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The cluster expansion is a popular surrogate model for alloy modeling to avoid costly 
quantum mechanical simulations. As its practical implementations require approximations, 
its use trades efficiency for accuracy. Furthermore, the coefficients of the model need 
to be determined from some known data set (training set). These two sources of error, 
if not quantified, decrease the confidence we can put in the results obtained from the 
surrogate model. This paper presents a framework for the determination of the cluster 
expansion coefficients using a Bayesian approach, which allows for the quantification 
of uncertainties in the predictions. In particular, a relevance vector machine is used to 
automatically select the most relevant terms of the model while retaining an analytical 
expression for the predictive distribution. This methodology is applied to two binary 
alloys, SiGe and MgLi, including the temperature dependence in their effective cluster 
interactions. The resulting cluster expansions are used to calculate the uncertainty in 
several thermodynamic quantities: ground state line, including the uncertainty in which 
structures are thermodynamically stable at 0 K, phase diagrams and phase transitions. The 
uncertainty in the ground state line is found to be of the order of meV/atom, showing 
that the cluster expansion is reliable to ab initio level accuracy even with limited data. 
We found that the uncertainty in the predicted phase transition temperature increases 
when including the temperature dependence of the effective cluster interactions. Also, 
the use of the bond stiffness versus bond length approximation to calculate temperature 
dependent properties from a reduced set of alloy configurations showed similar uncertainty 
to the approach where all training configurations are considered but at a much reduced 
computational cost.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

New technological advances require materials with certain properties that may not be found in known material systems. 
However, even though these properties may not be found in pure materials, it is possible to alloy different material systems 
to tune the properties of interest [1–3]. Applications in different fields have used this approach to look for desired electronic 
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and optoelectronic [2,4–7], thermoelectric [8–10] or elastic [11–13] properties, to name a few. Random alloys have been 
frequently used for this purpose, and in this case the properties are usually well approximated by interpolation between the 
pure elements, linear or with a bowing parameter [14,15,6]. However, the potential of going beyond this to design specific 
alloy patterns opens the possibility of obtaining new properties beyond this simple interpolation. For example, a direct gap 
semiconductor could be found by alloying Si and Ge, which are both indirect gap semiconductors with conduction band 
minimum in different points of the Brillouin zone [16–19]. This search is not easy as the number of possible alloys grows 
exponentially with the number of atoms in the system. For a simple binary alloy on a crystal with N sites, the number of 
possible configurations is 2N . Most implementations of the de facto standard for purely quantum mechanical simulations of 
solids, density functional theory (DFT), scale as O(N3), so exhaustive explorations of the configurational space soon become 
too costly with the growth of the supercell on two fronts: exponentially growing number of configurations and cubic growth 
in the cost of each of the configurations. Even though some success has been achieved using ab initio structure search [20,
12,21], the use of surrogate models appears as the most feasible way for the explorations of the configurational space of 
alloys [22,23,15]. The most important surrogate model in this field is the cluster expansion (CE) [24–27], which has been 
widely used in a number of different applications [22,28,23,29,15,30]. It decomposes a function f (·) of a configuration σ
in contributions from different clusters of atoms in the same way as a Fourier series decomposes a periodic signal into 
components of different frequencies, and in the same way a Fourier series is exact if all terms are included, the CE is exact if 
all clusters are included. However, due to practical considerations, only a truncated expansion is possible.

Despite the great attraction from using this surrogate model due to its simplicity and computational efficiency, the 
truncation of the series means that there is an error in representing any function of the configuration. Furthermore, the 
coefficients of the model, γ , need to be estimated from known pairs D = {(σ i, f (σ i))}, which adds an extra layer of 
epistemic uncertainty to the predictions of the model. We will denote this approximation depending on parameters γ as 
f (·; γ ). All this means that any prediction made with the surrogate model will have an error, and it is important to know 
how much it is to know the confidence we can have in that prediction. Only in this case we can have a truly reliable 
surrogate that can replace the DFT simulations giving us a prediction and a level of confidence on it.

In this work, we adopt a Bayesian perspective to uncertainty quantification. In this context, we interpret probability as 
a degree of belief [31,32], not as a frequency of the outcome of some experiment. In this context, it is only natural to 
assign prior beliefs which encode our knowledge of a certain process before making any observation. However, through 
Bayes’ theorem, we can update our knowledge with available observations, obtaining a posterior probability [31,32] for the 
process. Therefore, uncertainty quantification in a Bayesian setting starts by assigning a prior probability distribution to the 
model parameters γ which we wish to determine, p(γ ). To improve on this, we will use the observations DN , which can be 
obtained either computationally, experimentally or a combination of both. Before we update our beliefs about γ , we need to 
encode the compatibility of our model with the data DN . This is done with the likelihood L(DN | γ ), which quantifies how 
likely it is to obtain the data DN using the model parameters γ . Now that we have new information from the data as well 
as a measure of their compatibility with our model, we can update our belief (probability) about γ using Bayes’ theorem, 
p(γ | DN ) ∝ p(γ )L(DN | γ ), obtaining this way the posterior probability distribution of the parameters, p(γ | DN ). Finally, 
this posterior distribution can be used for the determination of uncertainty of any quantity of interest, QI, which can be 
obtained from our model with parameters γ through a functional I[ f (σ ; γ )]. This is done by integrating over all possible 
model parameters, and in this way we obtain what we call the predictive distribution, which contains the information of the 
uncertainty on the predictions made for I ,

p(I) =
∫

p(I |γ )p(γ |DN)dγ . (1)

If we assume that for a given set of model parameters our functional can only give one value of the QI, then this simplifies 
to

p(I) =
∫

δ (I[ f (σ ;γ )] − I) p(γ |DN)dγ , (2)

where δ(·) is Dirac’s δ-function.
Previous works employing a Bayesian framework for uncertainty quantification in the CE used a Laplace prior for the 

expansion coefficients and a right-truncated Poisson prior for the number of clusters to induce sparsity in the number 
of clusters for the expansion [33]. Despite the generality of this approach, the posterior distribution cannot be sampled 
analytically and a reversible jump Markov Chain Monte Carlo (RJ-MCMC) [34] had to be used to obtain statistics on the pre-
dictions [33]. There are other works based on a Bayesian framework, but they did not exploit the resultant uncertainty. For 
example, in Ref. [35] the authors only kept the maximum of the posterior distribution for the estimation of the coefficients, 
and in Ref. [36] the uncertainty in the ECI was not propagated to any predicted physical quantity.

In this work, we develop a Bayesian framework that, while keeping a posterior distribution which can be sampled 
analytically, also enforces sparsity in the model parameters and provides quantification of the uncertainty in the results. 
To achieve this, we have used the relevance vector machine (RVM) [37], a hierarchical Bayesian model that enforces sparsity 
in the posterior distribution and therefore provides model selection. However, unlike the approach in Ref. [33], our model 
does not include uncertainty in the chosen basis set, and based on the data just selects one. In Section 2, we describe the 
CE surrogate model in more detail, and in Section 3 we detail the Bayesian linear regression framework used to obtain its 
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Fig. 1. Examples of (left) 2-, (center) 3- and (right) 4-point clusters in a fcc lattice. Red spheres represent the atoms belonging to the cluster. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this article.)

coefficients as random variables. We also discuss how from these parameters we can obtain a predictive distribution for the 
modeled function and also the use of a RVM to allow for automatic model determination. Section 4 describes the training 
of the model and details on the DFT simulations used to obtain the necessary data. This is followed, in Section 5, by a 
discussion on how to incorporate temperature dependence on the CE adding electronic and vibrational free energies and 
using an approximate model for the phonon calculations which induces additional uncertainty. In the next two sections, 
we describe numerical results on thermodynamic properties using SiGe and MgLi as test systems. Section 6 describes the 
procedure to obtain the ground state line (GSL) of an alloy including uncertainty in the energies and also in the structures 
which belong to it. Section 7 describes the algorithms used to obtain phase diagrams with uncertainty information, both 
following the phase equilibrium boundary and explicitly simulating the alloy for decreasing temperature using a Sequential 
Monte Carlo approach including temperature dependence in the CE coefficients. Finally, we end up summarizing the main 
contributions of this work as well as the numerical results.

2. Cluster expansion

The cluster expansion [24,27] is the most widely used surrogate model in alloy modeling to quickly compute physical 
properties which are a function of the configuration. In what follows, we present this model using a binary system for 
simplicity, even though it can be readily extended to systems with more than two components.

Consider a binary alloy on a fixed lattice with components A and B , Ax B1−x , where x is the proportion of component A. 
Each site of the lattice can be occupied by either A or B , and it is therefore characterized by a spin number σs with possible 
values of −1 (A occupancy) and +1 (B occupancy). For a crystal with N sites, a vector containing the corresponding 
value for each of the sites, σ = {σ1, σ2, . . . , σN} completely defines a configuration of the system. There are 2N possible 
configurations, which define the configuration space � = {σ }. We define a cluster as any of the possible groupings of the 
atoms in the system (e.g. isolated atom, nearest neighbor pairs, etc.). Fig. 1 shows an example of 2-, 3-, and 4-point clusters 
in an fcc lattice.

The idea of the CE is to construct a set of basis functions for the configurational space with N sites as the direct product 
of the basis functions for N = 1, {ϕ0, ϕ(σ )}, with ϕ0 = 1 corresponding to the empty cluster and ϕ(σ ) = σ . This is a 
complete and orthonormal basis with the scalar product defined as [27]

〈 f , g〉 =
∑

σ=±1

f (σ )g(σ )

2
. (3)

For a N site system, the basis functions will be the direct product of the basis for N = 1,

�α(σ α) =
∏
p∈α

ϕ(σp), (4)

where the product is over all sites in cluster α and α is one of the 2N possible clusters in the lattice with N sites, including 
the empty cluster for which �0(σ ) = 1. It is possible to prove that these basis functions form a complete orthonormal basis 
for the configurational space with N sites [27]. Each basis function, �α(σ ), is associated with each of the clusters, and each 
basis function will have an associated coefficient when expanding any function f of the configuration σ given by the scalar 
product 〈 f (σ ), �α(σ )〉,

f (σ ) =
∑
α

〈 f (σ ),�α(σ )〉�α(σ α). (5)

Symmetry considerations in periodic systems can greatly reduce the number of such independent coefficients. Each clus-
ter α can be characterized by three components: its type η, specified, for example, by shape and size, its position in the 
lattice π , specified, for example, as the primitive cell containing the center of mass of the cluster, and its “orientation” ω, 
which is determined by one of the point group symmetries of the lattice. For each cluster α = (η, π, ω), all the clusters 
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symmetrically equivalent to it under a space group operation of the underlying lattice form its orbit, which we will de-
note αη . Therefore, the members of αη will consist of clusters of the form α′ = (η, π ′, ω′), i.e., with the same shape but 
possibly different position and orientation. Since all these clusters have equivalent environments owing to the periodic na-
ture of the system, their corresponding expansion coefficients must be the same [27]. By averaging over the orbits of all 
inequivalent clusters, we obtain another basis for the cluster expansion,

φη(σ ) = 1

Nπ

1

ωη

Nπ∑
π=1

ωη∑
ω=1

�αη(σ αη ) = 〈�α′(σ )〉αη
, (6)

where ωη is the number of clusters symmetrically equivalent under point group operations for a given η and π , Nπ the 
number of primitive unit cells, and 〈·〉αη

represents the average over the orbit of a cluster characterized by shape η. Using 
this basis, we can expand a function of the configuration as:

f (σ |γ ) =
M∑

i=0

γiφi(σ ), (7)

where γ = {γi} are the effective cluster interactions (ECI) and M is the number of terms in the expansion. In this work, we 
have included the multiplicity from the space group operations in the ECI γi .

It can be shown that the cluster expansion is a multidimensional discrete Fourier transform, so if all clusters are included, 
then the expansion is exact [27]. However, it is usually necessary to truncate the number of clusters included [26]. This can 
be done in two different ways: by fixing the maximum number of crystal sites present in any cluster as well as its maximum 
spatial extent (largest distance between any two crystal sites in the cluster). Since the number of points in the cluster are 
related to the frequency [27], it is natural to include first the clusters with a small number of points as it would be done in 
the approximation of a Fourier series.

Remark 1. There are extensions of the CE formalism described in this section, such as the variable basis cluster expan-
sion [27], the mixed-basis cluster expansion [38] or the tensorial cluster expansion [39]. However, as all of them are based 
on a linear model, the methodology that we will apply in this paper to calculate the uncertainty in the ECI and for predictive 
modeling of thermodynamic properties can easily be extended to these formulations.

3. The relevance vector machine

The cluster expansion model as formulated in Eq. (7) is a linear model in the basis functions φi(σ ). To determine 
the coefficients γ from the available data, we use a Bayesian linear regression model [31,32], which treats the regression 
coefficients (ECI) as random variables instead of point estimates.

In the problem of regression we have two spaces, input and output. In our case, the input space is the configurational 
space � and the output space depends on the quantity we want to fit, for example, it is the real line R for energies. We 
will denote elements of this output space by t and a set of them by t. We will assume that for any input point σ i the 
observed ti follows on average our linear model and has an additional error term ε. This quantity represents the model 
accuracy as it provides a measure of the deviation between our model and the experimental/exact results. Therefore, for a 
single observation ti ,

ti = γ T φ[σ i] + εi, (8)

where φ[σ i] is a M × 1 matrix with entry j representing the basis function φ j evaluated at σ i . εi is an error term and we 
will assume it to be Gaussian with the same precision for all data points, β = 1/v = 1/σ 2, where v is the variance and σ
the standard deviation. Therefore, the probability of obtaining a particular value for the observation of a material system 
with configuration σ will follow a Gaussian distribution with mean γ T φ[σ ]:

t ∼ N (t |γ T φ[σ ], β−1). (9)

This model defines the likelihood function L, which depends on the model parameters γ and β and on the experimentally 
observed data DN , which consists of N pairs of observations tt,i at given configurations σ t,i . The likelihood gives a measure 
of how likely it is to obtain the observed data DN = {(σ t,i, tt,i)}N−1

i=0 given the assumed model. In our case, it will be

L(DN |γ , β) =
∏

(σ t,i ,tt,i)∈DN

N (ti |γ T φ[σ t,i], β−1) = N (tt |�γ , β−1I), (10)

where tt = (tt,0 . . . tt,N−1)
T and � is the design matrix, which is defined as a matrix whose entries are �i j = φ j[σ t,i], i.e., 

a matrix where each row contains all the basis functions evaluated for a given training system, or, equivalently, where each 
column contains a given basis function evaluated for all the training systems,
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� =

⎛
⎜⎜⎜⎝

φ0[σ t,0] · · · φM−1[σ t,0]
φ0[σ t,1] · · · φM−1[σ t,1]

...
. . .

...

φ0[σ t,N−1] · · · φM−1[σ t,N−1]

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

φ[σ t,0]T

φ[σ t,1]T

...

φ[σ t,N−1]T

⎞
⎟⎟⎟⎠ , (11)

where φ[σ ] is the column vector with the basis functions evaluated at a given configuration σ , φi[σ ], as its entries, φ[σ ] =
(φ0[σ ] φ1[σ ] · · · φM−1[σ ])T .

Since we do not know a priori which of the basis functions are necessary or relevant to describe our objective function, 
we use a relevance vector machine, which through the use of a sparsity inducing prior provides automatic model selection 
by discarding the basis functions which are not required to describe the data. In this case, the prior distribution is described 
by the following hierarchical model [37],

p(γ |α) =
∏

i

N (γ |α−1
i ) = N (γ |0,diag(α−1

i )), (12)

p(α | c0,d0) =
∏

i

G(αi | c0,d0), (13)

p(β | c0,d0) = G(β | c0,d0), (14)

where G(x | a, b) is a gamma distribution on x with shape parameter a and rate parameter b. We set a0 = b0 = c0 = d0 = 0
to obtain uniform hyperpriors (over a logarithmic scale), which has the added benefit of resulting in the scale invariance of 
the predictions [37].

Given the likelihood and the priors, we can obtain the posterior probability distribution of the parameters given the data 
using Bayes’ theorem [31],

p(γ ,α, β |DN ) = L(DN |γ ,α,β)p(γ ,α, β)∫
L(DN |γ ,α,β)p(γ ,α, β)dγ dβ dα

. (15)

The normalizing integral cannot be carried out analytically, so we seek an approximation. To do this, we decompose the 
posterior over the parameters as p(γ , α, β | DN ) = p(γ | DN , α, β)p(α, β | DN ). This way we can obtain the posterior over 
the weights conditioned on the hyperparameters α and β as [37] (see Appendix A for details)

p(γ |DN ,α, β) = L(DN |γ ,β)p(γ |α)∫
L(DN |γ ,α,β)p(γ |α)dγ

= N (γ |μ,SN ), (16)

where

S−1
N = β�T � + A, (17)

μ = βSN�T tt, (18)

and we have defined A = diag(α0, . . . , αM). To obtain an analytical expression for the posterior distribution, we approx-
imate p(α, β | DN ) by a delta function at its mode, p(α, β | DN ) ≈ δ(αM P , βM P ). Using this approximation, learning the 
RVM becomes the search for the mode of the hyperparameter posterior distribution [37], which is the maximization of 
p(α, β | DN ) = p(DN | α, β)p(α)p(β) with respect to α and β . With the adopted approximation of uniform hyperpriors this 
is equivalent to the maximization of p(DN | α, β), which is the marginal likelihood given by:

p(DN |α, β) =
∫

p(DN |γ , β)p(γ |α)dγ = N (tt |0, β−1I + �A−1�T ). (19)

Details of the derivation and also on its maximization with respect to α and β can be found in Appendix B. α and β are 
updated sequentially using Eqs. (B.12) and (B.20) [40,31] until convergence is achieved. In the numerical implementation of 
the pruning of the model basis functions, we consider a maximum value of αmax = 1016 as an approximation to the limit 
α → ∞. This process is detailed in Algorithm 1.

Remark 2. The use of a maximum posterior approximation for the parameters α and β will lead to an underestimation 
of the uncertainty in the results. This restriction used in the original formulation of the RVM [37] is typical of Bayesian 
hierarchical models and can be easily lifted at the expense of losing the analytical expression for the posterior distribution 
of the parameters. The impact of such an approach to the predictive uncertainty requires further study.

Remark 3. We can understand better the reason for the sparsification if we look at the covariance C of the marginal 
likelihood in Eq. (19),

C = β−1I + �A−1�T = β−1I +
M−1∑
i=0

1

αi
ϕ iϕ

T
i , (20)
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Algorithm 1 Evidence approximation: Hyperparameter optimization.
Select convergence criterion for the inner and outer iterations: θinner , θouter

Select maximum number of iterations for outer and inner loops, tmax and jmax , respectively
Select numerical threshold αmax to detect α → ∞
Initialize outer iteration t = 0
Initialize α0 = (αmax . . . αmax)

T

Initialize β0 = 0
for t = 0, 1, . . . , tmax do

Obtain s, q according to Eqs. (B.15) and (B.16)
Set αt = αt−1, βt = βt−1

for i = 0, 1, . . . , M − 1 do
if q2

i > si then
αi = s2

i /(q2
i − si), Eq. (B.12)

else
αi = αmax

end if
end for
Set αt = (α0 . . . αM )T

Set �α =‖ αt − αt−1 ‖2

Set βt
0 = βt−1

for j = 0, 1, . . . , jmax do
1

βt
j+1

= (tt −�μt−1
j )T (tt −�μt−1

j )

N−trace(I−ASt−1
N, j )

, Eq. (B.20).

Update St
N, j , μt

j using Eqs. (17) and (18)

Set �β = |βt
j+1 − βt

j |
if �β < θinner then

break
end if

end for
Set βt = βt

j+1

Set �β = |βt − βt−1|
if �α, �β < θouter then

break
end if

end for

where ϕi is the i-th column of the design matrix �. Equation (19) for the marginal likelihood gives the probability of 
obtaining the given observations tt,i for each of the input training points σ t,i given the hyperparameters α and β . Each 
of the terms in the summation in Eq. (20) represents the covariance matrix associated to each of the basis functions. The 
objective of the evidence approximation is to maximize the marginal likelihood for the data DN . Since the marginal likelihood 
is a unimodal distribution centered at the origin, its maximization at the experimental observations tt will happen when 
the covariance is aligned with the data points. Therefore, the RVM will prune all the covariance matrices ϕiϕ

T
i which are 

not aligned with the experimental training set tt by taking their αi to infinity. More details on this behavior can be found 
in [37,31].

3.1. Predictive distribution

We are usually interested in obtaining a prediction with our model after carrying out the training process. Once we have 
a distribution for the model parameters, we can calculate a probability distribution of the output of our model, t∗ , given an 
input system with configuration σ ∗ . This is called the predictive distribution and it is computed by averaging the likelihood 
of observing t∗ given σ ∗ over all possible values of the model parameters with weight defined by the posterior distribution 
p(γ , α, β | DN ),

p(t∗ |DN) ≈
∫

p(t∗ |γ , β)p(γ |DN ,α, β)δ(αM P , βM P )dγ dαdβ

=
∫

p(t∗ |γ , βM P )p(γ |DN ,αM P , βM P )dγ

=
∫

N (t∗ |μT φ[σ ∗], β−1
M P )N (γ |μ,SN)dγ = N (t∗ |μ∗, s∗), (21)

where

s∗ = β−1
M P + φ[σ ∗]T SNφ[σ ∗], (22)

μ∗ = μT φ[σ ∗], (23)

and we have used Eq. (A.3). Therefore, for the assumed model, each prediction for a new system is given by a normal 
probability distribution and is dependent on the particular system.
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Remark 4. The framework described in this section assumes a single noise parameter β which represents the model ac-
curacy only, as we will assume that the training energies obtained from DFT are exact. This is in general not true, and 
they will have an error associated to numerical noise and also to the lack of knowledge of the exact exchange–correlation 
functional. This source of error can also be added to the model as an additional term in the precision of the likelihood in 
Eq. (10).

4. Model training

To study the effect of the uncertainty in the CE, we will explore the thermodynamic properties of two different alloys: 
SiGe and MgLi. Silicon–germanium (SiGe) is a solid–solution semiconductor with a diamond cubic structure, which is the 
same as the one of its components Si and Ge. SiGe alloys are commonly used in nanoelectronic [41,42], optoelectronic [43,
44] or thermoelectric devices [45,46] in part because of the opportunities they present for band-gap and strain engineering, 
which leads to effects on fundamental properties absent in both Si and Ge. On the other hand, bcc Magnesium–Lithium 
alloys belong to the family of ultra-light materials [47,12,23]. Magnesium is the sixth most abundant element in the earth’s 
mantle and its low density offers possibilities for its use in situations where weight savings are important, such as auto-
motive or aerospace applications. However in its most stable hcp phase, Mg has some undesirable mechanical properties. 
Alloying it with Li stabilizes it in a bcc phase and makes it more attractive to be used in manufacturing [23].

In the study of these materials, we will be using the Alloy Theoretic Automated Toolkit (ATAT) [48,49]. Also, for the study 
of the stability of different phases of an alloy and therefore the ground state line, we are interested in the ability of the CE 
to reproduce the formation energy, � f E , of the different phases. For example, for MgLi:

� f E(σ ) = E(σ ) − [
xMg E(σ Mg) + (1 − xMg)E(σ Li)

]
, (24)

where xMg is the fraction of Mg for the configuration σ and σLi/Mg are the configurations of pure Li and Mg, respectively. 
Therefore, this is the quantity we will use to fit the ECI to obtain a surrogate model,

� f E(σ |γ ) =
M∑

i=0

γiφi(σ ). (25)

Remark 5. Since the ECI provide us with the coefficients of a linear model for a given function of the configuration, a dif-
ferent set is needed if we want to study other properties of the materials. For example, we may be interested on the elastic 
properties of a material and fit a set of ECI to its bulk modulus or in the study of electronic properties of SiGe, for which it 
would be interesting to obtain the ECI for different energy band-gaps or effective masses in the �, � and L valleys in the 
Brillouin zone.

The training energies are obtained from DFT simulations using the Vienna Ab-initio Simulation Package (VASP) [50,51] as 
in Ref. [52]. The Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional [53] was used throughout. A convergence 
criterion of 1 meV/atom was used to choose the plane-wave energy cut-off, which was achieved around 340 eV. Spin 
polarization was not included. The Brillouin zone integration was done on a �-centered Monkhorst–Pack [54] grid with just 
over 7500 k points per reciprocal atom and scaled according to the size of each supercell being computed.

The configurations used for the fitting, �t = {σ i}, were generated using the MIT Ab-initio Phase Stability (maps) tool in 
ATAT. The problem of finding the optimal next structure to simulate, known as active learning [55,56], is done by the maps
tool using a trade-off between minimizing the expected variance of a least-squares fit and minimizing the cost of simulating 
the new structure [49]. To do this, the code scans through candidate structures [57] in order of increasing computational 
cost, which is estimated as O(N3) for DFT simulations. For each structure, the gain G is calculated as G = �V /C , where 
�V is the expected variance gain and C the estimated computational cost. The search is aborted when �Vmax/C < Gmax , 
where Gmax is the best gain found so far and �Vmax is the estimated maximum possible variance reduction [49].

Remark 6. To use a fully Bayesian framework, the active learning would be driven by a Bayesian design of experiments [58,
59] to determine which structures to simulate based on the information available at each step, including the uncertainty in 
the current model.

One last point that needs to be specified for the training of the expansion is the truncation criterion. The number of 
terms included in the expansion is determined by two different parameters: maximum number of points in a given cluster 
and maximum size (spatial extent) of the cluster. The necessary values for convergence depend on the material being 
simulated. For SiGe, including only 2-point clusters already gives a good fit [33], but for MgLi, clusters with up to 5 points 
may be necessary [23,33]. This can be seen as well using the RVM, which removes clusters that are not relevant for the fit. 
For the case of SiGe, this can be seen in Fig. 2, which shows the fitted ECI for at least 2-point clusters using as a basis all 
2-point clusters up to 9 nm in diameter and all 3-point clusters up to 5 nm. Of the 6 3-point clusters included, only one of 
them is kept and it has a small associated ECI value. This means that the 3-point clusters do not add much information to 
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Fig. 2. ECI of the cluster expansion for the SiGe formation energy obtained using a RVM starting with clusters up to (left) 2- and (right) 3-points. Black 
dots represent the posterior mean for each of the coefficients and the red error bars the 95% confidence interval from Eqs. (16)–(18), respectively. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the description of the formation energies for SiGe. Even though the posterior probability of the ECI is integrated out in the 
predictions, Eq. (21), it is interesting to look at their values as they can provide information about the physics of the system. 
Specifically, for a given type of cluster, the sign of its ECI will determine if it is favored or not, and therefore it is important 
to discern the physics of the model [33]. For example, for the 2-point clusters, if the corresponding ECI is negative then its 
associated cluster family prefers its two atoms to be of the same type (σ1 · σ2 = +1). We notice that for all the ECI, most 
of the mass of their probability distributions has the same sign, which means that even though their impact can change for 
different realizations of the ECI, the physics remains the same.

Fig. 3 shows the same information for MgLi, including up to (top) 3-, (middle) 4- and (bottom) 5-point clusters. In this 
case, most of the strength is also in the small 2-point clusters, but the smallest 3-point cluster also has a large strength. 
However, most of the other 3-point clusters are suppressed by the RVM. As we increase the maximum number of points 
in the clusters we can see that, even though their strength remains weaker than small 2- and 3-point clusters, they are 
not removed by our model. Looking at the signs again, most of the clusters have a well defined ECI sign, but a few of the 
weaker 2-point clusters have their probability mass divided between positive and negative strength, which means that the 
model does not give a conclusive answer about the physics of those cluster families.

Remark 7. With the use of a truncated cluster expansion a question may arise: Are we capturing the data trends or the data 
source/actual physics?. Even though more research would be needed to answer it conclusively, we can make a few observa-
tions. To start with, we are limited by the quality of the data in learning about the physics of the problem. For example, 
it could be that the data is poorly collected so that it does not provide a faithful reflection of the real physics. However, 
we assume that the data quality is good and that the real physical behavior is contained therein. Therefore, we can think 
of the parametrization (CE fitting) as an attempt to extract the physical behavior and learn it as well as possible with as 
few terms as possible. We expect that this low-fidelity representation of the high-fidelity data captures the behavior needed 
for the application. In some cases, the physical interactions are simple enough that a few parameters are able to capture 
these effects very well. This is the case, for example, of SiGe, where the strong nearest neighbor interactions are dominant. 
However, in other systems, such as MgLi, we need a lot of interactions and could be getting just the general trends right, but 
not capture most of the actual physics. It is conceivable that in systems with complex physics, while capturing the general 
trends with the parameters, we cannot put any physical meaning to these parameters.

In the end, if the parameters are not associated with real physics, but still capture the data trends, we should be happy 
with the predictive ability of the model. However, we have to be careful with concluding anything about physics being told 
by the parameters, but this is true for any statistical meta-model we build. In the case of this work, alloy energy landscapes 
tend to be explainable with few parameters simply because the energy binding together atoms tends to be local in nature 
(there are exceptions when considering, e.g., ionic systems) and hence, by the form of the cluster expansion (expanding 
nearest neighbors first, etc.) they will be picked up by the expansion.

5. Temperature dependence and its impact on the uncertainty

All the discussions presented so far assumed the use of DFT energies for the fitting, so the ECI are obtained at 0 K. 
Although it is sometimes assumed that these are valid for any temperature [33], as the temperature increases the degrees 
of freedom of the system are not only the configurational ones accounted for in the 0 K DFT simulations. In general, at a 
finite temperature T , the equilibrium of a system is defined by the minimum of its free energy F , not its internal energy U . 
For a constant volume V , the Helmholtz Free energy is



M. Aldegunde et al. / Journal of Computational Physics 323 (2016) 17–44 25
Fig. 3. ECI of the cluster for MgLi including an increasing number of points in the expansion (from top to bottom). Black dots represent the posterior mean 
for each of the coefficients and the red error bars the 95% confidence interval from Eqs. (16)–(18), respectively. The inset shows the ECI for the 1-point 
cluster. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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F = U − T S, (26)

where S is the entropy of the system. Using the adiabatic approximation [60,61], we include two contributions to the free 
energy in the system for finite temperatures, the electronic (including the static lattice) and the vibrational free energies,

F (T , V ) = F el(T , V ) + F vib(T , V ), (27)

where F el(T , V ) is the electronic free energy and F vib(T , V ) is the vibrational free energy. Both of these contributions 
can be obtained from DFT simulations: F el using a generalization to finite temperatures [62,63], and F vib using the direct 
method within the quasi-harmonic approximation to calculate the phonon spectrum [64,65].

Remark 8. Even though the description of the cluster expansion formalism was done with only configurational degrees of 
freedom, it can be shown that it works as well for finite temperature systems just by replacing the energy from 0 K DFT 
calculations by the free energy F (T , V ) [66].

5.1. Electronic free energy

At a finite temperature T , the occupied states are not just those below the Fermi level E F , but there is a finite probability 
of occupation of states of higher energy E . This probability is given by the Fermi–Dirac distribution, f F D(E; T ) [67]:

f F D(E; T ) = 1

1 + exp ((E − E F )/kB T )
, (28)

where kB is the Boltzmann constant. Therefore, the spectral electron density n(E; T ) will be given by the product of this 
probability times the density of states of the system, g(E):

n(E; T ) = g(E) f F D(E; T ) = g(E)

1 + exp ((E − E F )/kB T )
, (29)

where we have assumed that the density of states does not depend on the temperature [68] and therefore can be obtained 
from 0 K DFT simulations.

The electronic free energy including finite temperature effects can be written as [63]:

F el = E D F T +
∞∫

−∞
E f F D(E; T )g(E)dE − T Sel, (30)

where E D F T = U ext + U H + Exc includes the interaction with external potential U ext , the Hartree energy U H , and the 
exchange–correlation energy Exc [69]. The second term in the summation is a generalization to finite temperature of the 
sum of Kohn–Sham energies 

∑occ
i εi ≈ ∫ E F

−∞ Eg(E) dE which at 0 K only runs over states below the Fermi energy. Finally, Sel
is the electron entropy and is given by [63,68]

Sel = −
∞∫

−∞
g(E) { f F D(E; T ) log[ f F D(E; T )] + [1 − f F D(E; T )] log[1 − f F D(E; T )]} dE. (31)

All the additional terms can be obtained using the density of states calculated from a 0 K DFT simulation of the system and 
therefore require almost no additional computational cost. Also, note that at 0 K, F el reduces to the DFT calculated energy.

5.2. Vibrational free energy

Another source of free energy at finite temperatures are the vibrations of the lattice, which are usually represented by 
the associated quasi-particles, phonons [67]. The vibrational free energy for the phonon system can be written as [70,60]

F vib = 1

2

∑
h̄ωi + kB T

∑
log

(
1 − e−h̄ωi/kB T

)
≈

∞∫
0

gp(ω)

{
1

2
h̄ω + kB T log

(
1 − e−h̄ω/kB T

)}
dω, (32)

where h̄ is the reduced Planck’s constant, ωi is the frequency of the phonon and the summation runs over all phonon 
modes. gp(ω) is the phonon density of states that can be used to approximate the summation.

To calculate the free energy of any system, we need its phonon spectrum, and we use the same methodology imple-
mented in ATAT, which is based on DFT simulations and uses the direct method [64,65]. Using this method, a supercell 
repeating the primitive cell of the material is created. One atom a of the original primitive cell (position 0) is displaced by 
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a vector u(0, a) and the forces F(n, b) at the rest of the atoms b of every copy of the primitive cell, with origin at n, are 
recorded. These forces are related to the displacements through the force constant tensor B,

F(n,b) =
∑

m

B(n,b,m,a)u(0,a), (33)

where m denotes the origin of the periodic replicas of the cell 0 containing atom a. By running DFT simulations with 
independent displacements u(0, a) in the different atoms of the primitive cell and calculating the resulting forces in other 
atoms, we obtain an overdetermined system for the elements of B which can be solved using the least squares method [65,
66]. In practice, not all atoms in a supercell need to be displaced and the symmetries of the crystal can be exploited to 
reduce the number of DFT simulations. The force constant tensor is then used to build the dynamical matrix D(k) of the 
crystal [65] for any value of crystal momentum k. For a unit cell with n atoms, this matrix is of size 3n × 3n (3 coordinates 
per atom) and its 3 × 3 entry for the atom pair ab is

D(k,ab) = 1√
Ma Mb

∑
m

B(0,b,m,a)e−2π ikm, (34)

where Ma and Mb are the masses of atoms a and b, respectively. The eigenvalues of the dynamical matrix define the phonon 
frequencies of the system [65] for any given value of k,

D(k)w(k) = [ω(k)]2 w(k), (35)

where ω(k) are the frequencies for a given momentum k and w(k) are their corresponding eigenvectors. Details of the 
derivation of these equations for the phonon calculations can be found in Appendix C.

Remark 9. In this work, we use forces from 0 K DFT simulations to obtain the phonon spectrum. However, in principle, these 
forces will also depend on the temperature and should be calculated using the full free energy F el , Eq. (30), and not just 
E D F T . This means that the phonon spectrum would also depend on the temperature. However, the effect of the electronic 
temperature is expected to be small [60], so we only use the 0 K calculation, thus removing the explicit temperature 
dependence in the phonon frequencies. This corresponds to the quasi-harmonic approximation [60].

5.2.1. The bond stiffness versus bond length approximation
The methodology described in the previous section to calculate the force constant tensor is well established, but it can 

be very costly for alloy simulations since the determination of the components of this tensor requires several calculations 
with a large supercell for each configuration. Even though these are done with frozen atomic positions, they still result in a 
considerable additional computational cost, especially if we use configurations with a large number of atoms in the training 
process. Therefore, instead of calculating the phonon modes using the direct method for every training configuration of 
the alloy, a subset of them, � f c ⊂ �t , is used to build a regression model for the dependence of the stiffness of the 
springs connecting nearest neighbor sites and their bond length L [66,71]. This regression can then be used to obtain the 
force constants for the rest of the configurations. We will call the new data set used for the regression of the stiffness 
D f c = {(σ i, E(�σ i))}σ i∈� f c , where E(�σ i) represents the set of all energies necessary to calculate the force constant tensor 
for the configuration σ i . This procedure is based on approximating the force constant tensor as

B(m,a,n,b) = kσaσb (L) (36)

where kσaσb (L) is the (bond length-dependent) 3 ×3 stiffness tensor of the spring connecting the two sites (m, a) and (n, b)

occupied by atoms of type σa and σb . These bond stiffnesses are assumed to take the same values for all configurations with 
the same parent lattice and only depend on the atomic identities σa and σb [66]. Furthermore, we only consider stretching 
and bending components as they are expected to be the most important [66]. This means that for a binary alloy we have 
six independent functions kσaσb (L), two for each of the three possible atomic pairings.

This step, while considerably reducing the computational effort, adds an extra level of uncertainty to the calculation. 
As with the CE coefficients, we capture this uncertainty using a Bayesian linear regression model with a RVM prior. Us-
ing an independent linear model for each the independent stiffness component kσaσb of the force constant tensor B with 
coefficients ξσaσb

= (ξ1 . . . ξP )T and basis χσaσb
(L) = (

χ1(L) . . . χP (L)T
)
, we have

kσaσb (L) = ξ T
σaσb

χσaσb
(L). (37)

Therefore, we obtain a probability distribution for the coefficients of the stiffness given the subset of structures for the fit 
� f c ,

p(ξσaσb
|D f c) = N (ξσaσb

|μσaσb
,SN,σaσb ), (38)

where μi and Si
N are given by Eqs. (18) and (17). The predictive distribution for the stiffness used to sample its value is 

given by
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Fig. 4. Fit of the bond stiffness kab as a function of the bond length L for SiGe using a second-order polynomial. The fit for Si–Si (left), Ge–Si (middle) 
and Ge–Ge (right) bonds are shown. Each figure contains the stretching (red dots) and bending (blue dots) components of the tensor calculated for five 
configurations, a fit using Bayesian linear regression (red lines plus shades indicating one standard deviation uncertainty) and the least-squares fits from 
ATAT (blue lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

p(kσaσb |D f c) = N (kσaσb |μσaσb , sσaσb ), (39)

where the mean μi and variance si are given by Eqs. (23) and (22), respectively. Fig. 4 shows the fit of the two in-
dependent force constant tensor components, stretching and bending, for SiGe using Bayesian linear regression and the 
least-squares method as implemented in ATAT. Since there are two types of atoms, there are three bonds that need to 
be fitted, Si–Si, Si–Ge and Ge–Ge bonds. Eight configurations were used to generate the data for fitting, pure Si, pure Ge, 
four Si0.5Ge0.5 configurations with space groups F43m (2 atoms/unit cell), R3m (2 configurations with 4 atoms/unit cell) 
and C2/c (8 atoms/unit cell), one Si0.25Ge0.75 configuration (R3m, 4 atoms/unit cell) and one Si0.75Ge0.25 configuration 
(C2/m, 8 atoms/unit cell). We can see that the standard deviation of the predictive model using this approximation with 
the Bayesian fit stays below 5% for all stretching terms and therefore we do not expect the stiffness versus length approxi-
mation to increase the uncertainty too much.

Using this approximation, the dynamical matrix can now be easily obtained for any alloy configuration using Eqs. (34)
and (36) and used to calculate the vibrational free energy F vib , Eq. (32).

Remark 10. This error includes limited fitting data and model inadequacy. As for the model, we have only considered a 
polynomial fit as this is also the implemented method in ATAT. The appropriate polynomial order depends on the material, 
but we set a maximum of third order and let the RVM select the order that maximizes the evidence. The limited data error 
can be reduced by including more configurations to the fit of the bond stiffness to bond length. For example, if we want 
more data for the Ge–Ge bond model, we would include Ge-rich configurations, as these contain more Ge–Ge bonds.

Remark 11. Since there is a probability distribution associated to the nearest neighbor bond stiffness and therefore the force 
constants, p(Bi | D f c), the vibrational free energy also has an associated probability distribution p(F vib | D f c). Even though 
we do not have an analytical expression, we can sample from it in a three step process: (i) independently sample the bond 
stiffness for the different atom types from Eq. (39), (ii) construct the force constant tensor using Eq. (36) (iii) calculate the 
phonon spectrum for the given force constants using Eqs. (34) and (35) and (iv) calculate F vib using Eq. (32) with this 
phonon spectrum.

Remark 12. The calculation of the vibrational free energy using the full model as described in the previous section is the 
recommended method. However, as its cost can be very high in some circumstances, such as the use of many training 
configurations with large unit cells, the bond stiffness versus bond length approximation provides an alternative at a much 
lower cost. The user of this approximation must be aware that the saving in cost comes at the price of an increased 
uncertainty in the results, and this can be significant.

5.3. Temperature dependent uncertainty in the ECI

Using the methods described above, we can compute the free energy of the system at any temperature, which is the 
quantity whose minimization will lead to the stable configuration. These values of the free energy can be used to fit the ECI 
at different temperatures and these can then be used in thermodynamic calculations [71]. In order to do this, we first select 
a temperature range and temperature step to calculate the ECI. In between these temperatures, we use an interpolation. In 
our case, we chose a temperature range from 0 to 2000 K rand a step of 100 K. For each of these temperatures, we calculate 
the electronic free energy as in Eq. (30) and the vibrational free energy as in Eq. (32). Using the adiabatic approximation we 
add them to obtain the total free energy for each temperature, Eq. (27). Fitting the free energy at each temperature T , we 
obtain a predictive distribution for the free energy given the temperature, p(F | DN , T ), Eq. (21). This process is summarized 
in Algorithm 2:
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Algorithm 2 Uncertainty in free energy calculation.

Select �T and NT that define the temperature range, T = {i�T }NT
i=0

for all σ i ∈ �t do
Generate the electronic free energy F elec using Eq. (30) for all T ∈ T
Generate the vibrational free energy F vib

i using Eq. (32) for all Ti ∈ T
Calculate the total free energy using F = F elec + F vib

i , Eq. (27)
end for
for all T ∈ T do

Fit the coefficients γ of the cluster expansion to the free energy F , obtain p(γ | DN , αM P , βM P , T ) =N (γ | μ(T ), SN (T )), Eqs. (16)–(18)
Calculate parameters s∗

i (T ), μ∗
i (T ) of the predictive distribution p(F | DN , T ), Eqs. (22) and (23).

end for

Algorithm 3 Uncertainty in free energy calculation using the stiffness versus length approximation.

Select the number of samples Ns of F vib to approximate p(F | DN , D f c , T ), Eq. (41)

Select �T and NT that define the temperature range, T = {i�T }NT
i=0

for all σ i ∈ �t do
Generate the electronic free energy F elec using Eq. (30) for all T ∈ T
for i = 1, . . . , Ns do

Sample the stiffness from p(kσaσb | D f c), Eq. (39)
Build the force constant tensor from Eq. (36)
Calculate the phonon spectrum, Eqs. (34) and (35)
Generate the vibrational free energy F vib

i using Eq. (32) for all Ti ∈ T
end for
for i = 1, . . . , Ns do

Calculate the total free energy using F = F elec + F vib
i , Eq. (27)

for all T ∈ T do
Fit the coefficients γ of the cluster expansion to the free energy F , obtain p(γ | DN , αM P , βM P , T , F vib

i ) = N (γ | μi(T ), SN,i(T )), Eqs. (16)–(18)
end for

end for
end for
for i = 1, . . . , Ns do

for all T ∈ T do
Calculate parameters s∗

i (T ), μ∗
i (T ) of the predictive distribution p(F | DN , D f c , T , F vib

i ), Eqs. (22) and (23)
end for

end for
Estimate the predictive distribution for each temperature using Eq. (41)

5.3.1. Uncertainty using the bond stiffness versus the bond length approximation
In the case of the stiffness versus length approximation, for the vibrational free energy, since we used a Bayesian regres-

sion for the force constants, we have a probability distribution for each temperature, p(F vib | D f c, T ) which can be sampled 
as described in Remark 11. For each sample of F vib , we will have a different free energy, Eq. (27), and therefore each of 
the samples will require a separate cluster expansion for F . Each of these cluster expansions provides us with a posterior 
distribution for the ECI p(γ | DN , αM P , βM P , T , F vib), Eq. (16), and a predictive distribution for the free energy given the vi-
brational free energy, p(F | DN , T , F vib), Eq. (21). If we integrate out the dependence on F vib , we obtain the final predictive 
distribution for the free energy at the given temperature T ,

p(F |DN ,D f c, T ) =
∫

p(F |DN , T , F vib)p(F vib |D f c, T )dF vib. (40)

In this case the predictive distribution for the free energy depends on two different data sets. The first one, �t is the training 
set of configurations from which we fit the ECI, whereas the second set, � f c ⊂ �t , appears because of the approximation 
for the vibrational free energy, which only uses a subset of the training configurations. Even though we cannot obtain the 
distribution p(F vib | � f c, T ) analytically, we can approximate it using Ns samples as described before, so that the predictive 
distribution for the free energy becomes

p(F |DN ,D f c, T ) ≈ 1

Ns

∑
i

p(F |DN , T , F vib
i ), (41)

which is a mixture of Gaussians. This distribution, which is not Gaussian, has mean and variance μ∗(T ) = 1
Ns

∑
μ∗

i (T ) and 
s∗(T ) = 1

Ns

∑
(s∗

i (T ) + μ∗
i (T )2) −μ∗(T )2 [72]. Using this approximation, Algorithm 2 is modified in the form of Algorithm 3

shown next.
Fig. 5 shows the free energy per atom for a test configuration predicted by the cluster expansion together with its un-

certainty as the 95% confidence interval. The values calculated from the DFT simulations using Eqs. (30) and (32), including 
the full phonon model to obtain F vib , are also shown as black dots. The uncertainty of the predictive distribution increases 
with the temperature, and the values calculated using DFT are within the 95% confidence interval for all the temperature 
range.
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Fig. 5. Predicted dependence of the free energy with the temperature for one test configuration with composition Si0.25Ge0.75. The 95% confidence interval 
is shown as a shaded red region around the mean prediction. The values calculated from the DFT simulations using Eqs. (30) and (32) are shown as black 
dots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6. Ground state search

One of the most important steps in the study of a new alloy is the determination of its ground state line (GSL), which 
contains the concentrations and formation energies of the structures that are thermodynamically stable at a given temper-
ature. When calculated at 0 K using DFT, these structures can also be used as a starting point to calculate the (T , x) phase 
diagram.

Once the ECI are fitted for the formation energy as explained in Section 4, using the model in Eq. (25), we calculate 
the formation energy for a large pool of alloy configurations �s = {σ j}. For instance, in the following examples this pool 
will consist of all symmetrically inequivalent configurations with up to ten atoms, generated again using ATAT’s maps tool. 
Not all minimum energy configurations for a given concentration belong to the ground state line. Given a configuration σ , 
consider two configurations σ 1 and σ 2 with concentrations xσ 1 and xσ 2 such that xσ 1 < xσ < xσ 2 . If the average energy of 
σ 1 and σ 2 is lower than the energy of σ , then a mixed phase of σ 1 and σ 2 is more favorable energetically than a pure 
phase of σ . Therefore, the GSL is formed by the structures with non-positive formation energies in the convex hull of the 
set 

{
(xσ j ,� f E(σ j))

}
σ j∈�s

[23], where xσ j is the concentration of configuration σ j and � f E(σ j) its formation energy.

Since the ECI that we determined from the Bayesian fit are random variables, the predicted formation energies for a 
given structure will have an uncertainty which will be reflected not only in the energy of the ground state line but, more 
importantly, also in which structures belong to the ground state line. The uncertainty is calculated as follows. Given the 
probability distribution of the ECI, we draw a sample from it. For this sample, we calculate the formation energies of all 
structures in the generated pool �s . From these energies we calculate the convex hull and therefore obtain the GSL. We 
repeat this process for a given number of random ECI samples Ns . If we define a quantity of interest as the ground state 
configuration for a given concentration x, I = σ x ∈ G S L, by using Eq. (2) we obtain

p(I) = p(σ x ∈ G S L) =
∫

δ (I(γ ) − I) p(γ |DN)dγ

≈ 1

Ns

Ns∑
i=1

δ
(

I(γ i) − I
)= Nσ x/Ns, (42)

where we have used a Monte Carlo approximation with Ns samples of γ ∼ p(γ | DN ) for the integral. I(γ ) is the configu-
ration predicted by the CE with coefficients γ to be the ground state at concentration x and Nσ x is the number of times 
the configuration σ x is predicted by the CE to be the ground state for concentration x. Even though in principle σ x is 
arbitrary, in the implementation it is limited to the structures in the pool �s , so only a finite set of concentrations x will 
be represented. This process is summarized in Algorithm 4.

Fig. 6 shows the free energies of formation of SiGe alloys, both the training values calculated using DFT (black circles) 
and the mean predictions calculated with a trained cluster expansion with 2- and 3-point clusters with a size up to 9 and 
5 Å, respectively, in the initial basis functions (blue crosses). Fig. 6(a) shows that this is an example of an alloy where at 
0 K all configurations have positive formation energies, which means that the only thermodynamically stable configurations 
are the pure components, Si and Ge. On the other hand, Fig. 6(b) shows that if we look at the free energy of formation at a 
finite temperature T using the T -dependent ECI calculated as described in Section 5, it becomes favorable for some of the 
alloy configurations to form instead of remaining in a phase with pure Si and pure Ge coexisting. This will become clearer 
as well when we look at the phase diagrams in the next section.
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Algorithm 4 Uncertainty in the GSL.
Given the posterior distribution of the ECI, p(γ | DN , αM P , βM P ), Eqs. (16)–(18)
Select a pool of configurations to be considered, �s = {σ i}
Select number of samples of the GSL, Ns

Let Nσ be the number of appearances of configuration σ ∈ �s in samples of the GSL
Initialize Nσ = 0 ∀σ ∈ �s

for i = 1, . . . , Ns do
Sample γ i from p(γ | DN , αM P , βM P ), Eqs. (16)–(18)
for all σ j ∈ �s do

Calculate xσ j , concentration of one of the elements of the binary alloy

Calculate the formation energy � f E(σ j | γ i) = γ T
i φ(σ j), Eq. (25)

end for
Obtain the set of configurations Ci which form the convex hull of {(xσ j ,� f E(σ j |γ i))

}
σ j∈�s

for all σ j ∈ Ci do
Nσ j → Nσ j + 1

end for
end for
for every concentration x represented in �s do

for every σ | xσ = x do
p(σ ∈ GSL) ≈ Nσ /Ns , Eq. (42)

end for
end for

Fig. 6. Free energy of formation of SiGe at (a) 0 K and (b) 2000 K. Training data calculated with DFT are shown as black circles and the mean prediction 
from CE for all symmetrically different configurations containing up to ten atoms in the unit cell as blue crosses. The CE was trained using an initial basis 
containing 2- and 3-point clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 7 shows the formation energies of MgLi alloys, again including the 81 DFT training data as black circles, and the 
median of the calculated values with a trained cluster expansion for all symmetrically different configurations containing 
up to ten atoms in the unit cell as blue crosses. In this case, in the training process, we included up to 5-point clusters 
with the following sizes: 2-point: 2 nm, 3-point: 1.4 nm, 4- and 5-point: 0.9 nm. The median ground state line with a 
95% confidence interval predicted using the CE surrogate model to generate 5000 GSL samples is also shown. The insets 
in the figure show, for a subset of the concentrations, all the structures with non-zero probability of belonging to the GSL 
as predicted using Algorithm 4 with a plot of the most likely atomic configuration. For example, at a Mg concentration 
of xMg = 0.8, our probabilistic CE predicts that there is a 48% probability that no structure belongs to the GSL. The next 
most likely outcome, with a probability of 37%, is that the structure labeled as 00056 (space group I4/m) belongs to the 
GSL. Since only structures with up to 10 atoms in the unit cell were considered, our results cannot say anything about the 
probability of belonging to the GSL of other configurations with larger unit cells.

Suppose that for a given concentration all structures with non-zero probability of belonging to the GSL as predicted 
by the CE were in the training set. In this case, we know the exact energies of the configurations as the training data is 
considered ground truth. Therefore, we know that in this case the uncertainty in which structure belongs to the GSL for 
the given concentration comes only from the error in the ECI fit. This type of error can be seen, for example, at the point 
x = 1/3, where two of the structures predicted to be in the GSL with non-zero probability are in the training set, 00008
(I4/mmm) and 00067 (Cmcm). Configuration 00067 has the lowest training energy, so we will call it σ min,x=1/3 and its 
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Fig. 7. Formation energies of MgLi. Training data calculated using DFT are shown as black circles and mean predictions from CE as blue crosses. CE energies 
are shown for all symmetrically different configurations containing up to ten atoms in the unit cell. The ground state line calculated from the training data 
is shown with a black line and the one from CE predictions with a red line at the median and a 95% confidence interval around it. Results were obtained 
using up to 5 point clusters (2-pt: 20 Å, 3-pt: 14 Å, 4-pt: 9 Å, 5-pt: 9 Å) for the initial basis functions. The probability distribution for the predicted 
structure in the GSL is shown for a set of concentrations. The red bar is the one that belongs to the training GSL at each of the concentrations. The labels 
represent the order of enumeration from ATAT and None means that no structure of that concentration in the GSL is predicted. The insets contain the 
atomic arrangement of the most likely structure according to the CE together with its space group using the international short symbol. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

formation energy � f Emin,x=1/3 = � f E(σmin,x=1/3). However, the cluster expansion ranks it only as the fifth most probable 
one, behind the structure 00008, which appears as the most likely configuration to be in the GSL at x = 1/3, ignoring the 
case that no configuration with x = 1/3 belongs to the GSL. On the other hand, in cases such as x = 0.5, the CE has most 
of the weight of its prediction at σmin,x=0.5, with only a low probability assigned to other structures not included in the 
training set. Finally, in cases such as x = 0.7 or x = 0.9, the CE has its maximum weight on σmin,x=0.7 and σmin,x=0.9, but it 
also gives a high probability to some structures not in the training set. These configurations can then be further studied by 
DFT simulations to verify the CE predictions.

6.1. Impact of training set and maximum cluster size

To study the convergence of the results, we consider different training set sizes and maximum number of points in the 
clusters used in the expansion. Fig. 8 shows the bcc MgLi ground state line and the 95% confidence intervals for different 
CE training configurations. We consider the cases using up to 3-, 4- and 5-point clusters for the initial basis functions in 
the regression model and also using 20, 40 and 81 training points, chosen in the order that they are incorporated into the 
training set by the maps tool. As expected, the simulations using all the training data but different number of clusters show 
an increase in the uncertainty in the GSL energies as we reduce the maximum number of points in any cluster, even though 
this increase in the uncertainty is not very large. This is expected to a certain extent if we look at the ECI strengths of 4-
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Fig. 8. bcc MgLi ground state line with 95% confidence intervals for different CE training configurations. From top to bottom: using up to 3-, 4- and 5-point
clusters in the regression model. From left to right: using 20, 40 and 81 training points. The insets for 81 training points show, for x = 0.125, the probability 
of the different configurations of belonging to the GSL. The insets for 40 training points show a boxplot of the CE predicted energies for the four lowest 
energy configurations at 33% Mg content together with the energy of the lowest training energy (black line) and the GSL (red line with the 95% confidence 
interval as shaded region). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and 5-point clusters in Fig. 3, which are considerably smaller that the 2-point and smallest 3-point clusters. If we look at 
the uncertainty in the structures belonging to the GSL, we find that the impact is quite large in some cases. For example, 
as shown in the insets on the right column, the point at x = 0.125 has a very low probability to be in the GSL if we only 
include up to 4-point clusters and even lower if only include up to 3-point clusters.

As we decrease the number of training configurations to 40, the uncertainty in the energy of the GSL as predicted by the 
CE increases, and so does the deviation between it and the energy of the GSL constructed only from the training data, the 
“training GSL”. There are two different errors playing a role here and unfortunately they are not clearly shown by the error 
bars. This is especially clear at x = 1/3 for the GSL using 40 training configurations. In this case, the CE predicted mean 
energies of several structures fall below � f Emin,x=1/3, even though this value is within their individual 95% confidence 
intervals (∼5–10 meV) in all cases. However, the GSL only contains the lowest of the energies of these configurations, so 
the 95% confidence interval of the predicted GSL energy at x = 1/3 appears very small, ∼2 meV. This effect is shown in 
the insets in the second column of Fig. 8, which show a boxplot of the CE predicted energies for the four lowest energy 
configurations at 33% Mg content, 00059 (Cmmm), 00067 (Cmcm), 00082 (C2/m) and 00090 (P3m1). The lowest training 
energy � f Emin,x=1/3 is shown as a black line and the CE GSL with a red line with a 95% confidence interval as shaded region. 
The span of the CE energy predictions includes � f Emin,x=1/3, but the fact that only the lowest of them can belong to the 
GSL for any single sample of the ECI leads to a smaller confidence interval in the GSL that does not include � f Emin,x=1/3. 
This effect is further enhanced by the cases where no configuration with x = 1/3 belongs to the GSL, since this means that 
the energy of the GSL at that concentration is lower than the lowest of the energies of any configuration with x = 1/3.

Finally, as we decrease the number of training configurations to only 20, we find that even with the use of a RVM for 
pruning the initial 54 model basis functions, a large overconfidence in the predictions of the model appears [73], and the 
prediction errors are as low as 1 meV. The situation improves if we reduce the original number of basis functions for the 
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regression. Therefore, column 1 of Fig. 8 shows the GSL prediction with 95% confidence intervals reducing the maximum 
radius of three point clusters to 10 Å, which is justified as we know that only the smallest 3-point cluster play a role as 
shown in Fig. 3. In this case, the predictions of the model show a clear increase in the uncertainty, even though, as in the 
case of 40 training points, the interplay in the uncertainty of different simulations keeps the uncertainty in the energy of 
the GSL down.

Remark 13. Since in every case most configurations belonging to the training GSL were included in the reduced training 
sets, there is not any major departure in energy from this training GSL in any case, which also shows the effectiveness of 
the algorithm used by ATAT to choose the training configurations. However, the probabilities of individual configurations of 
belonging to the GSL can differ quite significantly with different initial maximum number of clusters or number of training 
data.

7. Phase diagrams

The GSL only contained information of the thermodynamically stable configurations at 0 K. However, as the tempera-
ture is increased, thermal energy starts playing a role in determining which configurations are the most stable ones. (T , x)
phase diagrams include this information giving the most stable structure for a given temperature and concentration. These 
diagrams are usually computed using a Monte Carlo method within the semi-grand-canonical or transmutation ensemble, 
where the energy E and alloy concentration x are allowed to change on a lattice with a fixed number of sites N , and the 
temperature T and chemical potential μ are externally fixed for each of the points of the diagram. The natural thermody-
namic potential (per atom) for the semi-grand canonical ensemble is

φ(T ,μ) = − 1

βN
log

∑
i

exp [−βN(Ei − μxi)] , (43)

where β is the inverse temperature defined in terms of the temperature T as 1/kB T and the summation is over all possible 
states of the system characterized by a different occupation of each site of the lattice. Equivalently, it can also be defined 
through the following differential

d(βφ) = (E − μx)dβ − βx dμ, (44)

where E and x are now the system’s average energy and concentration, respectively.
To construct a phase diagram, we use the phb tool from ATAT, which follows the phase boundary between phases found 

from the GSL constructed from 0 K formation energies. This is done using the fact that the potentials for each phase are the 
same at the phase boundary. For example, equating Eq. (44) for phases α and γ ,

(Eα − μxα)dβ − βxα dμ = (Eγ − μxγ )dβ − βxγ dμ, (45)

which can be recast as an equation for the derivative dμ/dβ ,

dμ

dβ
= Eγ − Eα

β(xγ − xα)
− μ

β
. (46)

The necessary averages Eγ , Eα , xγ and xα are computed from a MC simulation of the system at the given T and μ. The 
energies for a given configuration are obtained from the trained cluster expansion, whereas the concentrations are directly 
obtained from the number of atoms of each species in the simulation domain. Using the value of the slope of the boundary, 
dμ/dβ and an initial state (μ0, β0), the boundary at step t + 1 is obtained from the previous step as

μt+1 = μt + dμ

dβ

∣∣∣∣
t

(βt+1 − βt) = μt +
(

Eγ ,t − Eα,t

xγ ,t − xα,t
− μt

)(
βt+1

βt
− 1

)
, (47)

with the process starting from the T = 0 ground states. A more detailed description of the calculation of phase diagrams 
can be found in Ref. [48].

Remark 14. In this section, we do not consider temperature dependence of the ECI, even though it is possible to include it 
as described in Section 5. Even though this will affect the values for the phase boundary, it does not affect the methodology 
presented.

Since we have a probability distribution for the ECI, Eq. (16), the phase boundary is not unique and depends on the 
particular value of the ECI used to calculate the system energy. To obtain the uncertainty in the phase boundaries, we use a 
similar MC approach as that used for the GSL. For each realization of the ECI from Eq. (16), we obtain a different realization 
of the phase diagram for a given alloy (see Algorithm 5).
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Algorithm 5 Uncertainty in the phase boundary calculation.
Given the posterior distribution of the ECI, p(γ | DN , αM P , βM P ) Eqs. (16)–(18)
Select initial and minimum temperature steps, �T0 and �Tmin

Select maximum concentration step, �xmax

Select number of samples, Ns

for i = 1, . . . , Ns do
Sample γi from p(γ | DN , αM P , βM P ), Eqs. (16)–(18)
Calculate the GSL as the convex hull of {(xσ j ,� f E(σ j |γ i))

}
σ j∈�s

, Algorithm 4

Define NG SL,i as the number of configurations in the GSL with ECI γi

for j = 1, . . . , NG SL,i − 1 do
Select phases j and j + 1 to follow their boundary
Set �T = �T0

while �T ≥ �Tmin and not end of boundary do
Run phb to follow boundary with step �T
if �x > �xmax then

�T → �T /2
end if

end while
if Third phase k appeared then

Run phb to follow boundaries j − k and ( j + 1) − k from last (T , μ) point
else if Phase j + 1 disappeared then

Run phb to follow boundary j − ( j + 2) from last (T , μ) point
else

continue
end if

end for
end for

Fig. 9. Phase diagram of SiGe calculated using a minimum temperature step �Tmin = 1 K in Algorithm 5. The continuous red line is the median of the 
simulations and the shaded red region the 95% confidence interval. The phase boundary obtained using the ATAT calculated ECI overlaps the median of our 
model and therefore it is not visible. The gray circles are the (x, T ) points of each of the realizations of the phase boundary obtained using Algorithm 5, 
and the lines interpolating between these points are shown for guidance. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Remark 15. Since different ECIs result in different 0 K ground states, the phase diagrams resulting from using different ECIs 
may have different phase boundaries. Therefore, the MC approach will not just result in a confidence interval for each phase 
boundary, but also in a probability for each phase boundary to be present.

phb takes as an input the temperature step, �T ; however, in regions where the change in concentration �x is large, 
this may result in missing the point where two-phase boundaries intersect. To avoid this, we call phb within an adaptive 
temperature loop which looks for changes in concentration larger that a given threshold as described in Algorithm 5.

As the program looks for phase transitions at fixed temperature steps, the natural way to obtain the uncertainty in the 
boundary is to look at the concentration spread for a fixed T . However, since we used an adaptive temperature step, we 
have different temperature points for each realization of the phase boundary, and therefore we use interpolation between 
the available data points for each phase boundary to construct the confidence interval at every temperature/concentration.

Fig. 9 shows an ensemble of phase diagrams for SiGe calculated using a minimum temperature step �Tmin = 1 K. 
44 phase diagrams and linear interpolation between the calculated points in each of them were used to construct the 
confidence intervals. Since all realizations of the ECI predict only two 0 K ground states, the only result of the uncertainty is 
a confidence interval for a single phase boundary. In this particular case, the states below the lines correspond to a mixed 
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phase of pure Si and pure Ge, since as we saw in the ground state line, those are the only thermodynamically stable states 
at 0 K. States above this line are disordered states, with random mixing of the Si and Ge atoms in the lattice.

7.1. Phase transition from disordered to two-phase coexistence

Another way to construct the phase diagram is to calculate the energy of the system at every (T , μ) point instead of 
following the phase boundary. Specifically, it may be of interest to study the behavior of an alloy at a given concentration 
as the temperature changes.

In this section, we calculate as an example the disorder to two-phase coexistence phase transition for the diamond 
SiGe alloy at 50% composition. Computationally, the phase transition is found by starting the alloy at a high temperature 
which for SiGe is taken to be 2000 K. The temperature has to be large enough for the entropic energy in the free energy 
to dominate, so that the system is in a disordered phase. Then, the temperature is gradually lowered while monitoring the 
specific heat at constant pressure [74],

C p(T ) = β2kB

〈
(U − 〈U 〉)2

〉
, (48)

where 〈·〉 denotes an average, and U is the internal energy of the alloy. Lowering the temperature decreases the entropic 
energy allowing the configurational energy to become comparatively stronger and finally demanding a certain ordering of 
the atoms. In a two-phase coexistence the atoms do not want to mix on the lattice but stay separated into pure forms. 
A peak (divergence, in the limit of an infinite lattice) in the specific heat signals the phase transition [75].

Let us now discuss the numerical method used to compute the phase transition. We used an adaptive sequential Monte 
Carlo (ASMC) method [76,33] coupled via an in-house code to the MCMC library of ATAT [48,49]. The ASMC code works 
as follows. A set of Np so-called particles, 64 in our examples, is started at a high temperature of 2000 K. Each particle is 
an initial state of the system: a 41 × 41 × 41 Monte Carlo cell with periodic boundary conditions. Using double-spin-flip 
dynamics [48] they are independently evolved via the ASMC method to 50 K. Also, each particle has a normalized weight 
W i such that the expected value of any function K of the configuration of the system can be approximated as [76]

〈K 〉 ≈
N p∑
i=1

W i Ki, (49)

where Ki is the value of the function obtained by particle i. The weights are also used to define the effective sample size 
(ESS) as E S S = 1/ 

∑
i(W i)

2, which provides a measure of the population variance. E S S = 1 happens when a single particle 
i has weight W i = 1 whereas the rest have zero weights. The other extreme, E S S = Np , happens when all the particles 
have the same weight W = 1/Np . The step size is adaptive and guided by the E S S , but we maximally allow a 10 K jump 
to ensure we do not miss a transition. Since the weight update can be obtained as a function of the temperature step [76], 
we can use fixed reduction factor for the E S S , ξ , to update to the next temperature by requiring E S S(T + �T ) = ξ E S S(T ). 
If at any step the E S S falls below a minimum threshold, E S Smin , then the particles are resampled using a multinomial 
distribution from the old samples according to their weights so that it is more likely to obtain replicas of the particles with 
larger weight [76]. At each step (including the initialization), 100 flips per lattice site were performed. The methodology 
to obtain the uncertainty in the phase transition temperature is summarized in Algorithm 6. For more details please refer 
to [76].

Remark 16. There are uncertainties associated with the number of particles and the seed used for the internal pseudo-
random-number generator. If we allow this, we are not only capturing the uncertainties from the truncated cluster expansion 
and limited data but also from the particular implementation of the ASMC method. To avoid the ASMC uncertainties, we 
use the same number of particles with each ECI sample and the same seed.

Fig. 10(a) shows the uncertainty in the disorder to order transition by looking at the specific heat at constant pressure 
for 19 realizations of the temperature independent 0 K ECI. The inset shows the median transition temperature with a 95% 
confidence interval. As mentioned previously, due to the finite size of the system, the phase transition is signaled by a 
finite peak, so we take the temperature at the maximum of the specific heat as the phase transition temperature. Fig. 10(b) 
shows the same information but including the temperature dependence in the ECI and their uncertainty as described in 
Section 5. The median transition temperature increases from 370 K to ∼393 K, which is very close to the value of 390 K
obtained with ATAT using temperature dependent ECI. Regarding the uncertainty, the 95% confidence interval increases from 
38 K (10%) to 49 K (12%) with the introduction of temperature dependence to the ECI. Even though there is an increase 
in the uncertainty, it remains at a similar level. These values of the uncertainty are moderately higher than those obtained 
in [33] using a different model to estimate the uncertainty. In that work, using temperature independent 0 K ECI the 95% 
confidence interval was of 20 K (6%). However, this difference could be explained by the low number of samples used in 
that work, where only five values of the transition temperature were used.

As described in Section 5.2.1, it is possible to reduce the computational cost substantially by using an approximation for 
the force constant tensor of all training configurations based on a fit of the dependence between bond stiffness and bond 
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Algorithm 6 Uncertainty in the disorder to two-phase coexistence transition temperature.
Given the posterior distribution of the ECI, possibly temperature dependent p(γ | DN , αM P , βM P , T ), Eqs. (16)–(18)
Select the number of samples of the ECI, Ns

Select the initial and final temperatures, Ti and T f , and maximum temperature step �Tmax

Select the number of particles Np

Select the size of simulation system
Select E S S reduction factor ξ and minimum allowed value, E S Smin

for j = 1, . . . , Ns do
Sample γi from p(γ | DN , αM P , βM P ), Eqs. (16)–(18)
{Adaptive Sequential Monte Carlo:}
while T > T f do

Given W i(T ), compute �T such that E S S(T + �T ) = ξ E S S(T )

Update particle weights W i for all particles
if E S S(T + �T ) < E S Smin then

Resample particles
end if
T → T + �T
for i = 1, . . . , N p do

Equilibrate system using double-spin-flip dynamics
Compute average energy Ui

end for
Approximate energy as U ≈∑N p

i=1 W i Ui , Eq. (49)
Compute C p(T ) = β2kB

〈
(U − 〈U 〉)2〉, Eq. (48)

end while
Find transition temperature T j

trans = argmaxT C p(T )

end for
Gather statistics for {T j

trans}Ns
j=1

Fig. 10. Uncertainties in the disorder to two-phase coexistence of Si–Ge at 50% composition identified by a peak in the specific heat using (a) temperature 
independent 0 K ECI, (b) temperature dependent ECI using the full model and (c) temperature dependent ECI using the bond stiffness versus bond length 
approximation. 19 different runs are shown each in a different color. The inset summarizes the main figure via the posterior median as a black dotted 
vertical line surrounded by the 95% confidence interval as the shaded area.

length using only a subset of the training configurations. This approximation introduced an extra source of uncertainty from 
the fitting of the bond stiffness which is not intrinsic to the CE of the free energies we have used. In order to quantify the 
influence of this simplified modeling of the vibrational free energy, we also use it to carry out the calculation of the disorder 
to order transition temperature. In this case the vibrational free energy, F vib , is a random variable and the calculation is 
done as described in Algorithm 3. Fig. 10(c) shows the uncertainty in the disorder to order transition by looking again 
at the specific heat at constant pressure. Compared to the calculations with T -dependent ECI using the full model, the 
median transition temperature increased from 393 K to 399 K, whereas the 95% confidence interval stayed at 49 K. There 
is a negligible increase in the uncertainty from using the approximate stiffness versus length model to calculate the force 
constant tensor in this system. There is, however, an increase of 6 K (1.5%) in the value of the predicted median transition 
temperature. This value is well within the uncertainty predicted by both simulations, and could be due to the limited 
number of samples used in the study.

8. Conclusions

We have presented a new approach based on machine learning using a Bayesian framework to obtain the uncertainty in 
thermodynamic properties of alloys based on the cluster expansion. In this framework, the cluster expansion coefficients are 
not point estimates, but random variables, so that the resulting expansion is also a random variable. The model accounts for 
uncertainty originating from limited data for the training and also from the inaccuracy of the truncated cluster expansion. 
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Since the cluster expansion is exact if an infinite number of basis functions is used, both of these uncertainties would vanish 
in the limit of infinite training points and basis functions.

The use of a relevance vector machine allowed us to obtain sparsity in the cluster expansion coefficients while providing 
an analytical solution for the predictive distribution of the cluster expanded quantity. This contrasts with previous work 
which required numerical sampling of the posterior distribution over the model parameters using an RJ-MCMC algorithm.

We have tested the framework on two binary alloys, SiGe and MgLi, using the formation energy as the training objective 
so that we could find the ground state line, i.e., the stable configurations and their energies. We have studied the accuracy 
of the model with the number of training points and basis functions and seen that the error from the limited number 
of points in each cluster decreases rapidly. The uncertainty quantification of the GSL energies showed that the cluster 
expansion is reliable to ab initio level accuracy even with limited data as shown by the uncertainties in the order of eV/atom. 
Regarding the selection of training data, we used the methodology implemented in ATAT, but this could be changed to a 
Bayesian method that fully takes into account the uncertainty in our model predictions [77]. The study of the error in the 
cluster expansion was extended to temperature dependent effective cluster interactions, and we showed that the error in 
the predicted free energy increases with the temperature. The same was seen in the uncertainty in order–disorder phase 
transition temperature for SiGe at 50% concentration, where the 95% confidence interval increased from 38 K (10%) to 
49 K (12%) when including the temperature dependence of the effective cluster interactions. An attractive approach to save 
computational time is the bond stiffness versus bond length scheme, which approximates the force constant tensor using 
interpolation from a few selected configurations, thus saving an important amount of time but at the expense of increased 
uncertainty. To evaluate the impact on the uncertainty of the predictions, we carried out the simulations for the phase 
transition using this approximation, and found that the median transition temperature increased from 393 to 399 K, but 
the 95% confidence interval remained at 49 K. This means that in our test case, the approximation traded close to a 10-fold 
reduction in computational cost for a very small change in the median of the predictions of 1.5% and a negligible change in 
the uncertainty of the prediction.

The methodology presented in this work opens the gate to a new approach to the determination of alloy properties in 
the presence of uncertainty. As the formalism presented is completely general, it can be applied to the cluster expansion 
of any alloy property beyond what we have shown in this paper, such as elastic properties, energy band gaps or effective 
masses. It can also be the basis for applications to inverse design problems [1] in the presence of uncertainties, where 
the outcome would be a set of structures with the corresponding probabilities of satisfying the required thermodynamic 
constraint.
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Appendix A. Derivation of the posterior distribution over the model parameters

The posterior parameter distribution over the parameters of the model, γ is given by Eq. (16),

p(γ |DN ,α, β) = L(DN |γ ,β)p(γ |α)∫
L(DN |γ ,α,β)p(γ |α)dγ

. (A.1)

Using Eqs. (10) and (12) it can be written as

p(γ |DN ,α, β) = N (tt |�γ , β−1I)N (γ |0,A−1)∫
N (tt |�γ , β−1I)N (γ |0,A−1)dγ

= N (tt |�γ , β−1I)N (γ |0,A−1)

N (tt |0, β−1I + �A−1�T )
, (A.2)

where we have used the result [31]∫
N (x |μ,�−1)N (y |Ax + b,L−1)dx = N (y |Aμ + b,L−1 + A�−1AT ). (A.3)

to do the integration in the denominator. Using N (x | μ, �−1) = (2π)−N/2 |�|1/2 exp
[
− 1

2 (x − μ)T �(x − μ)
]

,

p(γ |DN ,α, β) = (2π)−M/2
(
|A| |βI|

∣∣∣β−1I + �A−1�T
∣∣∣)1/2

(A.4)

exp

{
−1

2

[
(tt − �γ )T βI(tt − �γ ) + γ T Aγ − tT

t (β−1I + �A−1�T )−1tt

]}
. (A.5)
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Rearranging the exponent, using the determinant identity [78]∣∣∣A + �T βI�
∣∣∣= |A| |βI|

∣∣∣β−1I + �A−1�T
∣∣∣ , (A.6)

and defining S−1
N = β�T � + A, we arrive at

p(γ |DN ,α, β) = (2π)−M/2
∣∣∣S−1

N

∣∣∣1/2
exp

{
−1

2

[(
γ − βSN�T tt

)T
S−1

N

(
γ − βSN�T tt

)]}
, (A.7)

which is a normal distribution with covariance and mean given by

SN =
(
β�T � + A

)−1
, (A.8)

μ = βSN�T tt . (A.9)

Appendix B. Derivation of the evidence function

The marginal likelihood is the integration over the model parameters of the likelihood times the prior over the model 
parameters. Using Eqs. (10) and (12),

p(DN |α, β) =
∫

L(DN |γ , β)p(γ |α)dγ =
∫

N (tt |�γ , β−1I)N (γ |0,A−1)dγ = N (tt |0, β−1I + �A−1�T ),

(B.1)

where A = diag(αi) and we have used the identity in Eq. (A.3).
As seen before, the covariance of the marginal likelihood can be decomposed in a summation where each term depends 

on only one of the hyperparameters,

C = β−1I + �A−1�T = β−1I +
M−1∑
i=0

α−1
i ϕ iϕ

T
i , (B.2)

where ϕi is the i-th column of the design matrix �. For each basis function i, the matrix C can be decomposed as

C = β−1I +
∑
j �=i

α−1
j ϕ jϕ

T
j + α−1

i ϕ iϕ
T
i = C\i + α−1

i ϕ iϕ
T
i , (B.3)

which, in turn, will lead to a decomposition of the marginal likelihood where we can isolate the dependence on αi . To do 
this, we use the matrix determinant lemma [31],

|C| = ∣∣C\i
∣∣ ∣∣∣1 + α−1

i ϕT
i C−1

\i ϕ i

∣∣∣ , (B.4)

and the Sherman–Morrison formula [31],

C−1 = C−1
\i − C−1

\i ϕ iϕ
T
i C−1

\i

αi + ϕT
i C−1

\i ϕ i

. (B.5)

With Eqs. (B.4) and (B.5), we can factorize the marginal likelihood as

p(DN |α, β) = N (tt |0,C\i)

∣∣∣1 + α−1
i ϕT

i C−1
\i ϕ i

∣∣∣−1/2
exp

(
1

2
tT
t

C−1
\i ϕ iϕ

T
i C−1

\i

αi + ϕT
i C−1

\i ϕ i

tt

)
. (B.6)

For convenience, we define the sparsity si and quality qi for every vector ϕi [40,31],

si = ϕT
i C−1

\i ϕ i, (B.7)

qi = ϕT
i C−1

\i tt . (B.8)

Using these definitions, the marginal likelihood can be written as

p(DN |α, β) = N (tt |0,C\i)

∣∣∣1 + α−1
i si

∣∣∣−1/2
exp

(
1

2

q2
i

αi + si

)
. (B.9)
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Taking the logarithm of this function, we obtain the evidence function, whose maximization is equivalent to that of the 
marginal likelihood

E(α, β) = logN (tt |0,C\i) + 1

2

[
logαi − log(αi + si) + q2

i

αi + si

]
. (B.10)

To find the maximum of the evidence function with respect to αi , we only need to worry about the second term, as we 
removed all dependence on αi from C\i :

∂E
∂αi

= 1

2

α−1
i s2

i − (q2
i − si)

(αi + si)
2

. (B.11)

By equating this derivative to zero, we find a stationary point which can be shown to be a maximum [40]. Recalling that 
αi ≥ 0, we find the maximum as

α∗
i =

⎧⎨
⎩

∞ if q2
i − si ≤ 0,

s2
i

q2
i −si

if q2
i − si > 0.

(B.12)

Even though we have a closed form for the maximum with respect to αi , it depends on the value of the rest of the 
hyperparameters, so the maximization of the marginal likelihood still requires an iterative process as detailed in Algorithm 1.

Even though we have found an expression for α∗
i , its computation in this form is not efficient as it requires calculating 

C−1
\i ϕ i and C−1

\i t for every basis function i at every iteration of the optimization A way to speed up this calculation is to 
introduce two new quantities, Si and Q i ,

Si = ϕT
i C−1ϕ i, (B.13)

Q i = ϕT
i C−1tt, (B.14)

which are related to si and qi as

si = αi Si/(αi − Si), (B.15)

qi = αi Q i/(αi − Si). (B.16)

Using Si and Q i , we can obtain si and qi with a single factorization of the matrix C per iteration. A further optimization is 
possible rewriting C−1 using the Woodbury matrix identity [31],

C−1 =
(
β−1I + �A−1�T

)−1 = βI − β2���T , (B.17)

where � is the posterior variance as defined in Eq. (17), which will have the size of the number of active basis (those with 
αi �= ∞) at the given iteration.

To find the maximum with respect to β , we follow the same procedure and find the stationary point of ∂E/∂β . In this 
case, it can be shown that [37]

∂E
∂β

= 1

2

[
N

β
− trace(��T �) − (tt − �μ)T (tt − �μ)

]
= 1

2

[
N

β
− β−1trace(I − A�) − (tt − �μ)T (tt − �μ)

]
,

(B.18)

where we have used the definition of the posterior covariance, Eq. (17). By equating Eq. (B.18) to zero, we find

1

β
= (tt − �μ)T (tt − �μ)

N − trace(I − A�)
. (B.19)

Since both the posterior mean, Eq. (18), and covariance, Eq. (17), depend on β , this equation defines an iterative update. 
Therefore, at iteration i, we would update β as

1

β i+i
= (tt − �μi)T (tt − �μi)

N − trace(I − A�i)
. (B.20)
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Appendix C. Phonons in a crystal

In the harmonic approximation, the total energy of a periodic crystal under small lattice distortions from the equilibrium 
is [70,79]

H = 1

2

∑
i

Mi

(
dui

dt

)2

+ 1

2

∑
i, j,α,β

uiα Bαβ(i, j)u jβ, (C.1)

where ui = (uix uiy uiz) is the atomic displacement of atom i respect to its equilibrium position, α and β run over the 
Cartesian components of the vector, i and j run over the atoms of the lattice and we have defined the force constant tensor 
B(i, j) with components given by

Bαβ(i, j) = ∂2 V

∂uiα∂u jβ
, (C.2)

where V is the potential energy of the system here approximated using a quadratic (harmonic) expansion. In a periodic 
system, we can specify the indexing of each point in the system i with the pair (m, a), where m specifies the unit cell and 
a the atom of the unit cell. Using this notation, the force constant tensor becomes B(n, b, m, a). This tensor can be used to 
obtain the force on the atom (n, b) when a displacement um,a is applied to atom (m, a) [79],

F(n,b) = B(n,b,m,a)um,a. (C.3)

If the same displacement u0,a is applied to atom a in all the copies of the supercell, we can write:

F(n,b) =
∑

m

B(n,b,m,a)u0,a. (C.4)

At this point we can introduce a change of variables um,a → vm,a = √
Maum,a before proceeding any further to factor the 

possibly different masses of a and b into the term with the force constants only. The energy of the system then becomes

H = 1

2

∑
m,a

(
dvm,a

dt

)2

+ 1

2

∑
m,a,n,b,α,β

vm,a,α
Bαβ(m,a,n,b)√

Ma Mb
vn,b,β = K + 1

2

∑
m,a,n,b,α,β

vm,a,α
Bαβ(m,a,n,b)√

Ma Mb
vn,b,β ,

(C.5)

where we have defined the kinetic part of the Hamiltonian as K . Using Bloch’s theorem, we now do a further change of 
variables to normal coordinates [79],

ek,a = 1√
N V

∑
m

vm,ae2π ikm, (C.6)

where k is a point in the first Brillouin zone and V is the volume of the system. It can be inverted using Fourier’s inversion 
theorem as

vm,a = 1√
N V

∑
k

ek,ae−2π ikm. (C.7)

Substituting this back into Eq. (C.5),

H = K + 1

2N V

∑
k,k′

∑
m,a,n,b

eT
k,a

B(m,a,n,b)√
Ma Mb

ek′,be−2π ikme−2π ik′n

= K + 1

2N V

∑
k,k′,a,b

eT
k,a

(∑
m,n

B(m,a,n,b)√
Ma Mb

e2π ik′(m−n)e−2π i(k+k′)m

)
ek′,b. (C.8)

Because of the translational invariance of the system, the force constants cannot depend on the absolute value of m and n, 
but only on their difference h = m − n [79]. Using this we have,

H = K + 1

2N V

∑
k,k′,a,b

eT
k,a

(∑
h

B(a,b,h)√
Ma Mb

e2π ik′(h)

(∑
m

e−2π i(k+k′)m

))
ek′,b

= K + 1

2

∑
k,a,b

eT
k,a

(∑
h

B(a,b,h)√
Ma Mb

e−2π ikh

)
e−k,b. (C.9)
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The term in brackets in the last line can be used as the definition of the dynamical matrix D(k, ab),

D(k,ab) =
∑

h

B(a,b,h)√
Ma Mb

e−2π ikh =
∑

m

B(m,a,0,b)√
Ma Mb

e−2π ikm. (C.10)

Using this definition, we can write

H = K +
∑

k

1

2

∑
a,b

eT
k,aD(k,ab)e−k,b =

∑
k

⎡
⎣K (k) + 1

2

∑
a,b

eT
k,aD(k,ab)e−k,b

⎤
⎦=

∑
k

H(k). (C.11)

For each value of k we have a system of 3n particles, for n the number of particles in the unit cell:

H(k) = K (k) + 1

2

∑
a,b

eT
k,aD(k,ab)e−k,b. (C.12)

These particles are coupled through the dynamical matrix, so we want to diagonalize it to find the normal modes for each k. 
This is the Hamiltonian of a classical oscillator, so the eigenvalues of D(k) will give us the frequencies of the phonons for 
each value of k, ω(k) [70,79],

D(k)w(k) = [ω(k)]2w(k). (C.13)
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