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1. Introduction and motivation

In this paper we will introduce a general class of initial-boundary value problems coupled in time, which we refer to as
transmission problems. This class includes any setting described by the following schematic:

1. The solution u is governed by the dynamics D; from time t; to time t,,
2. At ty, the solution is subject to an operation v = X' (u),
3. At later times, the solution v is governed by the (possibly different) dynamics D,.

Fig. 1 illustrates the above schematic. Central to this class of problems is the transmission operator X, which we assume
admits a matrix representation, but is otherwise left completely general.

Note that we consider a coupling procedure in time rather than space. Spatially coupled problems have been considered
e.g. in [1] in the context of multi-physics problems and in [2-4] in the context of general conforming and non-conforming
grids, and forms an integral part of finite element, discontinuous Galerkin and flux reconstruction algorithms. Spatially
coupled problems typically must obey well-posedness or stability conditions that are strongly dependent on the nature of
D1 and D;. In this paper, we will show that the temporal coupling involved in the transmission problem is in some sense
independent of the dynamics involved, as long as D; , define two well-posed problems.

The formulation of the transmission problem is very general and consequently there are many practical applications that
fit the framework. Examples considered in this paper include, with continuous time, the coupling in a fluid-acoustics prob-
lem, multi-grid techniques and adaptive mesh refinement. With discrete time, we exemplify with multi-block formulations
for adaptive time-stepping and numerical filtering.
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Fig. 1. Schematic of the transmission problem.

The aim of this paper is to obtain conditions for X under which the solution to the transmission problem is bounded by
available data, in particular initial data available at time t;; a prerequisite for well-posedness. However, boundedness of a
solution depends on the norm in which it is estimated. This necessitates certain assumptions on the operators D13, and we
will therefore confine the analysis to operators that are semi-bounded in a generalised L2-norm [5,6]. In essence, this means
that the transmission problem is amenable to analysis via the energy method.

We will consider continuous transmission problems where initial, boundary and coupling conditions are imposed either
strongly, or weakly through so called lifting operators [7,8]. It will be shown that energy boundedness is equivalent to a
certain condition relating the operator X and the norms in which the solution is estimated before and after the transmission
time t,. This transmission condition turns out to be independent of whether a strong or weak imposition is used. We will
also discuss the implications of weighted norms on the transmission conditions and energy estimates.

Semi-discrete and fully discrete transmission problems will also be considered. In the latter cases, we utilise the theory
of Summation-by-Parts (SBP) operators, first introduced in [9,10] to provide a means of obtaining stable finite difference
procedures for the spatial discretisation of initial-boundary value problems. Since then, the SBP framework has been ex-
tended to methods outside the finite difference paradigm, including finite volume methods [11-13], spectral collocation,
Galerkin and element methods [14-16], correction procedures via reconstruction [17] and temporal discretisations [18-21].
This opens the door to utilising energy arguments to analyse the stability of fully discrete numerical schemes, if initial,
boundary and transmission conditions are imposed weakly [22,23].

It will be shown that all fully discrete transmission problems considered must satisfy a certain condition to obtain an
energy estimate. This condition is completely analogous to the one obtained in the continuous setting. Throughout the paper
we aim to keep the governing equations - continuous or discrete - as general as possible. Thus, the conditions derived will
apply to a wide range of problems and numerical schemes, and may serve as an a priori test for the availability of an energy
estimate in a given norm.

The remainder of the paper is structured as follows: In section 2 we introduce the notation and definitions required
henceforth. The transmission problem is formally introduced in section 3 and a necessary and sufficient condition for energy
boundedness is derived for both strong and weak formulations. In section 4, a discrete transmission problem is presented,
and a stability analysis using a weak formulation is performed. We return to the transmission condition in section 5, show
how to find weighted norms such that it is satisfied, and discuss its implications. A selection of applications illustrating the
preceding theory are presented in section 6. Finally, conclusions are drawn in section 7.

2. Preliminaries
Before proceeding we introduce the necessary notation and definitions.
2.1. Semi-boundedness and well-posedness

Consider the initial-boundary value problem (IBVP)
ur+Dw)=F, t>0, xeQ,
Bu)=g, t>0, xeT, (1)
u=f, t=0, xeQUT,

where Q is an open d-dimensional region and D is a differential operator. The operator 53 defines a set of boundary
conditions on the boundary I' of €2, and the functions F, g and f are given forcing, boundary and initial data.
For two functions u and v defined on 2, we introduce the inner product and norm

(u, v)p :/quvax, lullp = (@, w2, @)
Q

where P is a positive definite matrix whose dimension matches the number of variables contained in the vectors u and v.
We will need the following two definitions [5,6].

Definition 1. Let V be the space of differentiable functions satisfying the boundary conditions B(v) = 0. The differential
operator D is semi-bounded if for all v € V, D(v) satisfies the inequality

(v,D(v))p =0. 3)
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Definition 2. The differential operator D is maximally semi-bounded if it is semi-bounded in the function space V but not in
any space with fewer boundary conditions.

Note that if D is semi-bounded (or maximally semi-bounded) in (1), and F = g =0, then we can estimate the solution u
since

d
3ot =2, upp = —2(u, D) <0,
which after integration gives

lutx, Ollp < I fCOllp- (4)

Definition 3. The IBVP (1) with F = g =0 is well-posed if for every sufficiently smooth f that vanishes in a neighbourhood
of I', and every finite time interval 0 <t < t, it has a unique smooth solution satisfying the estimate

lulp < Kce**| fllp, O<t<rt. (5)
In (5), K¢ and o are constants independent of f.

Here, the notation sufficiently smooth refers to a function that is smooth enough for (1) to be well defined. Comparing
(4) and (5) it is clear that if D in (1) is maximally semi-bounded, and hence a solution exists, well-posedness follows. In
general terms, we say that the solution u satisfies an energy estimate if it is bounded in terms of data such as in (5), or in
some other way.

Remark 1. The condition for semi-boundedness in Definition 1 may be relaxed to (v, D(v))p > —(xllvl\f, for non-zero data F
and g. However, there is no chance of obtaining a semi-bounded problem for non-zero data with « > 0 (disregarding zero
order terms) unless one is already available for zero data with o = 0 [5,6,24]. We therefore adopt Definition 1 in the
remainder.

Remark 2. Henceforth, we will be concerned with the coupling of problems of the form (1) at some given time t = t;.
Well-posedness of such couplings are independent of F and g, whence for notational brevity, we set F = g =0 in the
remainder. We also assume that the boundary operator 5 contains a minimal set of boundary conditions such that D is
maximally semi-bounded.

Remark 3. The results in this paper are valid also for non-linear operators D(v) satisfying condition (3) (the coupling is
linear in time). However, for simplicity of presentation, we discuss the problem in the linear setting.

2.2. Strong and weak formulations

Throughout the paper, an IBVP formulated as (1) indicates a strong imposition of the boundary conditions, where the
operator B is defined only on the domain boundary I'. However, we may also define 13 on the whole domain and consider
weak formulations of the form

ur+D)=L(ZrB)), t>0, xeQUT,
u=f, t=0, xeQUT.

Here, £ is a lifting operator [7,8], which imposes the boundary conditions in a weak sense, and is defined through the
relation

U, LV))p = ?g u'vds.
r

The penalty matrix X in (6) will be chosen in such a way that an energy-bound is obtained.
We will sometimes abbreviate the operator D(u) — L(ZrB(u)) with D (u). When handling weak boundary conditions,
maximal semi-boundedness will refer to D, (u) rather than D(u). The energy method applied to (1) or (6) is

(6)

a
o 1ule = (@, u0p + (e, Wp = =, D)p = (D, wp,
followed by integration by parts. Here, D refers to either D(u) (strong formulation) or D, (u). The integration by parts
procedure produces certain boundary terms. If they are negative semi-definite, D is maximally semi-bounded and well-
posedness follows. If they are positive, there is in general no way to estimate them in terms of |u||p and to obtain
well-posedness.

The initial condition may be imposed weakly in the same way as the boundary conditions, by adding another lifting
operator to (6). Details of such a problem will be presented in section 3.2.
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2.3. Stability

A semi-discretisation of (1) or (6) with F = g =0 is formally given by
u+D(u)=0, t>0,
(7)
u=f t=0,

where u is the solution defined on the d-dimensional grid x. The precise nature of the grid is arbitrary. For convenience,
we assume that x may be defined in terms of the characteristic grid spacing h.

The spatial discretisation D(u) approximates the differential operator D augmented with the boundary operator 5. The
grid vector f is obtained by projecting the data f onto the spatial grid.

We introduce the discrete inner product and norm

1/2
@ v =u"Py, July=(uw,”?, 8)

where the positive definite matrix Py is such that (8) approximates the continuous inner product and norm in (2) on the
grid x.

Definition 4. The semi-discretisation (7) is stable if for every sufficiently smooth grid vector f, and for every finite time
interval 0 <t < t, the estimate

lulln < Kge®"|Iflln, O<t<t (9)
holds for each h small enough. The constants Kyg and ¢y are independent of f and h.

Here, smooth grid vector refers to the projection of a smooth function onto the grid. The grid vector is sufficiently smooth
if, for a given discretisation method, (7) can be solved to design order accuracy. Note that if D(u) in (7) is semi-bounded in
the inner product (8), then an energy estimate and stability follows in the same way as for the maximally semi-bounded
continuous problem.

Remark 4. Since existence is not an issue for discrete problems (consistency and stability suffice), semi-boundedness is the
relevant concept.

Finally, for a fully discrete scheme defined on a (d + 1)-dimensional spatio-temporal grid we introduce a fully discrete
analogue of Definition 4:

Definition 5. A full discretisation of the IBVP (1) or (6) is stable if the estimate (9) holds at the final time.

3. Well-posedness of transmission problems

In this section we formally define the transmission problem and derive a necessary and sufficient condition for an energy
estimate.

3.1. The strong formulation

Consider the following general coupled model problem:

us +Dq1(u) =0, t1<t<ty, xe,
vi +Da(v) =0, ty<t<ts, xe8,
Bi(u) =0, t1 <t<tp, xeTl,
(10)
Ba(v) =0, tp<t<ts, xeT,
u=f1, t=ty, xeQUT,
v=XU), t=ty, xeQUT.

We assume that (10) offers a complete and well-posed description of the underlying dynamics. By this we mean that there are
positive definite matrices P> such that the operators D; ; are maximally semi-bounded in the inner products induced by
P12. Hence, in the case X' (u) = f2, where f; is solution-independent data, (10) is well-posed in the sense of Definition 3.

We refer to (10) as the strong transmission problem. This terminology is motivated by the fact that (10) describes any
scenario where the dynamics governing the solution u is interrupted at time t = ty; u is subject of the operation X’; and
the resulting information is transmitted to v, after which the governing dynamics may have changed.
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Note that the operator X accepts the vector argument u and must return a vector of the same dimension as v for (10)
to make sense. We will generally let X' admit a matrix representation X, such that we may write
X(u) = Xu.

Of course, X may still implicitly depend on u through its matrix elements.
Our goal is to investigate when (10) is well-posed, and in particular when sharp energy-bounds can be obtained. The
energy method gives (u, u¢)p, <0 and (v, v¢)p, <0. Summing the two inequalities and integrating in time yields

et < 1A, - [uT Py - XTPaxfud| _ . an
=2
Q

From (11) we immediately have

Proposition 1. An energy estimate can be obtained for the strong transmission problem (10) if and only if the transmission condition

Pi—XTPX>0 (12)

is satisfied at time t = t;.

Before proceeding it is appropriate to remark that by assumption, D1 (u) is maximally semi-bounded, whence u satisfies
the estimate

lu@. )13, < 1 F1@13,.

Consequently we could define new data f> = Xul¢—, and treat the problem for v in (10) as a stand-alone IBVP. Since D> (v)
is also maximally semi-bounded, v would satisfy the estimate

v )13, < 120013, (13)

ultimately yielding a non-sharp estimate for ||[v(x,t3)]|p,.

However, there are several reasons for why this approach is undesirable: Firstly, f> is not available a priori and hence it
is unknown whether || f2]|p, is large. This is particularly evident for problems with non-zero boundary data g and forcing
F, where u will satisfy an estimate [5] of the form

t
Jutx. 13, < ke (1ol + [ (IFI2, + gl )t | (14
t
In (14), || - lIr is a norm defined on the boundary of the spatial domain. Thus, |[u(x, t2)|/p, may be large compared to || f1llp,.

Note also that from Definitions 3, 4 and 5 of well-posedness and stability that the estimates of the solutions are formu-
lated in terms of initially available data. Hence, we only label estimates that are obtained in terms of f; as energy estimates
in the remainder of this paper.

Furthermore, introducing f> at time t, enforces u and v to be obtained sequentially from (10). This property is inherited
by any discretisation of (10), which renders parallel implementations impossible. Thus, even if it is possible to compute a

numerical solution using f,, the effect on the efficiency would be detrimental. In light of these considerations, we will not
discuss the above formally uncoupled approach further.

3.2. The weak formulation

A weak formulation of (10) is given by
Ut +Dpy (W) = Ley (B, (u— f1)), t1=<t<tz, xeQUT, (15)
Ve +Dpr, (V) =L, (B, (v — Xu)), trp<t<t3, xeQUT.

We refer to (15) as the weak transmission problem. In the event that X'(u) = Xu = f, is solution-independent data, we
assume (in concert with the strong formulation) that (15) forms a well-posed problem. The lifting operators £, and L,
impose the initial and transmission conditions weakly and are defined through the relations

23

(u7 Eﬁ_z(v))Pdet = (uv V)P]yz |t:[1,2-

t1,2
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Our goal is to find the conditions under which there exists a penalty matrix %, such that the solution v of (15) satisfies
an energy estimate.
The energy method applied to (15), followed by integration in time, gives

lue.t2) I3, < {1l + @ S = fi)p, + (S @ fwe |

(16)
v 1), = {IVIG, + (V. Do (v = Xu))e, + (S (v = Xw). v)p, |
To bound the terms evaluated at t =t; in (16), we choose X;, = —I1, where [I; is the identity matrix of the same dimension
as Pq1. Adding and subtracting || f; ||f,1 to these terms gives
(i, = @ fop, = @ frowe 21013,
= [{fTrn- - ) o (17)
=4
Q
2 2
= — u— N
(s, e =roit, |,
which clearly is bounded.
Inserting (17) into (16) and adding the two inequalities results in
Iveets)p, < (113, — =i, | _ -+ {1l +1vid, as)

+ (V. 26, (v = X)) p, + (B, (v = Xu))py V-

To obtain an energy estimate for v, we must find a penalty matrix X, such that the terms evaluated at time t =t; in (18)
are negative semi-definite. The following proposition states when such a matrix can be found.

Proposition 2. An energy estimate can be obtained for the weak transmission problem (15) if and only if the transmission condition
(12) is satisfied at time t = t.

Proof. Let T denote the terms in (18) that are evaluated at time t =t;. Then T may be written

= ($>T <— (P_zl;ltzx) (PZEtz_) fzfztzz);))TT + Pz) <l‘j)

M

We begin by proving that (12) is a necessary condition. Thus, assume that T < 0, which implies that the symmetric matrix M
is negative semi-definite. Let S = (I 1 XT). By Sylvester’s theorem,
SMST =—P1+X"P2X<0

must hold, which is equivalent to (12); hence the condition is necessary.
Next, we show that (12) is a sufficient condition. Assume that (12) is satisfied. We add and subtract (Xu)" P2(Xu) from T
and choose X;, = —I», where I, is the identity matrix of the same dimension as P, to obtain

-
_ Xu —P2 P2 Xu T T
T_(v) (Pz —Pz)(v)_u (P =XTP2X)u.

The rightmost term is negative semi-definite by condition (12). The matrix in the left term can be written

—P; P\ (-1 1 .
< P, —P2>_( 1 . ® P, =B ® Py,
where ® denotes the Kronecker product. Since P, is positive definite and B has eigenvalues {0, —2}, T is negative semi-
definite. Hence (18) is bounded by data and an energy estimate for (15) is obtained. O

Remark 5. The proof of Proposition 2 shows that if (12) is satisfied, the choice %, = —I, leads to an energy estimate.
However, other choices of %, are also possible.

If condition (12) is satisfied, then the strong and weak implementation yields the same energy estimate, ||v|p, < | f1llp,,
since |lu(x,t1) — f1 ||f,1 =0 in (18). Thus, (12) is a completely general condition that must be satisfied independent of the
way in which the transmission condition is implemented.
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4. Stability of discrete transmission problems

In this section we turn our attention to discrete transmission problems. Before proceeding with the stability analyses of
semi-discrete and fully discrete problems, we introduce relevant details about SBP operators, which we will subsequently
utilise for temporal discretisations.

4.1. SBPin time

An SBP operator may be defined as follows:

Definition 6. A matrix D = P~'Q is an SBP operator of order q if

1. Dx"=mx""!, m=0,...,q,
2. P=PT >0,
3. Q + 0T =diag(-1,0,...,0,1).

Recently, the SBP framework was extended to more general approximations [14,25] as well as temporal discretisation

[18]. As an example of the temporal procedure, consider as a special case of (1), the initial-value problem
ur+Au=0, O0<t<T,
(19)
u=f, t=0,

where A is a complex constant with Re(%) > 0.
The energy method applied to (19) (multiplying by the complex conjugated solution u and integrating in time) leads to
the bound

u?(T) + 2Re(W)||ull® = f2, (20)

where [|ul|2 = [ [ul?dt.
Applying SBP in time to (19) yields

P'Qu+ru=0P Y(ug— f)eo, (21)

where eg = (1,0,...,0)T and o is a scalar penalty parameter yet to be determined. Here, u approximates the continuous
solution u at each grid point in time. The right-hand side contains the Simultaneous Approximation Term (SAT) [22] that
weakly imposes the initial condition. The SAT term is an example of a discrete lifting operator.

Choosing 0 = —1 and applying the discrete energy method to (21) (multiplying from the left by u* P, adding the conjugate
transpose and using Definition 6) leads to

|unl? +2Re()ull? = [f1* — Juo — fI*. (22)

In (22), \|u||§ =u*Pu, where u* denotes the conjugate transpose of the vector u. Note that (22) mimics (20) up to the small
dissipative term |ug — f|2, which vanishes with grid refinements.

Clearly, (22) implies |u,|? < |f|?, and hence the SBP discretisation (21) is stable in the sense of Definition 5. For further
reading about SBP in time, see [19-21]. For comprehensive reviews of the SBP-SAT technique and examples of its use, see
[26,27].

4.2. Discrete transmission problems

Energy estimates for semi-discrete transmission problems are essentially covered by the analysis presented in section 3.
All that remains is to replace D1, by D12, u and v by u and v, and f by f as appropriate. We therefore immediately have

Proposition 3. An energy estimate can be obtained for the semi-discrete transmission problems (10) and (15) if and only if the trans-
mission condition (12) is satisfied at time t = t».

Next, we focus our attention on fully discrete schemes discretised using SBP in time. The corresponding transmission
problem is given by

(P;(lu) Qtw® IX,(u)) u-+ (It,(u) ® D])u = (P;(lu) ® Eh,n) (et,(u) ® (ug — fl)) ,

(Prt) Qi ® Ix ) ) v+ (It ® D2)v= (P ) @ Ty ) (er.) @ (Vo — Xun))
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For simplicity of notation, we have in (23) used a notation consistent with linear problems. With a slight abuse of notation,
u and v denote grid vectors on a d + 1 dimensional spatio-temporal grid in a similar fashion to (7). We assume that D1 (u)
and Dy (v) are semi-bounded in inner products induced by the symmetric positive definite matrices Py (4 v), such that when
Xu, =f, is solution-independent data, (23) is stable in the sense of Definition 5.

In (23), the vectors e (4,v) denote the first column of the corresponding identity matrices It v). The right-hand sides
contain penalty terms, i.e. discrete lifting operators that weakly enforce the initial and transmission conditions in a way
analogous to the right-hand sides of (15). The vectors u, and vp respectively denote the numerical solution at time t;
before and after application of X. Finally, ¥, and X, are penalty matrices yet to be determined.

Multiplying (23) from the left by u' (P¢, ) ® Pxw) and v’ (Pt ) ® Px,(v)) as appropriate, adding the transpose of the
result, applying Definition 6 and adding the two equations, leads to

2 2 2 2 2
I3, ,, = I£113, ,, — oo — 1113, — lual3, , + IVoll3,

+ (Vo, Xp,r, (Vo — XWn))p, ) + (Zn,t, (Vo — Xy), Vo) p, (-

(24)

Here we have used Xj ¢, = —Iy ) and performed a calculation similar to the one in (17) to obtain the first two terms.

For (23) to be energy stable, we need the right-hand side of (24) to be bounded. This requires finding a penalty matrix
Y., such that the transmission terms involving u, and vy are negative semidefinite. The following proposition establishes
the conditions under which this is possible:

Proposition 4. A penalty matrix Xy, ¢, exists such that (23) is stable if and only if the transmission condition (12) holds with P1 = Py ()
and P2 = Px,(v)-

Proof. The estimate (24) is term for term analogous to the continuous energy estimate (18). The proof is therefore identical
to that of Proposition 2. 0O

5. Scaled norms

The transmission condition (12) is completely general and applies to any problem of the form (10), (15) or (23). In this
section we show that norm-inducing matrices P may always be found such that (12) is satisfied. We also discuss the
implications of this fact.

Let k¥ > 0 be a real constant. Our starting point is the observation that if the solution to an IBVP satisfies an energy
estimate in the norm || - ||p, then it also satisfies an estimate in the scaled norm || - ||,p = +/k|| - |p, which is clear from (5).
We may thus redo the energy analysis for the strong transmission problem (10) using the scaled norm |u||,p, to obtain the
energy rate

[v(x, t3)||%2 </<||f1(X)||%1 - /uT {KP1 —XTPZX}udx‘[ . (25)
—t,
Q

Analogous energy rates hold for the weak and discrete transmission problems. Clearly, the transmission condition (12) is
now replaced by the scaled transmission condition

kP1—X"PyX>0. (26)

Next, we investigate if we can find a k such that (26) is satisfied.
Let Amax(H) = maXje(1,...n) |Aj(H)| denote the spectral radius of an n x n matrix H. Let Az (H) be defined similarly.

.....

Proposition 5. The scaled transmission condition (26) is satisfied if

-
- )\max(x PZX)

27
- )bmin(Pl) ( )

The proof is found in Appendix A. Proposition 5 reveals that as long as the governing equations for the solutions u and v
satisfy energy estimates, then so does the corresponding transmission problem, if the norms Pq » are scaled appropriately. In other
words, the temporal coupling of two well-posed (or stable) problems preserves the well-posedness (stability).

However, there might be drawbacks with the scaling procedure described above. Replacing the transmission condition
(12) with the scaled condition (26) changes the energy estimate (11) for the strong transmission problem to

Ivx. )13, < IF1®1Zp, =kl F1 113, - (28)

Analogous results hold for the weak and discrete transmission problems. If ¥ > 1, the scaled estimate (28) is clearly weaker
than the unscaled estimate (11). In a problem involving m transmissions, each requiring scaled norms satisfying
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KiPj—X[Pj1X;>0, j=1,...m,

at time t =t;j;1, the final energy estimate becomes

Vet 3, < 1A®I3, ][]« (29)
j=1

If each «; > 1, the estimate (29) may of course be very weak. This is an obvious disadvantage in situations where v(x, t)
represents an error or a small disturbance, and hence it is generally desirable to choose X such that «; becomes as small
as possible.

Remark 6. The choice of « in (27) is not minimal, however it is often simple to calculate. As the proof of Proposition 5
suggests, kK = Amgx(H), where H is given in (A.1) in Appendix A, is an optimal choice. However, calculating Amgx(H) requires
that a spectral decomposition of Pq is available.

We make a separate note of the important special case where P1 = P;. In this case, we have the following necessary
condition:

Proposition 6. If P1 = P, a necessary condition for the scaled transmission condition (26) to be satisfied is that
K > Mo (X). (30)

The proof is found in Appendix B. Verifying (30) is clearly simpler than (27), but it might not be sufficient. In section 6.2.2
we will consider a problem where the choice of k has a significant impact on the energy estimate.

6. Applications

In this section we describe a selection of applications that can be modelled as transmission problems. In some of these,
X can systematically be constructed such that the transmission condition (12) is satisfied, while in others this poses chal-
lenges. The examples are chosen so that a minimal number of assumptions on D; ; or D are made. In what follows, we
let the penalty matrix for the initial data be —I such that we do not have to consider the initial conditions further.

6.1. Continuous transmission problems

We start by considering problems in continuous time, and exemplify with a derivation of an energy estimate for a
coupled fluid-acoustics problem followed by a multi-grid application and an adaptive mesh refinement problem.

6.1.1. Fluid-acoustics coupling
Consider the linearised one-dimensional Euler equations,

NI

u+Auy =0, A= (31)

o O =
Siv= O

Yp
augmented with initial and boundary conditions. Here, the elements of the solution vector u = (p,u, p)’ denote small
perturbations of density, velocity and pressure around a constant background flow (4,1, p)T and y is the ratio of specific
heats.

Under the assumption of an irrotational flow, the Euler equations may be simplified to the acoustic wave equation,

Vi + Bvy =0, B=<(E) 8) (32)
where v=(p/p,cv)" and ¢ =./yp/p is the speed of sound in the fluid.

Consider a situation where we solve (31) up to time t = t, after which we switch to solve the simpler problem (32).
Such a situation may arise when computational resources are limited, and where it is known that the solution approaches
an irrotational state at t =t;.

It is reasonable to impose that the pressure and velocity should not change during the switch. This corresponds to the
transmission condition

1
V= Xu, X=<g (E) 8) (33)
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It remains to find norms in which (31) and (32) can be estimated. If we can find a matrix S such that upon multiplying
(31) by S, the resulting system

(Su); + SAS1(Su), =0

is symmetric, then the corresponding matrix inducing the proper norm is P = S'S. An analogous argument holds for (32).
A matrix that symmetries the Euler equations is [28]

I ' N 1 9 __1_
Bo ; ﬂlﬁfz (BP)? ] (Bpo)?
Sl = 0 2% ﬁ = Pl = 0 ﬁ O s
0o -1 _1 __1 0 2482
2% 252 (BpO)? 2(Bpc?)?

where 8 =,/2(y —1). Similarly, for the acoustic wave equation we use

1 /-1 1 1 /10
52:?(1 1>:>P2=ﬁ(o 1)'

Using the operator X defined in (33), the transmission condition (12) becomes

1 1
T (BD)? (BpO)?
0<Pi—X PyX= 0 0 0
1 0 1
(BpO)? (Bpc?)?

The matrix on the right-hand side has the eigenvalues A; = A, =0 and A3 = (1 +¢%)/(85c?)? > 0. Thus, the transmission
condition (12) is satisfied and an energy estimate can be obtained.

6.1.2. Multi-grid iterations
We want to solve the following discretised boundary-value problem:
D1W =F,

augmented with suitable boundary conditions such that D1 has eigenvalues with positive real parts. A possible approach is

to introduce a pseudo-time derivative and solve the corresponding problem
u;+Dqu=F, >0,
(34)
u=f t=0,

by marching in time until a steady state is reached. Here, f is arbitrary data.
Convergence in (34) may be fast initially, but often stagnates after some time, say t,. To accelerate the convergence we
may use a multi-grid technique as follows: We introduce the residual r = Dl‘lF —u and define a residual equation
Dyy=1I;Dir,

where D is a coarse grid operator obtained by restricting D1 to a coarser mesh using the restriction operator I.. Assuming
that the residual equation can be solved exactly, we obtain y = D, 1, (F— Dju).
At this stage, we return to the fine grid problem (34) by applying a prolongation operator I, to y, and solve
Vi + D1v=F, t>ty,
-1 (35)
v=u+I,D, I;(F—Diu), t=ts.

The above procedure may of course be performed in several cycles using multiple grid levels obtained by repeated applica-
tions of the restriction and prolongation operators.
If F=0, then (34) and (35) combine to form the following semi-discrete transmission problem:

u+Diu=—-Ly(u—f), (36)
Vi + D1V =Ly, (B¢, (v — (Ix — Y)u)),

where Y = I,D; I, D1.
To obtain an energy estimate, condition (12) implies that we must have

0<Px—(Ix—Y) Px(Ix—Y),



J. Nordstrom, V. Linders / Journal of Computational Physics 364 (2018) 95-110 105

Yy
Ioor

-[FZC

x

Fig. 2. Interpolation procedure on a pair of 2D non-conforming grids.

t | | 1 —
‘ ey
ta | | 1 1 1 1 1 -
‘ Irac
t3 | | 1 -
t

Fig. 3. 1D adaptive mesh refinement.

for some positive definite matrix Py. Since Y is problem dependent, this condition has to be checked on a case to case
basis. However, Proposition 6 gives the necessary condition x =1 > Aﬁwx(lx —Y). Clearly this implies that the real part
R[Aj(Ix —Y)] <1 for every j, from which it follows that

RAj(Y)]>0, Vij. (37)

Consequently, (37) is necessary in order to obtain an energy estimate for the implementation (36).

Remark 7. If the so called Galerkin condition Dy = I;D11 is satisfied it can be shown [29] that Y has eigenvalues equal to 0
or 1, and hence (37) is satisfied. For details about multi-grid methods in the SBP setting, see [30].

6.1.3. Adaptive mesh refinement

Adaptive mesh refinement [31] has become a standard technique in large scale scientific computing and consequently,
the problem of interpolating between computational domains has attracted much attention. In [3], so called SBP preserving
interpolation operators were introduced that successfully achieve stable and accurate interpolation between non-conforming
grids. The interpolation procedure in [3] is not adaptive, but rather assumes that two fixed and non-conforming domains
define the grid at all times. The setting is illustrated in 2D in Fig. 2 where Icr and If)c respectively denote interpolation
operators from a coarser to a finer grid, and vice versa.

The interpolation operators are said to be SBP preserving if the following property holds:

Pclpac = 1555 PF. (38)

Here, Pc and Pg are norm-inducing matrices defined on the coarse and fine grid respectively. Further, for hyperbolic or
parabolic problems with characteristic interface conditions, it was shown in [3] that the following conditions must be
satisfied together with (38) for stability:

Pc(c —Iraclc2r) =0, Pp(f —IcarlFac) = 0. (39)

In (39), Ic and IF are identity matrices on the coarse and fine grids respectively.

Here, we will use the SBP preserving interpolation operators defined by (38) and (39) and show that an energy-bounded
transmission implementation can be obtained in the adaptive setting. For simplicity, we consider the 1D problem of inter-
polating from a coarse to a fine grid. Fig. 3 illustrates the setup together with the converse problem of interpolating back to
the coarse grid. Let u be a discrete solution vector defined on a coarse grid and let v similarly be defined on a finer grid.
The transmission problem corresponding to interpolation between the grids is given by

us + Dq(u) = Ly (u— 1), f1 <t <ty

(40)
Ve + Do (V) = L, (3¢, (V—IcoFw)), tr <t <t3,
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where we have ignored boundary conditions for simplicity. The transmission condition (12) becomes

Pc —Il,pPrlcar > 0. (41)

Observe from (38) that Ifyc = Pgllg” Pr. Then, (41) can be rewritten

0= Pc — 15 Prlcar = Pe (Ic = PE Iy Prlcar )
=Pc (Ic —Irz2clcaF),

which is precisely the first condition in (39). In the converse case, where we interpolate from a fine to a coarse grid, an
analogous equivalence is obtained between the second condition in (39) and (41) with Z¢,f replaced by Zryc. From Propo-
sition 3 it follows that a penalty matrix X, can be found such that (40) is energy stable for SBP preserving interpolation
operators satisfying (38) and (39).

As an example of the temporal interpolation discussed above, consider a second order accurate case, where a coarse,
uniform one-dimensional grid consisting of four grid points, and a similar but finer seven point grid is used. Let the step
size be h =2 on the coarse grid and h =1 on the finer one. The second order norm-inducing matrices Pr and P¢ are [9]

Pc =2diag(1/2,1,1,1/2), Pfr=diag(1/2,1,1,1,1,1,1/2),
and the SBP preserving interpolation operator becomes [30]

2

11

T ! ? 1

C2F = 5

2 2

11

2

Then, the eigenvalues of P¢ — ILTZFPFICZF to four decimal places are given by {0.5955,0.6047, 1.1545, 1.3953}, and hence
(41) is clearly satisfied.

6.2. Discrete transmission problems

Next, we consider problems in discrete time, and exemplify with an adaptive time-stepping method and a filtering
procedure.

6.2.1. Multi-block time-stepping

The simplest and most straightforward discrete transmission problem is that of a multi-block formulation in time. In
such a formulation, the time interval is divided into several small blocks, which often is beneficial from a computational
point of view [21,32,33].

Multi-block formulations correspond to the transmission problem (23) with D1 =D, =D and X = I,

(Pg(lu) Q.o ® IX) u+ (Iw ®D)u=— (P;,(lu) ® Ix) (er.y ® (wp — 1)),

(Pg(lv) Qw® IX) v+ (I ® D)v= (Pf,(lv) ® Eh,rz) (ec.) ® (Vo —up)) .

The transmission condition (12) simply reduces to 0 < Py — Px =0, i.e. it is trivially satisfied. Hence, a penalty matrix exists
that leads to stability. Note that there is no requirement on the time-blocks to be of similar size. This technique thus allows
for a provably stable adaptive time-stepping procedure.

6.2.2. Explicit filters

Errors are inevitably present in numerical simulations, even when the computations are well resolved, and are predom-
inantly introduced at high wavenumbers. To see this, we may plot the numerical wavenumber &, associated with a given
derivative approximation, against the analytic wavenumber & associated with the actual derivative. This is done in Fig. 4 for
central finite difference stencils of various orders. Evidently, the dispersion error & — &, grows as the wavenumber increases
and, in fact, this growth is monotonic [34]. A plethora of finite difference stencils have been presented with reduced disper-
sion error for various ranges of wavenumbers; see [35] for a review and [36] for examples within the SBP-SAT framework.
Yet, no difference stencil is accurate in the vicinity of & = . Instead, filters designed to remove high wavenumbers from
the computational domain may be applied.

Here, we will restrict our attention to the finite difference-type filters introduced in [37]. They take the form

F=(lx+apD™),
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Fig. 4. Numerical wavenumbers associated with central difference stencils.

where Df(zn) is an undivided (i.e. independent of the grid resolution) difference operator approximating the 2nth derivative.
The scalar op = (—1)"272" ensures that the 7-mode is removed. A candidate implementation of such a filter is

(Prlacel)u+ i @Dyu=— (P @) ® M-,
(42)
(P;l Q® IX) v+ (I ® D)v= (P;1 ® Ehh) (& ® (Vo — Fup)).
Here, the filter is applied after a given number of time steps determined by the dimension of the matrix P;. Naturally this
process is repeated at regular intervals.
With the implementation (42), the condition (12) becomes

Py, — FTPyF > 0. (43)

It is easy to find examples of Py and F where (43) is not satisfied. For simplicity, let the step size h = 1. Then, the common
choices [9,37]

result in Py — FT PxF having eigenvalues {0.9375, 0.5890, 0.1250, —0.0265}, and hence an energy estimate cannot be ob-
tained. We must therefore rescale the norm used to estimate the first equation in (42), and from (26) we obtain the scaled
transmission condition

kPy—FTPyF > 0.
By Proposition 5 we may chose

Amax(F T PxF
K= M =1.5531,
)Lmin(Px)

which yields eigenvalues {1.4826, 1.0813, 0.4095, 0.3108} for x Px — F " PyF, and an energy estimate is viable.
However, recall from (29) that if the filter is applied at m regular intervals, the resulting energy estimate becomes

I3 <k™fI3 .
Already for m = 11 we have «™ > 100, which is much too weak for most applications. The minimal value of « that yields
an energy estimate is k = 1.0411, for which k™ > 100 with m = 115. For long-time simulations, this may still be too weak.

Remark 8. This example illustrates that successful filtering may include a delicate balance between the need to remove high
frequency oscillations (filter often) and the need to avoid possible growth (filter seldom).

Remark 9. Artificial dissipation operators are akin to filters applied at each time step and thus become an integral part of
the spatial discretisation. See [38] for artificial dissipation operators in the SBP-SAT framework.



108 J. Nordstrom, V. Linders / Journal of Computational Physics 364 (2018) 95-110

7. Summary and conclusions

In this paper, we have introduced a general class of problems, referred to as transmission problems, describing the trans-
mission of information between time-dependent problems governed by possibly different dynamics. No specific assumptions
about the nature of the problems have been made, apart from them being maximally semi-bounded and well posed. A nec-
essary and sufficient condition for energy boundedness has been obtained, which relates the transmission operator X to the
norms in which the energy estimates are obtained before and after the time of transmission. This transmission condition is
independent of whether a strong or weak formulation is used.

It has further been shown that the transmission condition can always be satisfied if scaled norms are used. However, the
choice of norms has a non-negligible impact on the resulting energy estimate, and it is therefore desirable to chose optimal
transmission operators.

Summation-by-Parts discretisations in time with a weak imposition of transmission conditions through SAT terms have
been used to model discrete transmission problems. A necessary and sufficient condition for energy stability, analogous
to the one obtained for the continuous problem, has been obtained. No assumptions about the spatial discretisations was
made, apart from them being semi-bounded and stable. Thus, the presented results are general and applies to any problem
with prescribed norms.

Transmission problems encompass many important problems as special cases; the list presented in this work is certainly
not exhaustive. Here we have attempted to include examples with a wide spectrum of applications that, when possible, are
independent of the underlying dynamics. Continuous transmission problems typically arise whenever one set of governing
equations is replaced by another after some time. We have illustrated this by coupling the linearised Euler equations with
the acoustic wave equation, and shown that with an appropriate choice of norms, an energy estimate is obtained.

Further, a multi-grid implementation in connection to dual time-stepping has been considered. We cannot make claims
about the stability of such implementations without specific knowledge about the underlying problem and its stability prop-
erties. Nevertheless, we have obtained a necessary condition for an energy estimate, which depends only on the eigenvalues
of the multi-grid update matrix, and is simple to verify.

By using SBP preserving interpolation, it is possible to find a penalty matrix and construct an energy-bounded adaptive
mesh refinement procedure, which may have a significant impact on the performance of the scheme. It has also been shown
that SBP preserving operators in combination with the transmission condition lead to the stability conditions required when
imposing characteristic interface conditions at non-conforming interfaces.

Multi-block formulations in time trivially satisfy the condition necessary for a stable implementation. This may serve as
a basis for an adaptive time-stepping method if SBP in time is used for temporal discretisations.

Finally, we have considered a numerical filter for which scaled norms must be used to obtain an energy estimate. It
has been shown that even the sharpest possible energy bound becomes very weak as the number of filtrations grow. This
indicates that successful filtering may include a delicate balance between the need to remove high frequency oscillations
(filter often) and the need to avoid possible growth (filter seldom).
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Appendix A. Proof of Proposition 5

Proof. Let R, =« P1 — X" P,X and let y be a real-valued vector. We must show that the quadratic form y' R,y > 0 for any
choice of y.

Recall that P; is symmetric positive definite. Hence, there is an orthogonal matrix U such that P; = UT AU, where A is
diagonal positive definite. Further, we may uniquely define the matrix A1/2 as the square root of A. Consequently, we have

Yy Rey=y  (kP1 — X" P2X)y
=AY2up Tl — ATV2UuXTPoxU T A2 (A 2Uy)
=z (k1 = ATV2UXT P, XU T A1/?)g,
H

(A1)

where z = (A/2Uy). Note that H is symmetric positive semi-definite, and hence Anqx(H) coincides with the spectral norm
of H;

Amax(H) = |H|l2 = lsuP IHX|| = v Amax(HTH),

Ix[l=1

where | - || without subscripts denotes the Euclidean vector norm. Clearly it suffices to choose k¥ > Apax(H) in order for the
quadratic form (A.1) to be positive semi-definite. But
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Amax(H) = [[H|l2 < 1A™21201U T 20X T P2 X [12 | U l121A ™2l
_IXTPaXlla _ Amax(XTP2X)
N )Lmin(Pl) B )\min(Pl)
whence the proposition follows. O

)

Appendix B. Proof of Proposition 6

Proof. Let P1 = P, = P and assume that (26) holds. Since P is positive definite it has a uniquely defined, positive definite
square root, P1/2. Multiplying (26) from the left and right by P—1/2 gives by Sylvester’s theorem

0<kl— (P 12XTP12)yP12xP~1/2) =] - XX, (B.1)

where X = P1/2XP~1/2, Clearly (B.1) implies that K > Ama(XT X) > 22,,(X) (see e.g. [39]). However, by similarity, the
eigenvalues of X are the same as those of X, whence the proposition follows. O
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