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A domain decomposition algorithm is introduced to couple nonisothermal compositional 
gas liquid Darcy and free gas flow and transport. At each time step, our algorithm solves 
iteratively the nonlinear system coupling the nonisothermal compositional Darcy flow in 
the porous medium, the RANS gas flow in the free-flow domain, and the transport of the 
species and of energy in the free-flow domain. In order to speed up the convergence of 
the algorithm, the transmission conditions at the interface are replaced by Robin type 
boundary conditions. The Robin coefficients are obtained from a diagonal approximation 
of the Dirichlet to Neumann operator related to a simplified model in the neighboring
subdomain. The efficiency of our domain decomposition algorithm is assessed on several 
test cases focusing on the modeling of the mass and energy exchanges at the interface 
between the geological formation and the ventilation galleries of geological radioactive 
waste disposal.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Modeling the exchange processes at the interface between a free flow and a flow in a porous medium appears in a wide 
range of applications from food processing [1], wood or paper production [2], salinization of agricultural land [3], prediction 
of convective heat and moisture transfer at exterior building surfaces [4], to the study of the mass and energy exchanges at 
the interface between a nuclear waste disposal and the ventilation galleries [5,6]. This latter is the main focus of this paper 
in terms of application.

To model such physical processes, one needs to account, in the porous medium, for the flow of the liquid and gas phases 
including the vaporization of the water component in the gas phase and the dissolution of the gaseous components in the 
liquid phase. In the free-flow region, only the gas phase is considered assuming that the liquid phase is instantaneously 
vaporized at the interface. The transport of vapor in the gas free flow plays a crucial role to account for the change of the 
relative humidity which has a strong feedback on the evaporation rate at the interface. In such drying processes, the energy 
conservation must be taken into account in both domains since the temperature variations have a strong influence on 
the vaporization. These temperature variations are induced by the vaporization of the liquid phase itself or by differences of 
temperatures between the porous medium and the gas in the free-flow region. In our targeted application to deep geological 
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disposal for radioactive wastes, it is essential to consider the coupling effect between thermal energy produced by high level 
radioactive wastes and the porous medium desaturation.

A coupled model has been proposed in [7,8] using matching conditions at the interface between the porous-medium 
and the free-flow regions. These coupling conditions state the continuity of the component molar and energy normal fluxes 
taking into account the instantaneous vaporization of the liquid phase, the continuity of the gas molar fractions and of the 
temperature, the continuity of the normal component of the normal stress, and the liquid gas thermodynamical equilib-
rium. In our case, the Beavers–Joseph condition [9] used in [7,8] will be replaced by a no slip condition due to the low 
permeability of the porous medium.

In order to solve such coupled models, sequential algorithms based on Dirichlet–Neumann transmission conditions at 
the interface are frequently used (see [10,11] and the review [4]). As mentioned in [10,11], the stability of these sequential 
algorithms requires very small time steps at the scale of the free flow leading to very large CPU times. To obtain an efficient 
algorithm, one needs to be able to use time steps at the scale of the porous medium with a quasi-stationary computation of 
the free flow at each time step. A time splitting algorithm with local time stepping in the free-flow domain is investigated 
in [12] for a related but different problem coupling the Richards equation in the porous medium and the Stokes equation 
for the liquid phase in the free-flow region.

Alternatively, fully coupled algorithms such as the ones developed in [8,13–15] have been introduced, but they lead to 
nonlinear and linear systems which are difficult and expensive to solve since they do not take advantage of the different 
levels of coupling in the nonlinear system and prevent the use of on-the-shelves preconditioners.

The algorithm proposed in [5] for isothermal models is based on a splitting between (i) the Darcy model coupled with 
the transport in the free-flow region, and (ii) the flow in the free-flow region. Its efficiency comes from the weak coupling 
between the Darcy model and the free-flow while the coupling between the Darcy model and the transport in the free-flow 
region is strong.

Heterogeneous domain decomposition methods have been applied to couple different physical models in different parts 
of the domain. A coupled problem related to our model and which has been extensively addressed in the literature is the 
coupling of a single phase Darcy flow with a Stokes or Navier–Stokes free flow. For this type of model, different domain 
decomposition methods have been developed such as Robin Robin domain decomposition methods in [16], [17] or iterative 
substructuring domain decomposition algorithms (see the review [18]).

It is worth to mention that our coupled model somehow includes the Darcy - Navier–Stokes coupling for the common 
gas phase between the two regions. However this is not the dominant coupling in our model since the porous medium 
is assumed to weakly perturbate the gas velocity and pressure in the free-flow domain. Our strategy is based on the 
assumption that the dominant coupling is rather between (a) in the porous medium and (b) in the free-flow domain with

(a) the liquid pressure and the temperature in the porous medium governed approximately by the Richards equation and 
the energy conservation equation,

(b) the vapor molar fraction and the temperature in the free-flow domain governed approximately by the transport equa-
tions at fixed velocity and gas pressure.

These assumptions lead to the domain decomposition algorithm proposed in this work and based on optimized Schwarz 
methods. This algorithm solves iteratively at each time step until convergence to the fully coupled solution:

(i) the nonisothermal liquid gas Darcy flow in the porous-medium domain using at the interface Robin boundary condi-
tions as well as an additional Dirichlet boundary condition for the gas pressure,

(ii) the free-flow model for the velocity and for the pressure in the free-flow domain with a Dirichlet boundary condition 
for the velocity

(iii) the molar and energy transport in the free-flow domain with Robin boundary conditions.

The computation of the Robin coefficients of steps (i) and (iii) is crucial to guarantee the efficiency and robustness of 
the algorithm. This computation is based on a low frequency diagonal approximation of the Dirichlet to Neumann operator 
related to the neighboring subdomain model. In both cases, the methodology is first to simplify and linearize the neigh-
boring subdomain problem and then to compute a diagonal approximation of its Dirichlet to Neumann operator which is 
exact on constant modes along the interface. Thanks to the quasi linearity of the free-flow transport model and to the small 
free-flow velocity and pressure perturbation, a rather accurate approximation can be computed for the Robin coefficients of 
step (i) while for step (iii) a rather rough zeroth-order Taylor approximation of the Dirichlet to Neumann operator is used 
which suffices to obtain a good order of magnitude. The combination of both approximations is shown in the numerical 
section to provide an efficient and robust convergence of the domain decomposition algorithm.

The outline of the remaining of this paper is the following. The coupled model and its formulation is detailed in section 2. 
The domain decomposition method used to solve the coupled nonlinear system at each time step, after Euler implicit 
time integration, is presented in section 3. The computation of the Robin coefficients to speed up the convergence of the 
domain decomposition algorithm is explained in section 4. The robustness and efficiency of our domain decomposition 
algorithm is assessed on four two-dimensional test cases presented in section 5 and including a wide range of model or 
discretization parameters such as the mesh size, the input free-flow velocity, the temperature range, the permeability, the 
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capillary pressure and the heterogeneities. The first three test cases are defined by Andra and are related to the simulation 
of the mass and energy exchanges occurring at the interface between the geological formation and the ventilated excavated 
galleries.

2. Formulation of the coupled model

Let us denote by �pm the porous-medium domain, by �ff the free-flow domain and by � = ∂�pm ∩ ∂�ff the interface.
Let P = {g, �} denote the set of gas and liquid phases assumed to be both defined by a mixture of components i ∈ C

among which the water component denoted by w which can vaporize in the gas phase, and a set of gaseous components 
j ∈ C \ {w} which can dissolve in the liquid phase.

Both the gas and the liquid phases can be present in the porous-medium domain while only the gas phase is assumed 
to be present in the free-flow domain. Each phase α ∈ P is defined by its pressure pα , temperature T and molar fractions 
cα = (cα

i )i∈C . For each phase, α ∈ P , ζα(pα, T , cα) denotes its molar density, ρα(pα, T , cα) its mass density, μα(pα, T , cα)

its dynamic viscosity, hα(pα, T , cα) its molar enthalpy, and eα(pα, T , cα) = hα(pα, T , cα) − pα

ζα its molar internal energy. For 
the gas phase, assuming an ideal mixture, the molar enthalpy is defined by

hg(pg, T , cg) =
∑
i∈C

cg
i hg

i (pg, T ),

where hg
i (pg, T ) is the molar enthalpy of the component i in the gas phase. For i ∈ C and α ∈ P , we also denote by 

f α
i (pα, T , cα) the fugacity of the component i in the phase α.

We now turn to the definition of the model in each subdomain followed by the description of the coupling conditions 
at the interface �.

2.1. Nonisothermal compositional Darcy flow in the porous medium

Although the domain decomposition algorithm of section 3 can be written regardless of the choice of the primary 
unknowns in the porous-medium domain, it is convenient to specify this choice to fix ideas. Following [19,20], our choice 
of the liquid gas Darcy flow formulation uses the pressures pg , p� of both phases, the vector f = ( f i)i∈C of the component 
fugacities and the temperature, denoted by Tpm in the porous medium, as primary unknowns.

In this formulation, following [21], the molar fractions cα of each phase α ∈ P are defined as a function of pα , f, Tpm

by inversion of the equations

f α
i (pα, Tpm, cα) = f i, i ∈ C, (1)

which means that the molar fractions of an absent phase is extended by the molar fractions at equilibrium with the present 
phase. In addition, for each phase α ∈P , the pressure pα is also extended in the absence of the phase α in such a way that 
the closure law 

∑
i∈C cα

i = 1 is always imposed (see [19,20]). Using this extension of the phase pressures, the gas saturation 
sg(x, pg − p�) is defined by the inverse of the monotone graph extension of the capillary pressure function and the liquid 
saturation is given by s� = 1 − sg . Note that in the remaining of the paper, the molar fractions cα of each phase α ∈ P
are implicitely considered as the function cα(pα, Tpm, f) of the primary unknowns even if this dependence is not made 
explicit. This formulation is shown in [20] to be equivalent at the continuous level to more usual formulations not based on 
extensions of the phase molar fractions and based on alternative extensions of the phase pressures. At the discrete level, the 
extension of the phase molar fractions does not modify the discrete solution since the phase molar fractions are multiplied 
either by the phase saturation or by the phase mobility which both vanish when the phase if absent. On the other hand, 
the way the pressure of an absent phase is extended can clearly modify the flux at the interface between a single phase cell 
and a two phase cell. Nevertheless, convergence to the same solution is observed when the mesh is refined (see [20] for a 
comparison of different formulations and a more detailed discussion).

Let us define, for each component i ∈ C , the total number of moles per unit pore volume by

ni =
∑
α∈P

ζαcα
i sα,

and the energy per unit volume by

E = φ(x)
∑
α∈P

ζαeαsα + (1 − φ(x))ζ rer,

where φ(x) is the porous-medium porosity, er(Tpm) is the rock molar internal energy, and ζ r(Tpm) is the rock molar density.
The Darcy velocities are defined by

uα = −kα
r (x, sα)

α
K(x)(∇pα − ραg), α ∈ P,
μ
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where K(x) is the porous medium absolute permeability tensor, kα
r (x, sα) is the phase α relative permeability, and g is the 

gravitational acceleration vector.
The component molar flow rate is defined by

vi =
∑
α∈P

ζαcα
i uα − dα

pm(x, sα)∇cα
i , i ∈ C,

where dα
pm(x, sα) is the effective diffusion coefficient of the phase α ∈ P in the porous medium. It typically depends on 

the molecular diffusion coefficient, the porous medium porosity, a geometric factor known as the tortuosity and the phase 
saturation (see [22,23]). The energy flow rate is defined by

ve =
∑
α∈P

ζαhαuα − λpm(x, s�)∇Tpm,

where λpm(x, s�) is the thermal conductivity of the rock fluid mixture.
For a final time tf , the model using the primary unknowns pg , p� , f and Tpm accounts for the following mole and energy 

conservation equations

φ∂tni + ∇ · vi = 0, on �pm × (0, tf), i ∈ C,

∂t E + ∇ · ve = ge(x, t), on �pm × (0, tf),
(2)

coupled with the sum to 1 of the molar fractions for each phase given by∑
i∈C

cα
i = 1, on �pm × (0, tf), α ∈ P, (3)

where ge(x, t) is an additional heat source term defined on �pm × (0, tf).

2.2. Flow and transport model in the free-flow domain �ff

To fix ideas, the primary unknowns in the free-flow domain are defined by the gas pressure denoted by p, the gas 
velocity denoted by u, the gas molar fractions denoted by c = (ci)i∈C and the temperature denoted by T ff . The gas flow and 
transport is described by a Reynolds Averaged Navier–Stokes (RANS) compositional and nonisothermal model. It is assumed 
to be quasi-stationary at the time scale of the porous medium and is governed by the following momentum conservation 
equation coupled with the mass and energy conservation equations

∇ ·T = ρ gg, on �ff × (0, tf),

∇ · wi = 0, on �ff × (0, tf), i ∈ C,

∇ · we = 0, on �ff × (0, tf),

(4)

together with the closure law∑
i∈C

ci = 1. (5)

In (4), the following constitutive equations are used. The stress tensor is defined by

T = ρ gu ⊗ u − (μt + μg)(∇u + ∇tu) + pI, (6)

the component molar flow rate is defined by

wi = ζ g(ciu − (dt + dg)∇ci), (7)

and the energy flow rate by

we == ζ ghgu −
∑
i∈C

ζ ghg
i (dt + dg)∇ci − (λt + λg)∇T ff =

∑
i∈C

hg
i wi − (λt + λg)∇T ff. (8)

The standard thermal conductivity of the gas phase is denoted by λg and the gas Fickian diffusion coefficient by dg . They 
both can depend on p, T ff and c but will be taken constant in the numerical experiments. The turbulent dynamic viscosity 
μt is typically obtained using an algebraic turbulent model or a more advanced k −ε model [15] from which is also deduced 
the turbulent diffusivity dt and the turbulent thermal conductivity λt . Note that, in the following numerical experiments, 
the turbulent dynamic viscosity, diffusivity and thermal conductivity will be computed from the stationary uncoupled gas 
flow. This is motivated by the small perturbation of the free-flow velocity and pressure induced by the coupling with the 
porous medium. In practice we will use the Prandtl algebraic turbulent model as in [5] (see the numerical Section 5).
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2.3. Transmission conditions at the interface

At the interface � between the free-flow and the porous-medium domains, the coupling conditions are those stated in 
[7,15,5] where we have replaced the Beaver Joseph condition by the simpler no slip condition due to the low permeability 
of the porous medium in our application.

Let npm and nff such that npm + nff = 0 be the unit normal vectors at the interface � oriented respectively outward from 
the porous-medium and free-flow domains. The interface conditions state the continuity of the gas molar fractions and of 
the molar normal flow rates, the continuity of the temperature and of the energy normal flow rate as well as the gas no 
slip condition in the free-flow domain and the continuity between the gas pressure in the porous-medium domain and the 
normal component of the normal stress in the free-flow domain.

cg
i = ci, vi · npm = −wi · nff, on � × (0, tf), i ∈ C,

Tpm = T ff, ve · npm = −we · nff, on � × (0, tf),

u ∧ nff = 0, pg = nff ·Tnff, on � × (0, tf).

(9)

It is complemented by the sum to one of the liquid molar fractions in the porous-medium domain and of the gas molar 
fractions both in the porous-medium and free-flow domains.∑

i∈C
cα

i = 1, on � × (0, tf), α ∈ P. (10)

It results from the first equation in (9) and from (10) that the equation 
∑

i∈C ci = 1 also holds on � × (0, tf). Note that, 
due to our choice of the Darcy model formulation using the primary unknowns pg , p�, f, Tpm, the liquid gas equilibrium is 
a consequence of the equations (10) and of the gas saturation sg(x, pg − p�) expressed as a function of pg − p� using the 
inverse of the monotone graph extension of the capillary pressure. Note also that, in the absence of the gas phase at the 
interface on the porous-medium side, the extended gas pressure and gas molar fractions are used to express the continuity 
of the gas pressure and gas molar fractions.

3. Domain decomposition algorithm

The transmission conditions (9)–(10) at the interface � couple the porous medium equations (2)–(3) with the free-flow 
domain equations (4)–(5). The system (2)–(10) is integrated in time using an Euler implicit scheme, which leads to solve at 
each time step a fully coupled nonlinear system. The solution of this nonlinear system is obtained at each time step using 
a domain decomposition algorithm solving iteratively until convergence the three following submodels:

(i) the nonisothermal compositional liquid gas Darcy flow in the porous-medium domain using at the interface Robin 
boundary conditions as well as a Dirichlet boundary condition for the gas pressure,

(ii) the RANS flow equations for the velocity and for the pressure in the free-flow domain with a Dirichlet boundary 
condition for the velocity at the interface,

(iii) the convection diffusion equations in the free-flow domain for the gas molar fractions and the temperature with Robin 
boundary conditions at the interface.

This approach has two advantages. Firstly it allows to use different codes for the porous-medium and the free-flow 
problems. Secondly, it reduces the complexity of the nonlinear and linear systems and make it possible to use on-the 
shelves preconditioners which results in a better efficiency compared with a monolithic Newton algorithm solving the fully 
coupled system [7,15].

In the following, the time step count n is omitted for the sake of clarity, and the component total number of moles and 
the total energy in the porous medium at the previous time step are denoted respectively by nn−1

i and En−1. The domain 
decomposition count is denoted by the superscript k. As usual, the algorithm is initialized by the previous time step solution 
and by the initial condition at the first time step.

3.1. Compositional Darcy flow with Robin boundary conditions

The system (2)–(3) in the porous-medium domain is solved using Robin type boundary conditions at the interface �. 
These boundary conditions are obtained by linear combinations of, on the one hand, the continuity of the gas molar fractions 
and temperature, and, on the other hand, the continuity of the normal molar and energy flow rates. The coefficients of 
these linear combinations, denoted by L, Mi , i ∈ C and N in (11), will be computed in subsection 4.1 as functions of x
at the interface � in order to provide a good low frequency diagonal approximation of the Dirichlet to Neumann operator 
related to the transport equations in the free-flow domain. The Robin coefficients Mi , i ∈ C introduce a coupling between the 
temperature and the molar fractions in the Robin boundary conditions which is necessary to obtain the convergence of the 
domain decomposition algorithm as exhibited in Figs. 29 and 30 in the numerical section. This coupling is a consequence 
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of the strong coupling between the molar fractions and the temperature in the free-flow boundary layer at the interface 
induced by the additional term 

∑
i∈C −ζ ghg

i (dt + dg)∇ci in the free-flow energy equation (see equation (8)).
In addition to Robin type boundary conditions, we would like to fix also the gas pressure at the interface since its 

variation in the free-flow domain induced by the coupling is very small. This requires to free the total molar flow rate at 
the interface since otherwise the gas pressure cannot be prescribed together with the Robin boundary conditions for all 
components i ∈ C . This is implemented using the total molar flow rate correction defined at the interface on the free-flow 
side as additional unknown denoted by δk

v and oriented outward to the free-flow domain. This correction is induced by 
the coupling with the porous medium with prescribed gas pressure pg,k at the interface at iteration k of the domain 
decomposition algorithm. As can be seen from the last equation of (12), δk

v tends to zero at convergence of the domain 
decomposition algorithm to a fixed point solution. Alternatively, we could keep the gas pressure free at the interface for 
the Darcy flow subproblem and impose the normal component of the normal stress at the interface for the RANS flow 
subproblem (12) rather than the total flow rate. Since the gas pressure exhibits small variations, fixing the gas pressure for 
the Darcy flow subproblem is preferred.

Thus, the porous-medium subproblem solves for the phase pressures pα,k , α ∈P , the fugacity vector fk , the temperature 
T k

pm in �pm and at the interface � together with the normal velocity correction δk
v at the interface � such that

φ


t
(nk

i − nn−1
i ) + ∇ · vk

i = 0 in �pm, i ∈ C,

1


t
(Ek − En−1) + ∇ · vk

e = ge in �pm,∑
i∈C

cα,k
i = 1, in �pm, α ∈ P,

pg,k = ϕk on �,

Lcg,k
i − vk

i · npm − cg,k
i δk

v = ϕk
i on �, i ∈ C,∑

i∈C
Mic

g,k
i + NT k

pm − vk
e · npm − hg,k

pmδk
v = ϕk

e on �,

∑
i∈C

cα,k
i = 1, on �, α ∈ P,

(11)

with hg,k
pm = hg(pg,k, cg,k, T k

pm) and where the right hand sides

ϕk = nff ·Tk−1nff

ϕk
i = Lck−1

i − wk−1
i · npm, i ∈ C,

ϕk
e =

∑
i∈C

Mic
k−1
i + NT k−1

ff − wk−1
e · npm

are given by the previous domain decomposition iterate in the free-flow domain.

3.2. RANS flow with Dirichlet boundary condition

Given the normal velocity correction δk
v at the interface �, the pressure pk and the gas velocity uk in the free-flow 

domain are updated by solving the RANS flow with a Dirichlet boundary condition for the velocity at the interface �:

∇ ·Tk = ρ
g,k
ff g, in �ff,

∇ · (ζ g,k
ff uk) = 0, in �ff,

ζ
g,k

ff uk = ζ
g,k−1

ff uk−1 + δk
vnff, on �.

(12)

In (12), the stress tensor is defined by

T
k = ρ

g,k
ff uk ⊗ uk − (μk

t + μ
g,k
ff )(∇uk + ∇tuk) + pk

I,

with the turbulent viscosity μk
t given by the turbulent model which also provides the turbulent diffusivity dk

t and thermal 
conductivity λk

t that will be used in the following transport subproblem. Note also that, in (12), the gas mass and molar 
densities are computed using the gas molar fractions and the temperature in the free-flow domain at the previous domain 
decomposition iterate as follows:

ρ
g,k
ff = ρ g(pk, T k−1

ff , ck−1), ζ
g,k

ff = ζ g(pk, T k−1
ff , ck−1), μ

g,k
ff = μg(pk, T k−1

ff , ck−1). (13)
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3.3. Transport problem with Robin boundary conditions

Using the gas total molar flow rate ζ g,k
ff uk and pressure pk computed at the previous RANS flow step, the molar fractions 

ck and the temperature T k
ff are updated solving the transport model in the free-flow domain. Robin boundary conditions 

are imposed at the interface �. They are defined, for the molar conservation of each component i ∈ C (resp. of the energy), 
as a linear combination between the continuity equation of the gas molar fraction ci (resp. the temperature) and the 
continuity equation of the molar flux wi · nff (resp. the energy flux we · nff). The coefficients P and Q of these linear 
combinations in (14) will be computed in order to provide a good low frequency diagonal approximation of the Dirichlet to 
Neumann operators of respectively a Richards equation for the liquid pressure and of an energy conservation equation for 
the temperature in the porous-medium domain. It leads to the following transport subproblem:

∇ · wk
i = 0, in �ff, i ∈ C,

∇ · wk
e = 0, in �ff,

Pck
i − wk

i · nff = ψk
i on �, i ∈ C,

Q T k
ff − wk

e · nff = ψk
e on �,

(14)

where wk
i = ζ

g,k
ff (ck

i uk − (dk
t + dg,k)∇ck

i ) is the gas molar flow rate of the component i ∈ C using the same definition of the 
molar density ζ g,k

ff as in (13), and wk
e = ∑

i∈C hg
i (pk, T k

ff)wk
i − (λk

t + λg,k)∇T k
ff is the energy flow rate. In (14), the right hand 

sides are defined by

ψk
i = Pcg,k

i − vk
i · nff,

ψk
e = Q T k

pm − vk
e · nff.

The domain decomposition algorithm is iterated until the following stopping criterion at the interface � is satisfied for a 
given tolerance ε:∑

i∈C ‖cg,k
i − ck

i ‖∑
i∈C ‖ck

i ‖
+ ‖T k

pm − T k
ff‖

‖T k
ff‖

+
∑

i∈C ‖(vk
i − wk

i ) · nff‖∑
i∈C ‖wk

i · nff‖
+ ‖(vk

e − wk
e) · nff‖

‖wk
e · nff‖

+ ‖δk
v‖

‖ζ g,k
ff uk · nff‖

< ε, (15)

where ‖ · ‖ is a functional norm on �.
Let us show that any fixed point solution of our DDM algorithm satisfies the original physical transmission conditions 

(9)–(10) at the interface. Gathering the fixed point equations at the interface � derived from (11)–(12)–(14) by dropping 
the iteration count k, we obtain that

pg = nff ·Tnff,

δvnff = ζ
g

ff u − ζ
g

ff u,

P (cg
i − ci) + (vi − wi) · npm = 0, i ∈ C,

L(cg
i − ci) − (vi − wi) · npm = cg

i δv, i ∈ C,

Q (Tpm − T ff) + (ve − we) · npm = 0,∑
i∈C

Mi(cg
i − ci) + N(Tpm − T ff) − (ve − we) · npm = hg

pmδv,

∑
i∈C

cα
i = 1,α ∈ P.

The second equation implies that δv = 0. Assuming that L + P 	= 0, the third and fourth equations provide that cg
i = ci and 

vi · npm = wi · npm for all i ∈ C . Then, assuming that N + Q 	= 0, the fifth and sixth equations imply that Tpm = T ff and 
ve · npm = we · npm. Our construction of the Robin coefficients detailed in the next section guarantees that the coefficients 
L, P , N and Q are strictly positive. It results that a fixed point solution of the DDM algorithm satisfies the transmission 
conditions (9)–(10) and hence is a solution of the fully coupled model.

4. Computation of the Robin coefficients

The computation of the Robin coefficients L, Mi , i ∈ C and N for the Darcy problem (11) and P and Q for the free-flow 
transport problem (14) is essential to obtain a robust and efficient convergence of the domain decomposition algorithm.

For a scalar linear Partial Differential Equation (PDE) such as a diffusion or a convection diffusion equation on both 
subdomains, optimized Schwarz methods have been designed. They compute the Robin coefficients in both subdomains 
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simultaneously in order to optimize the convergence rate of the domain decomposition algorithm. These computations 
assume that the coefficients of the PDEs are constant, either the same in both subdomains [24], [25] or discontinuous at 
the interface [26].

The extension to nonlinear problems is based on a linear approximation of the PDEs and a freeze of their coefficients at 
each point of the interface [27]. For systems of PDEs, optimized Robin coefficients are much more difficult to compute. Also, 
in our case, the turbulent boundary layer plays a major role in the evaporation process and requires to take into account the 
variable coefficients of the free-flow molar and energy transport problem more accurately than by freezing their values at 
the interface. This motivates the use of a simpler approach based on diagonal low frequency approximations of the Dirichlet 
to Neumann (DtN) operator of the neighboring subdomain problem as explained below.

The DtN operator condensates the neighboring subdomain problem at the interface and is known to define an optimal 
boundary condition in the sense that, for a linear neighboring subdomain problem, it provides the convergence of the 
domain decomposition algorithm in two iterations only (see [28]). On the other hand, this operator is dense and expensive 
to compute exactly. This is why sparse local approximations are built based on differential operators along the interface. 
The Robin boundary condition corresponds to a zeroth-order differential operator defined as a function along the interface 
or in other words as a diagonal approximation of the DtN operator. It is called a low frequency approximation because it is, 
in a sense that is specified below, an exact approximation of the DtN operator on constant modes along the interface. Both 
constructions of L, Mi , i ∈ C , N , and of P and Q share the same methodology: (i) simplify and linearize the neighboring 
subdomain problem and (ii) compute a diagonal approximation which is exact on constant modes along the interface. They 
differ in the way the simplified and linearized models are defined. For L, Mi , i ∈ C , N , the neighboring subdomain problem 
is the transport free-flow model coupling the molar fractions and the temperature. Its linearization around the free-flow 
uncoupled solution provides a good approximation of the free-flow transport model. It allows to keep the coupling between 
the molar fractions and the temperature as well as the variable coefficients which both play a major role in the free-flow 
domain boundary layer at the interface. It results that the Robin coefficients L, Mi , i ∈ C , N provide a good approximation of 
the turbulent conduction and diffusion processes in the free-flow boundary layer. For P and Q , the neighboring problem is 
the highly nonlinear nonisothermal compositional liquid gas Darcy flow. Given its complexity, a rather rough approximation 
is used based on a the Richards equation for P and the energy equation for Q . These simplified models are known to 
provide a good approximation of the liquid saturation (or liquid pressure) and of the temperature in the porous medium. 
Both scalar equations are decoupled and linearized and their coefficients are freezed at the interface. Also, the domain 
is considered unbounded in the normal direction leading to the so-called DtN zeroth-order Taylor approximation which 
suffices to capture a good order of magnitude of the Robin coefficients P and Q capturing their variation with respect to 
the time step size and to the relative humidity (see the left Fig. 11). Combined with the more accurate approximation of 
the DtN defined for the coefficients L, Mi , i ∈ C , N , it is shown in the numerical section to provide a good convergence of 
the domain decomposition algorithm for a wide range of parameters. We now detail both constructions in the following 
subsections.

4.1. Computation of L, Mi, i ∈ C and N

The diagonal low frequency approximations of the Dirichlet to Neumann operators in the free-flow domain are related to 
the so-called convective molar and energy transfer coefficients. Their computation can be based on the uncoupled solution 
of the transport problem in the free-flow domain or alternatively on the coupled solution. Since the perturbation induced by 
the coupling with the porous-medium domain is small in the free-flow domain, both computations lead to similar results. In 
our case, it is more convenient to compute the Robin coefficients from the uncoupled solution since the boundary conditions 
on ∂�ff \ � and consequently the uncoupled solution are fixed in the numerical experiments of section 5.

Let us denote by (u0, p0, c0, T 0
ff) the solution of the uncoupled RANS flow and transport model (4)–(5)–(7)–(8) in the 

free-flow domain obtained by considering vanishing molar and energy normal fluxes at the interface �. Let us denote the 
uncoupled molar flow rates of the components by i ∈ C

w0
i = ζ g(p0, T 0

ff, c0)
(

c0
i u0 − (d0

t + dg,0)∇c0
i

)
,

and the uncoupled energy flow rate by

w0
e =

∑
i∈C

hg
i (p0, T 0

ff)w0
i − (λ0

t + λg,0)∇T 0
ff.

By definition they are such that w0
i · nff|� = 0 and w0

e · nff|� = 0.
The mean uncoupled pressure is denoted by 〈p0〉 = 1∫

�ff
dx

∫
�ff

p0(x)dx and the mean uncoupled temperature by 〈T 0
ff〉 =

1∫
�ff

dx

∫
�ff

T 0
ff(x)dx. Let us also denote by d0

t and λ0
t the uncoupled turbulent diffusivity and thermal conductivity and by 

dg,0 and λg,0 the uncoupled gas Fickian diffusion and standard thermal conductivity.
The Robin coefficients L, Mi , i, j ∈ C and N are computed from a linear approximation of the transport equations around 

the uncoupled solution u0, p0, c0, T 0. For the coefficient L, a full matrix Li, j with i, j ∈ C is first considered and shown to 
ff
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reduce to Lδi, j in the usual case. Let us define the solutions δc and δT of the following linearized transport equations in 
the free-flow domain with the Dirichlet boundary conditions δc� = (δci,�)i∈C and δT� at the interface �:

∇ · δwi = 0, in �ff, i ∈ C,

∇ · δwe = 0, in �ff,

δci = δci,� on �, i ∈ C,

δT = δT� on �,

(16)

with homogeneous boundary conditions at ∂�ff \ � and with

δwi = ζ g(p0, T 0
ff, c0)

(
δciu

0 − (d0
t + dg,0)∇δci

)
, i ∈ C,

δwe =
∑
i∈C

(
hg

i (p0, T 0
ff)δwi + ∂hg

i

∂T
(〈p0〉, 〈T 0

ff〉)δT w0
i

)
− (λ0

t + λg,0)∇δT .

The choice of ∂hg
i

∂T (〈p0〉, 〈T 0
ff〉) rather than ∂hg

i
∂T (p0, T 0

ff) is motivated by the maximum principle for the solution of equation 
(20) which is obtained only for a divergence free velocity.

The Dirichlet to Neumann operators related to the linearized transport equations (16) are defined from these solutions 
δc and δT by

(δc�, δT�) → DtNi(δc�, δT�) = −δwi · nff|�, i ∈ C,

(δc�, δT�) → DtNe(δc�, δT�) = −δwe · nff|�.

The Robin coefficients are built from low frequency diagonal approximations of these Dirichlet to Neumann operators com-
puted in order to be exact on the constant basis functions for δc� and δT� along the interface �. Hence, for i ∈ C , let us 
define δe(i) such that δe(i)

j = δi, j , j ∈ C . Then we set

Li, j = DtNi(δe( j),0), i, j ∈ C,

Mi = DtNe(δe(i),0), i ∈ C,

N = DtNe(0,1).

Provided that, as usual, the boundary conditions on ∂�ff \� for the molar transport equations do not couple the components 
and are of the same type for all components i ∈ C , it is clear that Li, j = Lδi, j for all i, j ∈ C where L is defined by the 
following function along the interface �:

L(x) = −ζ g(p0, T 0
ff, c0)(d0

t + dg,0)∇δc1 · nff(x), x ∈ �, (17)

with δc1 solution of the following scalar convection diffusion equation:

∇ ·
(
ζ g(p0, T 0

ff, c0)
(
δc1u0 − (d0

t + dg,0)∇δc1

))
= 0, in �ff,

δc1 = 1 on �.
(18)

Similarly, the Robin coefficient N is defined by the following function along the interface �:

N(x) = −(λ0
t + λg,0)∇δT · nff(x), x ∈ �, (19)

with δT solution of the following scalar convection diffusion equation:

∇ ·
(∑

i∈C

(
∂hg

i

∂T
(〈p0〉, 〈T 0

ff〉)δT w0
i

)
− (λ0

t + λg,0)∇δT

)
= 0, in �ff,

δT = 1 on �.

(20)

Using the solution δc1 of equation (18), let us set

δw1 = ζ g(p0, T 0
ff, c0)

(
δc1u0 − (d0

t + dg,0)∇δc1

)
.

The solution δc(i), δT (i) of equations (16) with the Dirichlet boundary conditions δc = δe(i) , δT = 0 on � is given by δc(i)
i =

δc1 and δc(i)
j = 0 for j 	= i and the solution δT (i) of the following convection diffusion equation with a source term and an 

homogeneous Dirichlet boundary condition on �:
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∇ ·
⎛
⎝∑

j∈C

(
∂hg

j

∂T
(〈p0〉, 〈T 0

ff〉)δT (i)w0
j

)
− (λ0

t + λg,0)∇δT (i)

⎞
⎠ = −∇ ·

(
hg

i (p0, T 0
ff)δw1

)
in �ff,

δT (i) = 0 on �.

(21)

Then, the Robin coefficient Mi , i ∈ C is defined from the solution δT (i) by

Mi(x) =
(
−(λ0

t + λg,0)∇δT (i) − hg
i (p0, T 0

ff)ζ
g(p0, T 0

ff, c0)(d0
t + dg,0)∇δc1

)
· nff(x), x ∈ �. (22)

Using that ∇ ·w0
i = 0 for all component i ∈ C , it results from the maximum principle [29] applied to the convection diffusion 

equations (18) and (20) that the Robin coefficients L and N are strictly positive which ensures the well-posedness of the 
porous medium subproblem of subsection 3.1. In practice, these scalar convection diffusion equations are solved numerically 
using the same discretization than the one used for the transport equations in the free-flow domain.

Remark 1. Assuming that the uncoupled temperature T 0
ff is constant and neglecting the uncoupled pressure p0 variations, 

the right hand side in equation (21) vanishes and hence δT (i) = 0. It results, in that case, that the following relation between 
the Robin coefficients Mi and L holds for all i ∈ C:

Mi(x) = hg
i (p0, T 0

ff)L(x).

Remark 2. Let us consider the case of an air (a) and water (w) system, and let us assume that c0
w << c0

a , that c0 is constant 
and that hg

a (T ) = C g
p,ama T where C g

p,a is the specific heat capacity of pure air and ma the air molar mass. It results that the 
following approximation

∑
i∈C

(
∂hg

i

∂T
(〈p0〉, 〈T 0

ff〉)δT w0
i

)

 C g

p,aζ
gmaδT u0,

can be made in equation (20). Let us also assume that the following typical relation holds between the diffusivity and the 
thermal conductivity:

(λ0
t + λg,0) 
 C g

p,aζ
gma Sc(d

0
t + dg,0),

where Sc is the Schmidt number. Assuming Sc = 1, it results from equations (18), (20) and from the definition (17) of L
and (19) of N that the following approximate relation between the Robin coefficients L and N holds

N(x) 
 C g
p,ama L(x).

4.2. Computation of P and Q

Our strategy to compute the Robin coefficients P and Q is based on the Richards equation coupled with the energy 
conservation equation. This simplified system provides a good approximation of the liquid pressure and of the tempera-
ture. Then, after time integration using an Euler implicit scheme, these equations are linearized and their coefficients are 
freezed at each point of the interface � leading to a constant coefficient linear system of two PDEs with two unknowns. 
A zeroth-order Taylor diagonal approximation of the Dirichlet to Neumann operator related to this PDE system leads to a 
2 by 2 matrix (see [28]) which is evaluated on the current solution obtained at each point of the interface. To simplify 
the computations, the Richards and energy conservation equations will be decoupled leading to a diagonal 2 by 2 matrix 
defining precisely the coefficients P and Q with simple analytical formulae evaluated at each point of the interface �. In 
practice, this decoupled approach suffices to obtain a good convergence as will be exhibited in the numerical section 5.

The simplified system coupling the Richards and energy conservation equations is obtained by neglecting the dissolution 
of the gaseous component in the liquid phase and by neglecting the variation of the gas pressure which is approximated by 
the reference pressure denoted by pg

ref typically given by the outflow pressure in the free-flow domain (see [30]).
Let us define the pure water molar fractions c̄� in the liquid phase by c̄�

w = 1 and c̄�
j = 0 for j ∈ C \ {w}. The molar 

fractions c̄g in the gas phase at thermodynamical equilibrium with c̄� are given for each components i ∈ C by

c̄ g
i (p�, Tpm) = cg

i (pg
ref, Tpm, f �(p�, Tpm, c̄�)).

Let us define s̄l(x, pl) = sl(x, pg
ref − pl) and let us denote the thermodynamical laws as functions of p� and Tpm by 

ζ̄ α(p�, Tpm), ρ̄α(p�, Tpm), ēα(p�, Tpm), h̄α(p�, Tpm), and μ̄α(p�, Tpm) for α ∈P . Finally let us set
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n̄w(x, p�, Tpm) = ζ̄ � s̄� + ζ̄ g(1 − s̄�)c̄ g
w , M�(x, p�, Tpm) = ζ̄ �

μ̄�
k�

r (x, s̄�),

Ē(x, p�, Tpm) = φ(s̄�ē� + (1 − s̄�)ēg) + (1 − φ)ζ rer .

The Richards equation with prescribed water molar fraction cw,� at the interface � is defined as follows after Euler implicit 
time integration:

φ


t
(n̄w − n̄n−1

w ) + ∇ · v̄w = 0, in �pm,

c̄ g
w(p�, Tpm) = cw,�, on �,

(23)

where

v̄w = −M�
K(∇p� − ρ̄�g) − dg

pm(x,1 − s̄�)∇ c̄ g
w(p�, Tpm).

The simplified energy conservation equation with prescribed temperature T� at the interface � is defined by

1


t
(Ē − Ēn−1) + ∇ · v̄e = 0, in �pm,

Tpm = T�, on �,

(24)

where

v̄e = −M�h̄�
K(∇p� − ρ̄�g) − λpm(x, s̄�)∇Tpm.

To compute the Robin coefficient P , the Richards equation (23) is linearized with respect to p� at fixed temperature Tpm

leading to the equation

ηδp� − ∇ · (κ∇δp� − �δp�) = 0, in �pm, (25)

with the Dirichlet boundary condition

δp� = ξδcw on �. (26)

The coefficients are defined by

ξ = 1
∂ c̄ g

w
∂ p�

, η = φ


t

∂n̄w

∂ p�
, κ = M�

K+ dpm
∂ c̄ g

w

∂ p�
I, � = −∂M�

∂ p�
K∇p� + ∂M�ρ̄�

∂ p�
Kg − ∂dpm

∂ p�
∇ c̄ g

w .

The Robin coefficient P is obtained using the DtN zeroth-order Taylor approximation [28] of this linear scalar equation 
with freezed coefficients at each point of the interface �. The values of the coefficients ξ , η, κ and � are freezed at given 
position x ∈ �, time tn , liquid pressure p�(x, tn), and temperature Tpm(x, tn). Then, considering a constant mode along the 
interface � as a low frequency approximation, the equation (25) is integrated along the normal direction x + nnff with 
n ∈ (0, +∞) using the Dirichlet boundary condition (26) obtained with δcw = 1. It is complemented by a boundedness 
condition when n goes to infinity.

ηδp�(n) − (κnff · nff)
d2δp�

dn2
(n) + (� · nff)

dδp�

dn
(n) = 0 on (0,+∞),

δp�(0) = ξ,

lim
n→+∞|δp�(n)| < +∞.

The normal flux at the interface n = 0 defined by

−(κnff · nff)
dδp�

dn
(0) + (� · nff)δp�(0),

is the DtN zeroth-order Taylor approximation and is equal to

P (x, tn) = ξ

2

(
� · nff +

√
(� · nff)

2 + 4ηκnff · nff

)
.

The Robin coefficient Q is computed using the same methodology. We first linearize the energy conservation equation 
(24) with respect to Tpm at fixed liquid pressure p� and freeze its coefficients at each point of the interface �. Then, Q (x, tn)
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is equal to the zeroth-order Taylor approximation of the DtN operator of this constant coefficient linear scalar equation. The 
same formula as for P is obtained with new coefficients defined by

ξ = 1, η = 1


t

∂ Ē

∂Tpm
, κ = λpm, � = −∂M�h̄�

∂Tpm
K∇p� + ∂M�h̄�ρ̄�

∂Tpm
Kg.

Let us remark that the Robin coefficients P and Q are strictly positive which ensures the well-posedness of the transport 
subproblem of subsection 3.3.

5. Numerical experiments

In order to assess the efficiency of the domain decomposition algorithm, we consider in the following tests a simple 
2D setup with the free-flow vertical domain �ff = (0, l) × (0, hff) and the porous-medium vertical domain �pm = (0, l) ×
(hff, hpm) sharing the interface � = (0, l) × {hff} with hpm > hff > 0 and l > 0.

The top boundary of the porous medium is denoted by �up = (0, l) ×{hpm}, the output boundary of the free-flow domain 
is denoted by �out = {l} × (0, hff), and the input boundary by �in = {0} × (0, hff).

The liquid and gas phases are considered as mixtures of air (a) and water (w) defining the set of components C = {a, w}. 
The liquid molar density is fixed to ζ � = 55555 mol · m−3 and its viscosity to μ� = 10−3 Pa · s. The gas molar density is 
given by the perfect gas law

ζ g = pg

RT
,

where R = 8.314 J · mol−1 · K−1 is the ideal gas constant. The gas viscosity μg = 1.851 · 10−5 Pa · s is assumed constant. The 
mass density of the phase α ∈P is deduced from the molar density by the relation

ρα(pα, T , cα) = ζα(pα, T , cα)
∑
i∈C

cα
i mi,

where the molar masses of the water component and of the air component are given respectively by mw = 18 · 10−3 kg ·
mol−1 and by ma = 29 · 10−3 kg · mol−1.

The fugacities of the components in the gas phase are given by Dalton’s law for an ideal mixture of perfect gas

f g
i = cg

i pg, i ∈ C.

The fugacities of the components in the liquid phase are given by Henry’s law for the dissolution of the air component in 
the liquid phase

f �
a = c�

a Ha(T ),Ha(T ) = H1 + T − T1

T2 − T1
(H2 − H1),

with H1 = 6 ·109 Pa, H2 = 1010 Pa, T1 = 293 K, T2 = 353 K, and by Raoult–Kelvin’s law for the water component in the liquid 
phase

f �
e = c�

e psat(T )exp

(
p� − psat(T )

ζ �RT

)
,

where psat(T ) is the vapor pressure of the pure water given by the Rankine’s formula. The molar fractions cα as functions 
of pα, T , f are deduced by inversion of the fugacity equations (1) leading to

c�
w(p�, T , f) = f w

psat(T )
exp

(
psat(T ) − p�

ζ �RT

)
,

c�
a(p�, T , f) = fa

Ha(T )
,

cg
i (pg, T , f) = f i

pg
, i ∈ C.

The liquid molar enthalpy is taken from [31] and the gas molar enthalpy is defined by

hg(pg, Tpm, cg) =
∑
i∈C

hg
i (pg, Tpm)cg

i ,

with the enthalpy of each component given in [31] for the water component and by
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hg
a (T ) = C g

p,ama T

for the air component, where C g
p,a = 1000 J · K−1 · kg−1 is the specific heat capacity of pure air. In the porous-medium 

domain, the rock internal energy per unit rock volume is given by ζ rer(T ) = 2 · 106T J · K−1 · m−3. The thermal conductivity 
of the liquid gas rock mixture is considered as constant for the sake of simplicity and fixed to λpm = 2 W · K−1 · m−1.

The liquid saturation and the phase relative permeabilities are given by the Van Genuchten laws defined by

s�(pc) = s�
r + (1 − s�

r − sg
r )(1 + (p−1

r pc)
nr)−mr , (27)

and

k�
r (s�) =

⎧⎪⎨
⎪⎩

0 if s� < s�
r ,

(1 − (1 − (s̄�)1/mr )mr )2
√

s̄� if s�
r ≤ s� < 1 − sg

r ,

1 otherwise,

kg
r (sg) =

⎧⎪⎨
⎪⎩

0 if sg < sg
r ,

(1 − (s̄�)1/mr )2mr
√

1 − s̄� if sg
r ≤ sg < 1 − s�

r ,

1 otherwise,

(28)

with

s̄�(s�) = s� − s�
r

1 − s�
r − sg

r
,

and mr = 1 − n−1
r . The parameters s�

r , sg
r , pr and nr will be specified for each test case according to the rocktype.

In the free-flow domain, the turbulent viscosity μt used to define the RANS stress tensor (6) is given by the Prandtl 
algebraic turbulent model as in [5] and computed once and for all from the uncoupled solution in the free-flow model. The 
turbulent diffusivity

dt = μt

ρ g Sc

is deduced using the Schmidt number Sc = 1, and the gas Fickian diffusion coefficient is fixed to dg = 2 · 10−5 m2 · s−1. 
The turbulent thermal conductivity is similarly defined by λt = C g

p,aμt and the gas thermal conductivity is fixed to λg =
0.026 W · m−1 · K−1.

Following [5], a Cartesian mesh uniform in the x direction and refined at the interface � on both sides is used. The Darcy 
problem (11) and the convection diffusion equations (14) are solved using a two-point flux approximation scheme given 
in [32] with additional face unknowns at the interface � to discretize the boundary conditions. The RANS model in (12) is 
solved using a staggered Marker And Cell scheme given in [33]. An implicit Euler scheme is used for the time integration 
using the time stepping


t1 = 
t0,


tn = min(ρδt
tn−1,
tmax), n > 1,
(29)

with an initial time step 
t0, a growth rate ρδt and a maximum time step 
tmax ≥ 
t0. The final simulation time is denoted 
by tf. The nonlinear systems obtained at each time step and at each domain decomposition iteration are solved using a 
Newton algorithm for both the Darcy (11) and transport (14) subproblems and a Quasi Newton algorithm described in [5]
for the RANS flow subproblem (12). The sizes of the linear systems for the Darcy and transport subproblems amount to 3
conservation equations and unknowns per cell and 3 equations and unknowns per face at the interface �. This reduction 
is achieved for the Darcy problem thanks to the elimination of the local closure laws. The linear system for the RANS flow 
Quasi-Newton algorithm couples the two components of the velocity and the pressure. It is based on the uncoupled RANS 
flow model leading to a linear system independent of time which can be factorized once and for all. The solution of each 
linear system is computed at each nonlinear solver iteration using the sequential version of the SuperLU direct sparse solver 
[34], [35].

The first three test cases are simplified two dimensional test cases defined with Andra [5] to simulate the mass and en-
ergy exchanges occurring within deep geological radioactive waste disposal at the interface between a geological formation 
with low permeable porous medium and a ventilated excavated gallery. The data sets are derived from lab experiments 
and in accordance with the deep disposal center for French radioactive waste project. The fourth test case considers the 
convective drying of a porous medium with a much larger permeability.
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Fig. 1. Setup of the Andra test case 1.

Fig. 2. Liquid saturation function and relative permeabilities of both phases in the Callovo Oxfordian clay (—) and in the concrete layer (– –).

5.1. Andra test case 1

For this first Andra test case, we consider the domain defined by l = 100 m, hpm = 15 m and hff = 5 m. As exhibited in 
Fig. 1, the porous medium includes a layer of concrete rocktype in the domain �cc = (0, l) × (hff, hcc) with hcc = 6 m and a 
Callovo Oxfordian clay (COx) rocktype in the remaining domain �ox = �pm \ �cc.

The porosity and the isotropic permeability are set according to the rocktype such that

φ =
{

0.3 in �cc,

0.15 in �ox,
K=

{
10−18 m2 in �cc,

5 · 10−20 m2 in �ox.

The Van Genuchten parameters of each rocktype, governing the liquid saturation and the relative permeability functions 
(27) and (28) exhibited in Fig. 2, are set to

nr =
{

1.54, in �cc,

1.49, in �ox,
pr =

{
2 · 106 Pa, in �cc,

15 · 106 Pa, in �ox,
s�

r =
{

0.01, in �cc,

0.4, in �ox,
sg

r = 0.

The effective diffusion coefficient dα
pm is computed from the tortuosity model

d�
pm = 0, dg

pm = φ

τ 2
sgζ gdg,

with τ = 2 and the source term ge is set to 0. The liquid pressure, the temperature, the liquid saturation and the water 
molar fraction in the liquid phase are set, at initial time in the porous-medium domain, to

p� = p�
up − ζ lmw g(hpm − z), Tpm = T 0

pm, s� = 1, c�
w = 1at t = 0,

and at the top boundary �up of the porous medium, to

p� = p�
up, Tpm = Tup, s� = s�

up = 1, c�
w = c�

w,up = 1, on �up,

with

p�
up = 4 · 106 Pa, T 0

pm = Tup. (30)

At the output boundary �out, the gas pressure is set to pout = 105 Pa combined with a vanishing molar and temperature 
diffusion normal flux and with an outflow boundary condition for the RANS flow. The velocity at the input boundary �in is 
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Fig. 3. Average temperature in K at the interface as a function of time for the input velocities uin = 5 m · s−1 in continuous line and uin = 0.05 m · s−1 in 
dashed line and for both initial temperatures in the porous-medium domain.

defined by the uncoupled turbulent velocity profile u0(z) =
(

u0(z)
0

)
computed from the Prandlt algebraic turbulent model 

(see [5]) and which is parametrized by the average velocity

uin = 1

hff

hff∫
0

u0(z)dz.

The temperature at the input boundary �in is fixed to T in = 303 K, and the input water molar fraction cw,in corresponds 
to the relative humidity

Hr = poutcw,in

psat(T in)
= 0.5.

Homogeneous Neumann boundary conditions are used at the remaining boundaries of the domain including a vanishing 
velocity a the bottom free-flow domain boundary.

In the following, we consider four test cases defined by two choices of the input gas velocity uin = 5 m · s−1 and uin =
0.05 m · s−1 and two choices of the initial and top temperature in the porous medium T 0

pm = Tup = 303 K and T 0
pm = Tup =

333 K.
The time steps are set by (29) with 
t0 = 1 s, ρδt = 1.02 and 
tmax = 1 year which is reached at the 873th time step at 

t = 51, 7 year. The time integration reaches the final time tf = 200 year after nt = 1022 time steps. The stopping criteria of 
the domain decomposition algorithm (15) is set to ε = 10−6. For these test cases, no failure of convergence is observed for 
the nonlinear solvers used for the subproblems, nor for the domain decomposition method.

The Cartesian mesh of the domain is uniform in the x direction with 100 edges. In the z direction, the mesh is refined at 
both sides of the interface � with respectively 121 and 162 edges in the porous-medium and free-flow domains including 
41 edges in each boundary layer. The mesh step in the z direction varies from 1.27 mm to 0.11 m in the porous-medium 
domain and from 0.057 mm to 0.05 m in the free-flow domain, down to the scale of the turbulent boundary layer.

Figs. 3, 4 and 5 show respectively the average temperature, the average relative humidity and the average evaporation 
rate at the interface as a function of time. Solid lines and dashed lines show respectively the results for the input velocity 
uin = 5 m · s−1 and uin = 0.05 m · s−1. For both test cases with T 0

pm = 303 K, the variations of temperature exhibited in 
Fig. 3a at the interface are only due to the vaporization of the liquid phase. During the first stage of the drying process the 
temperature decreases of a few degrees. The duration of this first stage depends on the input velocity, with roughly 1 hour
for the fast input velocity and 1 month for the slow input velocity. This is the time during which the interface is saturated 
with water vapor on the free-flow side corresponding to a maximum evaporation rate, as shown in Fig. 4a and in Fig. 5a. 
The second stage of the drying process is the drop of the evaporation rate, due to the entry of the gas phase in the porous 
medium, down to a stationary state with a low evaporation rate. Consequently, during that stage, the temperature at the 
interface warms up almost back to its initial value.

For T 0
pm = 333 K, the average temperature, the relative humidity and the evaporation rate are shown in the Figs. 3b, 4b

and 5b. In this case, due to a higher evaporation rate at high temperature, as exhibited in Fig. 5b, the first stage during 
which the interface is saturated with water is shorter for both velocities, around 5 min and 9 hour for the fast and the slow 
input velocity respectively. Then, the dynamic of the coupling is more complex due to the high variation of temperature at 
the interface induced both by the evaporation of the liquid phase and by the cooling of the interface by the free-flow. Let us 
remark that in Fig. 4b, for the fast input velocity, the interface is dried after 1 hour but still much hotter than the thermal 
equilibrium state which is reached after 3 month. During that time, the temperature drop goes on, which lowers the vapor 
pressure and increases the relative humidity at the interface. Note that the stationary solutions obtained at final time for 
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Fig. 4. Average relative humidity at the interface as a function of time for the input velocities uin = 5 m · s−1 in continuous line and uin = 0.05 m · s−1 in 
dashed line and for both initial temperatures in the porous-medium domain.

Fig. 5. Average evaporation rate at the interface in L · day−1 · m−1 as a function of time for the input velocities uin = 5 m · s−1 in solid line and uin =
0.05 m · s−1 in dashed line and for both initial temperatures in the porous-medium domain.

Fig. 6. Average gas volume in the porous medium in m3 as a function of time for the input velocities uin = 5 m · s−1 in solid line and uin = 0.05 m · s−1 in 
dashed line and for both initial temperatures in the porous-medium domain.

both input velocities differ due to the thermal equilibrium between the porous-medium top boundary at Tup = 333 K and 
the free flow depending on the thermal resistance of the free-flow boundary layer.

Fig. 6 shows the total gas volume in the porous medium as a function of time. Note that a larger gas volume is reached at 
the final time of the simulation for the test case with initial temperature T 0

pm = 333 K and input velocity uin = 0.05 m · s−1. 
It has been checked that this is mainly due to the diffusion term in the porous medium.
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Fig. 7. Average number of domain decomposition iterations per time step as a function of the mesh step in the x direction hx ( m) for the stopping criteria 
(15) with ε = 10−6.

Fig. 8. Setup of the test case for Andra test case 2.

The average number of domain decomposition iterations per time step is shown in Fig. 7 for different mesh sizes nx ×
nz = 100 × 283, 50 × 143, 25 × 73 and with a total number of 1022 time steps in all cases. Fig. 7 exhibits the very good 
robustness of the algorithm with respect to the mesh size, the input velocity and the porous medium initial temperature. 
The average number of iterations necessary for the convergence of the domain decomposition algorithm at the stopping 
criterion ε = 10−6 is nearly insensitive to the mesh size and to the initial temperature, and only slightly higher for the low 
input velocity than for the high one.

5.2. Andra test case 2

The objective of this second test case is to test the robustness of the domain decomposition algorithm with respect to 
the heterogeneities of the porous medium in the direction of the interface �. As exhibited in Fig. 8, the concrete layer is 
now defined by �cc = ( l

2 , l) × (hff, hcc). All the physical parameters are the same as in the previous test case except the 
input velocity set to uin = 0.5 m · s−1, and the gas effective diffusion coefficient set to dg

pm = 0. The initial and top boundary 
temperatures in the porous medium are set to T 0

pm = Tup = 303 K and the input temperature in the free-flow domain is set 
to T in = 303 K.

The Cartesian mesh is uniform in the x direction with 400 edges and refined at both sides of the interface � with 61
and 82 edges along the z direction respectively in the porous-medium and free-flow domains. In the z direction, 21 edges 
are used to mesh the boundary layer of each subdomain. The mesh step along the z direction varies from 2.6 mm to 0.22 m
in the porous-medium domain and from 0.21 mm to 0.1 m in the free-flow domain.

The time stepping defined by (29) uses the maximal time step 
tmax = tf , the initial time step 
t0 = 1 s and the growth 
rate ρδt = 1.2. The final time of the simulation is set to tf = 200 year and is reached after 115 time steps.

The results are compared to the isothermal counterpart of this test case which has been presented in [6] with no energy 
conservation and a fixed temperature T = 303 K.

Figs. 9 and 10 exhibit for both the isothermal and nonisothermal cases, the average temperature, relative humidity, evap-
oration rate at the interface and the gas volume in the porous medium as functions of time. The differences between the 
solutions of both cases are small due to the rather low evaporation rate inducing a low temperature decrease at the inter-
face. It results in a small reduction of the evaporation rate during the first stage of the drying process for the nonisothermal 
test case compared with the isothermal test case.

The Robin coefficients L, Mw − Ma , N as functions of x along the interface � are shown in Fig. 11. Accordingly with 
Remarks 1 and 2, the coefficients L and N are roughly proportional and the coefficients L and Mw − Ma are exactly pro-
portional for this data set. Note that, for the Robin coefficients Mi , i ∈ C , only the value of Mw − Ma matters from the sum 
to 1 of the gas molar fractions. The average value along the interface � of the Robin coefficients P and Q are shown as a 
function of time in Fig. 11. Let us stress the dependence of P on the exponentially growing time step and on the relative 
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Fig. 9. Average temperature in K (left) and average relative humidity (right) at the interface as functions of time for the nonisothermal test case (—) and 
the isothermal test case (· · · ).

Fig. 10. Average evaporation rate at the interface in L day−1 m−1 (left) and average gas volume in the porous medium in m3 (right) as functions of time 
for the nonisothermal test case (—) and the isothermal test case (· · · ).

Fig. 11. Value of the Robin coefficients L (—), Mw − Ma (– –) and N (· · · ) along the interface (left) and average value of the Robin coefficients P (—), Q
(· · · ) over time (right).

humidity at the interface. It can be checked that the Robin coefficient P corresponds roughly to a Dirichlet condition at 
the first stage of the drying process before the drop of the evaporation rate and to a Neumann boundary condition after 
the drop of the evaporation rate. This adaptation of P to the time step size and to the relative humidity at the interface 
is crucial to obtain the convergence of the domain decomposition algorithm that could not be obtained with a constant 
value of P . Figs. 12 and 13 show the good convergence of the domain decomposition algorithm both for the isothermal 
and nonisothermal test cases with respectively an average of 3.44 and 4.25 iterations per time step to reach the stopping 
criteria (15) with ε = 10−6.

From Remarks 1 and 2, a one parameter family of independent on x Robin coefficients L, Mi , i = a, w , N can be obtained 
using L > 0 as a real parameter and setting
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Fig. 12. Convergence of the domain decomposition relative residual (15) at each time step for the isothermal test case.

Fig. 13. Convergence of the domain decomposition relative residual (15) at each time step for the nonisothermal test case.

Fig. 14. Average number of DDM iterations per time step as a function of the independent on x Robin coefficient L and using N = C g
p,ama L, and Mi =

hg
i (T in)L, i = a, w . The mesh is Cartesian of size 25 × 73.

N = C g
p,ama L,

Mi = hg
i (T in)L, i = a, w.

(31)

Fig. 14 plots the average number of DDM iterations per time step, as a function of L, obtained on a Cartesian mesh of size 
25 × 73 refined at both sides of the interface. Fig. 14 exhibits a plateau of convergence with less than 6 DDM iterations 
in average in the range L ∈ (0.025, 0.125), then the number of iterations rises very rapidly and the algorithm fails to 
converge for L ≤ 10−5 or L ≥ 0.2. The minimum number of iterations, roughly 4.13, is obtained for L = 0.082. It is to be 
compared with the average of 4.22 DDM iterations per time step obtained with the Robin coefficients derived numerically 
from equations (17), (19), (22). We deduce that independent on x Robin coefficients can be competitive for this test case 
and also that our computation almost reaches the optimal number of iterations of this one parameter family. A value of 
N (and hence L = N

C g
p,ama

) can be obtained using convective heat transfer coefficient correlations which relate the Nusselt 
number to the Prandtl and Reynolds numbers. Applying the Dittus–Boelter correlation [36] typical for turbulent pipe flow 
configurations, we obtain L = 0.053 and an average of 4.7 DDM iterations per time step, which is slightly higher than what 
is obtained with our methodology.
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Fig. 15. Setup of the Andra test case 3 with the heat sources in red.

Fig. 16. Temperature in K in the porous-medium and free-flow domains for the high heat source test case.

5.3. Andra test case 3

The objective of this third Andra test case is to account for the heat produced by the radioactive waste packages in the 
disposal. For that purpose, we consider an horizontal 2D cut along the x and y directions of the disposal and ventilation 
gallery. The computational domain is shown in Fig. 15 and is similar to the one used for the first test case placed in 
the horizontal position. The free-flow domain has a length of l = 400 m and a depth of hff = 5.25 m. The depth of the 
porous-medium domain and of the concrete layer are set to hpm = 50 m and hcc = 6.75 m. Let δls = 1 m and δhs = 20 m
be respectively the length and the depth of a heat source. The location of the ns = 10 heat sources in the porous-medium 
domain, as exhibited in Fig. 15, is defined by

�s =
ns⋃

k=1

(lk, lk + δls) × (hs,hs + δhs),

with lk = 40(k − 1
2 ) m, k = 1, · · · , 10, and hs = 10.25 m. Let us define

ge =
{

gs in �s,

0 in �pm \ �s,

and consider three different test cases corresponding to either no heat source with gs = 0, or low heat sources with gs =
1 W · m−2, or high heat sources with gs = 25 W · m−2.

The boundary and initial conditions are the same as in the first test case with gravity set to zero, T 0
pm = Tup = 296.15 K, 

T in = 295.15 K and uin = 0.55 m · s−1. All the remaining physical parameters are the same as in the first test case.
The time stepping defined by (29) uses the maximal time step 
tmax = 1 year, the initial time step 
t0 = 1 s and the 

growth rate ρδt = 1.2. The final time of the simulation is set to tf = 200 year and is reached after 290 time steps.
The Cartesian mesh has 400 edges along the x direction, and has respectively 61 and 162 edges along the y direction 

in the porous-medium and in the free-flow domains, including 41 edges for the boundary layer of each domain. The mesh 
step along the y direction varies from 8.8 mm to 1 m in the porous-medium domain and from 0.3 mm to 0.053 m in the 
free-flow domain.

Fig. 16 and 17 exhibit respectively, at different times for the high heat source test case, the temperature in the porous-
medium and free-flow domains, and the gas saturation in the porous medium and the relative humidity in the free-flow 
domain. One can observe the effect of the heat source on the desaturation of the porous medium at final time as well as 
the boundary layers at the interface in the free-flow domain both for the temperature and relative humidity and both at 
time t = 1 day and at final time.

Fig. 18 exhibits the average temperatures in the porous-medium and the free-flow domains as functions of time. Figs. 19
and 20 exhibit the average temperature, relative humidity, evaporation rate at the interface and gas volume in the porous 
medium as functions of time. It can be checked that the temperature rise in the porous medium occurs during the drop of 
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Fig. 17. Gas saturation in the porous-medium domain and relative humidity in the free-flow domain for the high heat source test case.

Fig. 18. Average temperature in K in the porous medium (left) and in the free-flow domain (right) as functions of time and for the test cases: with no heat 
source (· · · ), with low heat sources (– –), with high heat sources (—).

Fig. 19. Average temperature in K (left) and average relative humidity (right) at the interface as functions of time and for the test cases: with no heat 
source (· · · ), with low heat sources (– –), with high heat sources (—).

Fig. 20. Average evaporation rate at the interface in L day−1 m−1 (left) and average gas volume in the porous medium in m3 (right) as functions of time 
and for the test cases: with no heat source (· · · ), with low heat sources (– –), with high heat sources (—).
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Fig. 21. Convergence of the domain decomposition relative residual (15) at each time step up to t = 20 years for the no heat source test case.

Fig. 22. Convergence of the domain decomposition relative residual (15) at each time step up to t = 20 years for the high heat source test case.

the evaporation rate. This explains the small differences observed between the different test cases for both the evaporation 
rate and the gas volume in Fig. 20. These differences appear only at the end of the simulation where the evaporation rate 
and the gas volume are slightly larger for the high heat source case than for the other cases.

Figs. 21 and 22 show the good convergence of the domain decomposition algorithm both with no heat source and with 
high heat sources. Shortly before 20 years, the time step reaches the maximal time step 
tmax and both solutions are close 
to the stationary solutions. For t > 20 years, both domain decomposition methods converges in 2 iterations until the final 
time tf = 200 years. Over the overall simulation, the convergence is obtained with respectively an average of 2.84 and 2.94
iterations per time step for the no heat and high heat source test cases. Only one additional iteration for the high heat 
source test case is needed around t = 1 year when the heat sources warm up the porous-medium and free-flow domains.

5.4. Drying test case

The objective of this last test case is to assess the robustness of the domain decomposition algorithm in the case of a 
much more permeable porous medium and for a total evaporation of the liquid in the porous medium. For that purpose, we 
consider the nonisothermal version of the test case introduced in [5, Section 4.4] and compare the solutions and convergence 
of the domain decomposition method both for the isothermal and nonisothermal test cases.

The setup of the test case is similar to the first test case with dimensions reduced to l = 1 m, hff = 0.5 m and hpm = 1.5 m. 
The porous medium contains only one rocktype with Van Genuchten parameters set to

φ = 0.15, K = 10−12 m2,

and

nr = 4, pr = 15 · 103 Pa, s�
r = 0, sg

r = 0.

The liquid saturation and the relative permeability functions are shown in Fig. 23. The effective diffusion coefficient is set 
to dα

pm = 0 for each phase α ∈P and the source term to ge = 0.

The time stepping defined by (29) uses the maximal time step 
tmax = 5 hour, the initial time step 
t0 = 10−6 s and 
the growth rate ρδt = 1.2. The final time of the simulation is set to tf = 200 days and reached in 625 time steps.

In the porous medium, the liquid pressure, the temperature, the liquid saturation and the water molar fraction are given 
at initial time by (30) with p�

up = 105 Pa and T 0
pm = 333 K. As opposed to the previous test cases, an homogeneous Neumann 

boundary condition is imposed at the top boundary �up. Together with the vanishing liquid residual saturation, this allows 
for a total evaporation of the liquid phase from the porous-medium. The input temperature at �in is set to T in = 333 K and 
the input velocity to uin = 1 m · s−1. The remaining parameters are unchanged compared to the first test case.

The Cartesian mesh is uniform in the x direction with 100 edges and is refined at both sides of the interface � in the 
z direction with respectively 121 and 162 edges in the porous-medium and free-flow domains, including 41 edges for the 
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Fig. 23. The liquid saturation as a function of the capillary pressure and the relative permeabilities of both phases as a function of the liquid saturation.

Fig. 24. Temperature in K in the porous-medium and free-flow domains for the nonisothermal drying test case.

Fig. 25. Gas saturation in the porous-medium domain and relative humidity in the free-flow domain for the nonisothermal drying test case.

Fig. 26. Average temperature in K (right) and average relative humidity (left) at the interface as functions of time, in dashed line for the isothermal test 
case and solid line for the nonisothermal test case.

boundary layer of each domain. The mesh step along the z direction varies from 1.3 mm to 11.2 mm in the porous-medium 
domain and from 0.1 mm to 5 mm in the free-flow domain.

Fig. 24 exhibits the variations of the temperature in the porous medium and in the free-flow domains due to the vapor-
ization of the liquid phase. The gas saturation in the porous medium and the relative humidity in the free-flow domain are 
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Fig. 27. Average evaporation rate at the interface in L day−1 m−1 (left) and average gas volume in the porous medium in m3 (right) as functions of time, in 
dashed line for the isothermal test case and full line for the nonisothermal test case.

Fig. 28. Convergence of the domain decomposition relative residual (15) at each time step up to t = 4 days for the isothermal test case.

Fig. 29. Convergence of the domain decomposition relative residual (15) at each time step for t ≤ 1 days and 25 ≤ t ≤ 35 days for the nonisothermal test 
case.

shown in Fig. 25. During the first 10 days of the simulation, the high vaporization rate lowers the temperature of say 15 K
in the porous medium. At time t = 3 days the gas has already started to enter in the porous medium and rises by gravity to 
the top boundary. At time t = 29 days, most of the liquid phase is evaporated from the porous medium, the evaporation rate 
has decreased and the temperature starts to rise in the porous-medium with the ventilation almost back to the input gas 
temperature at final time t f = 100 days. The evaporation rate is slow down by the temperature drop in the nonisothermal 
test case which explains why the drop of the relative humidity and of the evaporation rate appears sooner in the isothermal 
test case as exhibited in Figs. 26 and 27.

Figs. 28 and 29 exhibit the convergence of the domain decomposition algorithm showing that it remains efficient both 
for the isothermal and nonisothermal test cases with respectively an average over the overall simulation of 2.32 and 2.97
iterations per time step to reach the stopping criteria (15) with ε = 10−6. Fig. 30 exhibits that the domain decomposition 
method does not converge if the non diagonal Robin coefficients Mi , i ∈ C are set to 0, which exhibits the strong coupling 
between the transport of energy and of the molar fractions in the boundary layer of the free-flow domain.

As in subsection 5.2, we consider the one parameter family of Robin coefficients defined by the independent on x
coefficient L > 0 and Mi , i = a, w , N defined by (31). Fig. 31 plots the average number of DDM iterations per time step, as a 
function of L, obtained on a Cartesian mesh of size 25 × 73 refined at both sides of the interface. Fig. 31 exhibits a plateau 
of convergence with less than 5 DDM iterations in average in the range L ∈ (0.2, 0.65), then the number of iterations rises 
very rapidly and the algorithm fails to converge for L ≤ 0.1 or L ≥ 0.9. The minimum number of iterations, roughly 3.44, is 
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Fig. 30. Convergence of the domain decomposition relative residual (15) at successive time steps for the nonisothermal drying test case with the Robin 
coefficients Mw and Ma set to 0.

Fig. 31. Average number of DDM iterations per time step as a function of the independent on x Robin coefficient L using N = C g
p,ama L, and Mi = hg

i (T in)L, 
i = a, w . The mesh is Cartesian of size 25 × 73.

obtained for L = 0.39. It is to be compared with the average of 3.0 DDM iterations per time step obtained with the Robin 
coefficients derived numerically from equations (17), (19), (22). We deduce that, for this test case, our computation is better 
than the optimal number of DDM iterations of this one parameter family. Applying the Dittus–Boelter correlation for N and 
(31), we obtain L = 0.136 for which the algorithm converges in an average of 9.3 iterations which is 3 times higher than 
what is obtained with our methodology.

6. Conclusion and perspectives

A domain decomposition method to couple nonisothermal compositional gas liquid Darcy and free gas flow and transport 
have been introduced. Compared with monolithic fully coupled algorithms, it leads to simpler nonlinear and linear systems 
for which on-the-shelves solvers are available and still provides the fully coupled solution. It also allows to solve the coupled 
problem using existing codes separately in each subdomain and possibly non-matching meshes at the interface between the 
porous-medium and free-flow domains.

The efficiency and the robustness of our algorithm with respect to the mesh size, the gas velocity, the porous-medium 
heterogeneities and the temperature range have been exhibited on 2D test cases with simple geometry. The first three test 
cases are based on Andra data sets derived from lab experiments and in accordance with the deep disposal center for 
French radioactive waste project. The fourth test case considers the convective drying of a porous medium with a much 
larger permeability and the full evaporation of the liquid phase in the porous medium.

The perspectives are to test the domain decomposition algorithm on more complex 3D geometries using a code coupling 
strategy. The efficiency of the algorithm could also possibly be further improved by designing adaptive stopping criteria 
for instance based on a posteriori estimates or also by using more advanced techniques to compute the Robin coefficients 
partially based on the optimization of the convergence rate.
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