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Highlights

A new flexible nonlinear diffusion acceleration (NDA) method for the first order SN equations is presented.

The method uses a full diffusion equation discretized with interior penalty discontinuous FEM for acceleration of the SN equations.
If the SN and diffusion meshes and FEM shape functions are identical the NDA method is unconditionally stable.

Improvement over CMFD for coarse mesh acceleration is presented for fixed source and eigenvalue problems.
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Abstract

This work presents a flexible nonlinear diffusion acceleration (NDA) method
that discretizes both the Sy transport equation and the diffusion equation
using the discontinuous finite element method (DFEM). The method is flex-
ible in that the diffusion equation can be discretized on a coarser mesh with
the only restriction that it is nested within the transport mesh and the FEM
shape function orders of the two equations can be different. The consis-
tency of the transport and diffusion solutions at convergence is defined by
using a projection operator mapping the transport into the diffusion FEM
space. The diffusion weak form is based on the modified incomplete interior
penalty (MIP) diffusion DFEM discretization that is extended by volumetric
drift, interior face, and boundary closure terms. In contrast to commonly
used coarse mesh finite difference (CMFD) methods, the presented NDA
method uses a full FEM discretized diffusion equation for acceleration. Suit-
able projection and prolongation operators arise naturally from the FEM
framework. Via Fourier analysis and numerical experiments for a one-group,
fixed source problem the following properties of the NDA method are es-
tablished for structured quadrilateral meshes: (1) the presented method is
unconditionally stable and effective in the presence of mild material hetero-
geneities if the same mesh and identical shape functions either of the bilinear
or biquadratic type are used, (2) the NDA method remains unconditionally
stable in the presence of strong heterogeneities, (3) the NDA method with
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bilinear elements extends the range of effectiveness and stability by a factor
of two when compared to CMFED if a coarser diffusion mesh is selected. In
addition, the method is tested for solving the C5G7 multigroup, eigenvalue
problem using coarse and fine mesh acceleration. While NDA does not offer
an advantage over CMFD for fine mesh acceleration, it reduces the iteration
count required for convergence by almost a factor of two in the case of coarse
mesh acceleration.

Keywords: Neutron Transport Equation, Nonlinear Diffusion Acceleration,
Discontinuous Finite Element Method




1. Introduction

The solution of multiphysics problems in nuclear reactors is an active field
of research combining several previously separate disciplines of computational
physics. Among the set of physical processes radiation transport takes an
important role as the driver for heat production in the nuclear fuel, radia-
tion damage in structural materials, and nuclide transmutation. Therefore,
an accurate and efficient radiation transport solver is essential for solving
nuclear reactor multiphysics problems. The goal of the Multiphysics Object
Oriented Simulation Environment (MOOSE) [1] is the accurate simulation
of nuclear reactors requiring a tight coupling of the multiphysics equations,
as for example embodied in the simulation efforts of the Transient REActor
Test facility (TREAT) [2]. For this purpose, the Rattlesnake application [3]
was developed to enable tightly coupled multiphysics transport solutions.

This work focuses on the efficient solution of the first order, multigroup
Sny equations arising from the linear Boltzman transport equation after dis-
cretization in energy (multigroup) and angle (Sy method) [4]. The first order
formulation of the transport equation comprises only first derivative of the an-
gular flux with respect to the independent spatial variables in the streaming
term. Iterative convergence of these equations, in their fixed source or eigen-
value form [4], is often very slow for realistic problems and hence acceleration
methods are essential. Within this work, we focus on the convergence prop-
erties of a new flexible drift-diffusion nonlinear diffusion acceleration (NDA)
method for neutron transport problems. NDA was selected because it fea-
tures a variety of desirable properties: it is inherently effective for solving
typically neutron transport problems often cutting the number of transport
sweeps (essential unit of computational cost) by a factor of 20-100 and can
be applied for both eigenvalue and fixed source problems [5].

Over the course of the last four decades several acceleration methods using
the solution of modified diffusion equations have been proposed: Diffusion
synthetic acceleration (DSA), [6], [7], [8], Quasi-Diffusion methods (QD), [9],
and NDA, [6], [10], [11], [12]. A comprehensive review of acceleration meth-
ods can be found in [13]. While DSA is a linear acceleration method, QD and
NDA are nonlinear. Moreover, DSA exhibits good performance when applied
to the acceleration of fixed source problems, but the extension to eigenvalue
problems proves difficult. In constrast, NDA and QD are easily extended to
eigenvalue problems and show good performance for their solution.

The most important property of acceleration schemes for the Sy trans-



port equation is the spectral radius p defined as the ratio of the iteration error
in one iteration divided by the iteration error in the previous iteration. A sta-
ble stationary iteration scheme must have a spectral radius p smaller than
unity, but in practice the more stringent requirement of effectiveness (e.g.
p < 0.7) dictates the range of applicability of an acceleration method. While
DSA’s spectral radius is bounded by 0.2247 times the scattering radius for
the infinite homogeneous medium [13], continuous-in-space mono-energetic
slab-geometry transport equation, the same does not necessarily hold true for
discretized versions of these equations. Early work on DSA in slab geometry
noted that a consistent discretization must be selected for ensuring stability
and effectiveness of the scheme, [6]. Larsen suggested a four step method
for deriving fully consistent discretizations of the diffusion equation from the
Sy discretization to achieve unconditional stability [7]. Full consistency im-
plies that the zeroth and first angular moment of the discretized transport
equations are used in the acceleration procedure. Later, Adams and Martin,
8], extended this work to discontinuous FEM discretizations using a mod-
ified four-step method leading to a partially consistent DSA method where
only the zeroth moment of the discretized transport problem is used for ac-
celeration. Reference [8] noted in particular ”"the most successful schemes
have employed diffusion discretizations that are closely related to the trans-
port discretizations being accelerated”. In Ref. [14] Warsa uses fully and
partially consistent DSA schemes for solving the transport equation on un-
structured tetrahedral grids discretized with linear discontinuous FEM. He
finds that partially consistent methods’ performance can degrade for skewed
aspect ratios. Later, Warsa [15] studies the properties of fully and partially
consistent DSA methods in the presence of strong material heterogeneities
and finds that both performances significantly degrade, thus establishing the
importance for testing acceleration methods in strongly heterogeneous prob-
lems. Wang developed a partially consistent method based on the modified
interior penalty (MIP) scheme. Fourier analysis suggested that method un-
conditionally stable and mostly effective [16].

Nonlinear diffusion acceleration methods have been proposed as early as
(6] with the particular example suggesting to modify the diffusion absorp-
tion cross section based on the transport solution to make the diffusion and
transport scalar fluxes identical at convergence. However, this work focuses
on drift diffusion type NDA methods whose origins can be traced back to
the coarse mesh finite difference (CMFD) method suggested by Smith [17],
and is commonly referred to as the 2-node CMFD method [10]. This method
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has been used both for accelerating nodal diffusion [18] as well as particle
transport iterative solutions [19]. CMFD methods set up a simple balance
equation incorporating terms evaluated from the high order solution to re-
produce surface currents. In this work we refer to NDA methods as a direct
extension of CMFD methods in the following sense: instead of using a simple
balance, a properly modified diffusion equation that itself is discretized using
a finite volume or finite element method is employed for acceleration of the
transport problem [12]. To ensure that the transport and diffusion solutions
are consistent, a volumetric drift vector and additional face and/or boundary
terms are added to the discretized diffusion equation. In the particular case of
Ref. [12] the SAAF equations discretized with continuous FEM (CFEM) are
accelerated using a diffusion equation discretized using CFEM. The diffusion
equation encompasses both a volumetric drift term and vacuum boundary
terms, but in constrast to DFEM based NDA methods it does not require in-
terior face terms. An example using the CMFD method for accelerating the
first order Sy equations is described in [11]. Reference [11] deploys CMFD in
conjunction with an inner-outer iteration scheme, i.e. the CMFD equations
are set up and solved after a certain number of power iterations.

In Ref. [20] Larsen studies the relationship between DSA and CFMD and
finds that the linearized version of the CMFD method is algebraically equiv-
alent to a straight forward extension of the DSA method to coarse meshes
(CMDSA). The linearized CMFD and CMDSA methods have nearly iden-
tical spectral radii. Wang [3] finds that fine-mesh DSA and NDA methods
exhibit similar spectral properties if the optical cell size is sufficiently small,
and only mild material heterogeneities are present. Wang [12] also indicated
that the linearized spectral radii of the fine-mesh NDA with SAAF CFEM
is equal to the one of the DSA in a certain circumstance.

Nonlinear Diffusion Acceleration methods lead to a coupled system of
nonlinear equations consisting of the high-order equations and the modified
diffusion equations. This system of equations can be solved using fixed point
or Picard iterations alternating between solving the transport and diffusion
equations [12], [19], or using Newton’s method, [5], [21]. While the latter
might offer better convergence properties, it is difficult to implement and
hence this work focuses on using Picard iteration for obtaining the solution
of the NDA system of equations. Ref. [19] concludes that underrelaxation
of the Picard iterations in the Smith CMFD formulation is necessary. The
NDA method presented within this work does not require underrelaxation
for achieving convergence and the Picard iteration is proofed stable both



with Fourier Analysis and numerically.

The NDA method presented in this work is new and differs significantly
from previously developed methods. Both the Sy transport equation and the
diffusion equation are discretized using discontinuous finite elements (DFEM)
of arbitrary and potentially differing order. Additionally, the diffusion equa-
tion can be discretized on a coarser mesh with the only restriction being that
it is nested within the transport mesh. Consistency of the transport and
diffusion solutions at convergence is defined by using a projection operator
mapping the transport FEM space into the diffusion FEM space that is rig-
oriusly derived from the FEM weak forms. The diffusion weak form is based
on the incomplete MIP diffusion DFEM discretization [16] that is extended
by volumetric drift, face closure, and boundary closure terms. In contrast to
the NDA method in [12], this work focuses on the first order Sy equations
and the associated diffusion equation discretized with DFEM, and supporting
both differing FEM spaces and coarse mesh acceleration. Compared to stan-
dard CMFD methods, the region of stability of the presented NDA method
can be extended to larger optical cell sizes and cell aspect ratios; and un-
der certain conditions the presented NDA method is unconditionally stable
22], [23]. Compared to the improved 2-node CMFD method in Ref. [19]
that successfully applies an ad-hoc linear prolongation technique, this work
is consistently defined within a potentially higher order FEM framework;
within this FEM framework projection and prolongation operators naturally
associated with the employed FEM spaces are readily available. Finally, our
NDA method uses an additive update that by design does not add spurious
information, i.e. information that is not strictly contained in the diffusion
FEM representation, to the transport solution as opposed to the commonly
used multiplicative update of the transport system. Finally, similar to Lee’s
work [11] this work focuses on the first order Sy equations. However, there
are two significant differences between Lee’s and this work: (1) Lee only uti-
lizes CMFD, i.e. a simple balance, and not NDA, and (2) CMFD is applied
in an inner-outer iteration scheme focusing on the transport solves and using
CMFD as an occasional correction. In contrast, the NDA method described
in this work uses occasional transport updates moving most of the work into
the diffusion system.

In section 2 the weak forms of the multigroup eigenvalue Sy equations
and the diffusion problem are introduced. Then, projection and prolonga-
tion operators are presented enabling a rigorous definition of consistency of
the transport and diffusion solutions. This is followed by the introduction of



a suitable drift term, face closures, and boundary closure into the diffusion
weak form.The NDA algorithm is described in section 3. Section 4 presents
a Fourier analysis of the investigated NDA method for a single, quadrilateral
element with periodic boundary conditions. In section 5, numerical results
are presented for a one-group, fixed source test problem and in section 6
numerical results for the C5GT7 test problem are presented.  We do not
measure the efficiency of the presented NDA method based on its CPU times
because we currently do not have an efficient transport sweeper for inverting
the streaming plus collision operator; the number of transport sweeps can
indicate the efficiency because the transport sweeps take the largest frac-
tion of the CPU times in practical applications with sufficiently fine angular
quadrature. The work is summarized and conclusions are drawn in section
7. In sections 5 and 6 we compare the performance of NDA and CMFD
algorithms. It is understood, that CMFD in this context simply translates
into using constant shape functions for discretizing the diffusion system. The
difference to the traditional CMFD algorithm is the additive update of the
transport system as opposed to the normal scaling approach.



2. Consistent Weak Forms of the Sy and Diffusion Equations

In this section, the weak forms of the multigroup diffusion and Sy trans-
port equations are derived. The presented NDA method uses the diffusion
system for accelerating the iterative solution of the Sy transport equation.
However, diffusion and transport solutions are not identical even when ob-
tained on the same mesh and using the same FEM bases. Therefore, appro-
priate closure terms are introduced in the diffusion equation such that the
solution of the Sy equations is consistent to the diffusion solution at conver-
gence. It is understood that the solutions are consistent only at convergence
and therefore "at convergence” is omitted for the remainder of this work.
The definition of consistency in the general case where diffusion and trans-
port solutions are obtained on different meshes and/or using different FEM
bases will be provided in section 2.3. To increase clarity of the notation,
quantities associated with the transport system are denoted by upper case
symbols, while diffusion quantities use lower case symbols: for example the
scalar flux in the transport system is denoted by ®, but the scalar flux in the
diffusion system is denoted by ¢. The exception to this rule are the diffusion
coefficient and the volumetric drift vector that are customarily denoted by
capital letters.

2.1. Weak Form of the Sy Equations

This work focuses on the acceleration of the steady-state, multigroup,
first order, Sy equations. The eigenvalue form of the Sy euqations for direc-
tion €2, is given by:

G

G VU 1+ Sy (7 Wy (7) = % S i,
g'=1
K,(F) - L
+ QZZI VY g (F)®y(7), on D, (1)
Wy =0o0ndD : i€, <0, (2)
Uy = U, on D" 1 77 - O < 0, (3)

—

where ¢ is the group index, G is the total number of energy groups, €2,, is
the m-th angular direction, ¥, ,,, is the angular flux and ®, is the scalar flux



evaluated with the angular quadrature {Qm, Wy, m =1,.., M}:

M
(I)g - Z wmqjg,my (4)
m=1

D is the spatial domain, D° and 0D" are the fixed inflow and reflective
boundaries, respectively, 77 is an outward normal vector on the boundary,
m, is the reflected direction associated with Qm that is assumed to be also
present in the angular quadrature set, >, , is total interaction cross section
in group g, X979 is the scattering transfer cross section from group ¢’ to
group g, K, is the fission spectrum, v, is the fission neutron production
cross section, and k is the multiplication factor that is an unknown in Eq. 1.
While there exist multiple eigenvalues and associated flux distributions sat-
isfying Eq. 1, only the largest eigenvalue achieves a positive, self-sustaining
flux distribution. This largest eigenvalue is referred to as multiplication value
and the flux distribution is referred to as fundamental mode. When solving
the equation with an external source, k£ will be fixed to one. The eigen-
value problem can be rewritten by setting the multiplication factor equal to
the total number of neutrons produced by fission essentially eliminating the
eigenvalue from Eq. 1. In this form, the eigenvalue problem can be viewed
as a nonlinear problem with the solution normalized to k. We intentionally
use the capitalized notation for cross sections in Eq. 1 to distinguish the
Sy cross sections from the diffusion system cross sections and focused on
isotropic scattering throughout this work. Even though we do not consider
anisotropic scattering we believe the described NDA method can be applied
to problems with moderate anisotropy (averaged scattering cosine less than
0.5) as suggested in [24].

To obtain the weak form we multiply Eq. 1 with an arbitrary test function
U integrate over the domain D, sum over all angular directions, and finally

g7m,

apply Green’s identity:

B(U,0%) — R(U, %) — S (U, I*) = %F (0, ), (5)



with the bilinear forms being defined as:

B =305 i (Y (094 3) 05,) = 0, 005,00,)

g=1 m=1
G
ROW,U) =D " wn (ym, U} ),
g=1 EedDr Q.ﬁ>0
1 G G
S ) =13 D (Quys )y
g=1g'=1
1 G G
PO =123 > (Qroa 2))p- (6)
g=1g'=1

M
where @7 = > w,V; , Eis an FEM element’s face, 7i is an arbitrarily
=1

oriented normal vector on E (outward normal vector on dD), f* and f~ are
downwind and upwind values of f, respectively, I' is the set of all interior
faces, [[f]] = fT — [~ is the jump across an element’s face with the upwind
and downwind sides being defined by Qm, and

G = / av fg (7)

Q-1

0y = / aA fa. (8)

In Eq. 5, the scattering and fission sources Qs 4 and Qy, , are defined
for convenience when defining the NDA system of equations. For the un-
accelerated Sy equations, Eq. 1, they are given by Qs 4, = qugq)g, and
Qg g =KX Py For convenience the lumped source @), is defined as:

G G

1
Q=37 2 Qo g D Qraar (9)

2.2. Weak Form of the Incomplete Interior Penalty Diffusion Equation

The continuous multi-group diffusion equation with vacuum Robin bound-
ary conditions and reflective boundary conditions on D® and D7, respectively,
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is given by:

—VD, -V, +0rppy =D 0¥ Py +—Zuafp¢p,

p'#p
D, -
%+7pﬁ~v¢,,_o on 9D*,
ii- Ve, =0on dD", (10)

where p is the coarse group index, P is the total number of coarse energy
groups, D), is the diffusion coefficient, o,, is the removal cross section, ¥,
is the fission spectrum, and oy, is the fission neutron production cross sec-
tion. The corresponding weak form of the multi-group diffusion equa-
tion discretized with the incomplete interior penalty (IP) discontinuous FEM
method [16] is given by:

b(6,67) = 11 (6,6 (1)

with

M~

P
b(6,¢7) =D (DyVe, Vi), + > (0rpdp. 6}
p=1

1

ZZ O-p%pgbp’ D+Z {{Dpﬁqbpﬁ}}a[[(b;]])p

p=1p'#p

S
ool

T

£ (plonl. [, + 30 (2.65),

p=1 p=1
P P
f ZZ Xpygfp ¢p, )D (12>
p=1 p'=1

where , is the stabilization parameter, [f] = f* — f~ is the jump across an
element’s face with the upwind and downwind side being defined by the face’s
normal vector (normal vector 7 points from — to +), {f} =2(fT+ f7). It
is noted that the orientation of the face normal vectors is irrelevant.

The stabilization parameter k), is chosen as the modified interior penalty
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(MIP) coefficient defined in [16]:

1
Ky = max(n]{P,Z—L)
kil = ¢ o5 Py (13)
p 2 2 D; Dy
p°\ - + 32 ), else

where ¢ = 0, 1, ... is the order of the FEM basis functions used for discretizing
the diffusion equation, and h* is a measure of the mesh spacing associated
with the current element’s face defined as the distance of the face centroid
7r and the element’s centroid 7¢ projected along the normal 7i:

h =i (7o — %) (14)

The MIP formulation ensures that the penalty is large enough for optically
thick cells. In section 4, a Fourier analysis demonstrates that the IP penalty
can lead to an unstable NDA method on coarse mesh cells.

2.3. The Consistent Diffusion Weak Form

The solutions of Eq. 5 and 11, ®, and ¢, respectively, are different even
if both equations are discretized on the same mesh and with the same FEM
basis. To make ®, and ¢, consistent, volume, face, and boundary closure
terms are added to the diffusion equation Eq. 11. These closure terms
are discussed in section 2.3.2. Before derivation of the closure terms, the

definition of consistency of diffusion and Sy solution is discussed in section
2.3.1.

2.3.1. Projection and Prolongation Operators

The projection operator II[-] mapping a member of the Sy FEM space
to the diffusion FEM space is introduced in order to define the meaning of
consistency of ®, and ¢, that are potentially defined within different FEM
spaces. Using the projection operator, ®, and ¢, are consistent if:

¢p = 1L[Dg]. (15)

Within the FEM framework, an explicit representation of the projection op-
erator can obtained by requiring that

(05, ®4)p = D (05 0p)- (16)

gep
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Let us denote the set of FEM basis functions by {b}% , and {B}L, for the
diffusion and Sy system, respectively, and collect them in the vectors b and
B. Then Eq. 16 can be recast as:

bb) ¢, = b,B) @

(19) 6= X (59), 5, )
gep

where gzi, and CISQ are the expansion coefficients of ¢, and ®,, respectively.

Note, that (g, 5) is simply the diffusion mass matrix and hence is invertible.

The reverse operation of the projection is referred to as prolongation and
is denoted by IT7! []. Tt maps a member of the diffusion FEM space to the
Sy FEM space. The prolongation operator is defined equivalently to Eq. 16:

(@5 29) 5, = (®5:0p) (18)

Totally equivalently to Eq. 17, an explicit representation is given by:
5.5) 8= (B1) 4 1
(B.B), 3, o (19)

Within the remainder of this work, we assume that the diffusion FEM space
is a subset of the Sy FEM space. This is typically true because the diffusion
equation is typically solved on a coarser mesh and either using the same FEM
basis or a lower order FEM basis.

2.3.2. Closure Terms

In this section, closure terms are introduced into the diffusion weak form
to make its solution consistent with the solution of the transport equation.
For deriving the closure terms, we subsitute an isotropic test function ®* into
Eq. 5. The resulting equation is referred to as the angular balance of the
transport weak form and is given by:

B(0,0%) ~ §(Qu @) = 1P (Qr. 7). (20)

where:

B0 =3 (- (7, 985) + (S ) + (1] (93D,

g9=1

T @) b (21)

+
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In Eq. 21 the current J is given by:

M
Ty = WOV, (22)

m=1

and the partial outflow current Jgout is defined as:

et =3 |G | W
+(0-7)<0
Jo = g (23)

In order to satisfy Eq. 15 at convergence, we modify the diffusion weak form
Eq. 11 by adding closure terms and defining the diffusion cross sections. The
modifications are straight forward to derive by comparing Eq. 20 with the
diffusion weak form. The consistent NDA diffusion weak form is given by:

1Y) (6,6°) + e[ W) (6,6) = 1 [¥] (6,6°), (24)

where the notation a[](+,-) denotes that the consistent diffusion bilinear
forms! depend on the high order solution. The closure term c[¥] (¢, ¢*) is
given by:

P

P P
Z p¢p7 V¢ pT Z [Fpos]. p + Z ap¢pa st
p=1

p=1 =1

(25)

IThe forms are still bilinear if ¥ is taken to be fixed.
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where the following quantities are obtained from the Sy cross sections via
flux weighting:

11 [(Et,g — Zgﬁg) q)g]

Removal cross sections o, , =

IT[®,]
o[l
Scattering cross section o—g’/ﬂ' = 9P
II[®,]
1Rt
Fission production cross section voy, = M
il [(I)g’]
II Kg (Z I/Eﬁg/q)g/)]
Fission spectrum x, = i .
IT

<Z sz’g/q)g/>
g/

If the low order space is piece-wise constant, these formulations reduce to
the conventional homogenized flux-weighted cross sections. The diffusion
coefficient D, is defined as:

5]

D= "H,

(26)

Furthermore, IA)p is the drift vector, & is the face closure, and « is the fixed
source boundary coefficient. The drift vector is computed by:

Dpvn[cngHm
S T

(27)

At convergence the term comprising D, in the drift vector, Eq. 27, cancels
the corresponding term in the diffusion weak form, Eq. 24, regardless of
the definition of D, itself. Therefore, D, does not influence consistency, but
it does influence the spectral properties of the NDA algorithm described in
section 3.  The diffusion coefficient is essentially a free parameter in the
described NDA algorithm. We do not have any conclusive evidence on which
choice of the diffusion coefficient would yield the smallest spectral radius.
However, in [25] we found that using non-local tensor diffusion coefficients

15



for the periodical horizontal interface problem improves the spectral radius
significantly when compared to the definition used in this work. The fixed
source boundary coefficient « is given by:

I [Jout,f}

g

e, 2%)

a, =4

For the definition of the face closure, two distinct definitions are considered

in this work both of which lead to consistency in the sense of Eq. 15, but
differ in their spectral properties. The two variations are referred to as the
SYW and pNDA method and are based on the SYW and PCMFD methods
in Ref. [26]. The particular formulations are different from [26] as this work
focuses on first order Sy methods discretized with DFEM. The SYW and
pNDA closures are given by:

11 [ Jout:+ 7. VI [d
SYW: i = s ]iDpn Vi [o;] Ky
I [o7] 211 [@7 ]
SESVPPR (/o R & L U 1LY R
T [ @7

For the pNDA closure, the face scalar flux ¢, is defined by:

_ {1, D,/ny
{D,/n}

Using Eqgs. 24 through 30 leads to a consistent diffusion weak form in the
sense of Eq. 15. This can be proved by subsituting an angularly isotropic
test function into Eq. 5 to obtain the angular balance. When converged, the
resulting angular balance and Eq. 24 are identical.

From a homogenization perspective, the low-order diffusion weak form
can be understood as a formalism on how a homogenized low-order represen-
tation can retain all features of the high-order transport solution that can
be represented on a coarser mesh, using a lower order FEM basis and fewer
energy groups.

Ps.g (30)
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3. Nonlinear Diffusion Acceleration Algorithm

In section 2, consistent weak forms of the Sy and diffusion equations, Eq.
5 and 24, respectively, have been derived. These equations are consistent in
the sense that when the angular flux is known and the cross sections and the
closure terms are constructed, the computed scalar fluxes ¢, satisfy Eq. 15.
In this section, the nonlinear diffusion acceleration algorithm that is used for
the effective iterative solution of Eq. 5 is presented.

In other words, when an estimate of the solution of the high order trans-
port system is given, we can solve the low order diffusion system to obtain
the eigenvalue and the scalar flux in the lower dimensional space, which can
be used in the scattering and fission terms for evaluating the residual of the
transport system. We can view this as a non-linear problem, or we can break
this non-linear system into two pieces by using the following Picard iteration:

D[] (6442,6) e [W] (7%, 67) = g [¥] (6%07) . 61)

1
I+1 = I \p* I+1/2 Fx\ _ I+1/2 xx
B (UL 07) = R (0, 07) =8 Q52 07) = o F (Q )
H+1/2 g p,l+1/2
stg’vy - Zg —>9q)g/

I+1/2 JA+1/2
Qf,g’,g = KgVEﬁg/@g/ . (32)

The index [ denotes the iteration index in the fixed point solution method
utilized for the solution of the NDA system of equations and will be discussed
shortly. One distinct feature of the presented NDA method is the prolonga-
tion of the diffusion scalar flux ¢, to the Sy weak form denoted by (IJZ’ZH/ 2
in Eq. 32. The prolonged scalar flux is computed by:

DT = @y T g2 — T [@g]]. (33)

This prolongation is distinctly different from typical "scaling” approaches
[19] which are defined for the average scalar fluxes, ¢, and @, as:

Tl4+1/2
p

Fpl+1/2 _ Flr—1
orl2 = plT1 o) (34)
9

The advantage of Eq. 33 is that it easily extends to any FEM basis func-
tion set while Eq. 34 does not have a natural extension to non-constant
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shape functions. Within this work, CMFD is frequently used to denote the
described NDA method using constant shape functions for the diffusion prob-
lem and the additive update of Eq. 33.

The particular form of the prolongation operator is derived with the goal
to retain the fraction of the Sy solution that is outside of the span of the
diffusion solution. To prove that Eq. 33 possesses this property, we write the
scalar flux @/ as:

O =) + Py, (35)
where @ o 18 within the span of the diffusion FEM basis and (I> | is outside
of it. Then, by definition of the projection and prolongation operators it
holds that:

l — l — l
o =T [II[@]] = @ | =@, —II"" [I1[®)]]. (36)

gl —

For the accelerated scalar flux @S’ZH/ we want to retain ®! | and accelerate

the remainder with the prolonged diffusion flux, hence:
q);s,l-i-l/Q [¢l+1/2:| + (I)QL . q)l H—l |:¢§?+1/2 —1I [(I);:H (37)

The algorithm for solving the nonlinear system of Eqgs. 31 and 32 is
described in Alg. 1. Initially, the angular flux is set to unity everywhere and
the cross sections and closure terms are evaluated; subsequently a diffusion
solve is performed; note that this leads to using a pure diffusion solution of
the problem as initial guess for the first transport sweep. We opted to start
with a diffusion solve to potentially reduce the total Picard iteration count
by one by supplying a better initial guess to the Sy solution. Because of
its low dimensionality, the cost of solving the diffusion system is relatively
small. The diffusion problem is solved using MOOSE’s preconditioned
Jacobian-free Newton Krylov solver [1] that can solve both the fixed source
and eigenvalue neutron diffusion problem. The preconditioning matrix does
not contain cross-group scattering terms or fission terms by default, but
options exist that allow assembling these block off-diagonal terms. Inversion
of the preconditioning matrix usually utilizes the hypre algebraic multigrid
(AMG) solver boomeramg [27]. Previous work [28] showed that solving of
the NDA diffusion problem with AMG can be problematic because of the
asymmetric drift closure term.

After the solution of the diffusion system, a single transport sweep is
performed for obtaining a new estimate of the angular flux \Ifl“ on the

,m
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scattering source computed by using q)’g)’lﬂ/ A transport sweep denotes the

inversion of the streaming and collision operator located on the left-hand-
side of Eq. 1. The matrix collecting the contributions of the streaming
and collision terms in Eq. 1 does not need to be assembled, because it is
essentially lower triangular. Sweeping through all directions Q. and mesh
elements allows for an efficient way of obtaining Wit [16]. However, due to
the large dimension of the Sy solution space, a single transport sweep is much
more expensive than solving the diffusion equation iteratively. Therefore, the
transport sweep is the essential unit of cost for obtaining the solution of the
Sy equations. The Alg. 1 is known to converge rapidly within 7-15 Picard
iterations for typical reactor physics problems. It should be noted that the
influx from reflective boundary conditions in Eq. 32 is lagged by one iteration
for the transport sweep potentially causing a reduction in the convergence
rates in case the solution in the majority of the domain is strongly influenced
by the reflective boundary conditions.

In the current Rattlesnake implementation, standard MOOSE residual
evaluations are used to compute the source on which the sweep is performed.
MOOSE’s residual evaluations support second order meshes. Therefore, the
correct answer of the Sy problem would be obtained after a sufficient num-
ber of sweeps even if the sweep is performed on a simplified mesh, e.g. by
replacing curved faces with plane faces.

Algorithm 1.  Nonlinear diffusion acceleration algorithm.
1: Setl =0, <I>lg =1, J? =0, e = 10tol.
2: whitle € > tol do
3 Project reaction rates, currents, and partial outflow currents.
4: Evaluate diffusion cross sections, ﬁé, ozé, and /%;.
5 Solve low order eigenvalue problem using PJFNK solver capability.
6 Prolongation for evaluating Qsq.4 and Qg 4. Transfer eigenvalue
and compute Qg

7: Obtain \IILJFT}L by performing a single transport sweep on Q).
8: Compute O,
9:  e=| fyzf,g (@L = @) |l L =1+1.
10: end whiflyz1
end
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4. Fourier Analysis of the NDA Algorithm

In this section, a Fourier analysis of the linearized NDA algorithm de-
scribed in Alg. 1 is performed for a single two-dimensional, quadrilateral
mesh element with periodic boundary conditions. A total of three FEM basis
function combinations is considered and denoted by (Sy-basis)/(diffusion ba-
sis): (bilinear)/(bilinear), (bilinear)/(constant), (constant)/(constant). The
(bilinear)/(constant) is labeled as CMFD method because it uses a simple
balance equation for accelerating the Sy system. For simplicity, coarse mesh
acceleration is not considered, i.e. both the Sy equations and the diffusion
equation are solved on the same quadrilaterial mesh cell. The linearization of
the NDA algorithm is performed similarly to [20], but the mechanics of the
implementation closely follow [16]. The Fourier analysis demonstrates that
using identical FEM basis functions for discretizing the diffusion system can
restore stability where the CMFD method is unstable. For the exemplified
case of fine mesh acceleration, homogeneous material, and unity aspect ratio,
the (bilinear)/(bilinear) NDA method is shown to be unconditionally stable.

4.1. Fourier Analysis of the NDA Algorithm: Theory
The Fourier analysis is performed for the one-group fixed source forms of
Egs. 5 and 24.The diffusion weak form is simplified to:

(997290 ) (502 0) 4 (16 LD
t D

t oD

+Cp[WL (9%, 6% =0,  (38)

where C'y and C'r are given by:
vl )(6", ") = (D'o,Ve")
CrlWL)(6", ¢ %) = ([#¢"] [¢]) o - (39)

The simplified Sy weak form reads:

M
> wn (V5 (=G - V + D))
m=1

M
b
B [ _ d+1/2 Zs g )
mzﬂwm <\Ijm ) H[\Ilm]]]m>ap ((I)p ) 471'(1) )D - O (4())
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At each iteration the angular flux and the scalar flux are separated as follows:
\IIH_I — ™ + 6l—l—l
¢l+1/2 _ ¢00 + el+1/27 (41>

where the superscript co indicates the exact iterative solution and €' and

e!*1/2 are the iterative errors at iterations I 4+ 1 and [ + 1/2, respectively.
We note that the exact solution is flat in space and isotropic in angle and
therefore it holds that:
Vs =[[¥3l =[¢*1=J> =0
fond = vy, {o) =0~
Joo,out,:l: — (1)00/4

o> =11[9>]. (42)
Equations for the errors defined in Eq. 41 are obtained by first evaluating
the weak forms Eqgs. 38 and Eq. 40 with the exact iterative solution, W¢?

and ¢, and then subtracting the resulting weak forms from Eqs. 38 and
Eq. 40:

L" I+1/2 % +1/2 %
(3EtV6 , Vo D—i—(Zae ,gb)D

+ (/i[[el+1/2]], [[qb*]])ap + ({%Ztﬁel—&-lﬂ . T_i} ’ H¢*]]>8D
+OY [We + 6, )(¢", 0% + ¢ 71/2) — Cy[U) (97, 6)
+Cp[Vp + e ](¢7, 9™ + €71/%) — Cp[U](¢%, ¢™) =0, (43)

=

> wa (et (= - V4 )T,

m=1

M
— * 28 *
N Z W, <E{n—l_17 , H[\Ijmﬂ]m>ap _ (Ep7l+1/2’ 4_@ > _ 0’ (44)
m=1 @ D

where

Ep,l+1/2 _ Ell + Hfl |:€l+1/2 —T1I [El]}

El = Zwmein. (45)



The underlined, nonlinear terms in Eq. 43 are now linearized with respect
to the error terms about the exact iterative solution (U ¢>°) by neglect-
ing higher order terms in e-! and e*'/2. The details of the linearization
procedure can be found in Appendix A.

The final results after linearization of the volume Cy and face Cr closure
terms are:

Oy [T + e, ](¢ ¢ + ) — Oy [U](¢, 0%)
(Vqs ,—VH [E'] +H ) (46)

CplU + € (%, 6™ + /%) = CrlTX] (9", ¢)

SYW: =~ ([¢"], [(1/4 — w)e!™/? —1/411 [E"]]),
et
oD

pNDA: ~ ([[¢*]],[[H [Vieut] — kI [E'] +%ﬂ) , (47)
oD

where the following quantities are defined for convenience:
— :l: —
(Fe)™ = Fr
M
Yyl = Z Wi s,
m=1
Yl,out _ Z w,,

Q- 7>0

—

Q7| €. (48)

Using Eqgs. 43, 44, 46, and 47, a linear FEM system for the errors can
be constructed. Interestingly, when x = 1/4, the linearized pNDA method
algorithm becomes identical to SYW. For the remainder of this work, this
method will be referred to as asymptotic diffusion (AD).

Until this point, the derivation of the linearized equations for the iterative
error is very general, as it applies to any FEM bases combination applied to
the diffusion and Sy equations. It is convenient to cast these equations in

22



operator notation to facilitate the Fourier analysis:

Sy : Lei' =S (B + 117" (Y2 — TIEY))
Diffusion: A2 — VL IIE — Vyl_ﬂ_ﬂ — Keel“/2
— KgIE' - KpIIyh =0, (49)

where L collects the streaming, collision, and face term of the Sy equations,
S collects the scattering contributions, A collects all contributions of the
diffusion equations except the closure terms, Vi and Vy collect the volume
closure terms operating on E and Y, respectively, and K., Kg, and Ky
collect face closure terms operating on e, E, and Y°“ respectively.

For replacing E', Y, and Y with ¢! the quadrature rules defined in
Eqgs. 45 and 48 are written in operator notation:

El = D(]Elm
)_/'l = Dlefn
yheuw = D"l . (50)

Using Eq. 50, Eq. 49 is recast as a system of equations in terms of ¢, and e:

SN Lef;lrl =S (Doﬁlm +I1! (€l+1/2 - HDoefn))
Diffusion: (A —K,)et/?
= (VgIIDy — VyIID; + KpIID, — KpIID)el . (51)

The Fourier analysis then proceeds as described in [16] by introducing
phase matrices relating the iterative errors €, and e to their Fourier expansion
coefficients €, and é:

A l
€, = P,

e = Peel. (52)

For the two considered function spaces, bilinear and constant, the phase ma-
trices are given by:

Constant:
P= [ exp(%i(AmAm + A, Ay)) }
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Linear:

1 0 0 0
p_ 0 exp(iA,Ax) 0 0
10 0 exp(t( Az Az + N\, Ay)) 0 ’
0 0 0 exp(iA,Ay)

(53)

where i = v/—1, A\, Ay, are wave numbers in the z and y direction, and Az
and Ay are the dimensions of the mesh element.

Combining Eq. 51 and 52, an expression for the iteration step & — ét?
can be derived as:

et = Ze,

Z = L'PS(DoP.+1II"" (X —TID(P.))
X = (APe - KePe>71

= (VgIIDy — VyIID; + KzIID, — KzIID)P,. (54)

The spectral radius of the NDA method p can be inferred from the transition
operator Z by:
2m 2m

p = max |eig(Z)| for 0 < A\, < 0<A

e hy Az’ v < Ay’ (59)

The spectral radius is evaluated by numerically searching for the maximum
eigenvalue of Z. For this purpose the numerical optimization capabilities of
MATHEMATICA [29] are used. The implemented algorithm uses four dif-
ferent maximization algorithms, Nelder-Mead, Simulated Annealing, Differ-
ential Evolution, and Random Search; and picks the maximum of the results
to decrease the likelihood of accepting a local maximum. In this work, the
spectral radius is the central property of the NDA method as it indicates its
effectiveness. A spectral radius smaller than unity is referred to as stable,
while, somewhat arbitrary, a spectral radius smaller than 0.7 is referred to
as effective.

4.2. Fourier Analysis of the NDA Algorithm: Results

Of particular interest is the change of the spectral radius with the scat-
tering ratio:

X
Scattering ratio: ¢ = SR (56)
t
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and the optical cell thickness t:
Optical cell thickness t = 3, max(Ax, Ay). (57)

A comparison of the pNDA-AD, pNDA-IP, and pNDA-MIP algorithms is
conducted. Most importantly, the convergence properties of the NDA method
depending on the pairing of the Sy and diffusion bases are investigated.

In Fig. 1, the spectral radius of the (bilinear)/(bilinear) FEM basis is
plotted for varying scattering ratios and penalty modes versus the optical cell
thickness. The (bilinear)/(bilinear) method leads to a unconditionally stable
and effective acceleration method if the penalty coefficient is computed using
the AD or MIP methods. In contrast, if the IP mode is selected, methods
exhibit a second maximum in their p vs. ¢ curves and become unstable for
scattering ratios ¢ > 0.9. The IP method exhibits instabilities because the
penalty coefficient decreases monotonically with optical thickness. However,
maintaining a sufficiently large penalty coefficient is essential in the interior
penalty DGFEM discretization with weakly imposed continuity as too large
inter-element jumps are permitted with small penalty coefficients.

1.0 T
— AD, ¢=0.9
— AD, ¢=0.99
osl| — AD, c=0.9999 :
-~ MIP, c=0.9 WP 1
-~ MIP, ¢=0.99
” -~ MIP, c=0.9999
308 IP, c=0.9
:: IP, c=0.99
£ IP, c=0.9999
§ 0.4}t
0.2F
0.0 \\

1073 1072 10" 10° 10* 10? 10°
Optical Cell Thickness

Figure 1: Spectral radius of the pNDA-AD, pNDA-IP and pNDA-MIP methods for (bi-
linear)/(bilinear) FEM basis obtained by Fourier analysis.

In Fig. 2 spectral radii for the pNDA-MIP with (constant)/(constant)
shape functions are plotted. For intermediate optical thicknesses in the IP
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region, i.e. 0.5 < t < 4/3 the curves exhibit a steep increase. The peak
magnitude of the spectral radius grows with the scattering radius with the
expectation that for sufficiently large scattering ratios instabilities will be
observed. The cause of this behavior is that in the region 0.1 < ¢ < 4/3 the
penalty coefficient is too small to ensure proper convergence for the (con-
stant)/(constant) shape function pairing. Further tests showed that in the
limit of optically thin cells, smaller spectral radii can be obtained by having
a smaller penalty coefficient. Therefore, we modified the penalty coefficient
for the (constant)/(constant) case as follows:

NI
0.9 t <0.1;
ft) = 1.8 t>1.0; | (58)

0.9(1 4 logy, 55) else.

where the factor of 0.9 was found to be near optimal in the thin cell limit.
Results using penalty coefficients computed by Eq. 58 are presented in Fig.
3. These results are qualitatively similar to the (bilinear)/(bilinear) results
with the exception of the spectral properties of the AD method for optically
thin cells, where it becomes unstable. This behavior is unexpected since a
loss of effectiveness and possibly stability is expected for optically thick cells.
To understand this behavior better, Appendix B performs a fully analytical
Fourier analysis in slab geometry focused on the thin cell limit. This Fourier
analysis suggests that the thin cell limit of the spectral radius of the (con-
stant) /(constant) pNDA-AD method is larger than unity for scattering ratios
¢ > 2/3. As the (constant)/(constant) is not relevant for practical applica-
tions, these results have little consequence in practice, but are still valuable
from an academic point of view. The (constant)/(constant) results underline
the fact that a judicious choice of the penalty coefficient can influence the
convergence properties significantly.

In Fig. 4 spectral radii for the (bilinear)/(constant) FEM basis are de-
picted. This combination of shape functions leads to a CMFD type accel-
eration method, where a constant diffusion method accelerates a high-order
Sy discretization. Similar to the (constant)/(constant) case, the AD method
shows instabilities for optically thin mesh cells. Even though the correspond-
ing analysis is not performed for the CMFD scheme, it is reasonable to as-
sume that the results of the Fourier analysis in Appendix B carry over to
the CMFD scheme. The qualitative difference with respect to the (bilin-
ear)/(bilinear) and (constant)/(constant) FEM pairings is that for optically
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Figure 2: Spectral radius of the pNDA-AD, pNDA-IP and pNDA-MIP methods for (con-
stant)/(constant) FEM basis obtained by Fourier analysis.
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Figure 3: Spectral radius of the pNDA-AD, pNDA-IP and pNDA-MIP methods for (con-
stant)/(constant) FEM basis obtained by Fourier analysis and x/ given by Eq. 58.
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Figure 4: Spectral radius of the pNDA-AD, pNDA-IP and pNDA-MIP methods for (bi-
linear)/(constant) FEM basis obtained by Fourier analysis.

thick cells and scattering ratios close to one both MIP’s and AD’s spectral
radii tend to unity. The CMFD method loses its effectiveness but it does
not lose its stability. This is unexpected as instabilities of CMFD methods
for optically thick cells are reported in the literature. Numerical experiments
presented in section 5 will demonstrate that CMFD is indeed unstable and
that Fourier analysis gives a qualitatively different prediction than numerical
experiments. The reason for the discrepancy between the numerical experi-
ments and the Fourier analysis is the linearization and (probably to a lesser
extent) the assumption of periodicity of the solution.

The most important observation from the Fourier analysis is that the
NDA method is unconditionally stable and effective if (bilinear)/(bilinear)
and (constant)/(constant) FEM basis functions are used and the penalty
coefficient is chosen to remain sufficiently large for optically thick cells. This
corroborates the common wisdom that accerelation methods work better
with closer similarity between the transport and diffusion discretizations.
Effectiveness is lost if a CMFD type NDA scheme is applied, but Fourier
analysis suggests that CMFD is still stable. Numerical results presented in
section 5 show that in this regard Fourier analysis differs qualitatively from
numerical experiments.

28



In addition, convergence properties of the presented NDA method are
sensitive to the choice of the penalty coefficient as was shown in particular
for the (constant)/(constant) FEM basis pairing. The methods’ performance
could be improved by adjusting x/”. However, in absence of a consistent the-
ory of how to do this, the remainder of this work will employ the unmodified
version of x’F given in Eq. 13.

It is worth noting that this Fourier analysis does not investigate two im-
portant properties of NDA methods: (1) performance if the diffusion mesh
is coarser than the Sy mesh, (2) performance in the presence of strong ma-
terial heterogeneities. The corresponding studies will be conducted using
numerical experiments in the next section.
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5. Numerical Experiments - Fixed Source Problems

Numerical experiments are conducted for the one-group, fixed source
neutron transport equation discretized with a uniform quadrilaterial mesh.
Due to the exponential growth of parameter combinations to investigate,
this section focuses on the pNDA method and the modified interior penalty
coefficient.

The number of mesh intervals along the x and y directions are chosen to
be identical throughout the study. A two-dimensional test problem depicted
in Fig. 5 is used for investigating the convergence properties of the presented
NDA method. The problem is rectangular with an extent of x = [0, X]
and y = [0,Y] in the x and y directions, respectively. Vacuum boundary
conditions are applied on all boundary edges. The domain is uniformly sub-
divided into ten layers along the y-axis so that each layer has a thickness of
AY = Y/10. The black region is referred to as region one, while the grey
region is referred to as region two. Two parameters characterize the material
properties in regions one and two: the scattering ratio ¢ and the heterogene-
ity factor 7. Deviation of 7 from unity makes the problem more challenging
by introducing stronger material heterogeneity. The material properties in
regions one and two are given by:

2@1 = T
23,1 = Czt,l
1
Zt,Q = -
T
2572 = CEEQ. (59)

It is convenient to define the optical cell aspect ratio a that coincides with
the domain optical aspect ratio:

Axr Y

The mesh used for discretizing the Sy equations is nested within the
diffusion mesh as depicted in Fig. 6. The coarsening factor pK relates the
fine and coarse mesh spacing:

Az, = KAz
Ay. = KAy. (61)
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Figure 5: Geometry of the test problem used for numerical tests of the NDA method.

The solution of the transport problem is considered to be converged in
iteration L + 1 if 0y 4 = [|®/+! — L, < 107°. Subsequently, the numerical
spectral radius p is estimated using the reduction of the L, difference over
successive iterates:

0141
pL= —(

o
However, using only the last iterate [ = L is problematic if the convergence is
not uniform, i.e. p; # const. This is frequently encountered in cases with p2
and p4 meshes and high scattering ratios. Therefore, we resort to averaging
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Figure 6: Mesh coarsening. The Sx mesh is indicated by dashed red lines and the diffusion
mesh is indicated by solid black lines.

the spectral radius over several iterations:

N 1/N
p= (H pL_n> (63)

The range of the geometric mean is chosen as N = min (L/2,6).

A maximum of 400 Picard iterations is permitted at which point the solve
is aborted and considered failed. This implies that without looking at the
convergence history it is impossible to distinguish slowly converging problems
from truly non-converging problems. For ensuring proper convergence of the
low order diffusion system, it is solved exactly using LU decomposition at
each Picard iteration. The iterative error in the low order diffusion solve is
made small enough to not affect the convergence of Picard iterations.

5.1. Regimes of Unconditional Stability of the NDA Method

This section demonstrates via numerical experiments that the presented
NDA method is unconditionally stable, albeit not unconditionally effective,
for the selected test problem regardless of 7 and « if identical shape functions
and meshes (pl) are used. For comparison, the lack of stability of the CMFD
method is demonstrated to emphasize the advantages of using high order
FEM bases for discretizing the diffusion equation.

In Fig. 7 the spectral radii of the (bilinear)/(bilinear) and (bilinear)/(constant)
FEM pairings are plotted versus the optical cell thickness. Consistent with
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the Fourier analysis presented in section 4, the (bilinear)/(bilinear) method
is unconditionally stable and effective regardless of the scattering ratio. The
spectral radius is always smaller than 0.5. In contrast, the (bilinear)/(constant)
method loses effectiveness for all scattering ratios and stability for ¢ > 0.99.
For the highest scattering ratio ¢ = 0.9999 effectiveness and stability are lost
for t > 2 and t > 5.5, respectively.

While the (bilinear)/(bilinear) numerical results agree qualitatively with
the FA, the FA analysis predicts that (bilinear)/(constant)’s spectral radius
approaches p = 1 as t — oo. In fact, the (bilinear)/(constant) method
becomes unstable as is illustrated in Fig. 8 plotting d; versus the Picard
iteration number for a set of cases with ¢ around 5. Curves with ¢ > 5.6875
initially reduce ¢;, but then the iterative process becomes unstable with the
onset of instability being visible as fluctuations in the curves. Slow conver-
gence would be indicated by a straight, albeit slowly declining, line. It is
important to stress here that differences between numerical results and the
Fourier analysis are expected as it uses the linearized NDA method. Cases
with smaller ¢, e.g. ¢ = 5.625 also exhibit fluctuations but the convergence
appears to be stable until the 107% convergence criterion is met.

Spectral radii for an aspect ratio of @ = 10 are presented in Fig. 9.
The important observation is that (bilinear)/(bilinear) retains the desirable
property of unconditional effectiveness, while (bilinear)/(constant) remains
only conditionally stable and effective.

As pointed out in Ref. [15], the spectral properties of acceleration meth-
ods tend to deteriorate in the presence of strong material heterogeneities.
Within this work, the test case can be used for emulating the well-known
periodical horizontal interface problem (PHI) by increasing the parameters
7 and ¢ keeping c¢ close to unity [30]. The maximum number of iterations
is increased to 2000 and the number of linear mesh subdivisions is fixed at
10 in order to evaluate the spectral properties in the vicinity of a spectral
radius of unity. In Fig. 10 the spectral radii for various values of 7 and ¢ are
depicted. Both FEM pairings lose effectiveness, albeit at different values of
7: for the highest scattering ratio (bilinear)/(bilinear) allows for 7 & 5, while
(bilinear) /(constant) becomes ineffective for 7 ~ 2. Even though, the NDA
method is not unconditionally effective in the presence of heterogeneities,
using bilinear FEM for the diffusion system still holds an advantage over
CMFD. The question of stability is answered by looking at the convergence
history of representative (bilinear)/(bilinear) and (bilinear)/(constant) cases.
In Fig. 11 the convergence history of the 7 = 5, ¢ = 0.9 and 7 = 1280,
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c = 0.99999 cases are presented. Both FEM pairings retain stability regard-
less of the choice of 7 and c.

In summary, the (bilinear)/(bilinear) NDA method is unconditionally sta-
ble, but not unconditionally effective. Increasing the scattering ratio and
the heterogeneity parameter 7 simultaneously makes the spectral radius ap-
proach unity. The CMFD method is neither unconditionally stable, nor
unconditionally effective. In particular, optically thick cells lead to both loss
of effectiveness and stability.

5.2. Regimes of Conditional Stability of the NDA Method

The (bilinear)/(bilinear) NDA method loses unconditional stability if the
diffusion mesh is coarser than the Sy mesh. In Figs. 12 and 13 spectral
radii for problems with unity aspect ratio and coarsening factors two and
four are depicted, respectively. Both the CMFD and NDA acceleration lose
effectiveness and stability. However, using NDA still provides the advantage
of extending the ranges of effectiveness and stability by roughly a factor of
two and four, respectively, when compared to CMFD. Table 1 summarizes
the optical thicknesses where stability and effectiveness is lost for both FEM
pairings. Clearly, using linear FEMs in the diffusion system increases the
range of applicability of NDA significantly. It needs to be stressed again that
the diffusion system is of much smaller dimensionality such that increasing
its execution cost is expected to have little impact on the execution time per
Picard iteration.

For high scattering ratios, the p vs. t curves exhibit non-smoothness.
This is attributed to non-uniform convergence (p; # const.) leading to the
computed value of p to be dependent on the choice of which p; to consider
in Eq. 63. Representative examples of "rockier” convergence histories are
plotted in Fig. 14.

5.3. Stability of Higher Order FEM Bases

In Fig. 15 the convergence properties of NDA using biquadratic FEM
shape functions, i.e. the dyad of {1,z,2?} and {1,y,4?}, are investigated.
The resulting NDA algorithm is unconditionally stable and effective for unit
aspect ratios and a homogeneous domain. In conjunction with the results
obtained for the bilinear FEM shape functions, it appears that for structured
quadrilateral grids and mild material heterogeneities using identical shape
functions of at least first order yields an unconditionally stable and effective
NDA method. However, this is not true in general.
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In Fig. 16 the biquadratic shape functions are replaced by second order
monomial shape functions: {1,z,y,xy, x*, y*}, in both the Sy and diffusion
system. For smaller scattering ratios ¢ < 0.9, NDA is stable and effective.
For larger scattering ratios ¢ > 0.99, NDA is stable and effective for very
thick and thin cells, but exhibits instability for cells with an optical thickness
between ¢t ~ 10..100. For ¢ = 0.99 only a single region of instability between
t = 20 to 30 is observed. However, for ¢ = 0.9999 an interesting change in
behavior occurs. Within the range of ¢ = 10 to 100 two regions of instability
are observed, the first one is similar to the ¢ = 0.99 case with optical cell
thicknesses between 20 < t < 30 and the second forms for optical thicknesses
satisfying 50 < t < 106. Right after stability is obtained for ¢t ~ 106, the NDA
algorithm enters a region of ”fragmented” behavior, where perturbations in
t as small as 107 change an effective convergence history exhibiting p = 0.6
to a non-convergent one. The behavior of the NDA algorithm is detailed in
the inset plot in Fig. 16. This fragmented region extends from ¢t = 106 to
t = 107.

By numerical experiment it is found that this behavior can be attributed
to the NDA algorithm converging to the solution only from certain initial
guesses. Two cases with optical thicknesses of t1 = 106.1125 (case one) and
t2 = 106.1125625 (case two) are used to demonstrate this behavior and the
convergence histories are plotted in Fig. 17. The first case converges using
the presented NDA algorithm without modification even though initial oscil-
lations? are observed; note that this NDA algorithm uses the pure diffusion
solution of the problem as initial guess for the first transport sweep. How-
ever, if we use a random initial setting for the closure terms in the initial
diffusion solve, and provide the result of this as initial guess for the first
transport update, case 1 does not converge. This case is labeled as random
initial guess in Fig. 17, even though in reality the angular flux is initialized
randomly and then used to compute the closure terms and cross sections
before the first diffusion solve.

For the second case using the diffusion solution as initial guess does not
lead to convergence and instead oscillations are observed. Note that the
apparent increase in frequency is caused by the logarithmic scaling of the
x-axis. However, if instead of the pure diffusion solution a loosely converged

2The term oscillations is used due to the absence of a better description. The authors
do not necessarily imply that the curves are periodic.
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S, transport solution is used as initial guess, convergence is achieved for the
second case.

The combined results depicted in Fig. 17 demonstrate that the NDA
algorithm converges to the right answer only from certain initial guesses.
In addition, we demonstrate in Fig. 17 that convergence for case 2 can
be restored if instead of a single transport sweep per Picard iteration two
transport updates are used.

Both approaches, the S5 initial guess and allowing two transport updates
per Picard iteration, present effective remedies for achieving convergence in
cases where the original NDA algorithm fails to converge.
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Spectral Radius

Figure 7: Spectral radius of (bilinear)/(bilinear) and (bilinear)/(constant) FEM pairings
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Figure 8: Convergence history of the (bilinear)/(constant) FEM pairing with ¢ = 1,
¢ =10.9999 and pl.

38



Spectral Radius

Figure 9: Spectral radius of (bilinear)/(bilinear) and (bilinear)/(constant) FEM pairings
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Figure 10: Spectral radius of (bilinear)/(bilinear) and (bilinear)/(constant) FEM pairings
for PHI test case for varying scattering ratios (« = 1 and pl) plotted against 7.
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Figure 13: Spectral radius of (bilinear)/(bilinear) and (bilinear)/(constant) FEM pairings
for homogeneous test case (7 = 1) with a = 1 and p4.
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Figure 14: Convergence histories for (bilinear)/(constant) FEM pairing, p4, and ¢ = 0.9999
for various optical cell thicknesses ¢.
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Figure 15: Spectral radius of the (biquadratic)/(biquadratic) FEM pairing for the for
homogeneous test case (7 = 1) with @ = 1 and pl.

Stability Effectiveness p < 0.7

pl  (bilinear)/(bilinear) n.a. n.a.
(bilinear)/(constant) 5-6 2.1
p2  (bilinear)/(bilinear) 8-9 2.0
(bilinear) /(constant) ~ 2 1.1
p4  (bilinear)/(bilinear) 4-4.5 1.1
(bilinear) /(constant) ~ 1 0.58

Table 1: Spectral radius beyond which effectivenss and stability are lost for (bilin-
ear)/(bilinear) and (bilinear)/(constant) FEM pairings for homogeneous test case (7 = 1),
a =1 and ¢ = 0.9999. Stability limits are approximate because the finite number of NDA
iterations lead to a maximum observable spectral radius.
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Figure 17: Convergence histories for the case described in Fig. 16 for two optical cell
thicknesses t1 = 106.1125 and ¢2 = 106.1125625. The difference of the two optical cell
thicknesses is At = 6.25 x 10~°. While ¢1 converges without modification of the algorithm
t2 does not. However, when using 2 transport updates (TU) per Picard iteration or when
a loosely converged Sy solution is used as initial guess, convergence is achieved.
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6. Numerical Experiments - Eigenvalue Problem

In this section, numerical results are presented for the C5G7 benchmark
problem [31]. As in section 5, the Sg level symmetric quadrature is utilized.
For discretizing the Sy problem an unstructured triangular mesh depicted for
a single MOX assembly in Fig. 18 is used featuring roughly 120, 000 elements.
In contrast, the diffusion equation is discretized either on the same mesh or
on a rectangular mesh coincident with the pin cell boundaries (2,601 ele-
ments). The triangular mesh is nested within the rectangular pin-cell mesh.
Further, seven energy groups are used for the Sy problem, while the diffu-
sion system employs either the same energy group structure or a two group
structure collapsing the first three groups (fast groups) into coarse group
one and the last four groups (thermal groups with upscattering) into coarse
group two. It is important to split the groups such that no upscattering
occurs across the coarse energy group boundary. Initial tests use an incor-
rect splitting of four groups and three groups leading to slower convergence
overall and even stalling convergence. At each Picard iteration, the diffusion
eigenvalue problem is solved using MOOSE’s PJFNK solver. For circum-
venting problems with selecting correct preconditioner settings for the linear
GMRES iterations, an exact LU inversion is performed such that linear iter-
ations converge after one iteration. Sweeping through all group is performed
using a Jacobi-type iteration scheme, i.e. the downscattering source is up-
dated only after all groups are solved. This allows easy parallelization of the
algorithm. The nonlinear relative and absolute iterative tolerances are set to
107% and 107, respectively. It needs to be stressed that all presented results
are obtained for a single processor and therefore solver asynchronicity is not
an issue in the presented work. The Sy system uses linear shape functions,
while the diffusion system uses either constant shape functions (CMFD)?, or
linear shape functions (NDA). Convergence of the fission source is measured
as the absolute L, difference between subsequent Picard iterates. The fis-
sion source error is plotted versus the iteration number in Fig. 19. Table 2
summarizes the total number of Picard iterations required for convergence
depending on the solver settings.

CMFD and NDA appear to be stable for all combinations of diffusion
meshes and energy group structures. In general, reducing the complexity of

3To reiterate, the CMFD method uses an additive update and is therefore not identical
to the traditional CMFD method.
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the diffusion system reduces the effectiveness of the NDA method. When
using a fine mesh and seven energy groups for the diffusion system, the NDA
and CMFD methods are stable and effective (8 iterations for convergence to
1075 fission source difference) and virtually no advantage is gained when the
diffusion system is discretized using linear shape functions. However, when
coarsening the diffusion mesh, NDA exhibits only a moderate increase in
number of Picard iterations, while CMFD’s iteration count doubles. This re-
sult is of great importance because coarse diffusion acceleration is the target
application of the presented NDA method. Coarsening the group structure
affects both methods’ effectiveness equally as the iteration count more than
doubles revealing that reducing the complexity in energy has a larger effect
on the Picard iteration count. Finally, using a coarse mesh in conjunction
with two energy groups increases the iteration count only marginally when
compared to the coarse energy group structure only case. Again, NDA re-
quires fewer iterations than CMFD but the difference is not as pronounced
as when seven groups are used for the diffusion system.

The immediate conclusion from the numerical experiment is that NDA
with a fine group and coarse mesh diffusion system should be the algorithm
of choice, because the Picard iteration count increases only slightly while the
cost for solving the low order diffusion problem reduces significantly: 25%
increase in Picard iteration count but a reduction of elements in the diffusion
system by roughly a factor of 50. Considering the Sg angular quadrature
the diffusion system has 2,000 times fewer DOFs as the transport system?.
Under these circumstances, the low order problem could be solved using
Chebychev or Wielandt shift accelerated power iterations where the within
group equations are inverted using a direct solver. Handling even a large
number of groups should then be possible.

The two-dimensional C5G7 problem is primarily chosen to demonstrate
the ability of solving the diffusion problem on a coarser mesh and with a
coarser group structure while retaining stability. It is noted that the domi-
nance ratio of the eigenvalue problem is irrelevant to the convergence prop-
erties of NDA.

4This ratio would be doubled because of the loss of angular symmetry from 2D to 3D
geometries.

49



Figure 18: Triangular mesh for a single C5G7 MOX assembly.

CMFD NDA
Fine mesh Coarse Mesh Fine Mesh Coarse Mesh
Fine group 8 16 8 10
Coarse group 18 21 18 19

Table 2: Picard iterations required for convergence.
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Figure 19: Fission source error plotted versus iteration number for C5G7-2D. The diffusion
system’s discretization is varied using fine/coarse meshes (fm, cm) and fine/coarse energy
group structures (G=7, G=2) and various combinations thereof.
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7. Conclusions

This work presents a flexible nonlinear diffusion acceleration method that
discretizes both the Sy and diffusion equations using the discontinuous finite
element method. In contrast to CMFD methods that use only a balance
equation for acceleration of the Sy equations, the presented NDA method
discretizes a full diffusion equation using an arbitrary FEM basis. Customary
for NDA method, the diffusion problem can be solved on a coarser mesh than
the transport problem with the only restriction that the coarser mesh must
be nested within the finer mesh. A general FEM framework is laid out that
allows the definition of consistent projection and prolongation operators. The
projection operator is then utilized to define the general notion of consistency
of the Sy and diffusion scalar fluxes. In contrast to standard CMFD schemes,
the prolongation operator uses an additive update ensuring that only the
subset of the Sy FEM space is altered that is within the span of the diffusion
FEM space.

A Fourier analysis for a single quadrilateral cell with periodic boundary
conditions and (bilinear)/(bilinear) and (bilinear)/(constant) FEM bases for
the Sy and diffusion problem, respectively, is performed. For this purpose
the NDA iterations are linearized about the iterative solution. The main
conclusions from the Fourier analysis is that the (bilinear)/(bilinear) and
(constant)/(constant) FEM pairing are unconditionally stable and effective,
i.e. stable for all optical cell thicknesses, while the (bilinear)/(constant)
method becomes ineffective for optical thicknesses between five and ten, but
retains stability. This research indicates that the (bilinear)/(constant) meth-
ods become in fact unstable, but the Fourier analysis does not capture this
behavior most likely due to the linearization around the exact iterative so-
lution. The Fourier analysis confirms the common wisdom originally stated
for DSA methods that acceleration methods perform better as the similarity
between the Sy and diffusion discretizations increases.

Numerical experiments based on the one-group, fixed source problem are
performed for homogeneous and strongly heterogeneous problems (periodic
horizontal interface problem). Most of the presented results focus on the
comparison of the (bilinear)/(bilinear) and the (bilinear)/(constant) FEM
pairing. The main conclusion is that the (bilinear)/(bilinear) method is un-
conditionally stable and effective if identical meshes are used for the Sy
and diffusion problems and the problem is only mildly heterogeneous. If the
probem’s heterogeneity becomes too strong, effectivenss is in general lost, but
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stability is retained. The (bilinear)/(constant) pairing loses both effective-
ness and stability for optically thick cells even if the Sy and diffusion mesh
are identical. In case of coarse mesh acceleration, the (bilinear)/(bilinear)
method loses stability and effectiveness, but both the regions of stability and
effectiveness are extended by a factor of two when compared to the (bilin-
ear)/(constant) FEM pairing.

Higher order results are obtained using biquadratic and second order
monomial shape functions for the discretization of the Sy and diffusion sys-
tem. For biquadratic shape functions, it is found that the NDA algorithm
is stable and effective regardless of the optical cell thickness. However, for
second order monomial shape functions, only problems with scattering ratios
¢ < 0.9 are unconditionally stable and effective, while for a scattering ratio
of ¢ = 0.99 an interval between ¢t = 20 — 30 mfp cell thickness exhibits insta-
bilities. For the highest tested scattering ratio ¢ = 0.9999 the convergence
properties exhibit a curious behavior. For t < 100 two regions of instabil-
ity are observed, t = 20 — 30 and t = 50 — 106, and for 106 < t < 107
convergence to the solution strongly depends on the initial guess. Finally,
regardless of the scattering ratio the spectral radius approaches zero in the
thick cell limit.

Finally, the NDA method is used for solving the C5G7 multigroup, eigen-
value problem, a representative LWR geometry, using fine and coarse meshes
and energy group structures for the discretization of the diffusion system.
The results indicate that the presented method is stable for all combina-
tions of diffusion shape functions, meshes, and energy group structures. In
addition, no underrelaxation of the Picard iteration strategy is required for
convergence. A reduction of effectiveness ranging from moderate (+25%
Picard iteration count) to significant (+165% Picard iteration count) is ob-
served when the diffusion system’s fidelity is reduced. Using identical FEM
bases for the Sy and diffusion equation, the increase in iteration count is
moderate when coarsening the diffusion mesh, but for CMFD the iteration
count doubles.
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Appendix A. Linearization of Closure Relationships for Fourier
Analysis

For the linearization of the closure relationships, it is most convenient
to assume that the angular space is continuous and quadrature rules are

replaced by the corresponding integrals, e.g. Z Wy, — || ir dQp. A recurring
theme within this section is linearization of fractlons

x x>+ ow x> x> z%° Y™
Sr= (2402 R 2 b i - by (A)
y~ y>®+dy y> Yy y= (y>)?

Appendiz A.1. Linearization of the Volume Closure
The volume closure term Cy [U5° + € ] (¢, > + €/ 7/2) is given by:

CV [\I/OO +€l } <¢* ¢00 +€l+1/2)
(W i m VIL[E + 6] + QUUU + ), ] 2

00 +1/2
I [0 + EY] (67 +e )>'
(A.2)
Applying the definition of scalar flux and currents, and regrouping Eq. A.2
leads to:
v [0 + €] (67,67 + )
- VI [@] + 11 [f‘”] + = VII[E'] +1I [?l]

[ [@>] + I [E] (6 +¢77)

= v¢*a -

(A.3)

In Eq. A.3 we note that 5 VH [D>]+11 [JO"} = 0 because the exact solution

is constant in space and ISOtl"OplC in angle. Using Eq. A.1 and the definition
of consistent Sy and diffusion scalar fluxes, Eq. 15, we obtain:

Cy [T + €] (6%, 0™ + el+1/2)

(w ,S—Etvn[ & +H[?l]>. (A.4)

Q
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Appendiz A.2. Linearization of the SYW Face Closure
The SYW closure is given by:

Crsyw [0,] (6,677) = ([6'], [rsvw (2,)6"7])
[ atla.-ofulw,]

fle Q>0

N l o
o ()= [, dOTI[WL, ]
= [ dQi, - VII (Wl ]

3%

1

(A.5)
First, the SYW face closure is evaluated at the exact solution, U>°, and ¢*:

Crsyw [V ] (07,0%) = ([¢°], [Rsyw(¥)o™])

e a9 1
. o fie-1>0
Reyw(Uo?) = >¢Oo K= h
14

Crsyw [U] (6, 67) = (m [[(}l - ) qsoou) | (A.6)

As Kk can be pulled out of the difference operator and using ¢> = const —

[¢>°] = 0, it follows:

Crsyw [¥] (97, 0%) = 0. (A.7)
Now, we linearize Eq. A.5 around the exact solution:
CF,SYW [\I/zj + Ein} <¢*7¢oo + €l+1/2> _ ([[(b*]]7 [[/%SYW<‘IJ$: + Elm) (QbE 4 el+1/2)]]) ’
o out,l
S I [Yeutd]
2 o l — 4
L s 7e - VII[E']
2 ¢~ +11[FY
— K. (A.8)
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Applying Eq. A.1 leads to:
OF,SYW [\I]?:L) + 6l+1/2] (¢*,¢OO + el+1/2)

¢oo €l+1/2 1

~ ([[¢*]],[[7+ ) +H[YO“”]—;IH[EIH)

n ([m, [gac e VI [Elu)
— (L) — 5 (16 [67D)

(A.9)

Noting again that [¢>] = 0 yields the final result:

/
Crsyw [V + €,] (0%,6% +71/7%) ~ <[[¢*]], [[el+41 Sy in [El]]])

£ <[[¢*]], [[G%ﬁe VI [Eﬂ]])

~ k(18] ). (A.10)

Appendix A.3. Linearization of the pNDA Face Closure
The pNDA closure is given by:

Cr[9,] (67,61%) = ('] Fonpa(¥5,)6" 7))

+ ﬁﬁeﬂ%ﬁ' f47r dQH [\Ij%m] o éllD f47r dﬁﬁe - VI [\Il’lm]]]

Fonpa(Wh,) =

(A.11)
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First, the the pNDA face closure is evaluated using the exact solution W°,

and ¢

Cr [W1(67,0%)

Fpnpa(¥oy)

= ([¢°], [Rpnpa(¥7)90™])

o],
J ﬁe-ﬁln[\pgﬂ — LT [oc) 3

e Q>0

+ it [ 3511 [@%) — L Dii, - VII [0%]]

I (3]

Te -

IT [0 — 111 [U22] - firie [ 2 £IT []]

[T[®e]

(A.12)

Simplifying Eq. A.12 using the properties of &> and ¢ leads to:

Cr [\Piif] (¢*, ¢OO) =

> 1

N

61151 - e M + Ly [so™I]

=0

— (1. G _H> @) 0.

=0

k=]

(A.13)

Evaluation of the pNDA closure at the iterates U! and ¢!*1/2 leads to:

CrpNDA [\Ilfrf + eﬁn} (¢*, o™ + el+1/2) =

[ a9
0>0

—
Ne

o+ O TU[W5s + €l,] = L, 1T [w32 + el ]}

T [Lk [, dOIL[U + €] — 1D [, dGa VIL[e,]]

K %_{_H[Yout,l}

[, AL [W52 + €, ]

— o} - I [E}
+ it [Lk(¢ + 1 [E']) — LDid, VI [E']]

5=+ (B

o8

(¢<>0 4 6l+1/2)

(¢OO + €l+1/2)

(A.14



Since the exact solution is constant in space, it follows that {¢o>} = ¢>.
Therefore, Eq. A.13 becomes:

Crpnpa [V + €] (97, ¢ + e T1?) =

' k [youed] — LI [B} + it [67] |
Af |3k [EY — 1DA, VI [E! o L 12
B | L 1 YL A
T |:H [Yout7l] _ le{{H [El]} :|
ﬁﬁe %’%H El - %LDﬁeVH El 00 I+1/2
= [¢°], o ¢oo[+]H[Ez] Zll (6% + 1)

Comparing Eq. A.15 with Eq. A.1, we recognize that 2> = 0 and therefore
the linearization of Eq. A.15 simply is:

CF,NDA [\I]z;) + E,lm:l (QS*,QSOO + €l+1/2)

([W]L [T [yeud] — i{{n (B} + ﬁﬁe[[%/-cﬂ [E'] - iDﬁeVH [E’NH])

Q

= ([[¢>*]], [ [yout'] — kI [E'] + %DﬁeVH [E’]]]) : (A.16)

Appendix B. Fourier Analysis of pNDA-AD method for Constant-
Constant Approximation in Slab Geometry

Appendiz B.1. The Transport System
The transport system is given by:

ot/

Os
Hn—g—+ o W2 () = =

5 A (B.1)

Applying the step-method discretization leads to the following set of equa-
tions:

Hn (\IJHW 2 ) I gtz _ Egbl,

o, Az \ mitl/2 nyi—1/2 ni = 9%
. +1/2 1+1/2 +1/2 +1/2
if pn, >0 an,i—(l/Q =V, / ) \Iln,i_/l/Q = \Ijn,i—/l
. 1+1/2 +1/2 +1/2 1+1/2
if p, <00 WYY =R R = w R (B.2)
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where Az is the mesh spacing, ¢ is the scattering ratio, [ is the iteration
index, and 7 is the spatial element index. Eliminating edge quantities leads
to:

L Y ortaet Teit) R Sl
UtA.’L' ’ 2
. |,un| 1+1/2 I+1/2 +1/2 € 4
fin <0 (\If — v ) gz _ Sy B.3
1T [ O'tA n,i+1 + n,% 2¢Z ( )

The exact solution (V7% ¢5°) satisfies the equation above, so substitution
and subtraction leads to:

> 00 Lol (daaie gy g C

o Ax ' '
. |ﬂn’ I+1/2 I+1/2 +1/2 € g
fn<0:—< 12 _ et ) Cel, B.4
i p O'tAfL' En,z en,z-‘rl +6n7, 261 ( )

Since the problem is periodic, the values of € at the grid points are given by:

l+'1/2 _ €l+'1/2
i = e exp(—jreAn)
it = G exp(jAal), (B.5)

where j = v/—1 and A is the wave number. Finally, we can solve for elH/ 2

£ i if pi, > 0;
iz 21+J;‘AL<1—Z«p<—gmAm>> (B.6)

: if p,, < 0.

Appendiz B.2. Diffusion System - AD
The diffusion system is given by:

Jl+1/2 Jl+1/2 Jl+1/2 Jl+1/2
I+1 =i+l 41 it 1o 141 t—=i—1 4 4+1 1=d 041 |
Ut(l—C)A$¢i +<(I)2+1/2 ¢z (I)iii/Q ¢z+1> (q)lJrl/Z (bz (I)l+1/2¢ ) =
(B.7)

where J;_,;is the partial current from element i to ¢/. Evaluating Eq. B.7
using the exact solution and subtracting it from the same equation evaluated

7 i—1
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at the current iterative solution gives:

Yl+1/2 oo g0
Ut(l _ C)Ameé“ + i—i+1 i—i+1 (€;+1 +¢;>o) il ¢m

I+1/2
B Y+1—>7,+ z+1—>z( [+1 +¢ ) +1—>2¢
ZII}/Q N ¢l+1/2 z+1 i+1 ?_?_1 i+1

(€é+1 + (b;)o) . Jz—)z 1¢oo

1+1/2
}/z—n/ + z—>z 1
¢OO

E;H/z g

YR b
R < li1_/>2+¢l 1172( G+ 0) = e | =0 (BS)

i—1

Noting that all J*° = 0 leads to:

1+1/2 yit1/2
or(1 — o) Awel™ + —=EL— (el 4 g s (e + o)
Ef+1/2+¢;>°( ) fﬁ/Q“‘ﬁﬁlH/Q + +
Yl+1/2 I+1/2
i—i—1 +1 o) i—1—1 l+1
el (A (611 + &%) =
EZ{+1/2+¢?O( ) Efﬂﬂ ¢l 1/2

(B.9)
Linearization of Eq. B.9 yields:
oy(1 — ¢)Aze! + Y2 ye1/2 2 Yl+1/2 —0 (B.10)

—i+1 1+1—1 i—i—1 1—1

Using the definition of the partial currents we replace the Y'*+1/2 by €+1/2;

1+1/2 1+1/2
o (1 — )Aa:el+1—|— Z wn|,un|€+/ Z Wy, |Mn|€n-’,_i—4{1

nipn >0 Ny <0
+ 3wl 677 = 3T walpal =0 (B.11)
Ny <0 n:fn >0

Finally, using periodicity of the error the following expression is obtained:

oy(1 — ¢)Azelt™ + Z W, | fin 6;421/2 — Z W, | fhn eif’il/Q exp(jAc;Aw)

n:fn >0 Ny <0

+ Z 1vun|,un|el+1/2 Z Wy, |un|e+1/26xp(—j)\atAx) =0

n: iy <0 nipn >0

(B.12)
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Substituting Eq. B.6 into Eq. B.12 and solving for €™ leads to

1 c oAz 1
I+1 l t
el =l | Y w5 vy :
Azxoy(c—1) Wi n] 2 | pn ILA\ + 1 — exp(—jAoAx)

Z | C O'tA.’L' eXp(j)\O'tAl'>
- Wy, |Mn| = .
Hnl g ] 222 41 — exp(jAoAx)

nipn <0 [fn ]
coAx 1
+ W, |,Un| a N .
WZ;O 2 il G 41 — exp(jAo;Ax)
B Z . EatAx exp(—jAoAx) (B.13)
Wi 2 | "‘LAI’“" + 1 — exp(—jAo;Ax)
Simplifying this expression finally gives:
gl Z v, 1 —exp(—jAaAx)
‘ 2c-1) | 4=, jﬁf +1 — exp(—jAo;Az)
N Z 1 — exp(jAoAx) (B.14)
o, "fAf’” + 1 —exp(jroiAx)
For small optical thicknesses exp(+jio;Ax) ~ 1 £+ jAo,Ax and thus:
2
b ol C A B.15
N >0
for oAz — 0 goes
to infinity. Further the term
/\2
1N =T

is strictly monotonically increasing and asymptotes to unity for A — oco. For
A — oo we therefore have g(\) — 1. Hence, the spectral radius for optically
small cells is given by:

C
P = 1_¢ Z W |fhn] - (B.16)

nipin >0

62



ACCEPTED MANUSCRIPT

Note that

> wn!un|~/duu—1

n: /Jrn>0

and therefore the spectral radius for small optical thicknesses depends only
weakly on the quadrature rule and we can write:

1 ¢

PR

) B.17
21 —c¢ ( )

The pNDA-AD method for (constant)/(constant) FEM bases evaluated at
the limit of optically small elements becomes unstable for ¢ > 2/3.
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