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This contribution is the numerically oriented companion article of the work [9]. We focus 
here on the numerical resolution of the embedded corrector problem introduced in [8,
9] in the context of homogenization of diffusion equations. Our approach consists in 
considering a corrector-type problem, posed on the whole space, but with a diffusion 
matrix which is constant outside some bounded domain. In [9], we have shown how to 
define three approximate homogenized diffusion coefficients on the basis of the embedded 
corrector problem. We have also proved that these approximations all converge to the exact 
homogenized coefficients when the size of the bounded domain increases.
We show here that, under the assumption that the diffusion matrix is piecewise constant, 
the corrector problem to solve can be recast as an integral equation. In case of spherical 
inclusions with isotropic materials, we explain how to efficiently discretize this integral 
equation using spherical harmonics, and how to use the fast multipole method (FMM) to 
compute the resulting matrix-vector products at a cost which scales only linearly with 
respect to the number of inclusions. Numerical tests illustrate the performance of our 
approach in various settings.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let � ⊂Rd be a smooth and bounded domain for some d ∈ N� . We consider the standard elliptic problem{−div [Aε ∇uε] = f in �,

uε = 0 on ∂�,

with a highly oscillatory coefficient of the form Aε(x) = A(x/ε), where ε denotes a small-scale parameter and A : Rd →
Rd×d is a field of symmetric positive definite matrices, which is uniformly bounded and coercive. The field A may be 
periodic or quasi-periodic. It may also be considered as a realization of a random stationary and ergodic field [19,24]. In 

* Corresponding author.
E-mail address: frederic.legoll@enpc.fr (F. Legoll).
https://doi.org/10.1016/j.jcp.2020.109254
0021-9991/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2020.109254
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:frederic.legoll@enpc.fr
https://doi.org/10.1016/j.jcp.2020.109254
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2020.109254&domain=pdf


2 E. Cancès et al. / Journal of Computational Physics 407 (2020) 109254
these latter three cases, it is known from the standard theory of homogenization (see e.g. the textbooks [5,12,18] and the 
review articles [3,13]) that, as ε tends to zero, the function uε converges to the solution u� to the macroscopic problem{−div [A�∇u�] = f in �,

u� = 0 on ∂�,
(1)

where A� ∈ Rd×d is a constant, positive definite matrix. For practical computations, a so-called corrector problem (which 
depends on the field A) needs to be solved in order to compute the homogenized matrix A� , which, in turn, can be used 
in (1) for the macroscopic problem without small-scale dependency.

Solving the corrector problem is the key bottleneck in cases beyond the periodic setting. In the quasi-periodic and 
random stationary cases, one has to solve the corrector problems

−div
(
A(x)(p + ∇w(x))

)
= 0 in D′(Rd), (2)

for d linearly independent vectors p of Rd (Problems (2) are complemented by geometric constraints on w , such as ∇w
is quasi-periodic or random stationary, that we do not detail further). Note that the problems (2) are posed on the whole 
space Rd .

In practice, approximate corrector problems, defined on a sequence of increasing truncated domains with appropriate 
boundary conditions (typically periodic boundary conditions), are often considered to obtain a convergent sequence of 
approximate homogenized matrices [7,17]. Loosely speaking, the larger the size of the truncated domain, the more accurate 
the corresponding approximation of the homogenized matrix. The use of standard finite element discretizations to tackle 
these corrector problems may lead to very large discretized problems, the computational cost of which can be prohibitive.

The approach that we have introduced in [8,9] is based on a different idea. Rather than truncating the domain on 
which (2) is posed, we replace in (2) the diffusion matrix field A by the field

AA,A(x) :=
∣∣∣∣A(x) if x ∈ BR ,

A if x ∈ Rd \ BR ,

where BR is some bounded domain (typically a sphere of radius R) and A is some constant matrix to be specified. For some 
suitable choices of A, the following corrector-type problem is then considered:

−div
(
AA,A(p + ∇wA,A)

)
= 0 in D′(Rd). (3)

Problem (3) is also set on the whole space Rd , but the diffusion matrix is constant outside BR . In [8,9], we have shown how 
to define three approximate homogenized matrices from the solution of (3), which all converge to the exact homogenized 
matrix A� as R tends to infinity.

In this article, we focus on the development of efficient algorithms to solve the embedded corrector problem (3) in 
dimension d = 3 and to compute the associated effective homogenized coefficients. We consider the case when the following 
assumptions are satisfied:

• at each point, the diffusion matrix A is isotropic, i.e. proportional to the identity matrix, and therefore reduces to a 
scalar diffusion coefficient;

• the diffusion coefficient is piecewise constant and models non-overlapping polydisperse spherical inclusions embedded 
in a homogeneous material;

• when R → ∞, the rescaled diffusion coefficients A(R·) converge in the sense of homogenization to a constant homog-
enized matrix A�;

• the homogenized matrix A� is proportional to identity.

In this case, since the diffusion coefficient is piecewise constant, we can reformulate the partial differential equation 
(PDE) (3) in terms of an integral equation whose unknown is a function (the so-called single-layer density) defined on 
a finite union of spheres (including the sphere ∂BR ). The embedded corrector problems (3) are then solved by an algorithm 
based on a boundary integral formulation [25, Chapter 4]. This integral equation can next be efficiently discretized using 
spherical harmonics and a (spectral) Galerkin approach. In addition, we resort to an adapted version of the Fast Multipole 
Method (FMM) to perform fast matrix-vector products at linear cost with respect to the number of spherical inclusions.

Extensions beyond the setting described above will be the subject of further studies. The introduction of the embedded 
corrector problems (3), and their resolution by an integral equation approach, is motivated by a series of recent works [10,
22], where a very efficient numerical method is proposed to solve Poisson problems with piecewise constant coefficients. 
We also refer to [21] where a method similar to that presented below has been used, in a completely different context.

The approach we discuss here has been initially introduced in [8]. The theoretical analysis of the approach, where we 
show the convergence of our approximations to the exact homogenized matrix, has been performed in [9]. In this article, we 
focus on the description of an efficient algorithm to solve (3), and we discuss the numerical performance of our approach.
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Note that integral equations have already been introduced in the context of homogenization in [11]. In this article, 
the authors consider the (standard) corrector problem (2), posed on a truncated domain and complemented by periodic 
boundary conditions. The problem is next recast in a boundary integral formulation (which is different from ours since the 
PDE of interest is different). This latter formulation is eventually discretized using piecewise constant functions. The theory 
of hierarchical matrices (namely H-matrices) is used to speed-up the computations. A comparison of our approach with 
that of [11] is provided in Remark 4.2 below.

This article is organized as follows. In Section 2, we recall the theoretical results proved in [9] and our motivation for 
considering effective homogenized coefficients built upon the embedded corrector problem. We also describe the specific 
geometrical setting briefly mentioned above, and obtain the PDE formulation (20) of the embedded corrector problem in 
this case. Sections 3 and 4 are devoted to the presentation of our numerical method. In Section 3, we transform the PDE 
formulation (20) into the equivalent integral equation (33) posed on a union of spheres. The discretization of this integral 
equation by means of spherical harmonics is presented in Section 4. In addition, the fast multipole method (FMM) is used 
to speed-up the computations, as detailed in Appendix A. Optimization problems have to be solved to obtain our approx-
imate effective coefficients. Section 5 provides algorithmic details on the chosen optimization method. The performance of 
our numerical method is illustrated on several test cases in Section 6. We see there that our approach provides accurate 
approximations of the exact homogenized coefficient, and that its cost scales only linearly with respect to the number of 
inclusions. This allows to numerically consider systems composed of up to 3 × 105 inclusions using standard laptops, for a 
computational time of the order of a few tens of minutes.

2. Motivation: homogenization of isotropic materials with polydisperse spherical inclusions

2.1. Theoretical results in the general case

We first recall here some of the theoretical results obtained in the companion article [9]. For the sake of simplicity, we 
restrict our presentation to the case of dimension d = 3.

Let I denote the 3 × 3 identity matrix, and 0 < α < β < +∞. Let us denote by

K :=
{

A ∈ R3×3, A symmetric , α I ≤ A ≤ β I
}

,

where the inequalities above have to be understood in the sense of operators. We introduce a measurable field of symmetric 
positive definite matrices A : R3 → K. For any R > 0, we denote by AR := A(R·) the rescaled matrix field. Following our 
companion article (see [9, Def. 2.2]), we make the assumption that

(A1) the family of matrix-valued fields 
(
AR
)

R>0 G-converges to some constant symmetric positive definite matrix A� ∈ K
as R goes to infinity.

We recall that the definition of G-convergence has been introduced by F. Murat and L. Tartar in [23]. In this article, we 
particularly consider two prototypical situations where Assumption (A1) is satisfied:

(i) the field A is periodic;
(ii) the field A is a realization of a random ergodic stationary random field.

The computation of the homogenized matrix A� is a key challenge in homogenization. In the periodic setting, its value 
can easily be obtained by solving the so-called corrector problems defined on one periodic unit cell. However, in the stochas-
tic setting, its computation is much more difficult since it requires the resolution of corrector problems defined on the 
whole space. Only approximations of the homogenized matrix can be computed in practice, and their computation requires 
in general the resolution of approximate corrector problems defined on truncated domains of large size.

In [9], we have proposed three alternative definitions of approximate effective matrices, which we recall hereafter. Let 
R > 0 and BR denote the centered ball of radius R of R3. Introduce the spaces

V :=
{

v ∈ L2
loc(R

3), ∇v ∈
[
L2(R3)

]3
}

and V 0 :=

⎧⎪⎨⎪⎩v ∈ V ,

∫
BR

v = 0

⎫⎪⎬⎪⎭ . (4)

Note that V 0 depends on R . Since this dependency is irrelevant for what follows, we do not make it explicit in the notation. 
Let p ∈R3 such that |p| = 1 and let A∞ ∈K. We consider the unique solution w R ∈ V 0 to

−div
(
AA,A∞(p + ∇w R)

)
= 0 in D′(R3), (5)

where

AA,A∞(x) :=
∣∣∣∣A(x) if x ∈ BR ,

A if x ∈R3 \ B .
∞ R
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Problem (5) is called hereafter an embedded corrector problem. This denomination stems from the fact the diffusion matrix 
field AA,A∞ may be seen as the result of the insertion of a ball of radius R of the original material (characterized by the 
diffusion matrix field A) inside a homogeneous infinite medium characterized by a constant diffusion matrix A∞ .

The variational formulation of (5) reads as follows: find w R ∈ V 0 such that

∀v ∈ V 0,

∫
BR

(∇v)�A(p + ∇w R) +
∫

Rd\BR

(∇v)�A∞∇w R −
∫

∂BR

A∞p · n v = 0,

where n is the outward pointing (w.r.t. BR ) unit normal vector. Following [9], we also introduce the functional JAR,p :
V 0 ×K →R defined by

JAR,p(v;A∞) := 1

|BR |
∫
BR

(p + ∇v)�A(p + ∇v) + 1

|BR |
∫

Rd\BR

(∇v)�A∞∇v − 2

|BR |
∫

∂BR

A∞p · n v. (6)

The function w R can be equivalently characterized as the unique minimizer of JAR,p( · ; A∞):

w R = arg min
v∈V 0

JAR,p(v;A∞).

Let us also define

JA
R,p(A∞) := min

v∈V 0
JAR,p(v;A∞) = JAR,p(w R;A∞) where w R is the solution to (5). (7)

Since the application p ∈R3 �→JA
R,p(A∞) is quadratic, there exists a unique symmetric matrix GA

R (A∞) ∈R3×3 such that

∀p ∈R3, p�GA
R (A∞)p = JA

R,p(A∞).

Let (e1, e2, e3) denote the canonical basis of R3. In [9, Lemma 3.3], we have proved that the function JA
R :K →R defined 

by

∀A∞ ∈ K, JA
R (A∞) := 1

3

3∑
i=1

JA
R,ei

(A∞) = 1

3
Tr GA

R (A∞) (8)

is strictly concave and we have proposed three methods to define approximate homogenized matrices for a finite value of 
R , which we denote by A1

R , A2
R and A3

R .
The first method to define an approximate homogenized matrix consists in finding A1

R ∈K solution to

A1
R = arg max

A∞∈K
JA

R (A∞), (9)

while the second one consists in setting

A2
R = GA

R (A1
R). (10)

Since JA
R is strictly concave, A1

R (and thus A2
R ) is well-defined, and A1

R and A2
R can be jointly obtained. The third method is 

based on a self-consistent procedure: find A3
R ∈K solution to

A3
R = GA

R (A3
R). (11)

In general, we have not been able to prove the existence of a matrix A3
R satisfying (11). However, we have been able to 

establish a weaker existence result (see Section 2.2 below) which is sufficient to address the particular case we consider in 
this article.

In general, the three definitions lead to different values. However, they all converge to the exact homogenized matrix A�

as R goes to infinity (see [9, Props. 3.4 and 3.5]): for any 1 ≤ i ≤ 3, we have

lim
R→∞ Ai

R = A�.



E. Cancès et al. / Journal of Computational Physics 407 (2020) 109254 5
Fig. 1. Process of restricting and scaling all spherical inclusions inside BR .

2.2. Isotropic materials with spherical inclusions

As pointed out above, the embedded corrector problem (5) can, in some cases, be very efficiently solved. This is the 
situation we consider here. In the sequel, for any x ∈R3 and r > 0, we denote by Br(x) the ball of R3 of radius r centered 
at x.

We make the following additional assumptions on the matrix field A (see Fig. 2): there exist η > 0, (xn)n∈N� ⊂ R3, 
(rn)n∈N� ⊂R�+ , (an)n∈N� ⊂ [α, β] and a0, a� ∈ [α, β] such that

(A2) for all n 
= m ∈N� , dist(Brn (xn), Brm (xm)) ≥ η;
(A3) for all n ∈N� , A(x) = an I when x ∈ Brn (xn);
(A4) A(x) = a0 I on BR \⋃n∈N� Brn (xn).
(A5) A� = a� I.

In other words, we focus here on the case when the matrix-valued field A models a material composed only of isotropic 
phases (A is everywhere proportional to the identity matrix I), with spherical inclusions embedded into a homogeneous 
material, and such that the associated homogenized material is also isotropic. The geometry of some realistic heterogeneous 
materials, such as cement foams or cement-based materials for instance, may be modeled (at least approximately) by 
spherical inclusions embedded in a homogeneous material (see e.g. [6, Figure 9] and [26]).

Assume now that we are interested in computing the homogenized coefficient a� associated to a matrix-valued field A
satisfying Assumptions (A1)–(A5). Then, following the results of [9], for each value of R > 0, one can define three approxi-
mate effective coefficients a1

R , a2
R and a3

R , which are scalar versions of (9), (10) and (11), as follows:

a1
R = arg max

a∞∈[α,β]
JA

R (a∞ I), (12)

a2
R = JA

R (a1
R I), (13)

a3
R ∈ [α,β] such that a3

R = JA
R (a3

R I). (14)

Since JA
R is strictly concave, and in view of [9, Prop. 3.7], the above three approximations are well-defined. An easy 

adaptation of the arguments presented in [9] yields that, for any 1 ≤ i ≤ 3,

lim
R→+∞ ai

R = a�.

The motivation for considering such effective approximations is the following: computing the solution of the embedded 
corrector problems (5) with A∞ = a∞ I for some a∞ > 0 can be done very efficiently, provided that the sphere ∂BR does not 
intersect any of the spherical inclusions Brn (xn) for n ∈ N� . Under this assumption, we recast (5) as an interface problem 
(see (20) below), and propose in this article a very efficient numerical method for the resolution of (20) and the computation 
of a1

R , a2
R and a3

R (see Sections 3, 4 and 5 below for details).
Of course, if the matrix-valued field A satisfies Assumptions (A1)–(A5), it is not always possible to find arbitrarily large 

values of R > 0 such that ∂BR does not intersect any of the spherical inclusions of the material (see the left side of Fig. 1
for an illustration). Adapting the algorithm presented in this article to the case when spherical inclusions can intersect each 
other and/or when spherical inclusions can intersect the outer sphere ∂BR will be the subject of a future work.

Here, we propose a heuristic procedure which consists, for a given value of R > 0, in replacing the value of the material 
coefficient field A inside the ball BR by a modified coefficient field A defined as follows. Let us assume that Card{n ∈
N�, Brn (xn) ⊂ BR} = M for some M ∈N�: there are exactly M spherical inclusions that are contained in the ball BR . Up to 
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Fig. 2. Geometrical configuration.

reordering the elements of the sequence (xn, rn, an)n∈N� , we can assume that {n ∈N�, Brn (xn) ⊂ BR} = {1, . . . , M} without 
loss of generality. Let us assume in addition that there are M̂ ∈N� balls that intersect BR but do not lie entirely in BR :

Card
{

n ∈N�, Brn (xn) ∩ BR 
= ∅ and Brn(xn) 
⊂ BR

}
= M̂.

We denote by ̂x1, . . . , ̂xM̂ (respectively ̂r1, . . . , ̂rM̂ and ̂a1, . . . , ̂aM̂ ) their centers (respectively their radii and diffusion coeffi-
cients).

We define

γ :=
∑M

i=1 |Bri (xi)| +∑M̂
j=1 |BR ∩ Br̂ j (̂x j)|∑M

i=1 |Bri (xi)|
. (15)

The material coefficient A inside the ball BR is then replaced by the modified material coefficient

A(x) :=
∣∣∣∣ ai I if x ∈ Bγ ri (xi) for some 1 ≤ i ≤ M,

a0 I if x ∈ BR \⋃M
i=1 Bγ ri (xi).

(16)

In other words, in the proposed procedure, the spherical inclusions which intersect ∂BR are deleted and the ones included 
in BR are rescaled by the factor γ ≥ 1. A sketch of this procedure is shown on the right side of Fig. 1.

Since the spherical inclusions included in BR grow in the rescaling process, some of them may no longer be included 
in BR after rescaling, or may intersect another inclusion. However, since the scaling factor γ converges to one as R goes 
to infinity with rate O

(
R−2/3

)
, we do not observe this problem in practice in our numerical tests, for large values of R . 

Effective coefficients a1
R , a2

R and a3
R are then computed using formulas (12), (13) and (14), using A instead of A.

2.3. Geometrical setup and governing equations

In this section, we describe the geometrical setup we consider and detail the governing equations we solve. The notation 
introduced here is used in all the sequel.

We fix R > 0, p ∈ R3 such that |p| = 1 and a∞ > 0. Let �1, . . . , �M be a collection of M non-overlapping balls in R3, 
where each �i has radius ri and is centered at xi ∈R3 (see Fig. 2). Let BR be the ball centered at the origin of radius R . As 
explained above, we assume that �i ⊂ BR for any 1 ≤ i ≤ M . We assume that there exists η > 0 such that

min
1≤n 
=m≤M

dist (�n,�m) ≥ η and min
1≤m≤M

dist (∂BR ,�m) ≥ η.

Set r∞ = R and x∞ = 0 (the origin). Let �∞ = R3 \ BR and �0 = BR \ ∪M
i=1�i . Set 
0 = ∂�0 and 
i = ∂�i for any i ∈ I , 

with

I := {1, . . . , M,∞}.
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Note that

R3 \ �0 =
⋃
i∈I

�i = �1 ∪ . . . ∪ �M ∪ �∞,


0 =
⋃
i∈I


i = 
1 ∪ . . . ∪ 
M ∪ 
∞.

For all i ∈ I , ni is the outward pointing (w.r.t. �i ) unit normal vector on 
i and n0 = −ni . In addition, for all i ∈ I ∪ {0}, 
we denote by γi : H1(�i) → H1/2(
i) the Dirichlet trace operator. For any function v ∈ H1(�i) such that �v = 0 in �i , we 
denote by ∇v · ni its (interior with respect to �i ) normal derivative on 
i (with outward pointing normal vector).

We denote the uniform diffusion parameter inside �i by ai > 0, for i ∈ I ∪ {0}. We also define the piecewise-constant 
diffusion coefficients A : BR →R and AA,a∞ :R3 →R as follows:

A(x) := a0 +
M∑

i=1

(ai − a0)1�i (x), x ∈ BR ,

AA,a∞(x) := a0 + (a∞ − a0)1�∞(x) +
M∑

i=1

(ai − a0)1�i (x), x ∈R3,

where 1�i is the characteristic function of �i (see Fig. 2). Note that, by definition,

AA,a∞(x) =
∣∣∣∣A(x) if x ∈ BR ,

a∞ if x ∈ R3 \ BR .

As pointed out above, we focus on the following embedded corrector problem (from now on, we do not make explicit 
the dependency of w upon R): find w ∈ V 0 such that

−div
(
AA,a∞(p + ∇w)

)
= 0 in D′(R3), (17)

where the space V 0 is defined by (4). Following [9], the variational formulation of (17) reads as: find w ∈ V 0 such that

∀v ∈ V 0,

∫
BR

(∇v)�A(p + ∇w) + a∞
∫

�∞

(∇v)�∇w − a∞
∫


∞

p · n v = 0. (18)

Following Section 2.1, we are interested in computing the quantity (see (6)–(7))

JA
R,p(a∞) := 1

|BR |
M∑

i=0

ai

∫
�i

|p + ∇w|2 + a∞
|BR |

∫
�∞

|∇w|2 + 2
a∞
|BR |

∫

∞

p · n∞ w.

Note that, in the last term, we use the normal vector n∞ = −n. Using (18), it holds that

JA
R,p(a∞) = 1

|BR |
M∑

i=0

⎡⎢⎣ai

∫
�i

|p|2 + ai

∫
�i

p�∇w

⎤⎥⎦+ a∞
|BR |

∫

∞

p · n∞ w

= 1

|BR |

⎡⎢⎣ M∑
i=0

ai|�i | +
∫

0

�AA,a∞ p · n� w

⎤⎥⎦ , (19)

where, for all i ∈ I , the jump �AA,a∞ p · n� is defined on 
i by

�AA,a∞ p · n� := γ0(AA,a∞ p) · n0 + γi(AA,a∞ p) · ni = (a0 n0 + ai ni) · p.

Thus, the computation of the quantity JA
R,p(a∞) only requires the knowledge of the function w on 
0, and not necessarily 

in the whole space R3. This remark motivates the introduction of an integral formulation of Problem (17), whose unknown 
function is the trace of the function w on 
0. Such a formulation is likely to be more efficient from a computational point 
of view, since it only requires the knowledge of the values of w on the spheres 
i for i ∈ I , and not in the whole space R3.

In order to use an integral equation formulation, we recast the problem (17) as an equivalent interface problem: find 
w ∈ V 0 such that
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⎧⎨⎩
�w = 0 in R3 \ 
0,

� w � = 0 on 
0,

�AA,a∞∇w · n� = −�AA,a∞ p · n� on 
0,

(20)

where, for all i ∈ I , the jumps � w � and �AA,a∞∇w · n� are defined on 
i by

� w � := γi(w) − γ0(w),

�AA,a∞∇w · n� := a0∇w · n0 + ai∇w · ni .

In the sequel, we use the notation λ := γ0(w) ∈ H1/2(
0) for the trace of w on 
0. We also denote by λi := λ|
i = γi(w) ∈
H1/2(
i) the trace of w on the sphere 
i ⊂ 
0, for any i ∈ I . The equality (19) thus writes

JA
R,p(a∞) = 1

|BR |

⎡⎢⎣ M∑
i=0

ai|�i | +
∫

0

�AA,a∞ p · n�λ

⎤⎥⎦ . (21)

3. An integral representation

In this section, we derive an integral equation formulation of Problem (20). The unknown function of this integral equa-
tion formulation is λ, the trace of w on 
0. We first start by recalling some basic tools of potential theory in Sections 3.1
and 3.2 that are needed in the derivation of the integral equation. We next obtain in Section 3.3 the integral equation (33), 
which is equivalent to (20) and much easier to numerically solve.

3.1. Local representation

At a local level, i.e. for each sphere 
i with i ∈ I , we introduce the local single layer potential operator S̃i : H−1/2(
i) →
H1(R3 \ 
i) defined by (see e.g. [16])

∀σi ∈ H−1/2(
i), ∀x ∈R3 \ 
i, (S̃iσi)(x) :=
∫

i

σi(s)

|x − s| ds.

The single layer potential S̃iσi is harmonic in R3 \
i , vanishes at infinity and is continuous across the interface 
i . We also 
recall that, up to a multiplicative constant, σi is the jump of the normal derivative of S̃iσi across 
i :

σi = 1

4π

(∇ (S̃iσi
) · ni + ∇ (S̃iσi

) · n0
)
.

Since S̃iσi is continuous across 
i , we can define the local single layer boundary operator Si : H−1/2(
i) → H1/2(
i) by 
restricting the single layer potential to 
i : we set Siσi := S̃iσi

∣∣

i

, that is

∀s ∈ 
i, (Siσi)(s) = γi(S̃iσi)(s) = γ0(S̃iσi)(s) =
∫

i

σi(s′)
|s − s′| ds′.

We recall that the local single layer boundary operator Si is invertible [25, Chapter 4].
For any 1 ≤ i ≤ M , denote by vi the harmonic extension of λi inside �i . Of course, in view of (20), it holds that vi = w|�i . 

Moreover, the function vi can be represented by a single layer potential, i.e. there exists a unique σi ∈ H−1/2(
i) such that

w = vi = S̃iσi in �i,

and σi satisfies the integral equation

Siσi = λi on 
i . (22)

Note that S̃iσi coincides with w in �i but not in R3 \ �i (w is not harmonic in R3 \ �i ). Furthermore, the interior (with 
respect to �i) normal derivative of vi (with outward pointing normal vector) on 
i is given by

∇w · ni = ∇vi · ni = (2π +D�
i )σi on 
i, (23)

where D�
i is the adjoint of the double layer boundary operator which, in the special case of spherical domains, is self-adjoint 

and satisfies

D�
i = Di = − 1

Si
2ri
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for a sphere of radius ri . This last equation, together with (22) and (23), yields

∇w · ni = ∇vi · ni =
(

2πS−1
i − 1

2ri

)
λi . (24)

The situation is slightly different for the region �∞ . Indeed, let v∞ denote the harmonic extension of λ∞ inside �∞ =
R3 \ BR which decays to 0 at infinity. Of course, v∞ = w|�∞ , and there exists a unique σ∞ ∈ H−1/2(
∞) such that

w = v∞ = S̃∞σ∞ in �∞.

The interior (with respect to �∞ and thus exterior with respect to �0) normal derivative of v∞ on 
∞ is then given by

∇w · n∞ = ∇v∞ · n∞ = (2π −D�∞)σ∞ =
(

2π + 1

2R
S∞
)

σ∞ =
(

2πS−1∞ + 1

2R

)
λ∞. (25)

3.2. Global representation

We now consider the region �0. The global single layer potential S̃G : H−1/2(
0) → H1(R3 \ 
0) is defined as follows: for 
any ν ∈ H−1/2(
0),

∀x ∈R3 \ 
0, (S̃Gν)(x) :=
∑
i∈I

(S̃iνi)(x), (26)

where, for all i ∈ I , νi = ν|
i on each 
i . We can also consider the global single layer boundary operator SG : H−1/2(
0) →
H1/2(
0), associated to S̃G , given by SGν = γ0(S̃Gν) for any ν ∈ H−1/2(
0). Note that SGν = γi(S̃Gν) on 
i for each i ∈ I and 
ν ∈ H−1/2(
0).

It follows from potential theory that the function w satisfying (20) can be represented by a global single layer potential:

w = S̃Gν (27)

for a unique ν ∈ H−1/2(
0) and it holds that

νi = ν|
i = 1

4π
(∇w · n0 + ∇w · ni) on each 
i .

Equation (27) allows the unknown function w to be represented more efficiently in terms of ν . Indeed, the function ν is 
only defined on the surface 
0.

We also consider the global single layer boundary operator SG : H−1/2(
0) → H1/2(
0), associated to S̃G , given by SGν =
γ0(S̃Gν). Since w is continuous across 
i , we have

λi = γi(w) = γ0(w) = γ0(S̃Gν) = SGν on 
i . (28)

3.3. Integral equation

We now derive an integral equation which uniquely determines the trace λ = γ0(w) of w on 
0.
For all i ∈ I , from (24) and (25), it holds that

∇w · ni =
(

2πS−1
i + εi

2ri

)
λi on 
i,

with

εi = −1 if i = 1, . . . , M, ε∞ = 1.

Besides, using the jump condition on the last line of (20), we obtain that, for each i ∈ I , the outward pointing normal 
derivative of w on 
i (with respect to �0) is given by

∇w · n0 = −p · n0 − ai

a0
(∇w · ni + p · ni) on 
i .

On the other hand, we already noticed in (27) that the solution w can be globally represented by the density ν . We 
therefore have, on each 
i , that

νi = 1

4π
(∇w · ni + ∇w · n0) = a0 − ai

4πa0
(∇w · ni + p · ni) = a0 − ai

4πa0

((
2πS−1

i + εi

2ri

)
λi + p · ni

)
.
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In view of (28), we derive the globally coupled integral equation

∀i ∈ I, νi − a0 − ai

4πa0

(
2πS−1

i + εi

2ri

)
(SGν)|
i = a0 − ai

4πa0
p · ni on 
i . (29)

Note that the global operator SG couples all the local components νi = ν|
i for i ∈ I .
For all i ∈ I , denote by Li : H1/2(
i) → H−1/2(
i) the operator defined as follows: for any ̃λi ∈ H1/2(
i),

Lĩλi = a0 − ai

4πa0

(
2πS−1

i + εi

2ri

)
λ̃i on 
i . (30)

We also denote by L : H1/2(
0) → H−1/2(
0) the operator defined as follows: for any ̃λ ∈ H1/2(
0) and all i ∈ I ,(
L̃λ
) |
i = Li

(̃
λ|
i

)
.

Lastly, let g ∈ H−1/2(
0) be the function defined by

g|
i = a0 − ai

4πa0
p · ni for each i ∈ I. (31)

Equation (29) can then be equivalenty rewritten as

(Id −LSG)ν = g. (32)

To obtain an equation on the trace λ of w on 
0, we apply the operator SG to (32), which leads to

(Id − SGL) λ = SGg. (33)

This is the integral equation that we discretize in what follows.

4. Discretization

After a short review of the basic properties of real spherical harmonics, we introduce a discretization scheme for (33)
based on truncated series of real spherical harmonics.

4.1. Real spherical harmonics

We denote by (Y�m)�∈N, −�≤m≤� the set of real spherical harmonics (for the unit sphere S2 of R3), normalized in such 
a way that

〈Y�m,Y�′m′ 〉S2 =
∫
S2

Y�m(s)Y�′m′(s)ds =
π∫

0

π∫
−π

Y�m(θ,φ)Y�′m′(θ,φ) sin θ dθ dφ = δ��′δmm′ ,

where δnm denotes the Kronecker symbol. Spherical harmonics can be defined on the surface ∂Br(x0) of a sphere of center 
x0 and radius r by

Y�m

( · − x0

r

)
.

For any u, v ∈ L2(∂ Br(x0)), we define the scaled inner product

〈u, v〉∂Br(x0) = 1

r2

∫
∂ Br(x0)

u(s) v(s)ds =
∫
S2

u(x0 + rs′) v(x0 + rs′)ds′. (34)

The set of spherical harmonics on ∂Br(x0) forms an orthonormal basis of L2(∂ Br(x0)), endowed with this scaled inner 
product. In particular,〈

Y�m

( · − x0

r

)
,Y�′m′

( · − x0

r

)〉
∂Br(x0)

= 〈Y�m,Y�′m′ 〉S2 = δ��′δmm′ .

Note that the purpose of the scaled inner product is to avoid to scale the basis functions by the factor 1/r. This allows us 
to have the same set of basis functions on all spheres.

Standard Sobolev norms can easily be expressed using the decomposition of a function on the spherical harmonics basis. 
More precisely, for any u ∈ L2(∂ Br(x0)), we have
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u(x) =
+∞∑
�=0

�∑
m=−�

[u]m
� Y�m

(
x − x0

r

)
,

with

∀� ∈N, ∀ − � ≤ m ≤ �, [u]m
� =

〈
u,Y�m

( · − x0

r

)〉
∂Br(x0)

=
∫
S2

u(x0 + rs)Y�m(s)ds.

Besides, for any u and v in L2(∂ Br(x0)), we have

(u, v)L2(∂Br(x0)) = r2 〈u, v〉∂Br(x0) = r2
+∞∑
�=0

�∑
m=−�

[u]m
� [v]m

� .

If the function u belongs to Ht(∂Br(x0)) for some t ≥ 0, then it holds that

‖u‖2
Ht (∂Br(x0))

= r2
+∞∑
�=0

(1 + �2)t
�∑

m=−�

([u]m
� )2.

In the sequel, for all i ∈ I , we denote by 〈·, ·〉
i the scaled inner product 〈·, ·〉∂ Bri (xi) and by Y i
�m the function defined 

on 
i by Y i
�m(x) = Y�m

(
x − xi

ri

)
. We also define on 
0 the function Y i

�m by Y i
�m|
i = Y i

�m and Y i
�m|
 j = 0 if j 
= i. We can 

now extend this formalism to functions whose support is included in 
0 = ∪i∈I
i . More precisely, for any u ∈ L2(
0), for 
all i ∈ I , � ∈N and −� ≤ m ≤ �, we denote by

[ui]m
� :=

〈
u|
i ,Y�m

( · − xi

ri

)〉

i

.

We hence have

u|
i (x) =
+∞∑
�=0

�∑
m=−�

[ui]m
� Y i

�m(x) on 
i

and

u =
∑
i∈I

+∞∑
�=0

�∑
m=−�

[ui]m
� Y i

�m.

After discretization of (33), some numerical quadrature rule is needed to practically compute scalar products of the 
form (34). We therefore introduce the scheme defined by a set {sn, ωn}Ng

n=1 ⊂ (S2 ×R�+
)Ng of integration points and weights 

on the unit sphere, where Ng ∈ N� . We define an approximate scaled inner product as follows: for all i ∈ I and for any 
u, v ∈ C(
i),

〈u, v〉
i ,Ng
:=

Ng∑
n=1

ωn u(xi + ri sn) v(xi + ri sn). (35)

In practice, in the numerical tests presented in Section 6, we use the Lebedev quadrature rule [15,20] which can integrate 
products of spherical harmonics exactly up to some degree depending on the number of integration points. We refer to [10]
for more details.

4.2. Galerkin approximation

For any i ∈ I , let V N,i be the set of functions spanned by the spherical harmonics on 
i of degree � lower than or equal 
to N:

V N,i = Span
{
Y i

�m, 0 ≤ � ≤ N, −� ≤ m ≤ �
}

.

Any v ∈ V N,i can thus be written as

v =
N∑ �∑

[v]m
� Y i

�m.
�=0 m=−�
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The Galerkin approximation of (33) is given by: find λN ∈ H1/2(
0) such that, for each j ∈ I , λN, j = λN |
 j belongs to V N, j

and

∀i ∈ I, ∀v N,i ∈ V N,i,
〈
λN,i − SGLλN , v N,i

〉

i

= 〈SGg, v N,i
〉

i

,

with g given by (31).
In practice, the exact inner product 〈·, ·〉
i has to be replaced by the approximate inner product 〈·, ·〉
i ,Ng for some 

Ng ∈N . This leads to the approximate Galerkin problem: find λN ∈ H1/2(
0) such that, for each j ∈ I , λN, j = λN |
 j belongs 
to V N, j and

∀i ∈ I, ∀v N,i ∈ V N,i,
〈
λN,i − SGLλN , v N,i

〉

i ,Ng

= 〈SGg, v N,i
〉

i ,Ng

. (36)

For each j ∈ I , the function λN, j belongs to V N, j . It can thus be represented by a set of coefficients [λ j]m
� ∈ R, with 

0 ≤ � ≤ N and −� ≤ m ≤ �, as

λN |
 j = λN, j =
N∑

�=0

�∑
m=−�

[λ j]m
� Y j

�m.

Therefore the function λN has a discrete representation in terms of a vector λ ∈R(1+M)(N+1)2
collecting all the coefficients 

[λ j]m
� .

The linear system corresponding to (36) is denoted by

Kλ = f. (37)

The solution matrix K and the right-hand side vector f are given by

[K i j]mm′
��′ =

〈
δi jY

j
�′m′ − SGLY

j
�′m′ ,Y i

�m

〉

i ,Ng

, (38)

[fi]m
� =

〈
SGg,Y i

�m

〉

i ,Ng

. (39)

We now explicitly compute these values.
We start by the computation of K . We first observe that, for all j ∈ I , the spherical harmonics are eigenfunctions of the 

local single layer operator S j :

S jY j
�′m′ = 4πr j

2�′ + 1
Y j

�′m′ on 
 j . (40)

In view of the definition (30) of L j , we thus obtain that

L jY j
�′m′ = a0 − a j

4πa0

(
2πS−1

j + ε j

2r j

)
Y j

�′m′ = 2�′ + 1 + ε j

2r j

a0 − a j

4πa0
Y j

�′m′ . (41)

Second, the single layer potential generated by the surface charge distribution Y j
�′m′ on 
 j is given by

∀x ∈ � j, (S̃ jY j
�′m′)(x) = 4πr j

2�′ + 1

( |x − x j|
r j

)�′

Y�′m′
(

x − x j

|x − x j|
)

, (42)

∀x ∈R3 \ � j, (S̃ jY j
�′m′)(x) = 4πr j

2�′ + 1

(
r j

|x − x j|
)�′+1

Y�′m′
(

x − x j

|x − x j|
)

. (43)

We now compute S̃GLY
j
�′m′ , using (26) and (41):

S̃GLY
j
�′m′ =

∑
i∈I

S̃iLi

(
Y j

�′m′
∣∣∣

i

)
= S̃ jL j

(
Y j

�′m′
)

= 2�′ + 1 + ε j

2r j

a0 − a j

4πa0
S̃ jY j

�′m′ . (44)

In order to compute (38), we need to evaluate the function SGLY
j
�′m′ (which is the trace of S̃GLY

j
�′m′ on 
0) at the points 

xi + ri sn , where we recall that sn are the integration points on the unit sphere (see (35)). Introducing

vij
n := xi + ri sn − x j, si j

n := vij
n

|vij
n |

and ti j
n := |vij

n |
r j

,

and collecting (44) with (42) and (43), we obtain
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(SGLY
j
�′m′)(xi + ri sn) = 2�′ + 1 + ε j

4�′ + 2

a0 − a j

a0
(ti j

n ) f (�′,ε j) Y�′m′(si j
n )

with

f (�, ε) =
{

� if ε = 1,

−(� + 1) if ε = −1.

This leads to〈
SGLY

j
�′m′ ,Y i

�m

〉

i ,Ng

=
Ng∑

n=1

ωn Y�m(sn) (SGLY
j
�′m′)(xi + ri sn)

= 2�′ + 1 + ε j

4�′ + 2

a0 − a j

a0

Ng∑
n=1

ωn Y�m(sn) (ti j
n ) f (�′,ε j) Y�′m′(si j

n ).

We therefore obtain that

[K ii]mm′
��′ = δ��′δmm′

(
1 − 2�′ + 1 + εi

4�′ + 2

a0 − ai

a0

)
, (45)

[K i j]mm′
��′ = −

Ng∑
n=1

[K n
i j]mm′

��′ (ti j
n ) f (�′,ε j) Y�′m′(si j

n ), j 
= i, (46)

with

[K n
i j]mm′

��′ := ωn
2�′ + 1 + ε j

4�′ + 2

a0 − a j

a0
Y�m(sn).

Remark 4.1. Note that we have analytically computed [K ii]mm′
��′ , without resorting to any numerical integration. In contrast, 

[K i j]mm′
��′ does not have any explicit expression when j 
= i, thus the use of a quadrature rule in (46). Of course, it is also 

possible to compute [K ii]mm′
��′ using the numerical integration scheme. We expect to obtain an identical result as soon as a 

sufficiently large number of Lebedev integration points are used (recall indeed that products of spherical harmonics can be 
exactly integrated by the Lebedev quadrature rule, provided enough integration points are used).

We now turn to the right-hand side f of (37). To compute it, we first represent the data appearing in the right hand side 
of (33) by means of spherical harmonics of degree 1: for any i ∈ I , we have

gi = g|
i = a0 − ai

4πa0
p · ni = −εi

a0 − ai

4πa0ri
(x − xi) · p,

that we recast, for any x ∈ 
i , as

gi(x) =
1∑

m=−1

[gi]m
1 Y i

1m(x) =
√

3

4π

[
[gi]−1

1
(x − xi) · e2

ri
+ [gi]0

1
(x − xi) · e3

ri
+ [gi]1

1
(x − xi) · e1

ri

]
.

We thus get

[gi]m
1 = −εi

a0 − ai

4πa0

√
4π

3
[p]m

1 , (47)

with [p]−1
1 = p · e2, [p]0

1 = p · e3 and [p]1
1 = p · e1. We deduce that

S̃Gg =
∑
j∈I

S̃ j g j =
∑
j∈I

1∑
m′=−1

[g j]m′
1 S̃ jY j

1m′ .

In view of (39), we hence have

[fi]m
� =

Ng∑
n=1

ωn (SGg)(xi + ri sn)Y�m(sn)

=
∑
j∈I

1∑
m′=−1

[g j]m′
1

Ng∑
n=1

ωn (S̃ jY j
1m′)(xi + ri sn)Y�m(sn).
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Using (42) and (43), we deduce that

[fi]m
� = [gi]m

1
4πri

3
δ�1 +

∑
j∈I
j 
=i

1∑
m′=−1

[g j]m′
1

Ng∑
n=1

ωn (S̃ jY j
1m′)(xi + ri sn)Y�m(sn)

= [gi]m
1

4πri

3
δ�1 +

∑
j∈I
j 
=i

4πr j

3

Ng∑
n=1

[hn
j ]m

� (ti j
n ) f (1,ε j) (48)

with

[hn
j ]m

� := ωn Y�m(sn)

1∑
m′=−1

[g j]m′
1 Y1m′

(
si j

n

)
.

We have now explicitly computed the matrix and the right-hand side of the linear system (37). In practice, this linear system 
is solved with an iterative GMRES solver. In addition, we use the Fast Multipole Method (FMM) to accelerate matrix-vector 
multiplications when solving (37). Details are postponed until Appendix A. Note that the use of the FMM method is critical 
in reducing the computational cost.

Remark 4.2. As pointed out in the introduction, integral equations have already been introduced in the context of homoge-
nization in [11], where the (standard) corrector problem (2), posed on a truncated domain and complemented by periodic 
boundary conditions, is considered. Both approaches, that of [11] and ours, use Green’s functions. The Green’s function of 
the Laplace operator in Rd indeed often appears in our approach, see e.g. Section 3.1. Likewise, the Green’s function Gper
of the Laplace operator in a bounded domain with periodic boundary conditions is used in [11]. This difference in terms of 
Green’s functions actually has some important consequences:

• In our work, we make use of spherical harmonics, which are eigenfunctions of the (single layer) operator S j (see (40)). 
We thus make use of a spectral discretization. To the best of our knowledge, we are not aware of any equivalent of the 
spherical harmonics for the periodic Green’s function Gper. Of course, using a spectral basis proves to be very efficient, 
allowing us to reach a very good accuracy with few degrees of freedom. In contrast, a more standard boundary element 
(BEM) approach is used in [11]. Using a spectral discretization in the context of [11] would be challenging.

• Thanks to the use of a spectral discretization, we can simulate very large systems of almost 300,000 inclusions (see 
comments about Fig. 6 in Section 6.1 below). We are not aware of any other approach in the literature that can handle 
such large systems with a computational cost comparable to ours.

4.3. Computation of the energy

Once (37) has been solved for λ, we are in position to compute the energy JA
R,p(a∞) given by (21). Observing that, on 


i , we have �AA,a∞ p · n� = (a0 n0 + ai ni) · p = (ai − a0)ni · p = −4πa0 gi , we compute that

JA,N
R,p (a∞) =

M∑
i=0

ai|�i|
|BR | − 4πa0

|BR |
∫

0

g λN =
M∑

i=0

ai|�i |
|BR | − 〈�,λ〉, (49)

where the entries of the vector � are given by

[�i]m
� = δ�1

4πa0r2
i

|BR | [gi]m
1 (50)

and where, for any � and λ, we have set

〈�,λ〉 :=
∑
i∈I

N∑
�=0

�∑
m=−�

[�i]m
� [λi]m

� .

The energy JA,N
R,p (a∞) is the discrete approximation of JA

R,p(a∞). In view of (8), we finally introduce the discrete approxi-

mation of JA
R (a∞) as

JA,N
R (a∞) := 1

3

3∑
i=1

JA,N
R,ei

(a∞).
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5. Computation of the discrete homogenized coefficients

5.1. Resolution of the optimization problems

In Sections 3 and 4, we have presented the numerical method we propose to compute the energy (21) associated to 
the embedded corrector problem (17), for a fixed value of the exterior diffusion coefficient a∞ . We are now in position to 
compute an approximation of the homogenized coefficient a� , following the arguments of Section 2.2.

Using the discretization method introduced in Section 4, we can define three approximate homogenized coefficients, in 
the spirit of (12)–(14):

a1
R,N = arg max

a∞∈[α,β]
JA,N

R (a∞), (51)

a2
R,N = max

a∞∈[α,β]J
A,N
R (a∞) = JA,N

R (a1
R,N), (52)

a3
R,N ∈ [α,β] such that a3

R,N = JA,N
R (a3

R,N ), (53)

where the subscript N represents the degree of spherical harmonics used in the discretization.
The computation of these three quantities requires the resolution of the optimization problem (51) and of the fixed-point 

problem (53). We propose the following strategy to solve these problems. First, in the numerical tests we have performed, 
the mapping

a∞ �→ JA,N
R (a∞)

shows good contraction properties (see Figs. 3 and 8 below). We therefore suggest to first solve the fixed-point problem (53)
up to some tolerance to obtain a3

R,N . Second, we optimize the energy functional JA,N
R using the solution a3

R,N to (53) as 
initial guess. This leads to the computation of a1

R,N defined by (51). Lastly, a2
R,N is easily obtained from (52).

To solve the optimization problem (51), we use the Armijo line search since we can compute the derivative of JA,N
R

based on the solution of some adjoint linear system (see Section 5.2 below).

Remark 5.1. The complete numerical analysis of the methods presented here is challenging, and out of the scope of the 
present work. First, the numerical analysis of the discretization we use here (which is actually a spectral method) is non-
standard. As pointed out in the introduction, a similar numerical approach has been used in [21], in a different context and 
with a different aim. A priori convergence results for the approach used in [21] have been recently established in [14]. It 
might be possible to extend these results to the approximate computation of JA,N

R (a∞), for given values of the field A and 
outer diffusion coefficient a∞ . Second, the mathematical analysis presented in [9] could be fruitfully used to study (51)–(53)
from a numerical point of view.

On the other hand, it is not clear how to handle the truncation and heuristic scaling procedures introduced in Section 2.2. 
In the case when the radius of the inclusions is bounded from below and above, it is possible to show that the procedure 
which consists in removing the inclusions that intersect ∂BR (while not changing the radius of those who are completely 
contained in BR ) does not affect the limit, when R → ∞, of the practical approximations a1

R , a2
R and a3

R that we introduce 
here, which still converge to the homogenized coefficient (see [9] for details). The analysis of the scaling procedure remains 
challenging.

5.2. Computation of the first derivative

In order to compute the derivative of JA,N
R with respect to the scalar quantity a∞ , we first differentiate (49):

dJA,N
R

da∞
(a∞) = −

〈
∂�

∂a∞
,λ

〉
−
〈
�,

∂λ

∂a∞

〉
. (54)

Using (47), we observe that

∂[gi]m
�

∂a∞
= δi∞ δ�1

1

4πa0

√
4π

3
[p]m

1 .

Using the expression of [�i]m
� given by (50), we obtain

∂[�i]m
�

∂a∞
= δ�1

4πa0r2
i

|BR |
∂[gi]m

�

∂a∞
= δi∞ δ�1

r2
i

|BR |
√

4π

3
[p]m

1 .

To compute 
∂λ

, we differentiate the linear system K λ = f with respect to a∞:

∂a∞
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∂ K

∂a∞
λ + K

∂λ

∂a∞
= ∂f

∂a∞
,

hence

∂λ

∂a∞
= K −1h with h := ∂f

∂a∞
− ∂ K

∂a∞
λ.

We thus obtain that〈
�,

∂λ

∂a∞

〉
= 〈�, K −1h

〉= 〈s,h〉 , (55)

where s is the solution to the adjoint problem K �s = �. Collecting (54) and (55), we obtain

dJA,N
R

da∞
(a∞) = −

〈
∂�

∂a∞
,λ

〉
− 〈s,h〉 .

We have mentioned above that we have used the FMM method when solving the primal system (37). Similarly, we have 
used this method to again accelerate matrix-vector multiplications when solving the adjoint linear system K �s = �.

We are now left with expanding h in spherical harmonics. First, taking a closer look at [fi]m
� , we infer from (48) that

∂[fi]m
�

∂a∞
= ∂

∂a∞

⎡⎢⎢⎣[gi]m
1

4πri

3
δ�1 +

∑
j∈I
j 
=i

4πr j

3

Ng∑
n=1

ωn Y�m(sn) (ti j
n ) f (1,ε j)

1∑
m′=−1

[g j]m′
1 Y1m′

(
si j

n

)⎤⎥⎥⎦ .

Using (47), we obtain

∂[f∞]m
�

∂a∞
= δ�1

r∞
3a0

√
4π

3
[p]m

1 ,

∂[fi]m
�

∂a∞
= r∞

3a0

√
4π

3

Ng∑
n=1

ωn Y�m(sn) ti∞
n

1∑
m′=−1

[p]m′
1 Y1m′

(
si∞

n

)
, i 
= ∞.

Second, the coefficients of the matrix K can be derived with respect to a∞ , which yields

∂[K i j]mm′
��′

∂a∞
= 0 ∀i ∈ I, j 
= ∞,

∂[K i j]mm′
��′

∂a∞
= 1

a0

�′ + 1

2�′ + 1

Ng∑
n=1

ωn Y�m(sn) (ti j
n )�

′ Y�′m′
(

si j
n

)
∀i = 1, . . . , M, j = ∞,

∂[K i j]mm′
��′

∂a∞
= δ��′ δmm′

1

a0

�′ + 1

2�′ + 1
i = j = ∞.

6. Numerical results

We present here some numerical tests in the deterministic and stochastic homogenization frameworks presented in 
Section 2 to illustrate the performance of the method we propose.

Several parameters influence the accuracy of the approximation of the true homogenized coefficient a�:

• First, the truncation of the material by introducing the ball of radius R introduces a model error.
• Second, the solution to (33) for fixed R is approximated by a Galerkin scheme based on real spherical harmonics of 

maximum degree N and using numerical quadrature with Ng points. These approximations create a discretization error. 
In practice, in what follows, we choose Ng such that the product of two spherical harmonics of degree N is exactly 
integrated.

• Third, an iterative solver (with a stopping criterion based on some error tolerance on the residual) is used to solve the 
linear system (37).

• Finally, the optimization algorithm involved in the computation of the approximate homogenized coefficients (51)–(53)
also requires an error tolerance.

In all computations, unless otherwise stated, the following convergence criteria are used:
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Fig. 3. [Test case 1] Plot of the function a∞ �→ JA,N
R (a∞) for N = 1 and different values of R . The dashed line represents the diagonal.

• the iterations of the linear solver are stopped as soon as the relative �2 norm of the residual is smaller than ηls = 10−7;
• the iterations of the optimization algorithm are stopped when the absolute value of the difference between two con-

secutive values of the diffusion parameter a∞ (which also corresponds to the relative error, since a� is of the order of 
one in the numerical tests below) is smaller than ηopt = 10−5.

We recall the reader that, unless otherwise stated, we use the heuristic procedure described in Section 2.2 to ensure that 
(for any fixed value of R > 0) the inclusions �i , 1 ≤ i ≤ M , do not intersect the sphere ∂BR .

6.1. Test case 1

We first consider a case where spherical inclusions of radius rn = 0.25 are periodically arranged on the cubic lattice Z3. 
All the spherical inclusions share the same diffusion coefficient an = 10, while the diffusion constant of the matrix is fixed 
to a0 = 1. Due to the symmetries of the geometrical setting, the value JA,N

R,ei
(a∞) does not depend on i.

For the sake of illustration, we show on Fig. 3 the function a∞ �→ JA,N
R (a∞), for different values of R (with N = 1). As 

expected, the function is concave. Its derivative is quite small. When R is small (say R = 2), the value a1
R,N which maximizes 

JA,N
R is different from the fixed-point value a3

R,N . We expect (if N is sufficiently large) that these two values converge to 
the same limit when R → ∞. We observe that, when R is large, the values a1

R,N and a3
R,N are identical at the scale of the 

figure.
We first investigate the dependency of our approximation with respect to the degree N of the spherical harmonics used 

in the Galerkin procedure. In Fig. 4, we show the approximate homogenized coefficient for the values N = 1, 2, 3 as a 
function of R ∈ [2, 20].

We observe that the dependence in N for a2
R,N and a3

R,N is negligible with respect to the error in R , in the sense that 
the error due to the truncation in N is dominated by the error introduced by the embedded corrector method on the one 
hand and by neglecting the spherical inclusions that intersect ∂BR on the other hand. The situation is slightly different for 
a1

R,N as the dependence in N is more pronounced. The approximations a2
R,N and a3

R,N of the exact homogenized coefficient 
are almost identical, and depend only slightly on N . Taking N = 1 appears to be sufficient.

We have also plotted some extrapolated values computed using a finite element (FEM) code on the unit cell with periodic 
boundary conditions (PBC). Such comparisons can of course only be made in the simple case of a periodic material. We have 
plotted the results for five different discretization levels of the finite-element computation (regular mesh with Nd = 8, 16, 
32, 64 and 128 discretization points per direction) and have extrapolated the results with the Richardson method. Note that 
such a computation (which is only possible in simple periodic settings) already takes several hours on standard university 
computer clusters.

Depending on which points are used in the extrapolation, the result can slightly vary. This is why, rather than a single 
extrapolated value, we prefer to provide an interval, built as follows. We first disregard all FEM values for which we observe 
that the regime of large Nd has not been reached. We next perform several Richardson extrapolations: the first one (resp. 
the second, third, . . . ) is computed keeping only the two points (resp. the three, four, . . . points) corresponding to the two 
largest (resp. the three, four, . . . largest) values of Nd . The smallest (resp. largest) of these extrapolated values is the lower 
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Fig. 4. [Test case 1] Plots of the functions R �→ a1
R,N (left) and R �→ a2

R,N (right) for different values of the cut-off parameter N (maximal degree of the real 
spherical harmonics). Dashed lines are the values of the homogenized coefficients obtained from a finite element computation of the Z3-periodic corrector 
problem, with Nd mesh points per direction. The coefficients a2

R,N and a3
R,N are identical at the scale of the figures.

Fig. 5. [Test case 1] Plots of the functions R �→ a1
R,N (left) and R �→ a2

R,N (right) for N = 1, with and without scaling of the inclusions inside BR (see text). 
The coefficients a2

R,N and a3
R,N are identical at the scale of the figures.

(resp. upper) bound of the interval we consider. Given the sensitivity of these extrapolated values with respect to fine details 
in the extrapolation procedure, they should be carefully manipulated.

Fig. 5 illustrates how the scaling procedure (15)–(16), which is used to better account for the inclusions intersecting ∂BR , 
modifies the values of the approximate coefficients a1

R,N , a2
R,N and a3

R,N . We monitor the homogenized coefficient on the 
interval R ∈ [2, 20], again with N = 1. The dotted line referred to as “without scaling” illustrates the value of the effective 
coefficients computed when the material coefficient inside the ball BR is replaced by a coefficient of the form (16) with 
γ = 1 (i.e. when the inclusions intersecting ∂BR have been deleted, but the ones inside BR have not been enlarged). We 
also report the extrapolated values obtained from the FEM computations, obtained as explained above. We observe that 
the results obtained with the scaling procedure are much closer to the extrapoled values than those without the scaling 
procedure. The latter show a systematic and very slowly converging bias due to the approximation introduced by discarding 
the inclusions intersecting ∂BR . This motivates the scaling procedure (15)–(16), which we have used in Fig. 4, and that we 
again use in all the following computations, except otherwise stated. We also note that, even for the largest values of R
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Fig. 6. [Test case 1] Errors |a1
R,N − a�| (left) and |a2

R,N − a�| (right) as functions of R for N = 1 (log-log scale). The reference value a� has been obtained as 
explained in the text.

Fig. 7. [Test case 1] Errors on the approximate homogenized coefficients a1
R,N (left) and a2

R,N (right) when local averages with respect to R are performed 
(N = 1).

considered, the value computed without scaling is still not converged. The obtained results are consistent with the fact that 
both curves (with and without scaling) converge to the same limit when R → ∞.

To study the convergence with respect to R , we have computed a reference solution which is obtained as the average 
of the results for R = 40, 40.25, 40.5 and 40.75 with the tighter convergence criteria ηls = 10−8 and ηopt = 10−6. This 
geometrical set-up contains up to 278,370 spherical inclusions (for R = 40.75). The errors on the coefficients a1

R,N and a2
R,N

are shown on Fig. 6. We can observe decays that are proportional at least to 1/R for a1
R,N , and approximately to 1/R2 for 

a2
R,N .

The oscillatory nature of the convergence plot and the fact that the local maxima and minima seem to converge according 
to a different rate indicate that taking averages over different values of R (namely filtering w.r.t. R) might result in a faster 
convergence. In Fig. 7, we present convergence plots of approximate homogenized coefficients obtained by averaging over 4 
(resp. 8) consecutive values of R . The sample points for R are evenly spaced every 0.25 from R = 2 to R = 30. We observe 
that, in the case of a1

R,N , a better convergence rate (of approximately R−3/2 or better) is achieved. The improvement of the 
convergence rate, if any, is less significant for a2

R,N .

6.2. Test case 2

In this test case, we take the radii of the spherical inclusions smaller, setting rn = 0.15, and we increase the contrast 
between the material coefficients by setting an = 50. The background coefficient is again set to a0 = 1 and the spheres are 
placed on the cubic lattice Z3. All other parameters are identical to the ones of Test case 1.

For the sake of illustration, we show on Fig. 8 the function a∞ �→ JA,N
R (a∞), for different values of the contrast (with 

N = 1 and R = 6). We thus fix a0 = 1 and let an take different values between 10 and 50. We observe that the function 
depends only mildly upon the contrast. In the sequel of that test, we set an = 50 as mentioned above.

In Fig. 9, we plot the homogenized coefficients as R varies between 2 and 20. Here, we observe a larger mismatch 
between the values obtained by a FEM computation (with periodic boundary conditions (PBC) on the unit cell) and our 
approximation. This might be explained by the fact that this problem is harder to solve by finite element methods because 
of the larger contrast. While the method introduced in this article seems to converge for R > 10 (with a relative error 
smaller than 10−2), the FEM does not reach a similar accuracy for the discretization levels we have considered (namely 
regular meshes with 8, 16, 32, 64 and 128 discretization points per direction).
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Fig. 8. [Test case 2] Plot of the function a∞ �→ JA,N
R (a∞) for N = 1, R = 6 and different values of the contrast. The dashed line represents the diagonal.

Fig. 9. [Test case 2] Plots of the functions R �→ a1
R,N (left) and R �→ a2

R,N (right) for different values of the cut-off parameter N (maximal degree of the real 
spherical harmonics). Dashed lines are the values of the homogenized coefficients obtained from a finite element computation of the Z3-periodic corrector 
problem, with Nd mesh points per direction. The coefficients a2

R,N and a3
R,N are identical at the scale of the figures.

Fig. 10 shows the approximate homogenized coefficients as R varies between 2 and 20, with and without the scaling 
procedure of the inclusions contained in the ball BR . In comparison to Test case 1, we observe that the effect of the scaling 
is weakened for a1

R,N , while it is still clearly visible for a2
R,N and a3

R,N . Again, as for Test case 1, both curves (with and 
without scaling) seem to converge to the same limit when R → ∞. The values obtained with scaling are significantly closer 
to the extrapolated values (taking into account the range of uncertainty on these) than the values obtained without scaling, 
and seem to converge to their large R limit faster than in the absence of scaling.

Finally, on Fig. 11, we study the error on the homogenized coefficients as a function of R ∈ [2, 30]. The parameters of 
this test are the same as the convergence test for Test case 1 (see Fig. 6). Again, we can observe a convergence rate at least 
of 1/R for a1

R,N and approximately of 1/R2 for a2
R,N .

6.3. Test case 3

We now consider the case of a random material with polydisperse spherical inclusions. The radii of the inclusions are 
uniformly distributed between 0.1 and 0.25, their centers are uniformly distributed under the constraint that the distance 
between two spheres is not smaller than 0.4, and the diffusion coefficient in each inclusion is uniformly distributed between 
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Fig. 10. [Test case 2] Plots of the functions R �→ a1
R,N (left) and R �→ a2

R,N (right) for N = 1, with and without scaling of the inclusions inside BR (see text). 
The coefficients a2

R,N and a3
R,N are identical at the scale of the figures.

Fig. 11. [Test case 2] Errors |a1
R,N − a�| (left) and |a2

R,N − a�| (right) as functions of R for N = 1 (log-log scale). The reference value a� has been obtained 
with the same method as for Fig. 6.

10 and 50. On average, there is one inclusion per cube of unit size. The three random variables (radius, position and 
diffusion coefficient) are independent. We consider R in the range [2, 20]. The largest simulated configuration consists of 
32,442 inclusions.

For each computation (with a fixed radius R), the property that JA,N
R,ei

(a∞) does not depend on i is of course lost, 
due to the random positions of the different inclusions, their random radii and their random diffusion coefficients. In the 
limit R → ∞, we expect however that all JA,N

R,ei
(a∞) converge to the same value (independent of i) since the system is 

statistically isotropic. For simplicity, the numerical results presented in this section have been obtained with the energy 
functional

JA,N
R,e1

(a∞) instead of
1

3

3∑
i=1

JA,N
R,ei

(a∞).

Note that the two functionals coincide in the limit R → ∞.
On the left side of Fig. 12, we plot the three approximate homogenized coefficients a1

R,N , a2
R,N and a3

R,N as functions of 
R (we have set N = 1). We have run two simulations, which are based on the same geometric configuration, that is on the 
same realization of the random material. In the first one, we have simply discarded the inclusions intersecting the boundary 
∂BR , while in the second one the scaling procedure (15)–(16) is used. Similarly to the previous test cases, the two curves 
seem to converge to the same limit when R → ∞. For finite values of R , the results with and without using the scaling 
procedure are significantly different. The approximations seem to converge much faster with respect to R when the scaling 
procedure is used. Indeed, when R ≥ 10, the results with scaling seem to be independent of R . In contrast, those without 
scaling still vary when R increases from R = 10 to R = 20.
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Fig. 12. [Test case 3] Left: Plots of the functions R �→ a1
R,N (marked as A1), R �→ a2

R,N (marked as A2) and R �→ a3
R,N (marked as A3) for N = 1. Right: 

Absolute value of the difference of the homogenized coefficients, when spatial isotropy is assumed and when it is not.

Fig. 13. [Test case 3] Left: Total computational time to determine the effective diffusion constant. Right: Breakdown into the number of linear systems to 
be solved and the computational time per linear system.

On the right side of Fig. 12, we show the absolute value of the difference between the two homogenized limits computed 

when using the functional JA,N
R,e1

(a∞), respectively the functional 
1

3

3∑
i=1

JA,N
R,ei

(a∞). Despite the fact that, for a finite R , the 

two functionals differ, we observe that the error on the approximate homogenized coefficient is small. As expected, this 
error decreases when R increases.

We conclude this section by presenting some timings. All simulations have been run on a 4 GHz Intel Core i7 processor, 
without any parallelization (all computations have been run on a single processor). The method is implemented in Matlab 
and calls the ScalFMM-library through the MEX-interface. On the left side of Fig. 13, we show the wall-clock timings to 
compute a1

R,N , a2
R,N and a3

R,N for different values of the convergence threshold ηls and for different numbers of inclusions 
(the largest system, consisting of 32,442 inclusions, corresponds to R = 20). We have set N = 1 for these tests. The threshold 
ηopt for the Armijo line search is chosen 100 times as large, i.e. ηopt = 100 ηls. We observe that the cost increases only 
linearly with respect to the number M of inclusions, a direct consequence of the use of FMM (without FMM, we expect a 
cost scaling quadratically with respect to M , see Appendix A).
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A breakdown into the number of linear systems to be solved and the typical computational time for solving one such 
system is shown on the right side of Fig. 13. We observe that the time to solve one linear system increases linearly with M . 
However, the number of linear systems to solve is essentially independent of M . This shows that the fixed-point procedure 
(which solves one linear system per iteration) and the optimization algorithm (which solves two linear systems per itera-
tions, due to the use of the Armijo line search) are stable with respect to M . Unless very small tolerances ηopt and ηls are 
chosen, the optimization algorithm converges within a few iterations.

We also observe that, when the tolerances are set to very small values, the total computational time is not a smooth 
function of the number of inclusions. This is due to the fact that the number of linear systems to be solved during the 
optimization procedure varies in a non-smooth manner (in contrast, the average time to solve one linear system increases 
smoothly with M).

7. Conclusion

In this article, we have proposed a reformulation of the embedded corrector problem (3) introduced in [8,9] in terms of 
an integral equation of the second type, which, in turn, is discretized using a Galerkin method with real spherical harmonics 
as basis functions. This numerical method is the building block for the numerical strategy to compute the effective diffusion 
constants. Thanks to the stability of the formulation with respect to the number of inclusions and the use of an adapted 
version of the Fast Multipole Method, linear complexity with respect to the number of inclusions is achieved. The various 
numerical tests that we have performed illustrate the efficiency of the proposed approach.
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Appendix A. Use of the fast multipole method

We explain here how the Fast Multipole Method (FMM) can be used to efficiently perform the matrix-vector multipli-
cations Kλ (see Section 4.2) and K �s (see Section 5.2). Recall that the vectors λ and s belong to R(1+M)(N+1)2

and that 
K is a square matrix of size (1 + M)(N + 1)2 × (1 + M)(N + 1)2. A direct computation of Kλ or K �s scales as M2 with 
respect to the number M of inclusions, due to the nonlocal character of the global potential SG . All the other computations 
of the method can be performed locally on each sphere, and thus in parallel. The computation of K λ or K �s is thus the 
bottleneck of the approach in terms of its cost with respect to M .

The matrix K is not symmetric, but has a specific structure. Indeed, we have

K = I − �S�,

where I is the identity matrix, � and � are diagonal matrices given by

[�ii]mm
�� = a0 − ai

2a0

2� + 1 + εi

4πri
, [�ii]mm

�� = 1

r2
i

,

and where the matrix S is given by

[Si j]mm′
��′ = r2

i
4πr j

2�′ + 1

Ng∑
n=1

ωn Y�m(sn) (ti j
n ) f (�′,ε j) Y�′m′

(
si j

n

)
,

where the indices i and j belong to I = {1, . . . , M, ∞}. We partition the set I into M ∪ {∞} where M := {1, · · · , M} and 
introduce the following block structure of S:

S =
(

SMM SM∞
S S

)
.

∞M ∞∞



24 E. Cancès et al. / Journal of Computational Physics 407 (2020) 109254
The matrix-vector products of the matrices SM∞ , S∞M and S∞∞ with any vector scale at most linearly with the number 
M of inclusions. In contrast, the product between the matrix SMM and a vector of corresponding size scales quadratically 
with respect to M , since SMM is a non-sparse matrix of size M(N + 1)2 × M(N + 1)2. For any 1 ≤ i, j ≤ M , we have

[Si j]mm′
��′ = r2

i
4πr j

2�′ + 1

Ng∑
n=1

ωn Y�m(sn) (ti j
n )−(�′+1) Y�′m′

(
si j

n

)
.

We then observe that the matrix SMM is almost symmetric, up to numerical integration. Indeed, the symmetric matrix Ŝ
defined by

[̂
Si j
]mm′
��′ :=

∫

i

∫

 j

Y�m(s)Y�′m′(s′)
|s − s′| ds′ds

is, up to numerical integration, equal to S: using (43), we have

[̂
Si j
]mm′
��′ =

∫

i

Y�m(s)

⎛⎜⎝∫

 j

Y�′m′(s′)
|s − s′| ds′

⎞⎟⎠ds

=
∫

i

Y�m(s) (S̃ jY�′m′)(s)ds

= 4πr j

2�′ + 1

∫

i

Y�m(s)

( |s − x j|
r j

)−(�′+1)

Y�′m′
(

s − x j

|s − x j|
)

ds

≈ r2
i

4πr j

2�′ + 1

Ng∑
n=1

ωn Y�m(sn)

( |xi + ri sn − x j|
r j

)−(�′+1)

Y�′m′
(

xi + ri sn − x j

|xi + ri sn − x j|
)

= [Si j]mm′
��′ .

As a consequence of this specific structure of K , its transpose is approximately given by

K � = I − �S�� ≈ I − �S�.

The bottleneck to efficiently compute both K λ and K �s therefore stems from the matrix SMM .
For any vector κ ∈RM(N+1)2

with coefficients [κi]m
� , the matrix-vector product τ = SMM κ is given by

[τi]
m
� =

M∑
j=1

N∑
�′=0

�′∑
m′=−�′

[Si j]mm′
��′ [κ j]m′

�′ = r2
i

Ng∑
n=1

ωn V (xi + ri sn)Y�m(sn),

where, for any x ∈R3,

V (x) =
M∑

j=1

N∑
�′=0

�′∑
m′=−�′

[� j]m′
�′

1

|x − x j|�′+1
Y�′m′

(
x − x j

|x − x j|
)

(56)

with

[� j]m′
�′ = 4π r�′+2

j

2�′ + 1
[κ j]m′

�′ .

The function V can be interpreted as the potential generated by M multipoles located at points x j with momenta [� j]m′
�′ . 

The quantity V (xi + ri sn) is then the value of this potential at the point xi + ri sn .
The bottleneck in the evaluation of τ thus consists in the efficient evaluation of the potential V , created by M multipoles, 

at a number of points (namely the points xi + ri sn for 1 ≤ i ≤ M and 1 ≤ n ≤ Ng ) that scales proportionally to M . Without 
further approximation, this is clearly an operation that scales quadratically with respect to M . However, as we show below, 
it is possible to resort to the Fast Multipole Method to compute approximations of these quantities in (almost) linear 
complexity with respect to M .
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Remark A.1. As already anticipated, the case of the outer sphere j = ∞ needs to be treated separately. The single layer 
potential inside the sphere ∂BR is indeed of the form of a local expansion and contains mode of the form r�′

instead of 
r−(�′+1) . This operation scales linearly (and not quadratically) with respect to the number M of inclusions as only one source 
is concerned.

Remark A.2. Following Remark 4.1, we note that the expression (46) for i = j is a converging approximation of (45) when 
Ng increases, and is actually equal to (45) provided a large enough number of Lebedev points are used. In order not to 
distinguish the case i = j when using the FMM method, we use only the expression (46) even if we consider the case i = j.

Standard FMM libraries do not consider arbitrary multipolar expansions as input. The usual case is that only point-
charges are considered. In some cases (see e.g. [1]), dipoles are also treated. Since the degree N of real spherical harmonics 
that we use is arbitrary, such standard libraries can not be directly used. However, these libraries can be adapted up to 
some implementation effort. In practice, we have chosen to modify the library ScalFMM [2].

We assume here that the reader is familiar with the concept of FMM and only comment on the adaptation that is 
required to use general multipoles as input. An introduction to FMM can be found in [4]. Denoting by P the degree of real 
spherical harmonics used within the FMM, the following changes need to be made:

• The P2M-operator needs to be replaced by a M2M-operator, which maps each multipolar expansion of the form (56)
(thus of degree N) at the scattered locations {x j}M

j=1 in each box to a multipolar expansion of degree P centered at the 
box. Note that the P2M-operator is a special case of such a M2M-operator with N = 0.

• The P2P-operator needs to be replaced by a M2P-operator according to the evaluation of (56).

The remaining M2L- and L2P-operators remain unchanged.

Remark A.3. For our numerical tests, we have essentially worked with N = 1. In that case, FMM libraries able to handle 
dipoles (such as [1]) can be used without any further implementation effort.
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