
Journal of Computational Physics 231 (2012) 4499–4514
Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Numerical method for hydrodynamic modulation equations describing
Bloch oscillations in semiconductor superlattices

M. Álvaro, M. Carretero, L.L. Bonilla ⇑
Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad 30,
28911 Leganés, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 December 2011
Received in revised form 22 February 2012
Accepted 27 February 2012
Available online 30 March 2012

Keywords:
Semiconductor superlattice
Bloch oscillations
Nonlocal hydrodynamic equations
Spurious convection
Self-sustained current oscillations
0021-9991/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.jcp.2012.02.024

⇑ Corresponding author.
E-mail addresses: mariano.alvaro@uc3m.es (M. Á
URL: http://scala.uc3m.es (L.L. Bonilla).
We present a finite difference method to solve a new type of nonlocal hydrodynamic equa-
tions that arise in the theory of spatially inhomogeneous Bloch oscillations in semiconduc-
tor superlattices. The hydrodynamic equations describe the evolution of the electron
density, electric field and the complex amplitude of the Bloch oscillations for the electron
current density and the mean energy density. These equations contain averages over the
Bloch phase which are integrals of the unknown electric field and are derived by singular
perturbation methods. Among the solutions of the hydrodynamic equations, at a 70 K lat-
tice temperature, there are spatially inhomogeneous Bloch oscillations coexisting with
moving electric field domains and Gunn-type oscillations of the current. At higher temper-
ature (300 K) only Bloch oscillations remain. These novel solutions are found for restitution
coefficients in a narrow interval below their critical values and disappear for larger values.
We use an efficient numerical method based on an implicit second-order finite difference
scheme for both the electric field equation (of drift-diffusion type) and the parabolic equa-
tion for the complex amplitude. Double integrals appearing in the nonlocal hydrodynamic
equations are calculated by means of expansions in modified Bessel functions. We use
numerical simulations to ascertain the convergence of the method. If the complex ampli-
tude equation is solved using a first order scheme for restitution coefficients near their crit-
ical values, a spurious convection arises that annihilates the complex amplitude in the part
of the superlattice that is closer to the cathode. This numerical artifact disappears if the
space step is appropriately reduced or we use the second-order numerical scheme.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

An immediate consequence of the Bloch theorem is that the position of an electron inside an energy band of a crystal
oscillates coherently under an applied constant electric field with a frequency proportional to the field [1]. To observe these
so-called Bloch oscillations (BOs), their period must be much shorter than the scattering time for, otherwise, scattering elim-
inates them. The required electric field to observe Bloch oscillations is too large for a natural crystal, but it becomes reason-
able if artificial crystals with larger spatial periods are created. An artificial crystal can be formed by growing many identical
periods comprising a number of layers of two different materials. The resulting superlattice (SL) was suggested by Esaki and
Tsu in 1970 as a possible realization of Bloch oscillations [2]. Damped Bloch oscillations were first observed in 1992 in
semiconductor SLs whose initial state was prepared optically [3]. In recent years, BOs have been observed in other artificial
. All rights reserved.
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crystals such as atoms placed in the potential minima of a laser-induced optical standing wave [4,5], photons in a periodic
array of waveguides [6,7] and Bose–Einstein condensates in optical lattices [8] among other systems [9].

In SLs made out of doped semiconductors, scattering usually destroys BOs, but we have shown recently that BOs can per-
sist even in the hydrodynamic regime for a SL with long scattering times [10,11]. To do so, we consider a Boltzmann–Poisson
description of a SL with a single occupied electron miniband and a dissipative Bhatnagar–Gross–Krook (BGK) collision model
[12]. In semiconductor SLs, collisions are inelastic: they conserve charge but dissipate energy and momentum. Then the BGK
inelastic-collision model contains two restitution coefficients that regulate the fractions of energy and momentum lost in
collisions [12]. Previously, an inelastic BGK model was used to describe granular fluids, in which energy (but not momen-
tum) is lost during collisions [13]. Boltzmann–BGK mass- and energy-conserving kinetic equations with different local equi-
librium distributions describe a particle in an external potential, and have been used to derive energy-transport equations
and to prove H theorems; see [14] and references cited therein. Quantum hydrodynamic and quantum energy-transport
models have been derived from quantum BGK kinetic equations that conserve mass, momentum and energy; see [15]
and references cited therein. For SLs, inelastic collisions imply that BOs are damped on a time scale given by the scattering
time. Damping modulates the amplitude of the BOs if the scattering time is sufficiently long. In the limit of almost elastic
scattering and high electric field, the electron current density and mean energy oscillate at the Bloch frequency, whereas
the electron density, the electric field and the envelope of the BOs vary on a slower scale. In this limit, it is possible to derive
a set of one-dimensional nonlocal hydrodynamic equations for the electric field and the complex amplitude of the BOs. Their
solutions allow to reconstruct the rapidly varying electron current and mean energy densities. The hydrodynamic equations
are of a quite novel type: they contain averages over the phase of the BOs which is proportional to the integral over time of
the electric field, and therefore the phase is also an unknown to be determined. Appropriate boundary and initial conditions
include initiation of the BOs possibly by optical means [3]. Numerical solution of the hydrodynamic equations shows stable
BOs for appropriate parameter values [10,11]. For dc voltage biased SLs at sufficiently low lattice temperatures, there are
solutions in which the amplitude of the BOs is time-periodic and the electric field profile inside the SL exhibits electric field
domains (EFDs) [11].

In this paper, we present a method to solve numerically the nonlocal hydrodynamic equations describing BOs for a dc
voltage biased SL. Although the problem is one-dimensional (1D), it is very computationally intensive, so we need an effi-
cient numerical method to solve it. We solve the hydrodynamics equations by means of an efficient implicit finite differ-
ence numerical scheme, which uses a fixed point iteration process to obtain numerically both the electric field and the BO
complex amplitude at each time step. The equation for the field is a nonlocal drift-diffusion equation (containing integrals
over the Bloch phase which is an integral of the electric field) that is solved using an implicit numerical scheme involving
the inversion of only one tridiagonal matrix per iteration. This equation is coupled to that of the BO amplitude. We use a
second order numerical scheme to solve the latter. In the hydrodynamic equations, there appear several Fourier coeffi-
cients of the Boltzmann distribution function (which is periodic in the momentum variable with period 2p=l if l is the
spatial period of the SL). These Fourier coefficients are approximated by truncated series of modified Bessel functions
for computational efficiency. With appropriate parameter values and boundary conditions, numerical solutions show that
initial profiles for the field and the BO amplitude evolve to stable spatially inhomogeneous profiles at room temperature
[11]. At low temperature (70 K), we have found that BOs and Gunn-type oscillations [16,17] due to EFD dynamics may
coexist. Increasing lattice temperature produces large diffusion coefficients as compared to the convective part of the
averaged drift-diffusion equation for the electric field. This eliminates the Gunn-type oscillations. At low lattice temper-
ature, the diffusion does not change that much, but convection dominates the average electron current density, thereby
facilitating movable EFDs and Gunn-type oscillations [11]. BOs (accompanied or not by Gunn-type oscillations in their
amplitude) disappear as the collisions in the kinetic equation become more inelastic and the BO amplitude becomes zero
everywhere. If the amplitude of the BOs is set to zero, the drift-diffusion equation for the electric field is similar to those
obtained with a local equilibrium distribution that depends only on the electron density [18]. Solutions of this drift-
diffusion equation include Gunn-type self-oscillations due to EFD dynamics. Direct solution of the Boltzmann–Poisson
system studied in [18] confirms this [19].

The rest of the paper is as follows. In Section 2, we describe the Boltzmann–BGK–Poisson system and the nondimensional
hydrodynamic equations derived from it. In Section 3, we explain the numerical method for solving the hydrodynamic equa-
tions as well as the numerical results. The analysis of the convergence of the numerical method is based on numerical sim-
ulations and it is presented in Section 4. Section 5 contains our conclusions. In Appendix A we include some technical details
including the series of modified Bessel functions used to approximate some integrals.
2. Model equations

For a semiconductor superlattice with a single occupied miniband of dispersion relation
EðkÞ ¼ D
2
ð1� cos klÞ; ð1Þ
(D is the SL miniband width and l is the SL spatial period), the distribution function f ðx; k; tÞ of electrons with position in the
interval ðx; xþ dxÞ and wave vector in ðk; kþ dkÞ satisfies the system of equations [12,11]:
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Here f B; n;ND; e;vðkÞ ¼ �h�1dE=dk; kB;�e < 0;ua; Ta; Jn; E; E0 and �F ¼ �@W=@x are the local equilibrium distribution, the 2D
electron density, the 2D doping density, the dielectric constant, the group velocity, the Boltzmann constant, the electron
charge, the hydrodynamic velocity, the electron temperature, the electron current density, the mean energy density, the lat-
tice mean energy density, and the electric field, respectively. W is the electric potential. The lattice mean energy density is

related to the lattice temperature T0 as E0 ¼ D
2 I1

D
2kBT0

� �
=I0

D
2kBT0

� �
, where IjðxÞ is the modified Bessel function of index j [11].

Note that the 1D distribution functions f and f B have the same units as the 2D electron density n and that ua and Ta are func-
tions of n; Jn and E obtained by solving (7) and (8) with f B given by (5). The 1D Boltzmann local equilibrium (5) is an approx-
imation to a more general Fermi-Dirac distribution [11]. m is the collision frequency which we take as a constant for the sake
of simplicity. ae and aj are constant restitution coefficients that indicate the fraction of energy and momentum dissipated in
inelastic collisions (with phonons, for example). The distribution function is periodic in k with period 2p=l.

Ktitorov, Simin and Sindalovskii (KSS) [20] proposed in 1972 an equation similar to (2) except that f B was replaced by the
Boltzmann equilibrium distribution at the lattice temperature T0 and an additional term Q p ¼ �mp½f ðx; k; tÞ � f ðx:� k; tÞ�=2
(representing 1D impurity collisions) was added to the RHS. Later Ignatov and Shashkin [21] proposed a local equilibrium
distribution function similar to (5) with ua ¼ 0 and Ta ¼ T0. Such a kinetic model was numerically solved by Cebrián et
al. [19] using a particle method, and Bonilla et al. [18] derived from it a generalized drift-diffusion equation for the electric
field exhibiting Gunn-like oscillations of the current due to EFD dynamics. However the KSS model with the Ignatov-Shash-
kin modification cannot sustain stable Bloch oscillations [11]. To see the relation with BOs, we multiply (2) by 1, vðkÞ or
½D=2� EðkÞ� and integrate over k, thereby obtaining the following moment equations for n; Jn and E:
e
l
@n
@t
þ @Jn

@x
¼ 0; ð11Þ

@Jn

@t
þ eD2l

8�h2

@

@x
ðn� Ref2Þ �

e2lnEF

�h2 ¼ �majJn; ð12Þ

@E
@t
� lE

en
@Jn

@x
� D2l

8�hn
@

@x
Imf2 þ

FJnl
n
¼ �maeðE� E0Þ: ð13Þ
Here we have used (1) and the Fourier coefficients fj of the periodic distribution function:
f ðx; k; tÞ ¼
P1

j¼�1
fjðx; tÞeijkl: ð14Þ
Note that Jn ¼ �eD Imf1=ð2�hÞ and E ¼ DRef1=ð2nÞ. (11) is the charge continuity equation. For elastic collisions, ae ¼ aj ¼ 0 and
space-independent n; Jn and E, we obtain @n=@t ¼ 0 (thus n is constant), and (12) and (13) become
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Since n is constant, Jn and E are time periodic and oscillate with the Bloch frequency xB ¼ eFl=�h, proportional to the electric
field. In the general case of space dependent moments, (11)–(13) are not a closed system of equations because they depend
on the second harmonic of the distribution function f2. In an appropriate limit, the terms on the RHS of (12) and (13) mod-
ulate the BOs, so that n; F and the amplitude of the BOs evolve on a slower time scale. Based on these ideas, we have derived
in [11] a system of slowly-varying nonlocal hydrodynamic equations for these magnitudes using singular perturbation
methods.

2.1. Hydrodynamic equations

Written in the nondimensional units of Table 1, the hydrodynamic equations are [11]
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Here ce;j ¼ ae;j=d are rescaled restitution coefficients and f B
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of the Boltzmann local equilibrium distribution (5) which, in nondimensional form, is:
f Bðn;u; b; kÞ ¼ n
peukþb cos kR p
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: ð25Þ
The Boltzmann local equilibrium distribution can be expanded in a power series of the small parameter d:
f B ¼
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f BðmÞdm: ð26Þ
In (25), u and b are nondimensional multipliers corresponding to ua and to 1=ðkBTaÞ in (5). They are found by solving the
nondimensional versions of (7) and (8):
olic scaling and nondimensionalization with m ¼ 1014 Hz.
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Together with the Poisson equation (20), (17) is a drift-diffusion equation for the electric field �F, (18) gives the time evo-
lution of the BO complex amplitude A, and (19) gives the total current density J (proportional to the electric current in the
circuit attached to the superlattice). The restitution coefficients are rescaled as ae ¼ dce; aj ¼ dcj, where d ¼ 1=ðm½t�Þ � 1 is
the ratio between the Bloch period and the convective time scale ½t� in Table 1. The hydrodynamic equations hold in the limit
as d! 0þ [11]. There are two time scales in the hydrodynamic equations: a nonlinear fast time scale h (the phase of the BOs,
on the picosecond time scale), given by (22), and a slow time scale t on the nanosecond scale. The electric field �Fðx; tÞ, the
electron density nðx; tÞ, the BOs complex amplitude envelope Aðx; tÞ and the h-averaged current density hJihðtÞ all vary on the
slow time scale and may exhibit Gunn-type oscillations with frequencies on the GHz scale. Once we have obtained F; hJih and
A from (17) and (18), which depend only on the slow time scale t, we can calculate from (19) the total current density J,
which depends on both time scales. Although A ¼ 0 is an exact solution of (18), we are interested in finding numerical solu-
tions with undamped BOs (i.e. A – 0) coexisting with Gunn-type oscillations of the current. The first term in the RHS of (18)
tries to send A to 0 at a rate proportional to ðce þ cjÞ=2, but this effect may be compensated by the second term of the RHS of
(18). This means that nonzero solutions of the BO amplitude may be present below a critical value of ðce þ cjÞ, i.e., when the
scattering time is long enough.

2.2. Boundary conditions

Eqs. (17)–(20) must be solved together with the following boundary conditions at the cathode (x ¼ 0):
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where r0 and rL are the dimensionless conductivities at the cathode and anode respectively, L is the nondimensional SL
length and /L is the nondimensional constant applied voltage bias.

The contact conductivity at the cathode r0 must be selected so that r0F intersects the second branch of the drift velocity
hJihðFÞ depicted in Fig. 1. hJihðFÞ is found by solving (17) for F, provided n ¼ 1 and F is independent of x and t:
hJihðFÞ ¼
dceE0F

F2 þ d2cjce

: ð35Þ
This is a typical boundary condition that yields Gunn-type self-sustained oscillations of the current in drift-diffusion SL
models [17,18,22,23].
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2.3. Initial conditions

We select spatially uniform A and F as initial conditions:
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where IjðxÞ is the modified Bessel function [11]. The initial value of A is calculated by using (45) assuming that the initial
values of uð0Þ; bð0Þ and h are 0, D=ð2kBT0Þ and 0, respectively. The initial nondimensional mean energy is the lattice mean en-
ergy density:
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Although the initial-boundary value problem (IBVP) to be solved is one dimensional, we need efficient numerical methods
because it is very computationally intensive: we need a large integration time to observe the Gunn-type self-oscillations of
the current and the number of operations needed to compute the double Fourier coefficients f Bð0Þ
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3. Numerical solution
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The influence of the amplitude A in Eq. (17) is small because only the term f Bð0Þ
2;0 in (43) contains it. On the other hand, in Eq.

(18) we can separate the diffusion term from the rest of the terms. Note that the amplitude A appears implicitly in the double
Fourier coefficients f Bð0Þ

2;�1; f
Bð0Þ
3;�1 and f Bð1Þ

2;�1. Therefore, we can write (18) as follows:
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For the numerical computation of uð0Þ and bð0Þ we can write Eq. (29) as:
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For an efficient numerical computation of integrals (47)–(49) we use an expansion as series of modified Bessel functions
described in Appendix A. Once we have obtained uð0Þ and bð0Þ from (45), we can get uð1Þ and bð1Þ as shown in Appendix A.

3.1. Numerical scheme

We have used an implicit numerical scheme to solve the partial differential equation (17) and (18). In order to avoid
numerical instabilities, our scheme employs a fixed point iteration method to find the numerical solution for F;A; hJhi and
J at each time step.

3.1.1. Drift-diffusion equation for F
To solve Eq. (17), we use a scheme similar to the one described and proved to converge in [24] for a related problem

involving partial differential equations with an integral constraint. We use central differences for approximating spatial
derivatives, and the resulting differential equation is integrated in time by a first order implicit Euler method. This procedure
leads to a system of N þ 2 linear equations for the N þ 1 values of the electric field Fn

j � Fðjh;nsÞ; j ¼ 0;1; . . . ;N, with the sub-
script j referring to space and the superscript n to time, plus hJih. In order to save computational effort we will set up the finite
difference system of equations with a tridiagonal coefficients matrix, in the following way:
ajF
nþ1
j�1 þ bjF

nþ1
j þ cjF

nþ1
jþ1 þ djhJinþ1

h ¼ gj; j ¼ 1; . . . ;N � 1: ð50Þ
The coefficients of (50) are:
aj ¼ �
hs
2
Anþ1

j þ sBnþ1
j ; ð51Þ

bj ¼ h2 � 2sBnþ1
j ;

cj ¼
hs
2
Anþ1

j þ sBnþ1
j ;

dj ¼ h2sCnþ1
j ;

gj ¼ h2Fn
j þ h2sDnþ1

j ; ð52Þ
where h ¼ Dx ¼ L=N; s ¼ Dt and all the coefficients A;B; C and D of (39) are evaluated at time tnþ1.
The voltage bias integral constraint is solved by the composite Simpson’s rule:
Fnþ1
0 þ 4Fnþ1

1 þ 2Fnþ1
2 þ . . .þ 2Fnþ1

N�2 þ 4Fnþ1
N�1 þ Fnþ1

N ¼ 3/L=h: ð53Þ
The boundary condition at the injector contact is:
ð1þ r0sÞFnþ1
0 � shJinþ1

h ¼ Fn
0; ð54Þ
and at the collector contact:
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hþ rLs hþ Fnþ1
N � Fnþ1

N�1

� �� �
Fnþ1

N � shhJinþ1
h ¼ hFn

N: ð55Þ
This system of N þ 2 linear equations can be reduced to a simpler and smaller system, with the objective of finding a tridi-
agonal matrix, in the following way:

� hJih can be calculated directly from the boundary condition at the injector contact:
hJinþ1
h ¼ r0 þ

1
s

� �
Fnþ1

0 � 1
s

Fn
0: ð56Þ
� The field at the anode can also be expressed in terms of Fnþ1
0 and Fnþ1

N�1:
Fnþ1
N ¼

h Fn
N � Fn

0 þ ð1þ r0sÞFnþ1
0

� �
hþ rLs hþ Fnþ1

N � Fnþ1
N�1

� � : ð57Þ
� We can make the following factorization of the system of linear equations:
vFnþ1
0 þ TF ¼ g; ð58Þ

ð1þ j1ÞFnþ1
0 þ u � F ¼ 3/L=h� j2; ð59Þ
where coefficients j1 and j2 are:
j1 ¼
hð1þ r0sÞ

hþ rLs hþ Fnþ1
N � Fnþ1

N�1

� � ;
j2 ¼

h Fn
N � Fn

0

� 	
hþ rLs hþ Fn

N � Fnþ1
N�1

� � ;

T is the tridiagonal matrix:
T ¼

b1 c1 � � � � � � 0
a2 b2 c2 � � � 0
� � � � � � � � � � � � � � �
0 � � � � � � aN�1 bN�1

0
BBB@

1
CCCA
and vectors F;v;g and u are:
F ¼

Fnþ1
1

Fnþ1
2

� � �
Fnþ1

N�1

0
BBBB@

1
CCCCA; v ¼

d1ðr0 þ 1
sÞ þ a1

d2ðr0 þ 1
sÞ

� � � � � � � � � � � �
dN�1ðr0 þ 1

sÞ þ cN�1j1

0
BBB@

1
CCCA;

g ¼

g1 þ 1
s Fn

0d1

g2 þ 1
s Fn

0d2

� � � � � �
gN�1 þ 1

s Fn
0dN�1

0
BBB@

1
CCCA; u ¼ 4;2; . . . 2;4ð Þ:
System (58) and (59) can be efficiently solved by means of the following system with the same tridiagonal matrix T:
Ty ¼ g; ð60Þ
Tz ¼ v: ð61Þ
After calculating y and z, we can obtain Fnþ1
0 ; F and hJinþ1

h :
Fnþ1
0 ¼ u � y � 3/L=hþ j2

u � z� 1� j1
; ð62Þ

Fnþ1
N ¼ j1Fnþ1

0 þ j2; ð63Þ
F ¼ y � Fnþ1

0 z; ð64Þ

hJinþ1
h ¼ ðr0 þ

1
s
ÞFnþ1

0 � 1
s

Fn
0: ð65Þ
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� For each h 2 ½�p;p�, the nondimensional multipliers bnþ1;h
j and unþ1;h

j are obtained by solving (46) using the Newton–Raph-

son method with the Jacobian matrix (A.1). The Boltzmann distribution function Fourier coefficients f Bð0Þ
2;0

� �nþ1

j
; f Bð0Þ

2;�1

� �nþ1

j

and f Bð0Þ
3;�1

� �nþ1

j
are calculated from (23) and (24) using the composite Simpson’s rule for all the integrals over k and over h.

3.1.2. Parabolic equation for A
It is important to find an accurate finite difference scheme to solve (18) because the restitution parameters ce; cj are close

to their critical values; thus we will use a second-order implicit scheme. We approximate the time derivative of the complex
amplitude A at time nþ 1 as:
@A
@t
ðxj; tnþ1Þ ¼

@Anþ1
j

@t
¼ 2

s
Anþ1

j � An
j

� �
�
@An

j

@t
þ Oðs2Þ; ð66Þ
which is equivalent to a second-order, implicit, Runge–Kutta method (trapezoidal rule). We use central difference for the
space derivative in the second term of the RHS of (44) as a whole block:
@

@x
f Bð0Þ
2;�1 þ dsð1Þ2;�1

1þ iF

 !
� 1

2h

f Bð0Þ
2;�1 þ dsð1Þ2;�1

� �nþ1

jþ1

1þ iFnþ1
jþ1

�
f Bð0Þ
2;�1 þ dsð1Þ2;�1

� �nþ1

j�1

1þ iFnþ1
j�1

2
64

3
75: ð67Þ
Therefore, the numerical scheme for A will be as follows:
Anþ1
j ¼ An

j þ
s
2
@An

j

@t
� s

4
ðce þ cjÞA

nþ1
j þ s

8ih

f Bð0Þ
2;�1 þ dsð1Þ2;�1

� �nþ1

jþ1

1þ iFnþ1
jþ1

�
f Bð0Þ
2;�1 þ drsð1Þ2;�1

� �nþ1

j�1

1þ iFnþ1
j�1

0
B@

1
CAþ sd Anþ1

jþ1 � 2Anþ1
j þ Anþ1

j�1

� �
8ð1þ iFÞh2

�
sdi Anþ1

jþ1 � Anþ1
j�1

� �
Fnþ1

jþ1 � Fnþ1
j�1

� �
32ð1þ iFÞ2h2 ; ð68Þ
where j ¼ 1; . . . ;N � 1. The boundary conditions at the contacts are:
Anþ1
0 ¼ 0; ð69Þ

Anþ1
N ¼ 0: ð70Þ
3.1.3. Algorithm

1. For each time step tnþ1 do:

(a) While the fixed point iteration does not converge:

� For each node j ¼ 1; . . . ;N � 1:

– For each h 2 ½�p;p�: calculate the Jacobian matrix elements from (A.1) using the Bessel functions series
described in Appendix A for the integrals (47) and (A.2)–(A.6) then obtain ðbð0ÞÞnþ1;h

j and ðuð0ÞÞnþ1;h
j by the New-

ton–Raphson method from (45).

– Calculate f Bð0Þ
2;0

� �nþ1

j
; f Bð0Þ

2;�1

� �nþ1

j
and rð1Þ2;�1

� �nþ1

j
from (23), (24) and (21). The integrals over k and h are calculated by

the composite Simpson’s rule, with the previous values obtained of ðbð0ÞÞnþ1;h
j and ðuð0ÞÞnþ1;h

j .
– Calculate coefficients Anþ1

j ;Bnþ1
j ; Cnþ1

j and Dnþ1
j from (40)–(43).

– Calculate coefficients aj; bj; cj and gj from (51)–(52).
(b) Obtain Fnþ1
j and hJinþ1

h from (62)–(65), the complex amplitude Anþ1
j from (68) and the current density J from (19).

(c) If the fixed point iteration does not converge, then go to step (a).
2. Go to step (1).

3.2. Numerical results

We have solved the hydrodynamic equations using parameter values similar to those for the superlattice with D ¼ 16
meV in Ref. [25]. Then d ¼ 0:0053 and other parameter values are as in Table 1. To obtain undamped BOs, we have used
ce;j ¼ 1:1269 so that ðce þ cjÞ=2 < ccrit. We consider a 50-period dc voltage biased GaAs-AlAs SL with lattice temperature
70 K and dimensionless contact conductivities r0 ¼ 1 and rL ¼ 0:25. Initially, the mean energy density is E0 ¼ 0:5501 and
the profiles of A and F are uniform, taking on values of 0:5501 and 0:05, respectively.

For a voltage bias / ¼ 0:05 (V ¼ 0:166 V) and after a short transient that depends on the initial conditions, we observe
coexisting BOs of frequency 0.36 THz and Gunn-type oscillations of frequency 11 GHz. BOs are stable because
ðce þ cjÞ=2 < ccrit and Gunn-type oscillations are a consequence of the periodic recycling and motion of electric field pulses
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from the cathode to the anode. Fig. 2 shows several snapshots of the field and jAj profiles of the Gunn-type oscillation, and
Fig. 3 exhibits the corresponding current density profiles for h ¼ 0. While the amplitude of Gunn-type current oscillation is
about 0.03 in nondimensional units (as seen in Fig. 2(a) for the total current density averaged over the BOs), the BO part of
the current oscillation has a larger amplitude of about 0.5 (as shown in Fig. 2(c) for the modulus of A). Fig. 4 illustrates the
total current density (19) of the coexisting 0.36 THz Bloch and 11 GHz Gunn-type oscillations, respectively. For each lattice
temperature, there is a critical curve in the plane of restitution coefficients such that, for ðce þ cjÞ=2 > ccrit, BOs disappear
after a relaxation time but they persist for smaller values of ðce þ cjÞ [11].

Fig. 5 shows the profiles of F and jAj and Fig. 6 depicts the total current density at temperature 300 K, with E0 ¼ 0:1529, for
the same values of ce;j and the other parameters. We find BOs but not the slower Gunn-type oscillations. Whether Bloch and
Gunn-type oscillations coexist depends on the relative size of the diffusion (41) and convection (40) terms in (39) which, in
turn, are controlled by the lattice temperature according to (38). There is a critical temperature below which diffusion terms
are sufficiently small compared to convective terms in (17) and the electric field pulses are then periodically recycled when
they reach the anode, originating the Gunn-type oscillations. For larger temperatures, Bloch and Gunn-type oscillations
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Fig. 2. (a) h-Averaged total current density vs time during coexisting Bloch and Gunn-type oscillations at 70 K. (b) Field profile vs space at the times t1 to t4

marked in (a). (c) Same for the complex BO amplitude profile. To transform the magnitudes in this figure to dimensional units, use Table 1.
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Fig. 3. Profiles of the nondimensional electron current density Jn and the modulus of the amplitude for BOs at h ¼ 0 corresponding to the instants t1 � t4 of
Fig. 2(a).
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Fig. 4. (a) Total current density vs time during coexisting Bloch and Gunn-type oscillations at 70 K. (b) Fourier transform of the total current density
showing two peaks corresponding to coexisting Bloch (0.36 THz) and Gunn-type (11 GHz) oscillations.
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cannot occur simultaneously: When the electric field pulse reaches the anode, it remains stuck there and the electric field
profile becomes the stationary state shown in Fig. 5. Note that the largest peak in the current spectrum in Fig. 6(b) occurs at a
lower frequency (0.26 THz) than in the case of lower lattice temperature shown in Fig. 4(b).
3.3. Spurious convection

Had we used first-order backward differences for the space derivative in (18) instead of second-order ones (67), the com-
puting time to get comparable results would have had to increase significantly: unless we use four times smaller values of
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Fig. 5. (a) Electric field profile vs space for the stationary state at 300 K. (b) Same for the modulus of the BO complex amplitude. To transform the
magnitudes in this figure to dimensional units, use Table 1.
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Fig. 6. (a) Total current density vs time during Bloch oscillations at 300 K. (b) Fourier transform of the total current density showing only one peak
corresponding to BOs (0.26 THz). The zero-frequency constant corresponding to the time average of the total current density has been subtracted.
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Dx, the scheme with first-order differences gives rise to spurious convection terms in A. Fig. 7 shows the spatial profile of jAj
at a given time during BOs, calculated using first-order backward differences in (18) for two values of ðce þ cjÞ < ðce þ cjÞcrit .
The dashed lines in Fig. 7(a) and (b) show that BOs extend to the whole SL for sufficiently small values of ðce þ cjÞ, no matter
the step size. However, when ðce þ cjÞ approaches the critical value from below (solid line), the BOs are confined to part of
the SL as in Fig. 7(a) unless the step size is sufficiently small as in Fig. 7(b). Fig. 7(a) shows that, for larger step size, there
appears a spurious convection in A that extends the region where A ¼ 0 from the cathode and it confines the BOs to the re-
gion closer to the receiving contact (anode). The spatial interval where A ¼ 0 moves from cathode towards the anode as time
increases. The phenomenon of the spurious convection occurs for restitution coefficients close to their critical values as in
Ref. [10].
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Fig. 7. Modulus of the nondimensional complex BO amplitude at a given time, calculated using first-order backward differences to solve (18) with different
space steps.
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4. Convergence of the method

We have verified the convergence of the method in terms of the spatial and temporal mesh size Dx and Dt, by means of
numerical simulations. Fig. 8 shows the evolution of hJih for different values of Dx and Dt. Convergence to the solution is more
sensitive to the size of the space step Dx than to the size of the time step Dt. We observe in Fig. 8(a) that if we use two or
more integration nodes per SL period (i.e., Dx 6 0:022), the difference between the numerical solutions is small and the arti-
fact that appears for large space step, Dx ¼ 0:044 is eliminated for smaller step sizes. On the other hand, Fig. 8(b) shows that
decreasing the time step by half has little effect in improving the convergence of the scheme: the artifact for large Dx ¼ 0:044
still appears whereas for smaller space steps, the improvement provided by a smaller time step is quite small.

We also analyzed the average number of fixed point iterations necessary for convergence of the numerical scheme at each
time step and checked that the fixed point iteration is contractive. In the case where the solution consists of Gunn-like self-
oscillations, only two or three iterations are needed for each time step during most of one period. However when the field
pulses reach the SL end and new pulses are created at the cathode, more than three iterations are needed to attain a reliable
result. We have observed that the number of iterations depends directly on the size of the time step Dt. Table 2 summarizes
the main results of the convergence analysis for a simulation of t ¼ 200½t� ¼ 376 ps. It can be seen that for larger Dt, more
fixed point iterations are needed at each time step, therefore the total computation time, for a given Dx, does not depend
too much on Dt as long as it is small enough for the convergence of the iterative scheme.
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Fig. 8. h-Averaged current density versus time for different values of space and time steps. In (a) we use Dt ¼ 0:01.

Table 2
Average number of fixed point iterations and Mflops.

N Dx Dt # Iterations/# steps (t) Total # iterations Mflops/# iterations (N)

50 0.044 0.03 3.011 20073 0.554
50 0.044 0.02 2.123 21230 0.554

100 0.022 0.03 2.987 19913 0.570
100 0.022 0.02 2.138 21380 0.570
150 0.015 0.03 2.945 19633 0.572
150 0.015 0.02 2.153 21530 0.572
200 0.011 0.03 2.913 19420 0.575
200 0.011 0.02 2.334 23340 0.575
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Fig. 9. Error of h-averaged current density (in the L1-norm) for different values of Dx and Dt. In (a) we use Dt ¼ 0:01. In (b) we use Dx ¼ 0:011.
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Fig. 9 demonstrates the convergence of our numerical scheme. Fig. 9 (a) and (b) depict the time-averaged error of hJih (in
the L1-norm) as a function of the spatial and time discretizations, respectively. We observe that the convergence order is
approximately quadratic (� 1:88) in space and (� 1:92) in time.

We can also observe in Table 2 that the average number of floating point operations is almost proportional to the number
of space integration nodes (N). Considering the average number of iterations per time step, the total computational cost for a
simulation with N ¼ 200; Dt ¼ 0:02 and Nsteps ¼ 10000 (Cost � 0:575� 106N NiterationsNsteps) is of the order of 2:4� 1012 flops.
The computation time in a computer with Intel(R) Core(TM)2 Duo CPU E6750 @ 2.66 GHz processor is about 30 h. These esti-
mates show that although the problem is one dimensional, it is rather computationally intensive and therefore it is impor-
tant to optimize the numerical algorithm.

5. Conclusions

We have presented a finite difference method to numerically solve a new type of hydrodynamic equations that arise in
the theory of spatially inhomogeneous Bloch oscillations in semiconductor SLs. The hydrodynamic equations describe the
evolution of the electric field, electron density and the complex envelope of the Bloch oscillations for the electron current
density and the mean energy density. They contain averages over the Bloch phase which are integrals of the unknown elec-
tric field. These equations are derived by singular perturbation methods from a Boltzmann–Poisson transport model of mini-
band SLs with inelastic collisions. Among the solutions of the hydrodynamic equations at low lattice temperature, there are
spatially inhomogeneous Bloch oscillations coexisting with moving electric field domains and Gunn-type oscillations of the
current. The latter oscillations disappear at higher temperatures (300 K). These novel Bloch-oscillation solutions are found
for restitution coefficients in a narrow interval below their critical values and disappear for larger values of the restitution
coefficients.

To solve the averaged hydrodynamic equation for the time evolution of the complex BO amplitude, we use an efficient
implicit second-order numerical scheme that uses a fixed-point iteration process to avoid numerical instabilities. In the case
of the drift-diffusion equation for the electric field, only one tridiagonal matrix needs to be inverted to solve the implicit
scheme, which results in a greatly decreased computational time. Double integrals entering the averaged hydrodynamic
equations are calculated by means of expansions in modified Bessel functions. We use numerical simulations to ascertain
the convergence of the method. If the complex amplitude equation is solved using a first order scheme for restitution coef-
ficients near their critical values, a spurious convection arises that annihilates the complex amplitude in the part of the
superlattice that is closer to the cathode. This numerical artifact disappears if the space step is appropriately reduced or
we use the second-order numerical scheme.
Acknowledgements

This work has been supported by the MICINN grant FIS2011-28838-C02-01. We thank Conrad Perez (U. Barcelona) for
suggesting the use of expansions in series of Bessel functions.

Appendix A. Numerical method for obtaining u and b

Solving (45) by means of the Newton–Raphson method with the following Jacobian matrix:
J ¼
@

@uð0Þ
Kcb
Kc

� �
@

@bð0Þ
Kcb
Kc

� �
@

@uð0Þ
Ks
Kc

� �
@

@bð0Þ
Ks
Kc

� �
0
B@

1
CA; ðA:1Þ
we obtain the numerical values of uð0Þ and bð0Þ. Thus we need to calculate numerically the integrals (47)–(49), as well as the
following ones:
Kcbb ¼
@2Kc

@ðbð0ÞÞ2
¼
Z p

0
ebð0Þ cos k coshðuð0ÞkÞ cos2 k dk; ðA:2Þ

Kcub ¼
@2Kc

@uð0Þ@bð0Þ
¼
Z p

0
ebð0Þ cos kk sinhðuð0ÞkÞ cos kdk; ðA:3Þ

Ksb ¼
@Ks

@bð0Þ
¼
Z p

0
ebð0Þ cos k sinhðuð0ÞkÞ sin k cos kdk; ðA:4Þ

Ksu ¼
@Ks

@uð0Þ
¼
Z p

0
ebð0Þ cos kk coshðuð0ÞkÞ sin kdk; ðA:5Þ

Kcu ¼
@Kc

@uð0Þ
¼
Z p

0
ebð0Þ cos kk sinhðuð0ÞkÞdk: ðA:6Þ
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We also need the integrals (47) and (A.2)–(A.6) to obtain uð1Þ and bð1Þ from (A.10) and (A.11), and therefore an efficient meth-
od is required for their numerical computation. If we expand ebð0Þ cos k as a series of modified Bessel functions, these integrals
can be expressed as the following series (we omit the argument bð0Þ of the Bessel functions):
Kc ¼
sinhðpuð0ÞÞ

uð0Þ
I0 þ 2ðuð0ÞÞ2

P1
j¼1
ð�1Þj Ij

j2 þ ðuð0ÞÞ2

 !
;

Ks ¼ sinhðpuð0ÞÞ I0

1þ ðuð0ÞÞ2
þ
P1
j¼1
ð�1ÞjIj

1þ j

ðjþ 1Þ2 þ ðuð0ÞÞ2
þ 1� j

ð1� jÞ2 þ ðuð0ÞÞ2

 !" #
;

Kcb ¼
sinhðpuð0ÞÞ

uð0Þ
I1 þ 2ðuð0ÞÞ2

P1
j¼1

ð�1Þj

j2 þ ðuð0ÞÞ2
Ijþ1 þ

jIj

bð0Þ

� �" #
;

Kcbb ¼
sinhðpuð0ÞÞ

uð0Þ
I2 þ

I1

bð0Þ
þ 2ðuð0ÞÞ2

P1
j¼1

ð�1Þj

j2 þ ðuð0ÞÞ2
Ijþ2 þ

ð2jþ 1ÞIjþ1

bð0Þ
þ jðj� 1ÞIj

ðbð0ÞÞ2

 !" #
;

Kcub ¼
sinhðpuð0ÞÞ

uð0Þ
P1
j¼1
ð�1Þj 4j2uð0Þ

ðj2 þ ðuð0ÞÞ2Þ2
Ijþ1 þ

jIj

bð0Þ

� �

þ puð0Þ coshðpuð0ÞÞ � sinhðpuð0ÞÞ
ðuð0ÞÞ2

I1 þ 2ðuð0ÞÞ2
P1
j¼1

ð�1Þj

j2 þ ðuð0ÞÞ2
Ijþ1 þ

jIj

bð0Þ

� �" #
;

Ksb ¼ sinhðpuð0ÞÞ I1

1þ ðuð0ÞÞ2
þ
P1
j¼1
ð�1Þj Ijþ1 þ

jIj

bð0Þ

� �
1þ j

ðjþ 1Þ2 þ ðuð0ÞÞ2
þ 1� j

ð1� jÞ2 þ ðuð0ÞÞ2

 !" #
;

Ksu ¼ I0
pð1þ ðuð0ÞÞ2Þ coshðpuð0ÞÞ � 2uð0Þ sinhðpuð0ÞÞ

ð1þ ðuð0ÞÞ2Þ2
þ ½p coshðpuð0ÞÞ

� 2uð0Þ sinhðpuð0ÞÞ�
P1
j¼1
ð�1Þj 1þ j

ðjþ 1Þ2 þ ðuð0ÞÞ2
þ 1� j

ð1� jÞ2 þ ðuð0ÞÞ2

 !
Ij;

Kcu ¼
puð0Þ coshðpuð0ÞÞ � sinhðpuð0ÞÞ

ðuð0ÞÞ2
I0 þ 2ðuð0ÞÞ2

P1
j¼1
ð�1Þj Ij

j2 þ ðuð0ÞÞ2

 !
þ sinhðpuð0ÞÞ

uð0Þ
P1
j¼1
ð�1Þj 4j2Ijuð0Þ

ðj2 þ ðuð0ÞÞ2Þ2
;

where Ij ¼ Ijðbð0ÞÞ is the modified Bessel function of the first kind with index j and argument bð0Þ. Since juð0Þj and jbð0Þj are less
than 3.5, with only 13 terms of the previous Bessel series we can have an error less than 10�4 percent.

The numerical value of uð1Þ and bð1Þ can be obtained from (30) considering that f Bð1Þ is
f Bð1Þ ¼ pn G1b
ð1Þ þ G2uð1Þ

� �
; ðA:7Þ
in which G1 and G2 are:
G1ðuð0Þ;bð0Þ; kÞ ¼ ebð0Þ cos kþuð0Þk cos k
Kc
� Kcb

K2
c

 !
; ðA:8Þ

G2ðuð0Þ;bð0Þ; kÞ ¼ ebð0Þ cos kþuð0Þk k
Kc
� Kcu

K2
c

 !
: ðA:9Þ
From (A.7) we can derive f Bð1Þ
1 and then uð1Þ and bð1Þ can be explicitly obtained by solving a linear system of equations:
uð1Þ ¼ K2
c

n
ðQ 11R2 � Q 21R1Þ
ðQ 11Q 22 � Q 12Q 21Þ

; ðA:10Þ

bð1Þ ¼ K2
c

n
ðQ 22R1 � Q 12R2Þ
ðQ 11Q 22 � Q 12Q 21Þ

; ðA:11Þ
where R1 and R2 are the real and imaginary parts of the RHS of (30) and the Q ij are:
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Q 11 ¼ KcKcbb � ðKcbÞ2;
Q 12 ¼ KcKcub � KcuKcb;

Q 21 ¼ �KcKsb þ KsKcb;

Q 22 ¼ �KcKsu þ KsKcu:
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