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Highlights

• A systematic approach for coarse-graining the Langevin dynamics models.
• The coarse-graining procedure is formulated as an reduced-order problem.
• The identification of the Krylov subspaces to guarantees the correct statistics.
• Implementation of a Block Lanczos algorithm.
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Abstract

This paper considers the reduction of the Langevin equation arising from bio-molecular models. To

facilitate the construction and implementation of the reduced models, the problem is formulated as a

reduced-order modeling problem. The reduced models can then be directly obtained from a Galerkin

projection to appropriately defined Krylov subspaces. The equivalence to a moment-matching proce-

dure, previously implemented in [32], is proved. A particular emphasis is placed on the reduction of the

stochastic noise, which is absent in many order-reduction problems. In particular, for order less than

six we can show the reduced model obtained from the subspace projection automatically satisfies the

fluctuation-dissipation theorem. Details for the implementations, including a bi-orthogonalization pro-

cedure and the minimization of the number of matrix multiplications, will be discussed as well.

1. Introduction

Langevin dynamics models arise from a wide variety of problems, especially where a mechanical sys-

tem is subject to random forces that can be modeled by white noise, e.g., as in [44]. A practical issue arises

when the dimension of system is large, in which the computational cost can be overwhelming. For exam-

ple, in bio-molecular models, the degrees of freedom are associated with the position and momentum

of the constituting atoms, and the large dimensionality makes it difficult to probe large-scale biological

processes over an extended period of time. In this case, it is of great interest to develop reduced models,

which in bio-molecular modeling, is known as coarse-graining [11, 24, 36, 41, 48].

There are multiple benefits from such an approach. For example, reduced models can capture di-

rectly the dynamics of certain quantities of interest. Secondly, with the reduction of the dimension, the

computational cost can be reduced dramatically. In addition, the quantities of interest often correspond

to slow variables. By eliminating fast variables, the time step can also be increased considerably. This

allows one to access longer time scales [41].

There has been tremendous recent progress in the development of coarse-grained models [6, 8, 17,

19, 21, 23, 27, 30, 37, 45]. Most effort, however, is thermodynamics based. Namely, one aims to construct

the free energy associated with the reduced variables, which then yields the driving force for the reduced

dynamics, known as the potential of mean forces (PMF) [33, 34]. As pointed out in [33, 34], the damping

mechanics, which also plays an important role in the reduced dynamics, is not part of the construction.
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In this work, we are interested in an equation-based derivation, where the reduced model can be de-

rived directly from the Langevin dynamics. Deriving reduced models from a stochastic dynamical system

has been a subject of extensive studies, the most well known of which is the homogenization approach

[39]. Another important approach is to employ a coordinate transformation using normal forms to sepa-

rate out the degrees of freedom that are less relevant [43]. More recently, Legoll and Lelievre proposed to

use conditional expectations to derived reduced models [25]. Overall, these methods require either sig-

nificant scale separation assumption, or simple functions forms in the stochastic differential equations,

which for bi-molecular models, does not apply. For example, the force-field for biomolecular models

typically involves complicated function forms.

Meanwhile, in the field of molecular modeling there are also many methods that were proposed to

coarse-grain a molecular dynamics model. Most of these methods are derived from a Hamiltonian sys-

tem of ODEs [7–9, 14, 17, 21, 28, 29], either motivated by or directly obtained, from the Mori-Zwanzig

projection formalism [35, 49]. Strictly speaking, such a procedure will break down for stochastic models,

due to the absence of the semi-group evolution operator. For Langevin dynamics, one empirical coarse-

graining approach is the partition method [46], in which the variables are projected into appropriate

subspaces. However, the approach proposed in [46] does not reduced the number of variables. Rather, it

is a numerical integration algorithm. The main reduction comes from filtering out high frequency modes

in the numerical algorithm. In our previous work [32], we have furthered this approach, by eliminating

the fast-variables. This gives rise to a generalized Langevin equation (GLE) for the reduced variables. In

principle, the GLE, under proper assumptions, is an exact model. After this reduction of the spatial di-

mensions, a temporal reduction was introduced to represent the memory term with a small number of

auxiliary variable. Known as Markovian embedding, this procedure approximates the GLEs by using an

extended system of stochastic differential equations (SDEs) with white noise. The main idea is using a

rational approximation for the Laplace transform, and the coefficients are determined based on a Her-

mite interpolation. The important advantage is that the approximation can be written as an extended

system of SDE with no memory.

A well known issue in Padè type of approximations is that when more conditions are incorporated, the

resulting models tend to be ill-posed. In particular, the coefficient matrices are usually ill-conditioned,

making it impractical. Therefore, an important focus of this paper is on re-formulating the coarse-

graining procedure into a reduced-order problem, which has been widely studied [3,13]. In particular, we

observe a feedback loop between the coarse-grain variables and the additional degrees of freedom, i.e.,

the fast variables. More specifically, the slow variables impose a mechanical force on the fast dynamics,

and in turn, such influences will be propagated back as a force on the slow variables. As a result, the elim-

ination of fast variables can be viewed as an order reduction problem, in that it is a large-dimensional

dynamical system with low-dimensional input and low-dimensional output. We will show that with an

appropriate reformulation of the fast dynamics, the transfer function from the order-reduction prob-

lem corresponds precisely to the memory kernel in the GLE. For such problems, one robust numerical

method is the Krylov subspace projection [3, 4], which uses a Galerkin projection onto Krylov subspaces.
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The subspaces can be orthogonalized using the Lanczos algorithm [13, 31]. As a result, instead of man-

nually constructing the auxiliary system on a case-by-case basis as in the moment matching approach

[32], we can automate the procedure numerically. More importantly, the bi-orthogonalization alleviate

the problem of having ill-conditioned matrices.

For the current problem, the presence of the noise presents another critical issue. Namely, the ran-

dom noise in the GLE must satisfy the second fluctuation-dissipation theorem (FDT) [22], a necessary

condition for the solution of the GLE to be stationary and to have the correct variance. In the Galerkin

projection method, both the noise and the kernel function are being approximated. In general, they do

not satisfy the second FDT, unless the subspaces are properly selected. We will provide two conditions

that ensure such consistency, and we will show Krylov subspaces that fullfill these conditions.

This paper is organized as follows. Section 2 describes the derivation the GLE system. The classical

approach of approximating the Laplace transform of the memory kernel function θ(t ) with a rational

function will be presented. Section 3 presents a formulation using the Galerkin projection to general

subspaces. Criteria will be provided in order to maintain the FDT in the reduced system. In Section 4, we

introduce appropriate Krylov subspaces to fulfill the criteria. The resulting system will also be compared

to a moment-matching procedure and the equivalence is proved in this section. Section 5 addresses two

important issues in the numerical implementation. Numerical examples are shown in Section 6.

2. Mathematical Derivation

2.1. The Reduction of the Full Langevin Dynamics Model

We start with the full Langevin dynamics model with N atoms. After proper mass scaling [44], the

system can be expressed as follows, {
ẋ(t ) =v(t ),

v̇(t ) =F (x)−Γv(t )+ f (t ),
(1)

where x = (x1, x2, . . . , xN ) denotes the displacement of all the atoms, F (x) is the force derived from an

empirical potentials V (x) with F = −∇V , Γ denotes the damping coefficient for the friction term with

dimension R3N×3N , and f (t ) is a stochastic force, usually modeled by a Gaussian white noise, which

satisfies the fluctuation-dissipation theorem (FDT),〈
f (t ), f (t ′)ᵀ

〉= 2kB TΓδ(t − t ′). (2)

For example, the random force can be written in the conventional form: d f (t ) =σdW (t ) with W (t ) being

the standard Brownian motion, and σσᵀ = 2kB TΓ. Here, kB is the Boltzmann constant, and T is the

temperature of the system. This FDT is crucial to ensure that the system reaches the correct equilibrium

state [22] .

Implementing the full Langevin dynamics model can be very expensive, due to the large number of

atoms involved in the entire system. Here we briefly go over a reduction procedure. More details can be

found in [32].
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The first step in the reduction procedure is to identify slow variables, which at the same time, are

sufficient to describe the overall dynamics. In principle, these variables can be selected by transforming

the system into normal forms [43]. For bio-molecules, a more intuitive and more efficient approach is

based on the residues, the building blocks of proteins, by choosing the center of mass of each amino acid.

Mathematically, this can be expressed as a small number of basis functions [12], which span a subspace,

denoted here by Y , with its orthogonal complement denoted by Y ⊥. Y has dimension m and Y ⊥ has

dimension 3N −m: m � 3N . We denote the basis vectors by {φi } and {ψi }, respectively, as follows,

Y = span{φ1,φ2, . . . ,φm}, Y ⊥ = span{ψ1,ψ2, . . . ,ψ3N−m}.

Taking these basis vectors as columns and forming matrices Φ and Ψ, one can decompose the solution

x in the following form,

x(t ) =Φq(t )+Ψξ(t ), (3)

where q ∈Rm and ξ ∈R3N−m are nodal values associated with the basis vectors. Similarly,

v(t ) =Φp(t )+Ψη(t ).

Meanwhile, a linearization of the force F ≈ −Ax is considered, e.g., by principal component analysis

(PCA) [45]: 〈
x(t ), x(t )ᵀ

〉= kB T A−1,

which ensures that the covariance of the displacement is correct.

Now define the following projected matrices and vectors,

A11 =ΦᵀAΦ, A12 =ΦᵀAΨ, Γ11 =ΦᵀΓΦ, Γ12 =ΦᵀΓΨ, f1 =Φᵀ f (t ),

A21 =ΨᵀAΦ, A22 =ΨᵀAΨ, Γ21 =ΨᵀΓΦ, Γ22 =ΨᵀΓΨ, f2 =Ψᵀ f (t ).

By using this partition of variables, the original Langevin dynamics can be written in terms of the

following first order stochastic differential equations (SDEs),{
q̇(t ) =p(t ),

ṗ(t ) =ΦᵀF (Φq)− A12ξ(t )−Γ11p(t )−Γ12η(t )+ f1(t ),
(4)

{
ξ̇(t ) =η(t ),

η̇(t ) =− A21q(t )− A22ξ(t )−Γ21p(t )−Γ22η(t )+ f2(t ).
(5)

The linearization of the high-frequency modes has been based on numerous observations, e.g., [15].

Essentially, we assume that the low frequency can be well captured by the basis functions in Φ, and

the high frequency is nearly Gaussian. For example, in the rotation-translation block (RTB) approach,

each residue is allowed to move as a rigid body. There is overwhelming evidence that the low-frequency

normal modes are well represented by the subspace spanned by such basis functions [12].
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Here (q, p) are the reduced/coarse-grained variables. Notice that the interactions involving the fast

variables ξ have been linearized. By eliminating (ξ,η), we have derived a low-dimensional reduced model

[32], ⎧⎪⎨⎪⎩
q̇(t ) =p(t ),

ṗ(t ) =Feff(q)−Γ11p(t )−
∫t

0
θ(t −τ)p(τ)dτ+ f̃ (t ).

(6)

The effective force for the reduced system is

Feff(q) =ΦᵀF (Φq)− A12 A−1
22 A21q. (7)

Compared to system (4), the force Feff has an extra term −A12 A−1
22 A21q from the derivation. θ(t ) is the

memory kernel function, which is expressed in terms of a matrix exponential,

θ(t ) = [
A12, Γ12

]
eDt

[
A−1

22 0

0 −I

][
A21

Γ21

]
, (8)

where the matrix D ∈R(6N−2m)×(6N−2m) is defined as,

D =
[

0 I

−A22 −Γ22

]
. (9)

It has also been shown in [32]

f̃ = f1(t )− [
A12, Γ12

]∫ᵀ

0
eD(t−s)

[
0

f2(s)

]
d s − [

A12, Γ12
]
eDt

[
ξ(0)+ A−1

22 A21q(0)

η(0)

]
. (10)

This random force is a stationary Gaussian random process with mean zero, satisfying the second fluctuation-

dissipation theorem: 〈
f̃ (t ) f̃ (t ′)ᵀ

〉= 2kB TΓ11δ(t − t ′)+kB Tθ(t − t ′). (11)

Equation (6) is known as the generalized Langevin equation (GLE). Currently there are primarily three

existing methods to solve the GLE numerically. The first approach is to directly approximate the mem-

ory term, either by using quadrature formula, or by approximating the kernel function with a sum of

exponentials. Known as the Prony sum, the later approach replaces the memory integral by additional

variables that can be updated using certain recurrence formulas or by solving an ODEs system [1, 18].

The random noise can be approximated by introducing noises in those ODEs [2]. However, the approx-

imation of the sum of exponentials requires the values of the kernel function (8), which is difficult to

compute due to the large dimensionality of the matrix D in the matrix exponential. The second ap-

proach is to eliminate the memory effect by approximating the kernel function with a delta function in

time [16, 20]. This approximation can be quite effective when the memory effect is not strong. But in
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general, the accuracy is quite limited. The third approach is to approximate the memory effect by intro-

ducing auxiliary variables. This has been motivated by the Mori’s continued-fraction approach [35], and

has been pursued by many groups [6, 9, 29, 30, 32].

For example, in [32], the first order approximation leads to an extended dynamics with auxiliary vari-

able z, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̇(t ) =p(t ),

ṗ(t ) =Feff(q)−Γ11p(t )− z(t )+ f1(t ),

ż(t ) =B z(t )+C p(t )+ζ(t ).

(12)

The coefficients B and C can be found by using a ‘moment matching’ procedure, and we will elaborate on

such procedures in section 4.1. At the same time, methods have been established to sample the additive

noise ζ(t ) to ensure the FDT (11).

In theory, it is possible to advance to high order approximations using the above methods, e.g., a third

order method [32]. However, in practice, the matrices generated from the moment matching procedure

tend to become ill-conditioned as the order of approximation increases. Moreover, the covariance of the

noise and the covariance of the auxiliary variable z need to be constructed specifically for each order

of approximation to ensure the FDT (11), which is nontrivial. Therefore, it is important to develop an

alternative method to improve the robustness and automate the procedure. Inspired by order reduction

methods for large-scale dynamical system, we will formulate the current problem as an order reduction

problem with stochastic noise. The key is to identify the low-dimension input and low-dimension out-

put.

3. Model Reduction for the Stochastic Model

3.1. A Reformulation of the Orthogonal Dynamics

We will first introduce vector and matrix notations to rewrite the system (5) in a more compact form.

Let y = (ξ,η)ᵀ represents the partitioned variables, and u(t ) = (q, p)ᵀ represents the coarse grained vari-

ables. System (5) can be rewritten as the following SDEs:

ẏ(t ) = D y(t )+ R̂u(t )+ g (t ), y(0) ∼N (0,kB TQ). (13)

with

R̂ =
[

0 0

−A21 −Γ21

]
, g =

[
0

f2(t )

]
. (14)

The matrix Q determines the initial covariance of y , given by,

Q =
[

A−1
22 0

0 I

]
. (15)

Further we let Σ be the variance of the Gaussian noise g (t ). It follows the Lyapunov equation, to ensure

the stationarity of the solution,

Σ=−kB T
(
DQ +QDᵀ). (16)
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It can be directly verified that,

Σ=
[

0 0

0 2kB TΓ2,2

]
. (17)

At the same time, we define

L = [
A12, Γ12

]
, R = [A−1

22 A21,−Γ21]ᵀ. (18)

Now the equation (4) can be written as{
q̇(t ) =p(t ),

ṗ(t ) =ΦᵀF (Φq)−Γ11p(t )−Ly + f1(t ).
(19)

The corresponding memory kernel in (6) is given by,

θ(t ) = LeDt R. (20)

It is at this point that we recognize the similarity to an order reduction problem: The large-dimensional

dynamics (13) contains an input variable u(t ), which is low-dimensional. Moreover, of direct importance

to the coarse-grained dynamics (19) is Ly , which again is low-dimensional. Also observed, however, is

that the dimensions of L and R̂ are different. Fortunately, we can reformulate the problem into the fol-

lowing equivalent dynamics (21), where the input and output dimensions are the same.⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̇(t ) = p(t )

ṗ(t ) = Feff(q)−Γ11p(t )−Ly + f1(t ),

ẏ(t ) = D y(t )+Rp(t )+ g (t ), y(0) ∼N (0,kB TQ).

(21)

Theorem 1. Consider the following dynamics:

ẏ1(t ) = D y1(t )+Rp(t )+ g (t ), y1(0) ∼N (0,kB TQ). (22)

With a substitution into the first two equations in (21) (in which y is replaced by y1), one obtains a GLE
that is equivalent to (6).

Proof. Using a variation of constant formula, we find,

y1(t ) = eDt y1(0)+
∫t

0
eD(t−τ)Rp(τ)dτ+

∫t

0
eD(t−τ)g (τ)dτ.

Next we define the out quantity w1(t ) from (22),

w1(t ) = Ly1 =
∫t

0
θ(t −τ)p(τ)dτ+LeDt y1(0)+

∫t

0
LeD(t−τ)g (τ)dτ=:

∫t

0
θ(t −τ)p(τ)dτ+ζ(t ). (23)

Here ζ is the sum of the last two terms. For t > t ′, we have,

〈ζ(t )ζᵀ(t ′)〉 = kB T LeDt QeDᵀt ′Lᵀ +
〈∫t

0

∫t ′

0
LeD(t−τ)g (τ)g ᵀ(τ′)eDᵀ(t−τ′)Lᵀdτ′dτ

〉
= kB T LeD(t−t ′)QLᵀ.

(24)
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The second step can be carried out by using the Itô’s isometry.
Now we replace the term −A12ξ(t )−Γ12η(t ) by w1(t ) in system (21). We have,⎧⎪⎨⎪⎩

q̇(t ) =p(t ),

ṗ(t ) =Feff(q)−Γ11p(t )−
∫t

0
θ(t −τ)p(τ)dτ−ζ(t )+ f1(t ).

(25)

Let f̃1(t ) = f1(t )−ζ(t ). With the assumption that the initial data of y1 is uncorrelated with the noise term,
we get,

〈 f̃1(t ) f̃ ᵀ
1 (t ′)〉 =2kB TΓ11δ(t − t ′)−2kB T LeD(t−t ′)

[
0
Γ21

]
+kB T LeD(t−t ′)QLᵀ

=2kB TΓ11δ(t − t ′)+kB Tθ(t − t ′).

(26)

The last step requires that

QLᵀ −2

[
0
Γ21

]
= R, (27)

which can be easily verified. Now, according to theory of Gaussian processes [10], the processes f̃ (t ) and
f̃1(t ) are equivalent.

Finally, the memory terms in (25) with (6) are the same, the proof of equivalence is thus completed.

It is clear that the dynamics (22) is very similar to dynamics (13), with subtle modification: p(t ) in-

stead of u(t ) is involved in the system. More importantly, in (22) the input and the output of the dynamics

have the same dimension. Our following discussion will be based on y1, and instead, we will denote this

term as y due to the equivalence.

We now have formulated the problem as a reduce-order problem: The dynamics of y involves a large-

dimensional dynamical system, in which the variable p(t ) is acting as a control variable. Meanwhile,

what is of interest to the coarse-grained dynamics is the quantity Ly . As a result, we have at hand a large

dynamical system with low-dimensional input and a low-dimensional output.

3.2. Properties of General Galerkin Projections

A remarkable success in order reduction problems is the Galerkin projection method to appropriately

defined subspaces [3, 47]. Motivated by such success, we first consider a general Galerkin projection of

the SDEs (22),

ẏ(t ) = D y(t )+Rp(t )+ g (t ). (28)

More specifically, we seek ŷ(t ) in the subspace Xn = span{V1,V2, . . .Vn}, with each basis having m columns.

We denote the space of test functions by X̃n = span{W1, . . . ,Wn}. Now the projection can be stated as fol-

lows: find ŷ(t ) ∈ Xn , such that for any χ(t ) ∈ X̃n ,

( ˙̂y(t )−D ŷ(t )−Rp(t )− g (t ),χ(t )) = 0.
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To put it in a matrix-vector form, let V = [V1,V2, . . .Vn] and W = [W1,W2, . . . ,Wn], and we choose the

columns as the basis for the two subspaces. The approximate solution is written as,

ŷ(t ) =V z(t ), (29)

with z(t ) being the nodal values. Then the Galerkin projection yields,

M̂ ż(t ) = D̂z(t )+W ᵀRp(t )+W ᵀg (t ), (30)

where we have defined,

M̂ =W ᵀV , D̂ =W ᵀDV. (31)

With the assumption that M̂ is nonsingular, we can write

ż(t ) = M̂−1D̂z(t )+ M̂−1W ᵀRp(t )+ f̂ (t ), (32)

where

f̂ (t ) = M̂−1W ᵀ f (t ), (33)

and its covariance matrix is given by,

〈 f̂ (t ) f̂ (t ′)ᵀ〉 = Σ̂δ(t − t ′), Σ̂= M̂−1W ᵀΣW M̂−ᵀ. (34)

With this reduction, we can now write down the reduced model involving the variables (p, q, z),

q̇(t ) =p(t ),

ṗ(t ) =Feff(q)−Γ11p(t )−LV z(t )+ f1(t ),
(35a)

ż(t ) =M̂−1D̂z(t )+ M̂−1W ᵀRp(t )+ f̂ (t ), (35b)

In contrast to the conventional order reduction problems [4], the current approach yields a noise

term. Its presence brings up an important issue: appropriate conditions are needed to ensure that the

solution reaches correct equilibrium, which will be addressed here.

Due to ergodicity, the solution of the original SDE, y(t ), will evolve into a stationary process, and

we expect the approximate solution to become a stationary process as well. Assuming that the initial

variance of z is kB T Q̂, that is,

〈z(0)z(0)ᵀ〉 = kB T Q̂, (36)

then the stationarity implies that Q̂ must satisfy the Lyapunov equation [42],

kB T (M̂−1D̂Q̂ +Q̂D̂ᵀM̂−ᵀ) =−Σ̂. (Condition A)

This condition, as one of the necessary conditions to ensure the second FDT, will be referred to as Con-

dition A.
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Meanwhile, the projected dynamics (35) corresponds to an approximation of the GLEs (6). This can

be verified by directly solving (28), and then substitute Lŷ into the equation for p. With direct calcula-

tions, we find that the approximated kernel can be expressed as,

θ(t ) ≈ θ̂(t ) := LV eM̂−1D̂t M̂−1W ᵀR. (37)

Moreover, the low dimensional output is approximated by,

w(t ) ≈ ŵ(t ) = Lŷ =
∫T

0
θ̂(t −τ)p(τ)dτ+ ζ̂(t ), (38)

where

ζ̂(t ) = LV eM̂−1D̂t z(0)+
∫T

0
LV eM̂−1D̂(t−τ) f̂ (τ)dτ.

As a result, we obtain an approximate GLE model,⎧⎪⎨⎪⎩
q̇(t ) =p(t ),

ṗ(t ) =Feff(q)−Γ11p(t )−
∫T

0
θ̂(t −τ)p(τ)dτ+ ζ̂(t )+ f1(t ).

(39)

The term ζ̂(t ) introduces an added Gaussian noise to the coarse-grained dynamics. Together with the

Lyapunov equation (Condition A), we can express its time correlation as follows,

〈ζ̂(t )ζ̂(t ′)ᵀ〉 = kB T LV eM̂−1D̂(t−t ′)Q̂V ᵀLᵀ = kB T θ̃(t − t ′), θ̃(t ) := LV eM̂−1D̂t Q̂V ᵀLᵀ. (40)

Clearly, in general the correlation of the noise θ̃(t ) in (40) might not be consistent with the memory

kernel θ̂(t ) in (39) and (37). Namely, the second FDT, a necessary condition for the reduced model to have

the correct statistics, may not be fulfilled. The following theorem identifies the condition under which

such consistency can be guaranteed.

Theorem 2. The coarse grained dynamics (35) and (39) derived from the Petrov-Galerkin projection will
obey the second FDT (11), if the following condition is satisfied:

M̂Q̂V ᵀLᵀ =W ᵀQLᵀ.

Proof. Recall that w(t ) = Ly from (35b) needs to be injected into the dynamics of the reduced variables
(35a). The resulting random noise is ζ̃=−ζ̂(t )+ f1(t ), with time correlation,

〈ζ̃(t )ζ̃ᵀ(t ′)〉 = 2kB TΓ11δ(t − t ′)+kB T LV eM̂−1D̂(t−t ′)Q̂V ᵀLᵀ −2kB T LV eM̂−1D̂(t−t ′)M̂−1W ᵀ
[

0
Γ21

]
. (41)

It is clear that if,

Q̂V ᵀLᵀ −2M̂−1W ᵀ
[

0
Γ21

]
= M̂−1W ᵀR, (42)
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this will result in the second FDT:

〈ζ̃(t )ζ̃ᵀ(t ′)〉 = 2kB TΓ11δ(t − t ′)+kB T θ̂(t − t ′).

In light of Equation (27), Equation (42) is equivalent to

M̂Q̂V ᵀLᵀ =W ᵀQLᵀ. (Condition B)

This equation will be referred to as condition B.

Conditions A and B constitute the basis for constructing consistent stochastic reduced models. While

condition A can be enforced by solving the Lyapunov equation, condition B may not be satisfied by an

arbitrary Galerkin projection. Therefore, we need to choose appropriate subspaces for this to hold auto-

matically.

4. The Projection to Krylov Subspaces

In this section, we will construct Krylov subspaces for the Galerkin projection procedure, which sub-

sequently leads to approximations of the memory kernel function and random force. We will also discuss

several issues related to the practical implementations.

It turns out that the Krylov subspace approach has a close connection to a two-point Padè approxi-

mation, previously studied in [6,26,29,32] to incorporate both long time and short time statistics. We will

review this approach briefly, which will be referred to as moment-matching, and then make connections

to the Krylov subspace projection approach. We will consider the case where the damping coefficient is

constant, i.e., Γ= γI .

4.1. The Moment Matching Approach

Define the moments,

M0 = θ(0), M1 = θ′(0), · · · , M
 = θ(
)(0), · · · , M∞ =
∫∞

0
θ(t )d t . (43)

Notice that the moment M∞ corresponds to the correlation time. With the moments, the memory func-

tion at t = 0 can be expanded as:

θ(t ) = M0 +M1t + M2

2
t 2 +·· ·+ M



!
t
+ . . . .

Since the exact memory kernel is LeDt R, it is clear that the moments are given by,

M0 = LR, M1 = LDR, . . . M
 = LD
R, M∞ =−LD−1R.

Meanwhile, the Laplace transform can be expanded near zero,

Θ(s) = M0

s
+ M1

s2 +·· ·+ M


s
+1
+ . . . , (44)
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which can be obtained by repeated integration by parts [5].

The moment matching procedure is essentially a rational approximation for the Laplace transform

of the memory kernel,

Θn(s) = (sn I − sn−1B0 − sn−2B1 −·· ·−Bn−1)−1(sn−1C0 + sn−2C1 +·· ·+Cn−1),

such that,

Θn(0) =Θ(0)(= M∞), θ(
)
n (0) = θ(
)(0)(= M
) for i = 0, . . . ,2n −2,

To solve for the coefficients Bi , one needs to solve a linear system,⎡⎢⎢⎢⎢⎣
−M∞ M0 . . . Mn−2

M0 M1 . . . Mn−1

. . .

Mn−2 Mn−1 . . . M2n−3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Bn−1

Bn−2

. . .

B0

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
Mn−1

Mn

. . .

M2n−2

⎤⎥⎥⎥⎥⎦ (45)

We will use the second order approximation as an example (n = 2). In this case, the approximation

would proceed as follows,

1. Set the Laplace transform of the approximated kernel to,

Θ2(s) = (s2 − sB0 −B1)−1(sC0 +C1).

2. Solve for the coefficients using the moments:[
−M∞ M0

M0 M1

][
B1

B0

]
=
[

M1

M2

]
, C0 = M0, C1 =−B1M∞. (46)

3. The approximate kernel function in the real time domain can be expressed as:

θ2(t ) ≈ [0 I ]eB t C , where B =
[

0 B1

I B0

]
, C =

[
C1

C0

]
. (47)

Remark1 : Once B and C are computed, the variance of the random noise ζ in the stochastic equation

ż = B z +C p + ζ(t ), as well as the variance of the z(0), will be chosen based on these two matrices to

satisfy the FDT. Such computation is quite involved in general. Fortunately, as we will show, the subspace

projection approach simplifies this effort considerably.

Remark 2: Although one can increase the order of the approximation by simply introducing more mo-

ments, there remains an important practical problem, that is, the condition number of the matrix in

equation (45) increases rapidly as the order increases. We hereby list the condition numbers in the fol-

lowing Table 1 for a test problem.

We now turn to the Krylov subspace projections.
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Table 1: Condition numbers of the matrix in (45) in the moment matching procedure

Approximation order 2 3 4 5 6 7
Matrix condition number 4.98E03 1.59E12 4.57E14 1.11E22 5.58E27 1.76E33

4.2. First Order Subspace Projection n = 1

As the first approximation, we choose the subspaces

V = R,and W = D−ᵀLᵀ. (48)

We show that the resulting approximate kernel function is the same as that from the moment match-

ing approach.

Theorem 3. By taking V = R and W = D−ᵀLᵀ in the Galerkin projection, the memory kernel θ̂1(t ) in the
projected dynamics (39) is equivalent to that from the first order moment matching method. In particular,
two moments are matched exactly by the approximate kernel functions,

θ̂(0) = M0, and
∫+∞

0
θ̂1(t )d t = M∞. (49)

Proof. With direct computation, we get from (37) that,

θ̂1(0) = LV M̂−1W ᵀR,
∫+∞

0
θ̂1(t )d t =−LV D̂−1W ᵀR.

By the particular choice of V and W (48), we have M̂ =W ᵀR. Therefore,

θ̂1(0) = LR = M0,
∫+∞

0
θ̂1(t )d t =W ᵀR = LD−1R = M∞.

Theorem 4. By taking V = R and W = D−ᵀLᵀ in the Galerkin projection, the projected dynamics (39) will
automatically satisfy the second FDT (11).

Proof. We need to show that Condition B is satisfied by this choice of W and V in this case. Given (34)
and Condition A, we have

−W ᵀΣW =−M̂ Σ̂M̂−ᵀ = kB T (D̂Q̂M̂ᵀ + M̂Q̂D̂ᵀ).

Notice that since W = D−ᵀLᵀ, one has D̂ = LV . In addition, from Equation (16), we have

LQW +W ᵀQLᵀ = LV Q̂M̂ᵀ + M̂Q̂V ᵀLᵀ.

It is clear that on both sides, it is a summation of a matrix and its transpose. By moving terms we find,

LQW −LV Q̂M̂ᵀ = M̂Q̂V ᵀLᵀ −W ᵀQLᵀ (50)
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and Condition B would hold if either side equals to zero. We will examine the two terms on the right hand
side.

Since Γ≡ γI , we have Γ12 = 0. Further notice that,

D−1 =
[ −A−1

22 Γ22 −A−1
22

I 0

]
.

By direct calculations, the second term on the right hand side can be simplified to,

W ᵀQLᵀ = LD−1QLᵀ =−A12 A−1
22 Γ22 A−1

22 A21 =−M∞.

Regarding the first term on the right hand side of (50), it can be directly verified that,

M̂ = LD−1R =−M∞, D̂ = LR = M0,

which are both symmetric matrices. Further, by using Equation (34), we get that,

Σ̂= 2kB T M−1
∞ .

Then the Lyapunov Equation (Condition A) becomes

kB T (M−1
∞ M0Q̂ +Q̂Mᵀ

0 M−1
∞ ) = 2kB T M−1

∞ ,

from which we obtain the solution Q̂ = M−1
0 .

Therefore the first term on the right hand side of (50) becomes

M̂Q̂V ᵀLᵀ =−M∞M−1
0 RᵀLᵀ =−M∞,

which would cancel the second term and complete the proof.

4.3. Second Order Subspace Projection n = 2

We now extend the subspace by choosing,

V = [R,DR], and W = [D−ᵀLᵀ,Lᵀ]. (51)

As a result, the two matrices M̂ and D̂ in the Galerkin formulation are given by,

M̂ =
[

−M∞ M0

M0 M1

]
, D̂ =

[
M0 M1

M1 M2

]
. (52)

It’s easy to check that M̂−1D̂ = B , as in equation (47). Within this extended approximation, the approxi-

mate memory function is given by,

θ̂2(t ) = [M0 M1]eB t M̂−1

[
−M∞

M0

]
= [M0 M1]eB t

[
I

0

]
. (53)

We first show that this approximation is equivalent to the moment matching procedure. It is straight-

forward to verify that the approximate kernel, denoted by θ2, from the moment matching procedure,

should satisfy the following second order differential equation:

θ̈2(t ) = B0θ̇2(t )+B1θ2(t ), θ2(0) = M0, θ̇2(0) = M1. (54)
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We now show that the kernel function θ̂2(t ) follows the same equation. Thanks to the uniqueness, we

can then conclude the equivalence. The key observation is that,

[M0 M1]B = [M1 M2].

As a result, it can be quickly verified that

B1[M0 M1]+B0[M0 M1]B = B1[M0 M1]+B0[M1 M2] = [M1 M2]B = [M0 M1]B 2,

which combined with (53) would lead to

¨̂
θ2(t ) = B0

˙̂
θ2(t )+B1θ̂2(t ), θ̂2(0) = M0, ˙̂

θ2(0) = M1. (55)

Therefore, we have this following theorem.

Theorem 5. The reduced model (39) from the Galerkin projection with the choice of V = [R,DR], and
W = [D−ᵀLᵀ,Lᵀ] produces an approximate memory kernel function, which is equivalent to that from the
second order moment matching procedure.

Furthermore, we have,

Theorem 6. The projected system (39) with the choice of V = [R,DR], and W = [D−ᵀLᵀ,Lᵀ] will automat-
ically satisfy the second FDT (11).

Proof. We only need to justify Condition B. It is straightforward to show that,

W ᵀQLᵀ =
[

LD−1

L

][
A−1

22 0
0 I

][
A21

0

]
=W ᵀR =

[ −M∞
M0

]
.

With the choice of V , we have

V ᵀLᵀ =
[

M0

Mᵀ
1

]
=
[

M0

0

]
.

Notice M1 = 0, which can be verified by direct calculation. Then by some direct calculations with the
representation of the covariance matrix, we have

M̂ Σ̂M̂ᵀ =W ᵀΣW =
[

2kB T M∞ 0
0 0

]
=−kB T (D̂Q̂M̂ᵀ + M̂Q̂D̂ᵀ).

Meanwhile, we have,

M̂ =
[ −M∞ M0

M0 0

]
,

which gives,

M̂−1 =
[

0 M−1
0

M−1
0 M−1

0 M∞M−1
0

]
, Σ̂= 2kB T

[
0 0
0 M−1

0 M∞M−1
0

]
.

Now we solve the Lyapunov equation and we find that,

Q̂ =
[

M−1
0 0
0 −M−1

2

]
.
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With Q̂ available, it can be verified that

M̂Q̂V ᵀLᵀ =
[

M0

0

]
=W ᵀQLᵀ,

which is our condition B, thus it completes the proof.

4.4. Generalization to High Order Approximation (n ≥ 2)

Inspired by the previous choices, we consider

V = [R,DR, . . . ,Dn−1R], W = [D−ᵀLᵀ,Lᵀ,DᵀLᵀ, . . . , (Dᵀ)n−2Lᵀ], (56)

and apply Galerkin projection to the two subspaces generated by the columns of these two matrices.

The corresponding matrices M̂ , D̂ , B and W ᵀR are given by, respectively,

M̂ =

⎡⎢⎢⎢⎢⎢⎣
−M∞ M0 . . . Mn−2

M0 M1 . . . Mn−1

...

Mn−2 . . . M2n−3

⎤⎥⎥⎥⎥⎥⎦ , D̂ =

⎡⎢⎢⎢⎢⎢⎣
M0 M1 . . . Mn−1

M1 M2 . . . Mn

...

Mn−1 . . . M2n−2

⎤⎥⎥⎥⎥⎥⎦ , (57)

B = M̂−1D̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 Bn−1

I 0 . . . 0 Bn−2

0 I . . . 0
...

0 0 . . . I B0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, W ᵀR =

⎡⎢⎢⎢⎢⎢⎣
−M∞

M0

...

Mn−2

⎤⎥⎥⎥⎥⎥⎦ . (58)

Therefore, the approximate kernel under the Galerkin projection can be expressed as,

θ̂n(t ) = [M0 M1 . . . Mn−1]eB t

⎡⎢⎢⎢⎢⎢⎣
I

0
...

0

⎤⎥⎥⎥⎥⎥⎦ . (59)

Meanwhile, the high order approximate memory kernel from the moment matching procedure sat-

isfies the nth order differential equation:

θ(n)
n (t ) = B0θ

(n−1)
n (t )+B1θ

(n−2)
n (t )+ . . .Bn−1θn(t ), θn(0) = M0, . . . , θ(n−1)

n (0) = Mn−1.

We first show that these approximate kernel functions are the same.

Theorem 7. The function θ̂n(t ) in equation (59) is equivalent to the function θn (t ) generated from moment
matching procedure as described in section 4.1. In particular, it also satisfies the initial-value problem,

θ̂(n)
n (t ) = B0θ̂

(n−1)
n (t )+B1θ̂

(n−2)
n (t )+ . . .Bn−1θ̂n(t ), θ̂n(0) = M0, . . . , θ̂(n−1)

n (0) = Mn−1.
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Proof. Each Mi is a m by m matrix, and the dimension of θ̂n(t ) is also m ×m. For simpler notations, we
will denote [Mi Mi+1 . . . Mi+n−1] =Gi . If we can show that

G0B n = B0G0B n−1 +B1G0B n−2 +·· ·+Bn−1G0,

this will prove θ̂n(t ) satisfies the same differential equation. Notice that the recursive relation

Gi B =Gi+1, for i = 0, . . .n −2,

comes straightforward since M̂B = D̂ . Then it remains to check that

Gn−1B = B0Gn−1 +B1Gn−2 +·· ·+Bn−1G0.

We will take a closer look at each block elements. The first block on the left hand side is Mn , and on the
right hand side, we have

∑n−1
i=0 Mi Bn−1−i . They are equal due to the equation M̂B = D̂ . In fact, all other

blocks except the last one can be shown from the same equation. The last block automatically equal to
each other since they have exactly the same representation.

For the initial conditions, they can be easily verified using M̂B = D̂ .

What we will study next is whether this formulation also obeys the second FDT. However, we are

not able to prove the general case due to the lengthy calculations involved. We are able to prove the

consistency for n ≤ 5. The following few results are useful for the verification. Numerical tests suggest

that the consistency holds also for higher order cases.

Lemma 1. The moments of the memory function are all symmetric matrices. As a result, M̂ , and D̂ as
defined in equation (31) are also symmetric matrices.

Proof. We only need to show all moments Mi are symmetric. Recall that

D =
[

0 I
−A22 −Γ22

=
]
=
[

0 −I
−I Γ22

][
A22 0

0 −I

]
,

and

R =
[

A−1
22 A21

−Γ21

]
=
[

A−1
22 0
0 −I

][
A21

Γ21

]
.

Therefore for i > 0,

Mi = LDi R = [A12 Γ12]
[

0 −I
−I Γ22

][
A22 0

0 −I

]
· · ·

[
0 −I
−I Γ22

][
A22 0

0 −I

][
A−1

22 0
0 −I

][
A21

Γ21

]
= [A12 Γ12]

[
0 −I
−I Γ22

][
A22 0

0 −I

]
· · ·

[
0 −I
−I Γ22

][
A21

Γ21

]
,

which is clearly symmetric. At the same time, it is straightforward to see that M0 is symmetric by direct
calculation. Finally,

M∞ = [A12 Γ12]
[ −A−1

22 Γ22 −A−1
22

I 0

][
A−1

22 0
0 −I

][
A21

Γ21

]
= [A12 Γ12]

[ −A−1
22 Γ22 A−1

22 A−1
22

A−1
22 0

][
A21

Γ21

]
,

is symmetric as well.
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Lemma 2. Assume that M̂ is invertible. Condition B is equivalent to,

Q̂

⎡⎢⎢⎢⎢⎣
M0

M1
...

Mn−1

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
I
0
...
0

⎤⎥⎥⎥⎥⎦ . (60)

Proof. When Γ = γI , Γ12 = 0, we have the identity QLᵀ = R. It is also easy to see that due to symmetry
from Lemma 1, one has,

V ᵀLᵀ =

⎡⎢⎢⎣
Mᵀ

0
Mᵀ

1
. . .

Mᵀ
n−1

⎤⎥⎥⎦=

⎡⎢⎢⎣
M0

M1

. . .
Mn−1

⎤⎥⎥⎦ .

Therefore, Condition B becomes

M̂Q̂

⎡⎢⎢⎣
M0

M1

. . .
Mn−1

⎤⎥⎥⎦=W ᵀR =

⎡⎢⎢⎣
−M∞

M0

. . .
Mn−2

⎤⎥⎥⎦ .

Multiplying both sides by M̂−1 (with the assumption that M̂ is invertible), we arrive at equation (60).

Lemma 3. Let Σ̃ = W ᵀΣW , which has dimension nm ×nm. If it is partitioned into a block matrix with
each block having dimension m ×m , then the block elements have the following recurrence relations:

Σ̃1,1 = 2M∞, Σ̃i ,2 = 0, Σ̃2,i = 0, (61)

Σ̃i j =− 1

γ
Σ̃i+1, j − 1

γ
Σ̃i , j+1 −2kB T Mi+ j−3, i , j > 2. (62)

As a result, the elements of Σ̃ can be constructed column by column using the recurrence relation.

They can be expressed in terms of the moments Mi s. The next lemma shows that the moments also

exhibit a recurrence relation, which can be exploited to make the calculation a bit easier.

Lemma 4. The moments Mi = LDi R can be written as a linear combination of matrices A12 Ak
22 A21,

Mi =
� i

2 �−1∑
k=0

ci ,k A12 Ak
22 A21.

The proof of these lemmas can be found in the appendix.

Theorem 8. The reduced system (39) from the Petrov-Galerkin projection obeys the second FDT for orders

n ≤ 5.

Proof. It now becomes clear that in order to check wether the second FDT holds for high order approxi-
mation system, one only needs to show equation (60). On the other hand, we know Q̂ is the solution to
Lyapunov equation (Condition A), which uniquely determined. Therefore under the assumption that D̂
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is nonsingular, Q̃ = Q̂D̂ is also uniquely determined. This also leads to the following equation based on
the fact that M̂ is symmetric.

kB T (Q̃M̂ + M̂Q̃ᵀ) =−M̂ Σ̂M̂ =−W ᵀΣW =−Σ̃.

Now the goal is to compute the exact form of Q̃. We will present the expression of Q̃ and W ᵀΣW for
n = 3,4,5, and readers can substitute those forms into the equation above to verify. There are some
identities needed in order to complete the verification, which we will present in the Appendix.

For n = 3,

Σ̃= kB T

⎡⎣ 2M∞ 0 −2γM0

0 0 0
−2γM0 0 −2γM2

⎤⎦ , Q̃ =
⎡⎣ I 0 0

0 −I 0
0 2γI I

⎤⎦ .

For n = 4,

Σ̃= kB T

⎡⎢⎢⎣
2M∞ 0 −2γM0 2γ2M0

0 0 0 0
−2γM0 0 −2γM2 −2γM3

2γ2M0 0 −2γM3 2γ2M3

⎤⎥⎥⎦ , Q̃ =

⎡⎢⎢⎣
I 0 0 0
0 −I 0 0
0 2γI I 0
0 −2γ2I −2γI −I

⎤⎥⎥⎦ .

For n = 5,

Σ̃= kB T

⎡⎢⎢⎢⎢⎣
2M∞ 0 −2γM0 2γ2M0 −2γ3M0 −2γM2

0 0 0 0 0
−2γM0 0 −2γM2 −2γM3 2γ2M3

2γ2M0 0 −2γM3 2γ2M3 2γ2M4

−2γ3M0 −2γM2 0 −2γM4 2γ2M4 −2γ3M4 −2γ2M5 −2γM6

⎤⎥⎥⎥⎥⎦ ,

Q̃ =

⎡⎢⎢⎢⎢⎣
I 0 0 0 0
0 −I 0 0 0
0 2γI I 0 0
0 −2γ2I −2γI −I 0
0 2γ3I 4γ2I 4γI I

⎤⎥⎥⎥⎥⎦ .

5. Numerical Implementation

In this section, we will describe the numerical implementation of the Krylov subspace projection

method. In the previous section, we have studied properties of the projected dynamics with particular

choices of V and W . However, as is well known [3], a direct implementation using those matrices often

leads to ill-conditioned matrices. This has clearly been shown in Table 1. A much more robust approach

is to obtain orthogonal basis by using appropriate orthogonalization algorithms.

Let us first introduce the notations for these two Krylov subspaces for an nth order approximation.

Kn(D,R) = span{R,DR, . . . ,Dn−1R}, Kn(Dᵀ,D−ᵀLᵀ) = span{D−ᵀLᵀ,Lᵀ, . . . , (Dn−2)ᵀLᵀ}.
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5.1. Block Lanczos Algorithms (BLBIO)

We will adopt the non-symmetric block Lanczos algorithms from [31] to generate orthogonal basis

V = [V1, . . . ,Vn] and W = [W1, . . . ,Wn] for Kn(D,R) and Kn(Dᵀ,D−ᵀLᵀ), respectively.

The Lanczos algorithm proceeds as follows. Choose V1 = R,W1 = D−ᵀLᵀ, and let δ1 = W ᵀ
1 V1, and for

k = 1,2, . . . compute

δA
k =W ᵀ

k DVk , (63)

αk = δ−1
k δA

k , α̃k = δ−ᵀk (δA
k )ᵀ, (64)

βk−1 = δ−1
k−1γ̃

ᵀ
k−1δk , β̃k−1 = δ−ᵀk−1γ

ᵀ
k−1δ

ᵀ
k , (if n > 0) (65)

Vtmp = DVk −Vkαk −Vk−1βk−1, Wtmp = DᵀWk −Wk α̃k −Wk−1β̃k−1, (66)

δtmp =W ᵀ
tmpVtmp (67)

choose γk , γ̃k and δk+1, s.t. γ̃ᵀkδk+1γk = δtmp (68)

Several possible choices have been recommended in [31] for γk , γ̃k and δk+1. We found that the QR

factorization with column pivoting for Vtmp and Wtmp is quite robust. Namely,

Vtmp P =U R, Wtmp P̃ = Ũ R̃.

Then we choose

Vk+1 =U , Wk+1 = Ũ , γk = RPᵀ, γ̃k = R̃P̃ᵀ.

By following this algorithm, we obtain the orthogonality properties among the basis vectors of the

Krylov subspaces. In particular, the matrix M̂ is diagonal, and the matrix D̂ is block-tridiagonal. As a

result, the SDEs for the auxiliary variable z (32) involves sparse matrices.

5.2. Implementation without Ψ

The implementation of the algorithm requires the matrices L, V , W , and R, all involving the Ψ matrix

as part of the construction. Constructing Ψ is usually not feasible for large systems. Here we present an

algorithm that does not involve Ψ.

Let’s first derive a few useful identities involving the Ψ matrix. We start with,[
Φᵀ

Ψᵀ

]
A[Φ Ψ] =

[
A11 A12

A21 A22

]
,

([
Φᵀ

Ψᵀ

]
A[Φ Ψ]

)−1

=
[

Φᵀ

Ψᵀ

]
A−1[Φ Ψ].

Using a block inversion formula, we get

(ΦᵀA−1Φ)−1 = A11 − A12 A−1
22 A21.

By left multiplying the equation by A−1Φ, together with the identity ΦΦᵀ = I −ΨΨᵀ, we find that,

A−1Φ(ΦᵀA−1Φ)−1 =Φ−ΨA−1
22 A21. (69)
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Next, right multiplying the above equation by ΦᵀA−1, we arrive at,

A−1Φ(ΦᵀA−1Φ)−1ΦᵀA−1 =ΦΦᵀA−1 −ΨA−1
22 Ψ

ᵀAΦΦᵀA−1 =ΦΦᵀA−1 −ΨA−1
22 Ψ

ᵀ + (I −ΦΦᵀ)A−1. (70)

Now we define,

D̃ =
[

Ψ 0

0 Ψ

]
D

[
Ψᵀ 0

0 Ψᵀ

]
, R̃ =

[
Ψ 0

0 Ψ

]
R, L̃ =Φᵀ[A, Γ

][ Ψ 0

0 Ψ

]
D−1

[
Ψᵀ 0

0 Ψᵀ

]
We start with the following observation,

Lemma 5. The following relation holds between the two Krylov subspaces, Kn(D,R) and Kn(D̃ , R̃):[
Ψ 0
0 Ψ

]
Kn(D,R) =Kn(D̃ , R̃).

Similarly, [
Ψ 0
0 Ψ

]
Kn(Dᵀ,D−ᵀLᵀ) =Kn(D̃ᵀ, L̃ᵀ).

With these observations, we show that:

Theorem 9. The Lanczos algorithm, the Galerkin projection, and the sampling of the noise, can be done
without Ψ.

Proof. First it can be directly shown that,

D̃ =
[

0 ΨΨᵀ
−ΨΨᵀAΨΨᵀ −ΨΨᵀΓΨΨᵀ

]
.

Thanks again to the identity
ΨΨᵀ = I −ΦΦᵀ, (71)

we can evaluate ΨΨᵀ through the matrix Φ. Therefore the calculation of D̃ can be done without Ψ.
Secondly, to compute L̃, we notice that the terms involving Ψ are ΨA−1

22 Γ22Ψ
ᵀ, ΨΨᵀ, and ΨA−1

22 Ψ
ᵀ,

and these terms can be represented without Ψ from Equation (70) and (71). The calculation of R̃ is
similar.

Thirdly, we see that the solution of the projected dynamics (32) enters the coarse-grained dynamics
(??) via a matrix multiplication by LV. It is straightforward to write L as

L =Φᵀ[A, Γ
][ Ψ 0

0 Ψ

]
,

which means that for the term LV , we can actually compute Φᵀ[A, Γ
]
Ṽ , where Ṽ is constructed using

using the block Lanczos from space Kn(D̃ , R̃).
Now let Ṽ and W̃ be the basis generated from the orthogonalization of the new Krylov subspaces

Kn(D̃ , R̃) and Kn(D̃ᵀ, L̃ᵀ), respectively. Therefore, the matrices M̂ =W ᵀV = W̃ ᵀṼ , D̂ =W ᵀDV = W̃ ᵀD̃Ṽ
and W ᵀR = W̃ ᵀR̃ can all be generated without introducing Ψ.

Finally, it remains to show that the sampling of the noise does not have to involve Ψ, which is clearly

true since the noise is represented as M̂−1W ᵀ
[

0
Ψᵀ f

]
, and W ᵀΨᵀ = W̃ ᵀ.

It is a trivial, but important point in practice that in the numerical implementation, it is not necessary

to store the full matrix ΦΦᵀ. For a given vector u, the multiplication ΦΦᵀu can be done through Φ(Φᵀu).
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5.3. A Summary of the Galerkin Projection

The Galerkin projection method can be summarized as follows,

1. Choose appropriate basis matrix Φ.

2. Pick the order of approximation n ≥ 1. Use the block-Lanczos algorithm to determine the orthog-

onal basis V and W , for the Krylov subspaces Kn(D,R) and Kn(Dᵀ,D−ᵀLᵀ), respectively.

3. Solve the stochastic differential equations (35), where M̂ ,D̂ , f̂ are defined from equations (31) and

(33). The initial variance of z(t ) is determine from Condition A.

Clearly, this procedure avoided manual constructions of the reduced model. This choice of the Krylov

subspaces guarantees that the FDT is satisfied (through Condition B), at least till the fifth order of ap-

proximation (numerical tests indicate that this is true for higher order cases).

6. Numerical Test

We test our algorithm on the example considered in [32]. We simulate the dynamics of the protein

Chignolin (PDB id 1uao) at temperature T = 298 for .4 nano seconds. The system is set up in solvation,

modeled by the generalized Born (GB) model and simulations have been conducted in TINKER [40] using

force field CHARMM22. For the surrounding bath, we considered the case γ= 91ps−1 which corresponds

to water solvant [40] and a low friction case γ = 5ps−1. In the latter case, the kernel function exhibits

nontrivial behavior [32]: it tends to be more oscillatory compared to the former case. By calculating

the eigenvalues of A we have identified the under-damped regime to be γ < 13.4 and the over-damped

regime to γ > 997.7. Data are collected to compute the PCA matrix A = kB T 〈x, xᵀ〉−1. The projection

matrix are composed of RTB basis [12], since there are 10 residues in Chignolin, the dimension of the

coarse-grained variables is 60. The explicit forms of the basis functions in Φ each each translational and

rotational mode can be found in [6].

We first present the numerical result for γ = 91 in Figure 1. On the left panel, we showed the com-

parison of approximating memory function, from order two to order seven. The right panel of the figure

provides the comparison of time correlation of the momentum. Both exact plots are obtained by run-

ning the full model. The order of approximations, n, is defined as the order of Krylov subspaces, which

is equivalent to the order of the rational functions in the moment matching approach. Since the kernel

function θ(t ) is matrix-valued, we chose the sixth diagonal, θ6,6(t ) for the comparison, this index cor-

responds to the third rotational component of the first residue. We can observe the approximation is

satisfactory for n ≤ 5.

In Figure 2, we present a comparison for γ= 5. The small damping constant leads to a underdamped

system, making the approximation difficult due to the rapid and non-trivial oscillation. However we

can observe substantial improvement of the accuracy on the memory kernel. The memory effect on

auto correlation is evident compared to system with high damping constant. Though improvement is

significant for the memory kernel, the velocity time correlation exhibits noticeable error.
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Figure 1: Numerical result for γ = 91, from second order approximation to seventh order approximation, all compared to exact
solution. Left: the memory kernel function. Right: velocity auto correlation. Both plots are for the third rotation component of the
first residue.
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Figure 2: Numerical result for γ= 5. Figures show the comparison of the exact solution, second order approximation and seventh
order approximation. Left: the memory kernel function. Right: velocity auto correlation. Both plots are for the third rotation
component of the first residue.
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In Figure 3, we provide a close-up view over the time interval [0,0.2] ps, and show results from secon

order to seventh order approximations. We observe increased accuracy as the order of the approximation

is increased within this time period.
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Figure 3: Numerical result for γ = 5. Comparison of the second order through seventh order approximations. Left: the memory
kernel function. Right: velocity auto correlation. Both plots are for the third rotation component of the first residue.

Finally, we present the relative L2 error for both memory kernel and time correlation, comparing the

results of second order and seventh order, for both γ = 91 and γ = 5 in Figure 4. This relative L2 error is

computed for the time period [0,1]. We showed error for each coarse grained variables, and improvement

of accuracy is significant.

In addition to the Krylov subspaces that were presented in the previous section, we also implemented

inverse Krylov subspaces and shifted-inverse Krylov subspaces in the Galerkin projection. These vari-

ations can often offer better approximations to the transfer function in order-reduction problems [3],

which in our case, corresponds to the memory function. However, through our numerical computations,

we found that none of these choices satisfies (Condition B). This implies that the second FDT is not ful-

filled, and the reduced dynamics (35) does not produce stationary processes [22,38]. In fact, the variance

of the solution will follow the dynamic Lyapunov equation ([38] Eqn 3.103), and it will not converge to

the steady-state.

7. Conclusion

We adopted reduced-order modeling techniques to reduce the Langevin dynamics model. We con-

sider reduced models obtained from Petrov-Galerkin projections. By selecting appropriate Krylov spaces,

we show the mathematical equivalence of the proposed model to the reduced models derived from mo-

ment matching procedure. Another emphasis is placed on the statistical consistency, i.e., the fluctuation-

dissipation theorem. We are able to identify two conditions that ensure such consistency. We also showed

that the Galerkin projections to the selected subspaces automatically satisfy the FDT, at least for n ≤ 5.

With the block Lanczos algorithm, the models derived this way are more robust.
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Figure 4: Comparison between second and seventh order projection, using the relative L2 error for each coarse grained variable.
Top: the memory kernel function. Bottom: the time correlation. Left: γ= 91. Right: γ= 5.
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One open issue is the case when the damping coefficientΓ is not proportional to an identity matrix. In

this case, both condition A and condition B are still sufficient to ensure the FDT. But the Krylov subspaces

construction in section 4 may not satisfy condition B. Another open question is whether one can bypass

the linear approximations used in (4) and (5). It seems that a different methodology is needed to derive

the generalized Langevin equation (6). These issues will be addressed in future works.
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Appendix A. Recurrence Formula for Σ̃=W ᵀΣW

This is the proof of lemma 3. For the nth approximation,

Σ̃=W ᵀΣW =

⎡⎢⎢⎢⎢⎣
LD−1ΣD−ᵀLᵀ LD−1ΣLᵀ LD−1ΣDᵀLᵀ . . . LD−1Σ(Dn−2)ᵀLᵀ

LΣD−ᵀLᵀ LΣLᵀ . . . LΣ(Dn−2)ᵀLᵀ

. . .

LDn−2ΣD−T Lᵀ . . . LDn−2Σ(Dn−2)ᵀLᵀ

⎤⎥⎥⎥⎥⎦
The block element of Σ̃ on the i th row and j th column is given by

Σ̃i j = LDi−2Σ(Dᵀ) j−2Lᵀ.

By using equation (16), we arrive at,

Σ̃i j =−kB T [LDi−1Q(Dᵀ) j−2Lᵀ +LDi−2Q(Dᵀ) j−1Lᵀ].

Next we define matrix S =
[

A−1
22 0

0 −I

]
. It can be easily seen that since Γ= γI , we have

SDᵀ = DS, SLᵀ = R, Q −S = 1

2γkB T
Σ.

With these identities, we are able to manipulate terms, and get,

Σ̃i j =−kB T LDi−1S(Dᵀ) j−2Lᵀ −kB T LDi−2S(Dᵀ) j−1Lᵀ − 1

γ
LDi−1Σ(Dᵀ) j−2Lᵀ − 1

γ
LDi−1Σ(Dᵀ) j−2Lᵀ

=−2kB T LDi+ j−3R − 1

γ
Σ̃i+1, j − 1

γ
Σ̃i , j+1 =− 1

γ
Σ̃i+1, j − 1

γ
Σ̃i , j+1 −2kB T Mi+ j−3,

where we have used the notation M−1 =−M∞.

Meanwhile, the block elements of Σ̃ in the second column and the second row are all zeros, since by

direct calculation, ΣLᵀ = 0. Furthermore, we have Σ̃11 = 2kB T M∞. For example when j = 1, we have

Σ̃i 1 =−γΣ̃i−1, j −2kB T Mi−3 , i ≥ 3.

Therefore we are able to write out entries of Σ̃ using Mi s.
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Appendix B. Representation of Mi s

This is the proof of lemma 4. This calculation is based on the formulas in (20) and (44) for the memory

function θ(t ). The Laplace transform will be given by,

Θ= L
[
λ−1I −D

]
R =λL

[
I −λI

λA22 (1+λγ)I

]−1

R =λL

[
(I +λ2(1+λγ)−1 A22)−1 ∗

∗ ∗

]
R. (B.1)

Here we have used a block inversion formula, and the fact that the second block in both L and R are zero.

At this point, we can invoke the Neumann series of the first diagonal block and we have,

Θ=λA12 A−1
22 A21 −λ3 A12(1−λγ+λ2γ2 +·· · )A21 +−λ5 A12(1−λγ+λ2γ2 +·· · )2 A22 A21 +·· · . (B.2)

Therefore, the patterns in the representation of Mi ’s can be observed.

As an example, the first few moments are listed below

M∞ = γA12(A−1
22 )2 A21, M0 = A12 A−1

22 A21, M1 = 0,

M2 =−A12 A21, M3 = γA12 A21, M4 = A12 A22 A21 −γ2 A12 A21,

M5 =−2γA12 A22 A21 +γ3 A12 A21, M6 =−A12 A22 A21 +3γ2 A12 A22 A21 −γ4 A12 A21,

M7 = 3γA12 A2
22 A21 −4γ3 A12 A22 A21 +γ5 A12 A21.

In addition, here are a few identities that is used to prove second FDT for order n = 3,4,5.

γM2 +M3 = 0, γ2M3 +2γM4 +M5 = 0, γ3M4 +3γ2M5 +3γM6 +M7 = 0.
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