
Journal of Computational Physics 358 (2018) 88–102
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A nearest-neighbour discretisation of the regularized stokeslet 

boundary integral equation

David J. Smith

School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 April 2017
Received in revised form 3 December 2017
Accepted 5 December 2017
Available online 28 December 2017

Keywords:
Stokes flow
Regularized stokeslet
Boundary integral
Meshfree

The method of regularized stokeslets is extensively used in biological fluid dynamics 
due to its conceptual simplicity and meshlessness. This simplicity carries a degree of 
cost in computational expense and accuracy because the number of degrees of freedom 
used to discretise the unknown surface traction is generally significantly higher than 
that required by boundary element methods. We describe a meshless method based 
on nearest-neighbour interpolation that significantly reduces the number of degrees of 
freedom required to discretise the unknown traction, increasing the range of problems that 
can be practically solved, without excessively complicating the task of the modeller. The 
nearest-neighbour technique is tested against the classical problem of rigid body motion 
of a sphere immersed in very viscous fluid, then applied to the more complex biophysical 
problem of calculating the rotational diffusion timescales of a macromolecular structure 
modelled by three closely-spaced non-slender rods. A heuristic for finding the required 
density of force and quadrature points by numerical refinement is suggested. Matlab/GNU 
Octave code for the key steps of the algorithm is provided, which predominantly use basic 
linear algebra operations, with a full implementation being provided on github. Compared 
with the standard Nyström discretisation, more accurate and substantially more efficient 
results can be obtained by de-refining the force discretisation relative to the quadrature 
discretisation: a cost reduction of over 10 times with improved accuracy is observed. This 
improvement comes at minimal additional technical complexity. Future avenues to develop 
the algorithm are then discussed.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When attempting to formulate and solve mathematical models of microscopic biological flow systems, for example in-
volving macromolecular structures, swimming cells and cilia, a significant challenge to overcome is that the flow domain 
is typically bounded by curved, moving surfaces. Often it is of interest to model line-like objects such as cilia and flagella, 
and point-like bodies such as suspensions of many bacteria, in addition to genuinely 2D surfaces. The Stokes flow equations 
are linear, and in some celebrated cases it has been found possible to make significant analytical progress, for example by 
exploiting small amplitude expansions in the boundary movement [1] or slenderness [2–4], for certain idealised problems 
(for a more detailed review of the field, see Lauga & Powers [5]). However the majority of problems of practical interest, 
typically involving multiple cells, non-planar domains and large amplitude motions, require computational modelling, and 
there has been intensive activity in this area in the last decade.
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The linearity of the flow equations enables the formulation of methods based on the boundary integral equation for 
Stokes flow; these methods remove the need to discretise and solve directly in the flow volume, as would be necessary for 
the finite element method. This reduction in dimensionality both removes the need to mesh and re-mesh the evolving flow 
domain, and vastly reduces the size of the linear algebra problem resulting from discretisation. In certain respects these 
methods were anticipated by the computational slender body theory work of Higdon [6] and [7]; relatively early examples 
of the ‘fully-fledged’ boundary element method for Stokes flow was developed by Phan-Thien and colleagues [8,9]. The 
achievements of the latter group with late 1980s/early 1990s computational hardware set a benchmark for work in the cur-
rent era of desktop machines with multi-gigabyte RAM. It should of course be noted that there have been major algorithmic 
developments in numerical methods for Stokes flow in the intervening period, including the completed double-layer bound-
ary integral equation [10,11], hybrid boundary integral-multipole methods [12], spectral discretisation combined with the 
fast multipole method [13,14], quadrature by expansion [11], and slender body theory combined with these techniques [15]. 
These approaches are generally employed by numerical experts to solve problems at the limits of computational feasibility, 
involving very large numbers of interacting bodies.

The classical boundary element method for Stokes flow, along with the more advanced methods described above, are 
both accurate and efficient. However, they present two technical challenges in their implementation, particularly when con-
sidered from the point of view of users who are not computational specialists. The first challenge is the need to generate 
a surface mesh, i.e. a geometric discretisation of all surfaces in the problem consisting of oriented smooth, and smoothly-
connected, patches which interpolate several surface points.1 While much easier than the volumetric meshing that would 
be required for the finite element method, meshes of even moderately complicated biomolecular or cellular structures may 
require significant time and ingenuity to create, and may not be suited to automated generation – as might be needed to 
study biological heterogeneity. Furthermore, some objects will appear to a very good approximation as lines or points – 
detailed surface meshing of these bodies may involve a level of computational refinement that is unwarranted. The second 
challenge – which has arguably been addressed through the availability of library code such as BEMLIB [16] – is the singu-
larity of the stokeslet velocity and stress kernels, and requirement for semi-analytical quadrature methods. The latter issue 
does however present an additional layer of complexity for those who are not numerical specialists.

The method of regularized stokeslets, introduced by Cortez and colleagues [17–20], has proved to be an effective and 
accessible method for simulating and analysing microscale biological flows. This method deals effectively with both of 
the above difficulties by removing the need for a true mesh, requiring only a set of discrete points approximating the 
solid objects in the flow, and regularizing the integral kernel so that specialised quadrature is not required. The core idea 
is the derivation of a family of regularized versions of the singular stokeslet/Oseen tensor kernel that nevertheless sat-
isfy exact conservation of mass. Whereas the singular stokeslet corresponds to the Stokes flow produced by a Dirac delta 
force-per-unit-volume distribution, a regularized stokeslet corresponds to the Stokes flow produced by a ‘blob’, i.e. a finite 
force-per-unit-volume distribution which approximates a Dirac delta function. Cortez and colleagues have derived various 
versions of the regularized stokeslet corresponding to both 2D [17] and 3D [18] domains, to various forms of blob distribu-
tion [17], with image systems to represent a plane boundary [19,21], and for periodic problems [20]. We will not attempt 
to give a comprehensive survey of applications of the method of regularized stokeslets; it suffices to note that a Google 
Scholar search on 28th April 2017 with the term “regularized stokeslets” produced 250 results since 2012.

The standard numerical implementation of the method of regularized stokeslets is to employ a Nyström discretisation of 
the Fredholm integral equation, which replaces the integral directly with a quadrature rule. This method is very simple to 
implement, and has been used in the great majority of published work. This simplicity does however come at a computa-
tional cost, arising from the fact that the quantity of interest in a boundary integral equation method, the surface traction 
distribution, varies much more slowly than the near-singular kernel. Therefore very many degrees of freedom, corresponding 
to the discretisation of the traction, are required in order for the quadrature to be accurate. Furthermore, there is a coupling 
between the discretisation length scale and the regularization parameter that must be satisfied in order for results to be 
considered converged. As a consequence, the RAM requirements alone for relatively simple geometries may be very high, as 
evident in a number of recent studies on helical flagella for example.

The issue of the computational cost of the method of regularized stokeslets was discussed in an earlier paper [22], in 
which we suggested employing a boundary element discretisation of the regularized stokeslet boundary integral equation. 
This approach is undoubtedly computationally efficient, and formed the basis for subsequent detailed modelling of the left 
right organising structures of mouse [23] and zebrafish [24,25], however it becomes necessary to generate a mesh in the 
same way as the classical boundary element method.

In this paper we will describe an alternative ‘nearest-neighbour’ discretisation of the method of regularized stokeslets 
which retains the meshless simplicity of the standard approach, but has greatly reduced computational cost. Alongside the 
mathematical description, an implementation in Matlab®/GNU Octave will be given, and applied to a simple test problem of 
the drag and moment on a sphere or prolate spheroid undergoing rigid body motion, followed by a more complex problem 
of calculating the rotational diffusion timescale of a biological macromolecule.

1 In this paper the term mesh will be reserved for an object (P , E) where P = {x[1], . . . , x[N]} ∈ R
3 is an ordered set of points/nodes, and E is a table 

defining the elements of the mesh, e.g. for a mesh of flat triangles, the elements take the form (x[E(1, e)], x[E(2, e)], x[E(3, e)]). Where we refer to a set 
P without the associated table defining the elements, the terms discretisation or points will be used instead. The aim of this study is to achieve improved 
accuracy and efficiency without needing to construct E .
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2. Stokeslets and boundary integral methods

The very low Reynolds numbers associated with microscopic flows on the length scales of macromolecules and cells 
motivates the study of the Stokes flow equations for viscous-dominated flow. The dimensionless form of these equations is,

−∇p + ∇2u = 0, ∇ · u = 0, (1)

augmented with the no-slip, no-penetration boundary condition u(X) = Ẋ for boundary points X . The basis for boundary 
integral and singularity methods is to exploit the linearity of eq. (1) to construct solutions satisfying the required boundary 
conditions from sums and/or integrals of fundamental solutions.

The classical singular fundamental solution is the stokeslet or Oseen tensor, given by the second rank tensor S jk and first 
rank tensor Pk for which u = (S1k, S2k, S3k) and p = Pk are the solutions of the Stokes flow equations with a Dirac delta 
distribution force-per-unit-volume located at y:

−∇p + ∇2u + 8πekδ(x − y) = 0, ∇ · u = 0. (2)

The form of the stokeslet in 3D is,

S jk(x, y) = δ jk

|x − y| + (x j − y j)(xk − yk)

|x − y|3 , (3)

Pk(x, y) = 2
xk − yk

|x − y|3 . (4)

The singularity method for Stokes flow involves seeking an approximate solution to equation (1) by locating Stokeslets, 
and sometimes higher order stokes-multipoles, outside of the flow domain. For example, singularities may be located inside 
cells, or along the centrelines of cilia and flagella as in slender body theory; the simplest example is perhaps the solution to 
Stokes flow driven by a translating sphere, which can be expressed as the sum of a stokeslet and source-dipole (the latter 
being a special case of the stokes-quadrupole) at the centre of the sphere. Review and references are given for example 
Smith et al. [22].

Conversely, the boundary integral method for Stokes flow involves formulating the exact integral equation,

u j(y) = − 1

8π

∫∫
∂ D

Sij(x, y) f i(x)dS(x) + 1

8π

∫∫
∂ D

ui(x)Tijk(x, y)nk(x)dS(x), (5)

where Tijk is the stress tensor associated with the Stokes flow u = (S1k, S2k, S3k), p = Pk , given by

Tijk(x, y) = −6(xi − yi)(x j − y j)(xk − yk)

|x − y|5 . (6)

The summation convention for repeated indices is used throughout. The boundary integral equation is solved numerically by 
taking the limit of equation (5) as y approaches the bounding surfaces of the domain from within the fluid, then performing 
discretisation of the surface geometry ∂ D and traction f . If the boundary of the domain is stationary and immersed objects 
in the domain are rigid bodies, the ‘double layer’ term arising from the integral of the stress is identically zero and so 
the flow is given exactly by a surface distribution of stokeslets only; under the weaker condition that 

∫∫
∂ D u · n dS = 0 it 

can also be shown that the double layer integral may be eliminated by taking a modified Stokeslet density, which is no 
longer precisely the surface traction. In either case, the flow is given exactly by boundary integrals of ‘single layer’ stokeslet 
velocity tensors only [26].

A detailed exposition of the boundary element method for Stokes flow and its numerical implementation is given by 
Pozrikidis [26,16]. The boundary integral and singularity methods may be hybridised to formulate approximate but accurate 
and efficient simulation of cell movement [27].

The integral equation problem formed from equation (5) in the limit y → Y ∈ ∂ D possesses singular integrals which 
require specialised evaluation; moreover line and point singularity distributions, while they may not lie strictly in the flow 
domain, may nevertheless complicate the evaluation of flow fields for purposes such as particle tracking. An additional 
complication for boundary element methods is the requirement to build a true surface mesh. It should be emphasised 
that these issues are technical complications rather than inherent problems, however methods which do not possess these 
complications are appealing, particularly for biological flow, as evidenced by the rapid adoption and use of the method of 
regularized stokeslets, which we will briefly review in the next section.

3. The method of regularized stokeslets and its numerical implementation

Cortez [17] formulated the regularized stokeslet as the exact solution to the incompressible Stokes flow equations forced 
by a spatially-smoothed force per unit volume, φε(x − y),

−∇p + ∇2u + 8πekφε(x − y) = 0, ∇ · u = 0. (7)



D.J. Smith / Journal of Computational Physics 358 (2018) 88–102 91
The ‘blob’ φε denotes a family of functions parameterised by ε satisfying 
∫

. . .
∫

Rn φεdV = 1, and tending to a Dirac delta 
distribution in the limit ε → 0. The derivation of specific forms of the regularized stokeslet were discussed by Cortez and 
colleagues [17,18]; we will suffice by noting that a frequently-used form for 3D flow is based on the blob function,

φε(ξ) = 15ε4

8π(|ξ |2 + ε2)7/2
, (8)

which leads to the regularized Stokeslet pressure and velocity tensors,

P ε
j (x, y) = (x j − y j)

2|x − y|2 + 5ε2

(|x − y|2 + ε2)5/2
, (9)

Sε
i j(x, y) = δi j

|x − y|2 + ε2

(|x − y|2 + ε2)3/2
+ (xi − yi)(x j − y j)

(|x − y|2 + ε2)3/2
, (10)

T ε
i jk(x, y) = −6(xi − yi)(x j − y j)(xk − yk)

(|x − y|2 + ε2)5/2
− 3ε2[(xi − yi)δ jk + (x j − y j)δik + (xk − yk)δi j]

(|x − y|2 + ε2)5/2
. (11)

The regularized counterpart to the classical boundary integral equation (5) in 3D is,

u j(y) ≈
∫∫∫

R3

u j(x)φε(x − y)dV (x)

= − 1

8π

∫∫
∂ D

Sε
i j(x, y) f i(x)dS(x) − 1

8π

∫∫
∂ D

ui(x)T ε
i jk(x, y)nk(x)dS(x). (12)

Unlike the classical boundary integral equation, the regularized version (12) is approximate even before the numerical 
discretisation is carried out; for the blob function (8) the error is O (ε2) for y greater than distance 

√
5ε/2 from the 

boundary, and O (ε) otherwise [18]. The double layer integral is typically eliminated in practical implementations of the 
regularized stokeslet. This elimination may be formally justified for boundaries undergoing rigid body motion, for example 
models of spirochetes as rotating helices [18] and cilia undergoing purely rotational motion [24], however for bodies which 
undergo significant flexible motion such as respiratory cilia and sperm flagella, this elimination is an approximation which 
must be justified by either post hoc numerical checks [22] or slender body theory analysis [28]. The resulting approximate 
single-layer boundary integral equation is then,

u j(y) ≈ − 1

8π

∫∫
∂ D

Sε
i j(x, y) f i(x)dS(x). (13)

In what follows we will treat the approximation as exact, however it should be borne in mind that there is error associated 
with both the continuous integral equation (13) in addition to the error associated with subsequent discretisation. In what 
follows we will find it convenient to use the identity Sε

i j(x, y) = Sε
ji(y, x); relabelling, and treating the approximation as 

exact we have,

ui(x) = − 1

8π

∫∫
∂ D

Sε
i j(x, y) f j(y)dS(y). (14)

If the body motion is prescribed, the no-slip condition u(x) = ẋ can be applied on the surface ∂ D to convert equation (14)
to a Fredholm first kind integral equation for the unknown force distribution f (y) – a resistance problem.

ẋi = − 1

8π

∫∫
∂ D

Sε
i j(x, y) f j(y)dS(x) all x ∈ ∂ D. (15)

If the body is rigid, or its surface velocity is known up to a rigid body motion, and the total force and moment F , M are 
known, the result is the mobility problem,

ẋi + Ui + εi jk� j xk = − 1

8π

∫∫
∂ D

Sε
i j(x, y) f j(y)dS(y) all x ∈ ∂ D,

Fi =
∫∫
∂ D

fi(y)dS(y),

Mi =
∫∫
∂ D

εi jk y j fk(y)dS(y), (16)
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where the rigid body velocity U and angular velocity �, and the force distribution f (y), are unknown; εi jk is the Levi-Civita 
alterating tensor. The mobility problem arises from situations such as a sedimenting body (for which the force is given by 
gravity or centrifugal force and the moment is zero), or a swimming cell in the inertialess regime of Stokes flow (for which 
the force and moment are both zero).

To solve the problems (15) and (16), the method of numerical discretisation described by Cortez et al. [18] and used 
in the majority of studies to date takes advantage of the regularity of the Sε

i j kernel and directly approximates the surface 
integrals with a quadrature rule followed by collocation on the quadrature points. The result is a system such as,

ẋi[m] = 1

8π

N∑
n=1

Sε
i j(x[m], x[n])g j[n]A[n], (17)

for the resistance problem, where (x[n], A[n]) are quadrature nodes and weights, and g j[n] = − f j(x[n]). For the mobility 
problem, we have,

ẋi[m] = 1

8π

N∑
n=1

Sε
i j(x[m], x[n])g j[n]A[n], for m = 1, . . . , N,

Fi =
N∑

n=1

gi[n]A[n],

Mi =
N∑

n=1

εi jkx j[n]gk[n]A[n]. (18)

The above approach has the principal advantage of computational simplicity, and the principal disadvantage that the degrees 
of freedom of the resulting linear system are tied to the quadrature required to approximate the rapidly-varying kernel 
Sε

i j(x, X) for |x − X | = O (ε) – and associated high computational expense for a given level of accuracy.
Boundary element methods take an alternative approach to numerical discretisation – to discretise the unknown density 

f (y) with basis functions �n(y), i.e. f (y) = − 
∑N

n=1 g[n]�n(y). The integral operator can then be written as,

−
∫∫
∂ D

Sε
i j(x, y) f j(y)dS(y) =

N∑
n=1

g j[n]
∫∫
∂ D

Sε
i j(x, y)�n(y)dS(y). (19)

In the simplest ‘constant force’ implementation, the basis functions {�1, . . . , �N } are indicator functions on the elements 
of the mesh {E1, . . . , E N}. The stokeslet integrals are then decoupled from the force discretisation, and can be subjected 
to suitably fine spatial discretisation as appropriate, without unnecessarily increasing the number of degrees of freedom 
in the system – a major saving in both computational storage and time. This approach was suggested in the context of 
regularized stokeslet methods by Smith [22], and subsequently applied to problems in developmental biology [24,25] and 
sperm cell motion [29]. The practical drawback of this method is the need to generate a true surface mesh, which for 
complex geometries may be time-consuming.

To retain the advantages of both approaches – ease of implementation and computational efficiency – we suggest an 
alternative approach based on nearest-neighbour interpolation.

4. Nearest-neighbour discretisation of the regularized stokeslet boundary integral

Suppose that we have two surface discretisations of ∂ D , {x[1], . . . , x[N]} and {X[1], . . . , X[Q ]}, which we will refer to 
as the force discretisation and quadrature discretisation respectively. These discretisations are not true meshes because they 
are not equipped with a mapping from nodes to elements, and we will not need to evaluate integrals in local coordinate 
systems. In general, N � Q because the kernel Sε

i j(x, y) varies much more rapidly than the surface traction f (y).
Provided that they do not vary rapidly relative to the force points, the force f (y) and surface metric dS(y) may then be 

discretised using nearest-neighbour interpolation. Denote by N : {1, . . . , Q } → {1, . . . , N} the nearest-neighbour discretisa-
tion such that,

N (q) := argmin
n=1,...,N

|x[n] − X[q]|, (20)

so that f j(X[q])dS(X[q]) ≈ f j(x[N (q)])dS(x[N (q)]) =: −g j[N (q)]A[N (q)]. The nearest-neighbour operator N can be ex-
pressed as a Q × N matrix,



D.J. Smith / Journal of Computational Physics 358 (2018) 88–102 93
ν[q, n̂] =
⎧⎨
⎩

1 if n̂ = argmin
n=1,...,N

|x[n] − X[q]|,
0 otherwise,

(21)

so that gi[N (q)]A[N (q)] = ∑N
n=1 ν[q, n]gi[n]A[n].

With the above discretisation, the regularized stokeslet boundary integral may be approximated as,

−
∫∫
∂ D

Sε
i j(x, y) f j(y)dS(y) ≈ −

Q∑
q=1

Sε
i j(x, X[q]) f j(x[N (q)])A[N (q)],

=
Q∑

q=1

Sε
i j(x, X[q])

N∑
n=1

ν[q,n]g j[n]A[n]. (22)

Applying the discretisation (22) to the boundary integral equation (14), followed by performing collocation on the force 
discretisation u(x[m]) = ẋ[m], leads to the discretised resistance problem,

ẋi[m] = 1

8π

N∑
n=1

g j[n]A[n]
Q∑

q=1

Sε
i j(x[m], X[q])ν[q,n], (23)

and mobility problem,

ẋi[m] = 1

8π

N∑
n=1

g j[n]A[n]
Q∑

q=1

Sε
i j(x[m], X[q])ν[q,n], for m = 1, . . . , N,

Fi =
N∑

n=1

gi[n]A[n]
Q∑

q=1

ν[q,n],

Mi =
N∑

n=1

gk[n]A[n]
Q∑

q=1

εi jk X j[q]ν[q,n]. (24)

The discrete resistance problem (22) can be written as a 3N × 3N linear system Af = b, where the unknown 3N-vector f
has components,

f[N( j − 1) + n] = g j[n]A[n], (25)

the 3N × 3N left hand side matrix A has components,

A[N(i − 1) + m, N( j − 1) + n] = 1

8π

Q∑
q=1

Sε
i j(x[m], X[q])

N∑
n=1

ν[q,n], (26)

and the right hand side velocity is given by,

b[N(i − 1) + m] = ẋi(x[m]). (27)

The discrete mobility problem can be written similarly as a 3(N + 2) × 3(N + 2) linear system, where A and b are 
augmented by six rows discretising the force and moment constraints, and f has six additional scalar unknowns representing 
the values of U and �.

The discrete problems (23) and (24) may be implemented in Matlab® or GNU Octave by assembling matrices representing 
Sε

i j(x[m], X[q]) and ν[q, n]. Details are provided in Appendix A.

5. Numerical results and analysis

The core numerical codes for implementation of the method given by equations (25)–(27) are given in Appen-
dices A.1–A.3. The full code (approximately 1000 lines) used to produce the results in this report is available from github 
at https://github.com/djsmithbham/NearestStokeslets. The quadrature weights are absorbed into the gi [n] and so are never 
calculated explicitly.

https://github.com/djsmithbham/NearestStokeslets
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For numerical testing we will denote the maximum discretisation spacing (i.e. maximum distance of a point to its 
nearest-neighbour) by h f for the force points and hq for the quadrature points:

h f = max
m=1,...,N

min
n=1,...,N

n �=m

|x[m] − x[n]|

hq = max
p=1,...,Q

min
q=1,...,Q

q �=p

|x[p] − x[q]|. (28)

This parameter may be computed for a given discretisation as described in Appendix A.4.

5.1. Rigid body motion of a sphere

The simplest test case is perhaps Stokes’ law for a translating or rotating sphere in an infinite fluid. Taking a sphere of 
radius 1 translating with velocity U = (1, 0, 0), the exact solution to the resistance problem yields total force F = (6π, 0, 0); 
rotation with velocity � = (1, 0, 0) yields total moment M = (8π, 0, 0). Discretising the sphere by projecting onto the six 
faces of a cube yields the discretisations shown in Fig. 1 (a – force/collocation points, b – quadrature points).

Numerical experiments assessing the L2 relative error in total force and moment compared with analytic solutions, for 
varying regularization parameter ε , force points h f and quadrature points hq , are shown in Tables 2, 6 and 7 and example 
computational timings are given in Appendix C, Table 9. The entries on the main diagonal (h f = hq) correspond to the 
Nyström discretisation; ‘non-trivial’ nearest-neighbour results are above the main diagonal (h f < hq). Results below the 
main diagonal correspond to more force points than quadrature points; in all cases the system is ill-conditioned (Table 3) 
and the Matlab® linear solver returns ‘NaN’ (not-a-number). Conditioning is generally not a problem provided that h f < hq , 
or if h f = hq and the force and quadrature discretisations coincide. If h f = hq and the discretisations are non-overlappling, 
singular matrices can result – data not shown).

It is immediately clear from examining the table rows that for fixed force discretisation spacing h f , decreasing the 
quadrature discretisation spacing hq typically results in improved accuracy, notwithstanding a slight reversal in this tendency 
which may occur for very coarse h f = 0.58 and very fine hq < 0.02. This behaviour can be interpreted as progressively finer 
hq enabling more progressively more accurate quadrature, until the error is instead dominated by errors associated with 
force discretisation. An error estimate will follow in section 5.2.

Examining the columns of Tables 2 (see also Tables 6 and 7) reveals a more interesting behaviour of the algorithm. If 
the quadrature discretisation size hq is fixed, more accurate results are obtained with the force spacing h f taken coarser
than the quadrature spacing (h f > hq) than with the Nyström method (h f = hq). Appendix C confirms that, for fixed hq , the 
choice h f = hq can be rather inaccurate, and is sensitive to the value of ε , whereas taking h f ≈ 2hq reliably produces results 
which are accurate to within a few percent, and at much lower computational cost (see Appendix C). A similar result is 
observed for the slightly more complex problem of calculating the resistance tensor of a prolate spheroid (Appendix D).

The effect of the regularization parameter is discussed in Appendix A.4. Reducing ε typically reduces the error for all 
finite ε tested, provided that hq < h f /2. The regularization error is proportional to ε , however it may be expected that as 
ε is reduced, hq may have to be reduced proportionately in order to approximate the integral of the increasingly-peaked 
kernel more accurately. However, this behaviour was not observed in the test cases analysed (for which ε was taken as 
small as 10−6). In applications in which evaluation of the velocity field is of interest, a balance between small regularization
error and smooth/efficient evaluation of the velocity field may be sought, motivating an intermediate choice of ε .

The final quantity to consider is the force discretisation length h f . This discretisation must be fine enough to resolve 
variations in the surface force density. The translating sphere case in fact is not a good way to assess this convergence, 
because the surface stress is constant [30, p. 233]! The rotating sphere does however possess a non-constant surface force 
density, which varies from zero at the poles to its maximum at the equator. From the results in Tables 6–7 it is clear that 
the coarsest force discretisation h f = 0.58 produces acceptably accurate results (i.e. within about 1% error) provided that 
the quadrature discretisation is sufficiently fine.

5.2. Error estimate

Following these numerical experiments, we shall briefly outline an error estimate for the nearest-neighbour method. 
There are three sources of error: (i) regularization error associated with the use of the regularized version of the boundary 
integral equation with parameter ε – which was discussed above following equation (12), (ii) discretisation error associated 
with the approximation of the integral by its values on the quadrature points, which have spacing hq , (iii) discretisation 
error associated with the approximation of the force and metric by their values on the coarser force points, which have 
spacing h f .

The discretisation error associated with the approximation of the integral by its values on the quadrature points will 
be chiefly determined by the contribution associated with the rapid variation in the kernel. We will restrict to the case 
where h f 	 ε . The lowest order estimate of quadrature error follows from taking the mean value inequality, i.e. |S jk(x, y) −
S jk(x, X[q])| � M1|(y − X[q])|, where M1 is a bound on |∇ y S jk(x, X[q])|. The integrand is sharply-peaked but in a small 
area – to take account of this behaviour more precisely, the integral will be split into three regions based on the value of 
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Table 1
Heuristic for calculating converged results.

1. Choose ε much smaller than the lengthscale of the problem geometry L. Regularization error will typically be linear in ε, so results which are 
required to be highly accurate will require a proportionately small value of ε.

2. Generate the force discretisation – initially this discretisation would be chosen relatively coarse.
3. Generate the quadrature discretisation at least four times as fine as the force discretisation, i.e. hq is no larger than h f /4.
4. Assess convergence by halving h f , keeping hq constant, and halving hq , keeping h f constant. Variations comparable to or smaller in magnitude 

than ε are considered acceptable. Larger variations are unacceptable; halve h f and hq and repeat until convergence.

Fig. 1. Visualisation of discretisations on the surface of a sphere: (a) force/collocation points with N = 96 (4 × 4 subdivisions per face), (b) quadrature 
discretisation with Q = 600 (10 × 10 subdivisions per face.)

r = |x − y|, the regions (i) 0 < r < h f , (ii) h f < r < h1/2
f and (iii) h1/2

f < r, and the error estimated on each region in turn 
and summed.

(i) Considering first the ‘near’ part of the integral encountered around the collocation point, i.e. where |x − y| � h f , and 
noting that the regularized stokeslet is dominated by the behaviour of (r2 + ε2)−1/2, the bound M1 = O (ε−2) and 
so the error in the surface integral is O (ε−2h2

f hq), because the area of the region is O (h2
f ) and the spacing between 

collocation points is O (hq).

(ii) In the intermediate region h f < |x − y| � h1/2
f , the bound M1 = O (h−2

f ) over an area O (h f ), yielding a quadrature error 
O (h−1

f hq).

(iii) For the outer region h1/2
f < |x − y|, the bound M1 = O (h−1

f ) and the area is O (1), giving a quadrature error O (h−1
f hq)

again.

The total discretisation error associated with quadrature can therefore be estimated as O (ε−2h2
f hq) + O (h−1

f hq). The first 
term may not be a sharp estimate; the results of Table 8 suggest that accurate results may be obtained (perhaps for certain 
types of discretisation) for very small ε compared with h f and hq . The second term emphasises the advantage of taking 
h f > hq , i.e. the force points coarser than the quadrature points.

Finally, the discretisation error associated with the approximation of the force and metric by their values on the force 
points can be estimated by noting that the error of nearest-neighbour interpolation is again of the form M2|X[q] −x[N (q)]|, 
where M2 is a bound on ‖∇y( f (y)dS(y))‖. Hence the force discretisation error is O (h f ).

In summary, our estimate of the error associated with the regularization and nearest-neighbour discretisation of the 
boundary integral equation is O (ε) + O (ε−2h2

f hq) + O (h−1
f hq) + O (h f ). The numerical results are consistent with the finding 

that there are independent errors due to regularization (see Appendix B) and to the force discretisation (see the rightmost 
column of Table 8 for which the regularization error is minimal); moreover it is advantageous to take h−1

f hq to be small, i.e. 
h f > hq .

5.3. A refinement heuristic

For practical purposes we can therefore recommend the heuristic in Table 1: Discretisation convergence can then be 
assessed by (1) halving h f while keeping hq constant; (2) halving hq while keeping h f constant.

The heuristic in Table 1 can be applied to the rotating sphere problem as follows. We choose ε = 0.01 as the regular-
ization parameter, and consider numerical errors comparable to 1% acceptable. Taking a relatively coarse force discretisation 
with h f = 0.5796 and a finer quadrature discretisation of hq = 0.0416 – less than h f /4 – we compute the total moment 
associated with the rigid body motion � = (1, 0, 0). We then assess convergence by halving each of h f and hq . The results 
are shown in Table 4.
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Table 2
Relative error for the resistance problem of a unit sphere undergoing rigid body motion in Stokes flow in an infinite fluid; 
regularization parameter ε = 0.01. (a) Translation with velocity U = (1, 0, 0). (b) Rotation with angular velocity � = (1, 0, 0).

(a)

Q 864 3456 13824 55296 221184
hq 0.1611 0.0826 0.0416 0.0208 0.0104

N DOF h f

54 162 0.5796 0.0147 0.0052 0.0002 0.0006 0.0012
216 648 0.2942 0.0166 0.0079 0.0038 0.0022 0.0020
864 2592 0.1611 0.1262 0.0083 0.0043 0.0027 0.0025
3456 10368 0.0826 NaN 0.0277 0.0043 0.0028 0.0025

(b)

Q 864 3456 13824 55296 221184
hq 0.1611 0.0826 0.0416 0.0208 0.0104

N DOF h f

54 162 0.5796 0.0300 0.0086 0.0019 0.0036 0.0047
216 648 0.2942 0.0378 0.0182 0.0095 0.0063 0.0058
864 2592 0.1611 0.2193 0.0194 0.0109 0.0078 0.0074
3456 10368 0.0826 NaN 0.0495 0.0110 0.0080 0.0075

Table 3
Condition number for the stokeslet matrix associated with the solution of the translation and rotation problems for a unit 
sphere in Stokes flow; regularization parameter ε = 0.01.

Q 864 3456 13824 55296 221184
N DOF

54 162 132.807 903.874 415.837 292.569 260.382
216 648 100.744 242.112 904.001 3344.192 1721.377
864 2592 8.129 218.433 638.954 4823.278 15637.232
3456 10368 Inf 38.309 617.308 3696.167 1870680.776

Table 4
Results from applying heuristic 1 to the problem of calculating the total moment on a unit 
sphere with unit angular velocity with ε = 0.01. The result for h f = 0.5796, hq = 0.0416 is 
accurate to approximately 1% relative error. The result shown in parentheses would not be 
calculated via this heuristic, but confirms the accuracy of the method.

Q 13824 55296
hq 0.0416 0.0208

N DOF h f

54 162 0.5796 25.0854 25.0430
216 648 0.2942 25.3707 (25.2904)

5.4. Rotational diffusion of a macromolecular structure

The technique will now be applied to a problem from bioinorganic chemistry: determining the rotational diffusion co-
efficient of a novel macromolecular structure. The scientific application of the calculations will be contained in a future 
collaborative publication. The structure can be modelled as three nanoscale rods with slightly different orientations, in close 
proximity, as shown in Fig. 2, moving together as a single rigid body. The rods are discretised by subdividing equally in 
angle, and equally along the length of the rods; the angle and length spacings are chosen based on a target distance in both 
axial and azimuthal directions.

The grand resistance tensor [16] is defined as the 6 × 6 matrix,

R =
(

R F U R F�

R MU R M�

)
, (29)

where R F U is the force-velocity resistance matrix, R F� is the force-rotation coupling, R MU is the moment-translation cou-
pling and R M� is the moment-rotation resistance. This matrix relates the force F and moment M exerted by a rigid body 
on a viscous fluid to the body’s translational velocity U and angular velocity �,(

F
M

)
= R

(
U
�

)
. (30)
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Fig. 2. Simplified representations of the macromolecular structure of interest, with (a) force discretisation (N = 384) and (b) quadrature discretisation 
(Q = 1689) shown.

Table 5
Calculation of the rotational diffusion timescale τ1 for the macromolecular model shown in Fig. 2. The reg-
ularization parameter ε is taken as 0.01L where L is the approximate half-length of the peptide, 25 Å. 
The absolute temperature T = 310 K and dynamic viscosity μ = 10−3 Pa.s. Results with h f = hq (second 
sub-diagonal) relate to the classic Nyström discretisation, results with h f < hq relate to ‘nearest-neighbour’ 
discretisations. (a) Rotational diffusion timescale τ1 in nanoseconds for each discretisation tested; discreti-
sation parameters h f and hq are given in Å. (b) Computational timings (in seconds; notebook specification 
given in Appendix C).

(a)

Q 3270 12678 49926
hq 1.5544 1.0543 0.7288

N DOF h f

246 738 3.7165 5.9021 6.0156 5.9831
870 2610 2.3598 5.7480 5.9255 5.9160
3270 9810 1.5544 5.6406 5.8281 5.8916

(b)

Q 3270 12678 49926
N DOF

246 738 2.542 11.814 99.667
870 2610 10.526 34.312 173.740
3270 9810 125.025 316.446 742.062

The individual components of the 3 × 3 matrices R ·· are calculated by solving the resistance problems U = e j and � = e j

in turn and calculating the force and moment in each case.
The diffusion tensor is given by D = kB TR−1, where kB is the Boltzmann constant and T is absolute temperature. The 

rotational part of the diffusion tensor is the lower right 3 × 3 block of D [31], which we denote D R ,

D =
(

DT D ′
C

DC D R

)
. (31)

The D R block has no dependence on choice of origin [31] (unlike the other blocks of D); it has been verified numerically 
that moving the origin does not affect the calculation of D R .

It is convenient to report the smallest eigenvalue λ1 of D R , which corresponds to the smallest coefficient of rotational 
diffusion about each of the principal axes of rotation. The characteristic timescale of rotational diffusion is then given by 
τ1 = 1/(6λ1). The results are given in Table 5(a).

Starting in the top left corner, applying our heuristic, repeating the process of dividing both h f and hq yields the values 
given on the main diagonal. The point to terminate the refinement process depends on the degree of accuracy required, and 
indeed if a relative error of less than 1% is required, the process should be continued further. However for many biophysical 
applications, the level of modelling error (for example, approximating the structure by three straight rigid rods, assuming 
rigidity) does not warrant extremely precise numerical calculations. Fixing hq and examining the first three columns, the 
nearest-neighbour method with coarser force discretisations h f ≈ 1.5hq–2.4hq out-performs the Nyström method (h f = hq) 
for both accuracy and efficiency (Table 5(b)).
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6. Conclusions

We have presented a simple-to-implement modification of the standard discretisation of the method of regularized 
stokeslets for modelling particle dynamics at zero Reynolds number. The modification is based on the use of two dis-
cretisations, one for the unknown surface force per unit area and one for the stokeslet quadrature, combined with 
nearest-neighbour discretisation of the force distribution. Practically, the method can be implemented by assembling a 
nearest-neighbour operator matrix, which can be achieved with a few lines of Matlab®/GNU Octave code. Numerical exper-
iments on the resistance problem of a sphere undergoing rigid body motion, and the calculation of the rotational diffusion 
timescale of a macromolecular structure provide evidence that the method enables more accurate results to be obtained 
at lower computational cost than the standard implementation, despite not being substantially more complicated to imple-
ment. Our initial error estimate O (ε) + O (ε−2h2

f hq) + O (h−1
f hq) + O (h f ) provides insight into the independent effects of h f

and hq on the numerical error, and the potential advantage of taking h f > hq , provided that h f is not too large. Numerical 
results did not however reflect the sensitivity to ε suggested by this estimate – further investigation of this phenomenon, 
and possible sharpening of the estimate, may be topics for future work.

The standard Nyström discretisation uses, in our framework, the same discretisation for the force and the quadrature. The 
present approach shows that this choice much less reliably produces accurate results than if the quadrature discretisation 
is kept the same but the force discretisation is made twice as coarse. Making the force discretisation twice as coarse 
means that the number of degrees of freedom is at least halved (more typically reduced by a factor of four). The matrix 
assembly cost is therefore reduced by a factor of at least four, and the linear solver cost is reduced by a factor of at least 
eight (for a direct solver). Our practical results suggest a cost reduction of over 10 times may be typical. This reduction in 
cost means that more complex problems can be solved with a given computational resource – a useful facet, particularly 
within biological and biophysical fluid dynamics. The code implementation described in this paper makes use primarily of 
basic linear algebra operations rather than serial for-loops, and therefore can be accelerated through built-in software and 
hardware parallelisation of these operations. It will be of interest to explore how the algorithm scales on multicore or GPU 
hardware.

The nearest-neighbour approach still has limitations, particularly if compared with boundary element methods – which 
may involve higher order force discretisation and adaptive quadrature, and accelerations such as the fast multipole method. 
However, the nearest-neighbour approach is very simple to implement, requiring only a small modification of the standard 
regularized stokeslet approach, and not requiring true mesh generation. It may be valuable to explore further whether adap-
tivity or fast multipole implementations can be introduced without excessively complicating the algorithm. Finally, we do 
not yet have theoretical results which definitively prove the improved efficiency and accuracy of the method. Nevertheless, 
for practical purposes, carrying out a sequence of discretisations with h f ≈ 4hq alongside a sequence with h f ≈ 2hq will 
establish convergence empirically.

The nearest-neighbour discretisation of the regularized stokeslet method is more efficient and accurate than the stan-
dard implementation, with minimal additional complexity. It may therefore enable researchers in biological and biophysical 
fluid dynamics to solve significantly more challenging open problems, for example involving many swimming cells, ciliated 
cavities, and/or suspended macromolecules. The task of explaining the properties of the method, which we are only able 
to explain heuristically at present, may stimulate theoretical work. Finally, the technique may also open the way for future 
algorithmic developments which possess the efficiency and accuracy of boundary element methods but retain its useful 
properties of meshlessness and simplicity.
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Appendix A. Matlab®/GNU Octave implementation

The essentials of the Matlab®/GNU Octave implementation are given below, in particular some more subtle aspects such 
as the assembly of the nearest-neighbour matrix, avoidance of extensive for-loops, and use of ‘blocking’ to avoid memory 
overrun.

A.1. Regularized stokeslet matrix

Taking advantage of the vectorisation capabilities of the Matlab® language and the Kronecker product operator,

function S= RegStokeslet ( x , X , ep )
% x i s a ve ctor o f f i e l d p o i n t s : 3∗M
% X i s a vec tor o f source p o i n t s : 3∗Q
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% ep i s r e g u l a r i s a t i o n parameter
% outputs an array of r e g u l a r i z e d s t o k e s l e t s between f i e l d
% and source p o i n t s
% b locks are [ Sxx , Sxy , Sxz ; Syx , Syy , Syz ; Szx , Szy , Szz ]
% where Sxx i s M by Q e t c .
x=x ( : ) ;
X=X ( : ) ;
M=length ( x ) / 3 ;
Q=length (X) / 3 ;
r1= x (1:M)∗ones (1 ,Q)−ones (M, 1 )∗ X(1:Q) ’ ;
r2= x (M+1:2∗M)∗ones (1 ,Q)−ones (M, 1 )∗ X(Q+1:2∗Q) ’ ;
r3=x(2∗M+1:3∗M)∗ones (1 ,Q)−ones (M, 1 )∗X(2∗Q+1:3∗Q) ’ ;
rsq=r1 .^2+ r2 .^2+ r3 . ^ 2 ;
irep3 = 1 . / ( sqrt ( ( rsq+ep ^ 2 ) ) . ^ 3 ) ;
i s o t r o p i c =kron ( eye ( 3 ) , ( rsq +2.0∗ep ^2) .∗ ireps3 ) ;
dyadic =[ r1 .∗ r1 r1 .∗ r2 r1 .∗ r3 ; r2 .∗ r1 r2 .∗ r2 r2 .∗ r3 ; . . .

r3 .∗ r1 r3 .∗ r2 r3 .∗ r3 ] . ∗ kron ( ones ( 3 , 3 ) , irep3 ) ;
S = ( 1 . 0 / ( 8 . 0∗ pi ) )∗ ( i s o t r o p i c +dyadic ) ;

A.2. Nearest-neighbour matrix

The nearest-neighbour operator ν may be discretised with the matrix NN produced by the following code,

function NClosest=NearestNeighbourMatrix (X , x , varargin )
% Vectors should be supp l ied with a l l x1 coord inates l i s t e d
% f i r s t then a l l x2 coordinates , then a l l x3 coord inate s .
% i f varargin i s nonempty , then i t should contain
% b l o c k S i z e
Q=length (X) / 3 ;N=length ( x ) / 3 ;
i f ~isempty ( varargin )

blockSize = varargin { 1 } ;
blockNodes= f loor ( blockSize ∗2^27/(9∗N) ) ;

else
blockNodes=Q;

end
xQ1=X(1:Q) ;
xQ2=X(Q+1:2∗Q) ;
xQ3=X(2∗Q+1:3∗Q) ;
xT1=x (1:N) ;
xT2=x (N+1:2∗N) ;
xT3=x(2∗N+1:3∗N) ;
nMin=zeros (Q, 1 ) ;
for iMin =1: blockNodes :Q

iMax=min( iMin+blockNodes−1,Q) ;
blockCurr=iMax−iMin +1;
X1=xQ1( iMin : iMax)∗ones (1 ,N)−ones ( blockCurr , 1 )∗xT1 ’ ;
X2=xQ2( iMin : iMax)∗ones (1 ,N)−ones ( blockCurr , 1 )∗xT2 ’ ;
X3=xQ3( iMin : iMax)∗ones (1 ,N)−ones ( blockCurr , 1 )∗xT3 ’ ;
d is tsq =X1.^2+X2.^2+X3. ^ 2 ;
[ ~ , nMin( iMin : iMax ) ] =min( distsq , [ ] , 2 ) ;

end
NClosest=sparse (Q,N) ; % c r e a t e s sparse a l l−zero matrix
NClosest ( [ 1 :Q] ’ +Q∗(nMin−1))=1;
NClosest=kron ( speye ( 3 ) , NClosest ) ;

The above takes advantage of the speed of predominantly vector operations, whilst not exceeding the memory require-
ments of the system. The optional third argument, blockSize is a measurement in GB of the memory to be allocated to 
the regularized stokeslet matrix so that

blockNodes= f loor ( blockSize ∗2^27/(9∗N) ) ;

gives the number of columns (corresponding to a subset of the force points) which can be dealt with simultaneously. For 
example, blockSize=0.2 would be suitable for any modern hardware, and has been tested on a Raspberry Pi Model B. 
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The matrix NClosest, which corresponds to ν[q, n] is sparse and so will not produce a memory overflow. The final line 
involving the Kronecker product operation is required because the nearest-neighbour operator must be copied into three 
blocks, acting on the f1, f2 and f3 components in turn.

A.3. Resistance problem

The ‘left hand side’ matrix A for the discrete resistance problem (26) can then be assembled as,

A = RegStokeslet ( x , X , ep)∗ NearestNeighbourMatrix (X , x ) ;

The regularized stokeslet matrix may be too large to fit in memory, particularly if Q is very large, as may be the case for 
problems possessing complex geometry. In this case, the problem may be assembled ‘block-by-block’ as follows,

NN=NearestNeighbourMatrix (X , x , blockSize ) ;
A=zeros (3∗M,3∗N) ;
for iMin =1: blockNodes :Q

iMax=min( iMin+blockNodes−1,Q) ;
iRange =[ iMin : iMax Q+iMin :Q+iMax 2∗Q+iMin:2∗Q+iMax ] ;
A=A+ RegStokeslet ( x , X( iRange ) , ep)∗NN( iRange , : ) ;

end

As in the function NearestNeighbour, blocking is used to prevent overrun. In all calculations in the present report, the 
linear system was solved with the ‘backslash’ operator, i.e. f=A.

A.4. Discretisation size calculation

The discretisation size parameters h f and hq are calculated using the following function,

function [h , hMin , nMin , d is tsq ] = CalcDiscr_h ( x )
% CalcDiscr_h This f u n c t i on c a l c u l a t e s the maximum over a l l
% p o i n t s in a d i s c r e t i s a t i o n x of the d i s t a n c e to
% the nearest−neighbour point

N=length ( x ) / 3 ;
X1=x (1:N)∗ones (1 ,N)−ones (N, 1 )∗x (1:N) ’ ;
X2=x (N+1:2∗N)∗ones (1 ,N)−ones (N, 1 )∗x (N+1:2∗N) ’ ;
X3=x(2∗N+1:3∗N)∗ones (1 ,N)−ones (N, 1 )∗x(2∗N+1:3∗N) ’ ;
d is tsq =X1.^2+X2.^2+X3.^2+100∗eye (N) ;
[hMin , nMin]=min( distsq , [ ] , 2 ) ;
h=sqrt (max(hMin ) ) ;

Appendix B. Effect of the regularization parameter for the rigid sphere test problem

To assess the sensitivity of the method to regularization parameter, we present test results with ε = 0.02 and ε = 0.005
in Tables 6 and 7 respectively. When h f and hq are taken equal, the results are highly sensitive to the value of ε , however 
provided hq is taken no larger than 0.25h f , the error is relatively insensitive. As ε is reduced, the finite regularization error 
(evident in the rightmost entries in the tables) is reduced to below 1%, however convergence to the smaller error with hq is 
slower. Perhaps surprisingly, it does not appear necessary to choose hq dependent on ε , at least within the range of values 
explored. There also does not appear to be any clear advantage to taking ε = 0.02 as opposed to ε = 0.005, begging the 
question of how small ε can be taken. While ε = 0 is equivalent to non-regularized stokeslets (and hence singular matrix 
entries whenever the collocation and quadrature points coincide), taking a very small but finite value of ε = 10−6 yields the 
results of Table 8, which are typically at least as accurate as the results with larger value of ε , provided that h f � 2hq .

Appendix C. Timing results for the rigid sphere test problem

Typical timing results (in seconds) for the solution of the translation and rotation resistance problems (with ε = 0.01) 
computed on a modest notebook computer (2011 Lenovo Thinkpad X220; Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz; 8GB 
DDR3 RAM) are given in Table 9.

Appendix D. Testing the method on a prolate spheroid

To explore further whether the efficiency of the choice h f ≈ 2hq is problem-dependent, we may assess the performance 
of the nearest-neighbour method in calculating the grand resistance tensor R (defined in equation (29)) of a rigid prolate 
spheroid, which has a well-known analytical solution [32, p. 64]. Taking a prolate spheroid with long semi-axis a = 5 and 
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Table 6
Relative error for the resistance problem of a unit sphere undergoing rigid body motion in Stokes flow in an infinite fluid; 
regularization parameter ε = 0.02. (a) Translation with velocity U = (1, 0, 0). (b) Rotation with angular velocity � = (1, 0, 0). 
‘NaN’ denotes ‘not-a-number’, and indicates a singular linear system.

(a)

Q 864 3456 13824 55296 221184
hq 0.1611 0.0826 0.0416 0.0208 0.0104

N DOF h f

54 162 0.5796 0.0149 0.0056 0.0016 0.0017 0.0014

216 648 0.2942 0.0167 0.0083 0.0052 0.0046 0.0046
864 2592 0.1611 0.0522 0.0087 0.0056 0.0051 0.0051
3456 10368 0.0826 NaN 0.0046 0.0057 0.0052 0.0051

(b)

Q 864 3456 13824 55296 221184
hq 0.1611 0.0826 0.0416 0.0208 0.0104

N DOF h f

54 162 0.5796 0.0313 0.0114 0.0034 0.0036 0.0030

216 648 0.2942 0.0391 0.0210 0.0147 0.0136 0.0135
864 2592 0.1611 0.0917 0.0222 0.0161 0.0151 0.0150
3456 10368 0.0826 NaN 0.0032 0.0162 0.0152 0.0152

Table 7
Relative error for the resistance problem of a unit sphere undergoing rigid body motion in Stokes flow in an infinite 
fluid; regularization parameter ε = 0.005. (a) Translation with velocity U = (1, 0, 0). (b) Rotation with angular velocity 
� = (1, 0, 0).

(a)

Q 864 3456 13824 55296 221184
hq 0.1611 0.0826 0.0416 0.0208 0.0104

N DOF h f

54 162 0.5796 0.0147 0.0051 0.0000 0.0013 0.0023

216 648 0.2942 0.0165 0.0079 0.0036 0.0016 0.0008
864 2592 0.1611 0.2424 0.0082 0.0041 0.0021 0.0013
3456 10368 0.0826 NaN 0.0691 0.0041 0.0021 0.0014

(b)

Q 864 3456 13824 55296 221184
hq 0.1611 0.0826 0.0416 0.0208 0.0104

N DOF h f

54 162 0.5796 0.0297 0.0079 0.0033 0.0062 0.0082

216 648 0.2942 0.0375 0.0176 0.0081 0.0037 0.0021
864 2592 0.1611 0.3876 0.0188 0.0095 0.0053 0.0038
3456 10368 0.0826 NaN 0.1262 0.0096 0.0054 0.0040

Table 8
Relative error for the resistance problem of a unit sphere undergoing rigid body motion in Stokes flow in an infinite fluid; 
regularization parameter ε = 10−6. (a) Translation with velocity U = (1, 0, 0). (b) Rotation with angular velocity � = (1, 0, 0).

(a)

Q 864 3456 13824 55296 221184
hq 0.1611 0.0826 0.0416 0.0208 0.0104

N DOF h f

54 162 0.5796 0.0147 0.0051 0.0000 0.0014 0.0027

216 648 0.2942 0.0165 0.0079 0.0036 0.0015 0.0004
864 2592 0.1611 0.9994 0.0082 0.0040 0.0020 0.0009
3456 10368 0.0826 NaN 0.9977 0.0041 0.0020 0.0010

(b)

Q 864 3456 13824 55296 221184
hq 0.1611 0.0826 0.0416 0.0208 0.0104

N DOF h f

54 162 0.5796 0.0296 0.0077 0.0037 0.0071 0.0100

216 648 0.2942 0.0374 0.0174 0.0077 0.0028 0.0004
864 2592 0.1611 0.9997 0.0186 0.0091 0.0044 0.0021
3456 10368 0.0826 NaN 0.9988 0.0092 0.0046 0.0023
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Table 9
Timing results for the calculation of the translation and rotation resistance problems for the unit sphere with ε = 0.01.

Q 864 3456 13824 55296 221184
N DOF

54 162 0.052 0.455 5.288 81.071 1319.765

216 648 0.287 0.882 6.471 84.248 1318.965
864 2592 5.773 8.726 15.953 105.991 1399.280
3456 10368 352.833 320.650 373.632 535.916 2160.078

Table 10
Test results for the grand resistance tensor of rigid body motion of a prolate spheroid with long semi-axis 5, short semi-
axis 1; regularization parameter ε = 0.01.

Q 864 3456 13824 55296 221184
hq 0.2171 0.1117 0.0554 0.0278 0.0139

N DOF h f

54 162 1.0064 0.0596 0.0221 0.0096 0.0045 0.0052

216 648 0.4305 0.0459 0.0180 0.0079 0.0036 0.0021
864 2592 0.2171 0.3675 0.0207 0.0097 0.0049 0.0034
3456 10368 0.1117 NaN 0.1171 0.0099 0.0052 0.0036

short semi-axis c = 1, the relative error in R in the ‖ · ‖2 norm is given in Table 10. The results are not likely to be optimal 
as the discretisation has been created by simply deforming the sphere discretisation depicted in Fig. 1 without any attempt 
to space the points uniformly in the directions of the long and short semi-axes.
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