 ensuring that the plane never touches
these cell faces.

For the slanted target surface, we have x = 1 − 2v , y = 2(u + v) − 1, and z = 1 − 2u, 0 ≤ u, v ≤ 1, with the exact flux
integral amounting to 1

4 . This flux value can be determined by observing that there are four such slanted planes, which,
when properly arranged, completely contain the source point (0, 0, 0). It is a property of conservative interpolation to

34 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
Fig. 8. Flux integration error obtained using a non-conservative interpolation method as the target grid resolution increases. The total flux is computed by
evaluating the exact field at face centers. Conservative interpolation on the other hand yields errors < O (10−13).

preserve symmetry. Since the total flux is one by virtue of symmetry, each slanted plane must contribute to 1
4 (we observed

an error of < O (10−14)). The same argument holds for the partial sphere approximated by 8 × 8 facets and in this case we
also find near exact interpolation.

In Fig. 8 we show the accuracy of the flux computation assuming an “exact” nodal representation of the field with
conservative interpolation as the number of target cells increases, keeping the original 20 × 20 × 20 grid resolution constant.
Conservative interpolation is nearly exact in this case.

6.4. Fluxes with partial cells: Poiseuille flow in a pipe

Next we consider a uniform, laminar flow inside a pipe of radius one. The velocity 2-form

v = 2

π

(
1 − x2 − y2

)
dx ∧ dy, (36)

is purely in the direction of the flow (z) with

1∫
0

v = 1. (37)

The geometry of the pipe is embedded in a uniform grid with cell size hx × hy × hz . Velocity data are attached to cell
faces. For cells that are fully contained inside the pipe (r ≤ 1), the z-flow in cell (i, j, k) is

∫
i jk

v = 2

π

[
hxhy − hy

3
(x3

i+1 − x3
i) − hx

3
(y3

j+1 − y3
j)

]
. (38)

Care must be taken for cells that are intersected by the boundary surface r = 1. Fig. 9 shows that such partially valid
cells consist of subcell bounded by a circle, and one or two rectangular subcells. The flow in the rectangular subcells can be
computed using (38). To set the flow across a subcell bounded by a circle, we used the formula

∫
i jk

v = 2

π

[
−1

3

(
xi

√
1 − x2

i + (xi/4 − x3
i /2)

√
1 − x2

i

− 3xi y j + x3
i y j + xi y3

j + 3
arcsin(xi)

)

4

A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40 35
Fig. 9. Examples of partially valid cells (shaded areas). The flow integral can be computed analytically in the Poiseuille flow test case by splitting the shaded
area into a subcell bounded by an arc circle (a) and one or two rectangular subcells (b).

Fig. 10. Face-centered flow across two distinct surfaces, a disk and a disk with a helical perturbation. Both target surfaces share the same projection onto
the plane perpendicular to the flow. The total integrated flow is found to be the same in both cases to near machine precision despite vastly different target
surfaces.

+ 1

3

(
xi+1

√
1 − x2

i+1 + (xi+1/4 − x3
i+1/2)

√
1 − x2

i+1

− 3xi+1 y j + x3
i+1 y j + xi+1 y3

j + 3

4
arcsin(xi+1)

)]
. (39)

The flow across cut cells intersected on the south side can be obtained from this expression by substituting xi , xi+1
and y j for xi+1, xi , and −y j . Expressions for cells intersected on the east/west side can be obtained by similar coordinate
transformations. Note that (39) already incorporates the effect of partial faces, no masking array was used to turn off the
field on the outside of the pipe.

In Fig. 10 we show the Poiseuille flow solution in a curvilinear grid geometry. The left panel shows the velocity flow
across a disk approximated with 20 poloidal sectors. The coarse discretization is noticeable on the projected disk. The total
flux across the disk (0.9491) is somewhat lower than the total flux across the pipe due the finite resolution of both the 3D
and the projected surface resolutions. On the right, the flow is projected onto a surface with the same cross section but
with a helical distortion added in the direction of the flow. Despite the differences in target surface geometries, the two
fluxes were found to be the same to within a small error O (10−15), thus confirming conservation.

6.5. Fluxes in four dimensions

The formalism for interpolating differential forms can be applied to spaces with more than three dimensions. Higher
dimensional spaces arise in many settings, e.g. when solving Maxwell’s equations in space–time. It is well known that
Faraday’s law takes a particularly elegant and simple form in space–time [37]:

dF = 0 (40)

where F ≡ E ∧ dt + B is a 2-form that combines the electric 1-form E and the magnetic 2-form B .

36 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
Fig. 11. Projection of the space–time electromagnetic 2-form F onto a cylinder with unit length and radius for a plane wave solution. The vertical axis
represents time and the horizontal axes x and y, respectively. Each cell is colored according to the average value of the 2-flux in that cell (white for 1,
black for −1). The top and bottom of the cylinder represent the magnetic flux while the side of the cylinder captures the contribution from E ∧ dt .

The accuracy of an electromagnetic solution can be tested by computing the flux integral of F over an enclosed surface,∫
�

dF =
∮
∂�

F = 0 (41)

and checking that it is zero. For this test case, we applied a plane wave solution

E = cos(ky y + kz z − ωt)dx (42)

and

B = −ky

ω
cos(ky y + kzz − ωt)dx ∧ dy + kz

ω
cos(ky y + kz z − ωt)dz ∧ dx (43)

to the cell faces of a 4D structured grid of size 32 ×32 ×1 ×32. The projection of F onto a cylinder in (x, y, t) (ky = 2π/0.9,
kz = 2π/1.5, ω = 2π/1.2) is shown in Fig. 11 for z = 0. Conservation is achieved when the sum of the fluxes across the
top, side, and bottom of the cylinder is zero, we found this to be the case within roundoff errors O (10−15).

7. Summary

We presented a method for applying linear interpolation to staggered fields. Particular emphasis was put on edge and
face staggerings although the presented formalism also covers point and cell-centered conservative interpolation as special
cases.

To our knowledge, it is the first time that conservative interpolation is presented for n dimensional, structured meshes.
As a proof of principle, we have written conservative interpolation software that operates in any number of dimensions.
We believe that this could open up new post-processing methodologies — particularly for systems like Maxwell’s equations,
which can be written in conservative form. We showed in particular how the electromagnetic 2-form flux integrated over
a space–time surface should give zero, thus providing a measure of the accuracy of a numerical solution. Using simple
examples based on analytic fields, we demonstrated how the presented interpolation method conserves line integrals (in
the case of edge-centered data) and area integrals (for face centered data). These conservation properties are closely related
to other fundamental properties. For instance, line integrals of vector fields deriving from a potential were shown to depend
only on the end values along the integration path. Likewise, integrals of curl-free fields only depend on the circulation of
the field over the boundary of the surface.

Most cell-centered conservative interpolation schemes require users to provide a source field and both source and target
cell volumes. In place of field densities, we recommend working with cell-volume, face-area, and edge-length integrated
values. This has several advantages. First, integrals automatically take into account fractional and vanishing volume, area,
and length elements so that there is no need to introduce masking arrays. Second, the integrals remain well defined as one
approaches a pole singularity. Third, inconsistencies regarding how and to what accuracy (volume, area, length) elements
are computed are avoided since the effect of the volumes, areas, and lengths is included in the integral representation. This
is a particular important issue in geophysics because of the curvature of the earth; using slightly different values for the

A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40 37
earth’s radius between the source and target elements can lead to a lack of conservation when working with fields and cell
areas separately.

It is our hope that the ideas presented in this paper will be applied to the regridding of staggered fields arising in climate
modeling and other fields where conservation of mass flow, energy, and other quantities are paramount. Given that some
numerical schemes, e.g. the finite volume method, put great emphasis on flux conservation, we argue that the same level
of attention should be paid to postprocessing and visualization tasks. As a first step, we have extended the open-source
visualization tool VisIt [38] by adding support for edge and face centered data in the VizSchema plugin [39]. The result is
a more accurate streamline visualization, which removes many visualization artifacts observed when treating face centered
field as either nodal or cell centered.

With our focus on structured fields, we only scraped the surface of the possibilities of applying conservative edge and
face interpolation. The same ideas carry over to unstructured grids with the main difference that the interpolation basis
functions are different [28]. Naturally, we expect the computation of grid intersections to be numerically more demanding
due to the lack of an index space for unstructured grids. This can be remedied by using an octree algorithm [7]. Never-
theless, these challenges cannot be regarded as being inherent to edge and face interpolation as they arise for any type of
unstructured field interpolation. Moreover, this numerical cost can be amortized for time varying data if the grid is static
by reusing the interpolation weights.

Beyond the presented linear interpolation method for edge and face data, there has been some work [40] aimed at
deriving hierarchical interpolation bases with varying polynomial orders, which are conservative. This promises a way for
more efficient interpolation methods, capable of capturing small details where needed while at the same time reducing the
number of degrees of freedom in regions that exhibit small variations.

Acknowledgement

This work was supported by US Department of Energy – Advanced Scientific Computing Research Grant SBIR II DE-
SC0006241.

Appendix A. Interpolation of staggered fields on 3D cuboids

Interpolation formulas are provided in terms of local, parametric coordinates ξ in 3D. The volume of the cell is J =
∂x
∂ξ1

× ∂x
∂ξ2

· ∂x
∂ξ3

and the reader should refer to Fig. 2 for the location of each basis function within the cuboid. Expressions for
the edge and face basis function are given both in terms of contravariant ∇ξi and covariant ∂x

∂ξi
basis vectors, the latter can

be approximated with finite differences.
We start with the well known basis functions for nodal fields, the reader is encouraged to compare these expressions

with those for edge and face centered fields.

A.1. Interpolation of a nodal field

Interpolation formula:

f̄ =
∑
σ

fσ wσ (A.1)

Field values (field at cell vertices):

fσ = f (ξσ) (A.2)

Interpolation weights for target point ξ̂ :

wσ = φσ (ξ̂) (A.3)

Basis functions:

φ000 = (1 − ξ1)(1 − ξ2)(1 − ξ3)

φ001 = (1 − ξ1)(1 − ξ2)ξ3

φ010 = (1 − ξ1)ξ2(1 − ξ3)

φ011 = (1 − ξ1)ξ2ξ3

φ100 = ξ1(1 − ξ2)(1 − ξ3)

φ101 = ξ1(1 − ξ2)ξ3

φ110 = ξ1ξ2(1 − ξ3)

φ111 = ξ1ξ2ξ3

38 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
A.2. Interpolation of an edge centered field

Interpolation formula:

f̄ =
∑
σ

fσ wσ (A.4)

Field values (line integral of field along cell edges):

fσ =
∫
σ

f · dx (A.5)

Interpolation weights for target line ξ̂0 + λ(ξ̂1 − ξ̂0):

wσ =
1∫

0

dλφσ

(
ξ̂0 + λ(ξ̂1 − ξ̂0)

)
(A.6)

Basis functions:

φ
(1)
∗00 = (1 − ξ2)(1 − ξ3)∇ξ1 = J−1(1 − ξ2)(1 − ξ3)

∂x

∂ξ2
× ∂x

∂ξ3

φ
(1)
∗01 = (1 − ξ2)ξ3∇ξ1 = J−1(1 − ξ2)ξ3

∂x

∂ξ2
× ∂x

∂ξ3

φ
(1)
∗10 = ξ2(1 − ξ3)∇ξ1 = J−1ξ2(1 − ξ3)

∂x

∂ξ2
× ∂x

∂ξ3

φ
(1)
∗11 = ξ2ξ3∇ξ1 = J−1ξ2ξ3

∂x

∂ξ2
× ∂x

∂ξ3

φ
(1)
0∗0 = (1 − ξ1)(1 − ξ3)∇ξ2 = J−1(1 − ξ1)(1 − ξ3)

∂x

∂ξ3
× ∂x

∂ξ1

φ
(1)
0∗1 = (1 − ξ1)ξ3∇ξ2 = J−1(1 − ξ1)ξ3

∂x

∂ξ3
× ∂x

∂ξ1

φ
(1)
1∗0 = ξ1(1 − ξ3)∇ξ2 = J−1ξ1(1 − ξ3)

∂x

∂ξ3
× ∂x

∂ξ1

φ
(1)
1∗1 = ξ1ξ3∇ξ2 = J−1ξ1ξ3

∂x

∂ξ3
× ∂x

∂ξ1

φ
(1)
00∗ = (1 − ξ1)(1 − ξ2)∇ξ3 = J−1(1 − ξ1)(1 − ξ2)

∂x

∂ξ1
× ∂x

∂ξ2

φ
(1)
01∗ = (1 − ξ1)ξ2∇ξ3 = J−1(1 − ξ1)ξ2

∂x

∂ξ1
× ∂x

∂ξ2

φ
(1)
10∗ = ξ1(1 − ξ2)∇ξ3 = J−1ξ1(1 − ξ2)

∂x

∂ξ1
× ∂x

∂ξ2

φ
(1)
11∗ = ξ1ξ2∇ξ3 = J−1ξ1ξ2

∂x

∂ξ1
× ∂x

∂ξ2

A.3. Interpolation of a face centered field

Interpolation formula:

f̄ =
∑
σ

fσ wσ (A.7)

Field values (area integrals of field on cell faces):

fσ =
∫
σ

f · dS (A.8)

Interpolation weights for target triangle ξ0 + λ1(ξ̂1 − ξ̂0) + λ2(ξ̂2 − ξ̂0):

A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40 39
wσ =
1∫

0

dλ1

1−λ1∫
0

dλ2φσ

(
ξ̂0 + λ1(ξ̂1 − ξ̂0) + λ2(ξ̂2 − ξ̂0)

)
(A.9)

Basis functions:

φ
(2)
∗∗0 = (1 − ξ3)∇ξ1 × ∇ξ2 = J−1(1 − ξ3)

∂x

∂ξ3

φ
(2)
∗∗1 = ξ3∇ξ1 × ∇ξ2 = J−1ξ3

∂x

∂ξ3

φ
(2)
∗0∗ = (1 − ξ2)∇ξ1 × ∇ξ3 = − J−1(1 − ξ2)

∂x

∂ξ2

φ
(2)
∗1∗ = ξ2∇ξ1 × ∇ξ3 = − J−1ξ2

∂x

∂ξ2

φ
(2)
0∗∗ = (1 − ξ1)∇ξ2 × ∇ξ3 = J−1(1 − ξ1)

∂x

∂ξ1

φ
(2)
1∗∗ = ξ1∇ξ2 × ∇ξ3 = J−1ξ1

∂x

∂ξ1

References

[1] P.K. Kundu, I.M. Cohen, Fluid Mechanics, Elsevier Academic Press, 2004, pp. 52–54.
[2] L.S. Avila, S. Barré, B. Geveci, A. Henderson, W.A. Hoffmann, B. King, C.C. Law, K.M. Martin, W.J. Schroeder, The VTK User’s Guide, Kitware, Inc., 2003,

pp. 79–81.
[3] A. Pletzer, B. Jamroz, R. Crockett, S. Sides, Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces, J. Comput. Phys.

260 (2014) 25–36.
[4] E. Santos, J. Poco, Y. Wei, S. Liu, B. Cook, D. Williams, C. Silva, UV-CDAT: analyzing climate datasets from a user’s perspective, Comput. Sci. Eng. 15 (1)

(2013) 94–103.
[5] S. Hankin, D.E. Harrison, J. Osborne, J. Davidson, K. O’Brien, A strategy and a tool, Ferret, for closely integrated visualization and analysis, J. Vis. Comput.

Animat. 7 (3) (1996) 149–157.
[6] The NCAR Command Language (version 6.3.0) [Software], Tech. Rep., UCAR/NCAR/CISL/TDD, Boulder, CO, 2015.
[7] C. Hill, C. DeLuca, V. Balaji, M. Suarez, A. da Silva, The architecture of the Earth system modeling framework, Comput. Sci. Eng. 6 (Jan. 2004) 18–28.
[8] K. Taylor, EZGET: a library for Fortran subrountines to facilitate data retrieval, PCMDI Report, 1996.
[9] MATLAB, version 7.10.0 (R2010a), The MathWorks Inc., Natick, MA, 2015.

[10] K.P. Bowman, An Introduction to Programming with IDL: Interactive Data Language, Academic Press, Oct. 2005.
[11] I. Wolfram Research, Mathematica, version 10.1 ed., Wolfram Research, Inc., 2015.
[12] D. Williams, T. Bremer, C. Doutriaux, J. Patchett, S. Williams, G. Shipman, R. Miller, D. Pugmire, B. Smith, C. Steed, E. Bethel, H. Childs, H. Krishnan,

P. Prabhat, M. Wehner, C. Silva, E. Santos, D. Koop, T. Ellqvist, J. Poco, B. Geveci, A. Chaudhary, A. Bauer, A. Pletzer, D. Kindig, G. Potter, T. Maxwell,
Ultrascale visualization of climate data, Computer 46 (September 2013) 68–76.

[13] T.J. Phillips, K. Achutarao, D. Bader, C. Covey, C.M. Doutriaux, M. Fiorino, P.J. Gleckler, K.R. Sperber, K.E. Taylor, Coupled climate model appraisal:
a benchmark for future studies, Eos 87 (19) (2006) 185.

[14] J.D. Ramshaw, Conservative rezoning algorithm for generalized two-dimensional meshes, J. Comput. Phys. 59 (2) (1985) 193–199.
[15] P.W. Jones, First- and second-order conservative remapping schemes for grids in spherical coordinates, Mon. Weather Rev. 127 (Sept. 1999) 2204–2210.
[16] Climate and Earth’s Energy Budget, http://earthobservatory.nasa.gov/Features/EnergyBalance/.
[17] S.J. Lin, R.B. Rood, Multidimensional flux-form semi-Lagrangian transport schemes, Mon. Weather Rev. 124 (1996) 2046–2070.
[18] P. Raviart, J. Thomas, A mixed finite element method for 2-nd order elliptic problems, in: Mathematical Aspects of Finite Element Methods, vol. 606,

1977, pp. 292–315.
[19] J.C. Nédélec, Mixed elements in R3, Numer. Math. 35 (1980) 315–340.
[20] J.S.V. Welij, Basis functions matching tangential components on element edges, IEEE Trans. Magn. 21 (1985) 537–542.
[21] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. (1966)

302–307.
[22] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids (1958–1988) 8 (12)

(1965) 2182–2189.
[23] X. Llobet, K. Appert, A. Bondeson, J. Vaclavik, On spectral pollution, Comput. Phys. Commun. 59 (2) (1990) 199–216.
[24] J.H. Ferziger, M. Perić, Computational Methods for Fluid Dynamic, Springer-Verlag, Berlin, Heidelberg, 2002, pp. 164–167.
[25] J.B. Perot, C.J. Zusi, Differential forms for scientists and engineers, J. Comput. Phys. 257 (Part B) (2014) 1373–1393, Physics-compatible numerical

methods.
[26] R. Hiemstra, D. Toshniwal, R. Huijsmans, M. Gerritsma, High order geometric methods with exact conservation properties, J. Comput. Phys. 257 (Part B)

(2014) 1444–1471, Physics-compatible numerical methods.
[27] C. Cotter, J. Thuburn, A finite element exterior calculus framework for the rotating shallow-water equations, J. Comput. Phys. 257 (Part B) (2014)

1506–1526, Physics-compatible numerical methods.
[28] H. Whitney, Geometric Integration Theory, Dover Books on Mathematics, 1957.
[29] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11 (2002) 237–339.
[30] A. Bossavit, Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach, Elsevier, Amsterdam, 2005, pp. 105–197.
[31] R. Garimella, M. Kucharik, M. Shashkov, An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes,

Comput. Fluids 36 (2) (2007) 224–237.
[32] F. Alauzet, M. Mehrenberger, P1-conservative solution interpolation on unstructured triangular meshes, Int. J. Numer. Methods Eng. 84 (13) (2010)

1552–1588.

http://refhub.elsevier.com/S0021-9991(15)00556-2/bib73747265616D6C696E652D696E2D666C7569642D6D656368616E696373s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib73747265616D6C696E652D636F6D7075746174696F6E2D696E2D76746Bs1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib73747265616D6C696E652D636F6D7075746174696F6E2D696E2D76746Bs1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib506C65747A65722D4A616D726F7A2D43726F636B6574742D536964657332303134s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib506C65747A65722D4A616D726F7A2D43726F636B6574742D536964657332303134s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib7576636461745573657232303133s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib7576636461745573657232303133s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib48616E6B696E484F444F3936s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib48616E6B696E484F444F3936s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib6E6361722D636F6D6D616E642D6C616E6775616765s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib48696C6C3A323030343A4145533A3936383731382E393638373534s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib7461796C6F7231393936657A676574s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4D41544C41423A32303130s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib626F776D616E32303035s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib57696C6C69616D732D65742D616C32303133s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib57696C6C69616D732D65742D616C32303133s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib57696C6C69616D732D65742D616C32303133s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib63697465756C696B653A33303430373031s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib63697465756C696B653A33303430373031s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib52616D736861773835s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4A6F6E65732D31393939s1
http://earthobservatory.nasa.gov/Features/EnergyBalance/
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4C696E2D526F6F643936s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib526176696172742D54686F6D61733737s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib526176696172742D54686F6D61733737s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4E6564656C65633830s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib56616E57656C696A3835s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib5965653636s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib5965653636s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4861726C6F772D57656C63683635s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4861726C6F772D57656C63683635s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4C6C6F6265743930s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4665727A696765722D50657269632D323030322D566172417272616E67656D656E744F6E47726964s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib5065726F742D5A75736932303134s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib5065726F742D5A75736932303134s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4869656D737472612D65742D616C32303134s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4869656D737472612D65742D616C32303134s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib436F747465722D5468756275726E32303134s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib436F747465722D5468756275726E32303134s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib576869746E65793537s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib486970746D6169657232303032s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib426F73736176697432303035s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib476172696D656C6C6132303037323234s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib476172696D656C6C6132303037323234s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4E4D453A4E4D4532393531s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4E4D453A4E4D4532393531s1

40 A. Pletzer, D. Fillmore / Journal of Computational Physics 302 (2015) 21–40
[33] D.N. Arnold, D. Boffi, F. Bonizzoni, Finite element differential forms on curvilinear cubic meshes and their approximation properties, Numer. Math.
129 (1) (2015) 1–20.

[34] D.N. Arnold, D. Boffi, R.S. Falk, Approximation by quadrilateral finite elements, Math. Comput. 71 (239) (2002) 909–922.
[35] G. Matthies, Mapped finite elements on hexahedra: necessary and sufficient conditions for optimal interpolation errors, Numer. Algorithms 27 (4)

(2001) 317–327.
[36] C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Softw. 22 (Dec. 1996) 469–483.
[37] K. Warnick, P. Russer, Two, three and four-dimensional electromagnetics using differential forms, Turk. J. Electr. Eng. Comput. Sci. 14 (1) (2006)

153–172.
[38] A contract-based system for large data visualization, http://www.idav.ucdavis.edu/publications/print_pub?pub_id=890/.
[39] S. Shasharina, D. Alexander, J. Cary, M. Durant, S. Kruger, et al., VizSchema – a unified visualization of computational accelerator physics data, in: Conf.

Proc., vol. C100523, 2010, TUPEC069.
[40] R. Hiptmair, Higher order Whitney forms, in: Geometrical Methods in Computational Electromagnetics, 2000, pp. 271–299.

http://refhub.elsevier.com/S0021-9991(15)00556-2/bib41726E6F6C642D426F6666692D426F6E697A7A6F6E6932303135s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib41726E6F6C642D426F6666692D426F6E697A7A6F6E6932303135s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib41726E6F6C642D426F6666692D466F6C6B32303032s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4D6174746869657332303031s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4D6174746869657332303031s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib4261726265722D31393936s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib5761726E69636B2D52757373657232303036s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib5761726E69636B2D52757373657232303036s1
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=890/
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib53686173686172696E6132303130s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib53686173686172696E6132303130s1
http://refhub.elsevier.com/S0021-9991(15)00556-2/bib486970746D61697232303030s1

	Conservative interpolation of edge and face data on n dimensional structured grids using differential forms
	1 Introduction
	2 Differential forms and the staggering of ﬁelds
	2.1 What are p-forms?
	2.2 The exterior derivative
	2.3 Remarks

	3 Interpolating basis functions on cuboids
	3.1 Nodal basis functions
	3.2 Edge basis functions
	3.3 Face and other staggered basis functions

	4 Analytic computation of integrals
	5 Conservative property of the edge and face interpolation
	6 Applications
	6.1 Line integral of an edge ﬁeld on a polar grid
	6.2 Line integral of an incompressible ﬂow
	6.3 Flux integral of the electric displacement ﬁeld
	6.4 Fluxes with partial cells: Poiseuille ﬂow in a pipe
	6.5 Fluxes in four dimensions

	7 Summary
	Acknowledgement
	Appendix A Interpolation of staggered ﬁelds on 3D cuboids
	A.1 Interpolation of a nodal ﬁeld
	A.2 Interpolation of an edge centered ﬁeld
	A.3 Interpolation of a face centered ﬁeld

	References

