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1. Introduction

The fractional partial differential equations are now winning more and more scientific applications across a variety of
fields including control theory, biology, electrochemical processes, porous media, viscoelastic materials, polymer, finance,
etc. The universality of anomalous diffusion phenomenon in various experiments has led to an intensive investigation of
these equations in recent years. The fractional diffusion equation considered in this paper is of interest not only in its own
right, but also in that it constitutes the principal part in solving many other more general fractional differential equations.
We refer, e.g., to [19,20] for modeling chaotic dynamics charge transport in amorphous semiconductors, [18] for nuclear
magnetic resonance diffusometry in disordered materials, and [15] for modeling the propagation of mechanical diffusive
wave in viscoelastic media.

There have been a number of numerical methods constructed for the time-fractional diffusion equations; see, e.g., [13] for
a finite difference scheme in time and spectral method in space, [34] for a particle tracking approach, [10] for a time-space
spectral method, [35] for an alternating direction implicit scheme, [22] for finite difference schemes for a variable-order
equation, [9] for a finite element method, and [32] for a spectral method using Jacobi polyfractonomials for fractional ODEs.

On the other hand, the space-fractional diffusion equations have also been a subject of many investigations. Among the
existing numerical methods for this kind of fractional diffusion equations, we mention the finite difference methods based
on the shifted Griiwald formulae in [16,17,23], spline approximations [21], the finite difference methods for Riesz frac-
tional derivatives [14,31], the spectral method based on weak formulation [11], a finite element method for the space and
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time fractional Fokker-Planck equation [4], a Runge-Kutta discontinuous Galerkin methods for one- and two-dimensional
fractional diffusion equations [8], a finite difference/element method for a two-dimensional modified fractional diffusion
equation [33], and a method combining the alternating direction implicit method and the Crank-Nicolson scheme [3]. Wang
and Wang [26] developed, without giving a stability analysis, an alternating direction implicit finite difference method for
space-fractional diffusion equations.

In this paper we aim at designing an efficient method for solving the space fractional diffusion equation. The proposed
method combines a stable direction splitting scheme with a spectral discretization in space that allows for efficient imple-
mentation. This work was motivated by the attempt to take double advantages of the spectral method and the direction
splitting approach. Firstly, the fractional diffusion equation is featured by the presence of non-local operators involved in the
definition of fractional derivatives. These non-local operators make any approximation, either low or high order methods,
into non-sparse linear system. This nature obviously reduces the advantage of low order methods in term of computa-
tional complexity, and favours the use of high order methods if the solution to be approximated is smooth enough. It is
well known that, as compared to low order methods, higher order methods like spectral methods require less degrees of
freedom to achieve the same accuracy. This consideration has inspired a recent series of papers [10-12,32], which focused
on developing spectral methods for some time/space fractional differential equations. It is worthy to mention that Wang
et al. [28,29] showed that a fractional equation with smooth data can have non-smooth solutions. Hence, how to guarantee
the smoothness of the solution is a difficult issue. Secondly, despite of the efficiency of the spectral method, the numeri-
cal solution of the fractional diffusion equation in high dimension requires more numerical techniques. Direction splitting
methods are considered as powerful techniques which allow to split the underlying high dimensional problem into a set of
one-dimensional sub-problems, thus can considerably reduce the computational complexity for some traditional equations;
see, e.g., [2,7]. Note that Wang et al. [27,25] constructed and analyzed finite difference/ADI methods for fractional diffusion
equations with variable coefficients. Their methods have also been shown to be fast with efficient storage.

The main purpose of this paper is to develop a stable direction splitting scheme in time with a spectral discretization in
space for the space fractional diffusion equation. The stability of the overall scheme is rigorously established. Although such
a combination has been constructed and analysed for a number of traditional equations, it’s extension to problems with
fractional operators does not seem to be trivial.

The outline of this paper is as follows. In the next section we describe the underlying problem, and construct the
direction splitting scheme. A splitting error estimate is derived. In Section 3, we propose the full discrete scheme by using a
spectral method for the spatial discretization of the fractional differential operators, and carry out a detailed analysis for the
stability of the proposed scheme. The unconditional stability is proved under an assumption on the diffusion coefficients.
We give in Section 4 some implementation details and present the numerical results to verify the stability and accuracy of
the method. Finally, we give some concluding remarks in Section 5.

2. Direction splitting scheme

We consider the following two-dimensional space fractional diffusion equation:
au(x, y,t)
—

where t € (0, T], (x,y) e =A%, A=(—1,1), f(x,y,t) is a source function. L is the fractional operator defined by

=Lux,y,t)+ f(x, y,10), (2.1)

Lu(x, y,t) = p(Dux, y, t) + xD%u(x, y,t)) + q(Dyu(x, y,t) + yDPu(x, y, 1)), (2.2)

with p and q being positive diffusion coefficients, and the fractional derivatives of order o or g with 1 < «, 8 < 2 being
defined in the Riemann-Liouville sense as follows:
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VXe A,y =a,B. (2.4)

Usually D} is called the left-sided fractional derivative, and xD? the right-sided fractional derivative of order y.
The equation (2.1) is subject to the following initial and boundary conditions:

u(x, y,0) =uo(x,y), V(x, y) € 2, (2.5)
u, y,lse =0, vte (0, T]. (2.6)

The sum of terms D§u(x, y,t) + xD*u(x, y,t) in (2.2) is sometimes denoted by Df;lu(x, y,t), called symmetrized frac-

tional derivative. It has been shown in [11] that the existence and uniqueness of a solution to (2.1)-(2.5)-(2.6) can be
guaranteed by keeping only one derivative term in x-direction and one derivative term in y-direction in the right-hand side
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of (2.2). However in the present work we are only able to construct a stable scheme for the equation with symmetrized
fractional operators. In other words, the stability analysis carried out in this paper works only for the symmetrized opera-
tors.

2.1. The direction splitting scheme

We propose the following direction splitting scheme.
Let L be the number of the time steps, At =T/L. Set u% = up(x, y). Forn=0,1,...,L —1, we look for u™1 as follows:
e Predictor for u"*!. We compute £"+1 by
$n+1 —u" a n B .n n+1
e =pDju +qD|y‘u + frz, (2.7)
where f"+% = f(tn+%). Hereafter, for simplifying the notation, we use foz\‘ﬂ to denote DY ¢ + ,D%¢p, with z being x or y.
e Direction splitting. u™*! is obtained by solving two sets of 1D-problems:

nn-H _ SI’H-] o i 0 41

Ta :pD|x|(77 —u), N |x=21=0, Vy € A,

g (2.8)
u™tt — 77n+1 B . n+1 n n+1

Tar :qDlyl(“ —u), u " |y=+1 =0, Vx€ A.

2

It is observed that each of the substeps in (2.8) consists of a set of one-dimensional fractional diffusion problems, which can
be solved by any existing efficient method. The next subsection will be devoted to derive an error estimate for the splitting
scheme (2.7)-(2.8). The spatial discretization of the above problems will be addressed in the next section.

2.2. Splitting error analysis

Note that the splitting scheme (2.7)-(2.8) is a straightforward extension of its counterpart for the traditional diffusion
equation [5,30]. Now it is interesting to see whether the traditional analysis method equally applies to the fractional equa-
tion. In fact we are going to see that a similar error estimate can be equally derived for the fractional equation by using
some newly established properties.

To carry out the error analysis for (2.7)-(2.8), we denote the splitting error by e":

en = u('7 K tn) - una

where u(-, -, ty) is the exact solution of the problem (2.1) at t =t,, and u" is the solution of the semi-discrete problem
(2.7)-(2.8).

We first introduce some notation. Let D be a domain in R or R2, we denote by L2(D), HY (D), and Hg (D) the usual
Sobolev spaces, where y is any positive real number. The inner product of L?>(D) will be denoted by (-,-)p. We will also
make use of the following results, which can be found in [10].

Lemma 2.1. (See [10].)If 1 <y <2, w,v € H} (A), then

(DIw@), v(@), = (DZ%W(Z), zD%V(Z)> : (2.9)
A

(:D"w@), v(2), = <ZD%w(z), va(z)) . (2.10)
A

Lemma 2.2. (See [10].) For any real s > 0, s #n + % with n being a non-negative integer, and for all v € H}(A), we have

(D3v(2), :D°v(2)) A
COS (STr)

= D3vFa s, Z 1DV (211)

(A) (A)°

Next we extend some results obtained in one dimension — e.g. see [6,10] to the two-dimensional case. These extensions
will be key to the proof of the stability of the direction splitting scheme. For any positive real numbers s and o, we define
the space

HIS[U (2) :={v; ||V||HISI~"(Q) < oo},

equipped with the norm

)1/2

. 2 2 .
HVHH:SI’U(Q) = (”V”Lz(g) + |V|Hf1'a(9) , |V|Hlslv”(9) = ”DiD;V”LZ(Q),
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and
H[Sr’g (€) :=={v; ||V||Hl5r"’(g) < oo},

equipped with

1
IVllge @) = (1VIIE2g) + 1VIso @) IVIkze (@ = IDxyD7 Vilizq).
Similarly we define
H:ig (2) :=={v; ”v”HiiU(Q) < 00},

equipped with the norm

)1/2

2 2
”V”Hfi"(ﬂ) = (”V”LZ(Q) + |V|Hiia(9) s |V|Hf,’”(Q) = ||XDSD(;V||L2(Q),

and
H3Z(Q) == {v; VIl g () < 00},
equipped with

)1/2

. 2 .
VIigse @) = (”V”Lz(g) + |V|H,§;"(Q) o VIgse @) = [xD* yDUV”Lz(Q).

In the above space definitions, the subscript “I” or “r” has the 1mpllcat10n that the “left” or “right” derivative has been used
in the norm definitions. Let HSIZ(Q) Hfr%(sz) Hrl $(), and H;;% () be the closures of C3°(S2) with respect to the norms
Il - ||Hsa(9), Il - HHW(Q), Il - ||Hsa(9) and || - HHsa(Q) respectively. Now we define the semi-norm

VIkso (@) = || (@) () FW)| 2 g2,

and norm

1/2
Vilkso @ = (IV1172q) + 1V [fiso )

)

where i is such that i = —1, F(v) denotes the Fourier transform of ¥, which is the extension of v by zero outside of €,
with Fourier variables w and 7. Also, let HS’”(Q) denote the closure of C5°(2) with respect to the norm || - || gs.o (q).

Lemma 2.3. Fors,0 > 0,s #n+ 1/2, 0 # m+ 1/2 with m and n being integers, the semi-norms | - |Hf1‘_g(9)’ | - |”fr‘%(9)’ | - |”ii$(9)’
and | - s o are all equivalent in the space 5P ().
r,0

Proof. For all v € C3°(2), we have

D"v( y) € HY(A), yD°v(., y) € HY(A), Yy € A. (2.12)
Hence from Lemma 2.2 we obtain

IDDG V(% Yl2a) = kDD V(X Wli2(a)s ¥y € A, (213)

D5 y D7V l2(a) = xSy D V(X Ylli2(a), VY € A. (214)
Furthermore integrating (2.13) and (2.14) in the y-direction leads to

IDXDSv(x, M2 = IxD DGV, Y)ll12(0) (215)

IDSy D v(x, Yl 2 = IxDSy D v (x, )l 12 (- (2.16)

This proves that the semi-norm | - |Hf}'g(9) is equivalent to | - |Hs‘.%(9), and the norm | - les‘%(Q) is equivalent to | - |H5.00(Q) in
N Tl T, m,
the space C3°(S).
Similarly it can be proved that the semi-norms | - | HSC (@) and | - | HY%() are equivalent.
This completes the proof. O

Next we establish some useful results related to the whole plan. For the sake of simplification, we still use the notations
to DY v(x) and xDY v(x) to denote _o,D} v(x) and xD% v(x) respectively.
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Lemma24.If} <s,o0 <1,ands+o > 3,v e C°(R?), then it holds

(D3D§ v, xD* yD7 V), = ||D§D‘y’v||§2(R2), (217)
(D5 yD7v, xD°D§V)py = ||D§yD"v||f2(R2), (2.18)
||V||H151v‘7(1R2) = ”V”H,ST‘G(RZ) = ”V”Hﬁ;”(RZ) = ”V”HW’(RZ)- (2.19)

Proof. First the following equality is well known:
/uvdxdy:/aﬁdwdn, Vu, v e C°(R?), (2.20)
R2 R2

where ¥ is the Fourier transform of v, v denotes the complex conjugate of v. Furthermore we have (see, e.g., [6]):

(iw)y = : exp (-ims)(-iwy fo 20, (2.21)
exp (iws)(—iw)S ifw <0.
Then by using (2.20) and (2.21), we obtain
(DSDG v, xD*y D V), = ((i@)*(in)? ¥, (—iw)(—in)7 V),
0 0 0 o
= / / (i®)* (in)7 ¥ (—iw)s (—in)® Vdwdn + / / (i0)* (in)? ¥ (—iw)* (—in)® Vdwdn
%0 —00 —00 0
o 0 00 00
[ [ dwrm oy inTidodn + [ [ o) d=ior i idod.
0 —o0 00
It follows from (2.21) that
(D3D§ v, xD*yD7 V),
0 0 oo
= / / exp (—ism) exp (—io ) f (w, n, V)dwdn + /exp (is) exp (—io ) f (w, 1, V)dwdn
—00 —00 (2.22)

0

iy
oo 0 00 00

+/ / exp(—isn)exp(ian)f(w,n,ﬁ)da)dn+//exp(ian)exp(isn)f(w,n,O)da)dn
0 —00 0 0

= Iy +ilj,
where

flw,n, V) = (i)’ (im)7V (i) (im° v,

0 0 0 oo
I, = cos((s—i—o)n)/ /f(w,n,f/)dwdn—i—cos((s—o)ﬂ)//f(a),n,f/)dwdn
—00 —00 -0 0

oo 0 00 00
+cos((s—0)n)//f(a),n,f/)da)dn+cos((s+0)7r)//f(w,n,\?)dwdn,
00

0 —oo
and
0 0 0 oo
Ii = —sin((s+a)7r)/ /f(w,n,f/)dwdn+sin((s—a)7t) / ff(a),n,f/)da)dn
o —n0 —c0 0

oo 0 00 00
+sin((a—s)n)/ff(w,n,O)dwdn+sin((s+a)n)//f(w,n,O)da)dn.

0 —oo 00
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For a real function v(x, y), it is known that ¥(w, n) = ¥(—w, —1), and thus we have

0 0 00 00
/ /f(a),n,ﬁ)da)dn://f(a),n,f/)da)dn, (2.23)
—00 —00 00
0 oo oo 0
//f(w,n,ff)dwdn://f(w,n,f/)da)dn. (2.24)
—o0 0 0 —o©
3

Furthermore, under the conditions 5 <s+o <2 and 0 < [s — 0| < % we have cos((s+ o)) >0, cos((s—o)m) > 0.
Therefore we obtain

c1(D3D§ v, DyDG V) s < Ir < c2(D3DGV, DgDGV)pa, 11 =0,
where ¢ = min{cos ((s + o)), cos ((s — o))} and ¢; = max{cos ((s + o)), cos ((s —o)m)}. This proves (2.17). Similarly
we can prove (2.18). The equivalence (2.19) is a direction extension of the one-dimensional result of Theorem 2.1 in [6]. O

The fractional derivative Df(D;v can be generalized for all v in L2(2) in the following way: for v € L2(Q2), we define the
linear functional, denoted still by D;D‘;v :C3°(R2) — R, through

DD V() := / v xD*, D? ¢pdxdy, V¢ € C3°(R). (2.25)
Q
Then it can be verified that DiD;V(‘f’) is continuous in C§°(2). In fact, for all ¢; € C5°(£2), such that

HB}}E);"@HLM(Q) —0, Vn,me Z, as j — oo,

we have
IDXDFv(¢)l = ‘//"xDSyD“d)jdxdy‘ < WVl [xDy D7 12(q)
—-1-1
11
— vl ;a"am/fqﬁ-(r ) 1 dzd
— PO T m Zgrm—o) XY Yy S (T —x)s 1+ (p — y)yo-mtl 1 12(Q)
11
= Wl |t s | | BT 1 drd
= e Fa—9rm-o) g e I I st oy — yyo—mr1 44 12(9)
11 1
< v anam (X, // dtd
S Vil 9785 5 y)HooHX g (T =0 — )7 "2
S IVl [3505'6 % 1) | 10 =2" A =y llj2) = 0, as j = oo,

where n and m are the integers such that n —1<s<n, m—1 <o <m. Thus DiD‘;(J defined in (2.25) is a distribu-
tion, which coincides with the composite left-sided Riemann-Liouville derivative if v belongs to Hfl’"(Q). The operators

xD*yD? (), xDSD‘; (), etc., can be generalized in a similar way to the space L2(2). In what follows by default the fractional
derivative is always defined in the distribution sense.

Lemma 2.5. For all positive real numbers s and o, the spaces Hy? (), H;:° (), H;;° () and Hy;’ () are complete.

Proof. We only give a proof for Hf,’”(Q), the same lines apply to the other three spaces. Let v,; be a Cauchy sequence under
norm | - [+ (q)- Then, by the completeness of the space L2(2), there exist v € L2(2) and w € L2(€2) such that
vp—> v, DiDvy— w in L*(Q). (2.26)

Next we want to prove that D;DJv = w.

On one hand, by (2.26), we have

/Df(D‘;vnd)dxdy — / wodxdy, V¢ € C°(R). (2.27)
Q Q
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On the other hand, from Lemma 2.4 in [11] and (2.26) we have

/DiD‘;vnqﬁdxdy:/vnxDsyD“qbdxdy—)/vxDsyD"anxdy, Vo € C3° (). (2.28)
Q Q Q
Furthermore from (2.25) we obtain

/ DD vagdxdy — DIDIv(@), Vb € (D). (2.29)
Q
Then by combining (2.27) and (2.29), we get Df(D;v = w. The proof is completed. O

Lemma 2.6. Let s and o be real number such that % <s,0<1,s+0 > % Then forall v € Hf)"’ (), it holds
(DiDg,’v,xDsyD“v)g = ||D§D; (2.30)

(2.31)

2
V”LZ(Q)v

(D} yD7v,xD’ Dy V)@ = D} yDV[|}s o -

Proof. We only prove (2.30). By following a standard density argument it suffices to prove it for all v € C3°(2). For all
v € C5°(2), let v be the extension of v by zero outside 2. Then we have

supp (DD ¥ xD¥y D7 V) C Q.
In fact, it can be directly verified that

supp D;DGV C (—1,00)%, supp,D®, D7 ¥ S (—o0, 1),
Thus

supp DyD§ v NsuppxD*y D7V C Q,
and hence

(DiD‘;v,xDSyD“v)Q = (Df(D‘;f/, xD*y D% V)pa.

Using the above identity, together with Lemma 2.4 and the Holder inequality, we obtain

2 =12 ~ S =
VIee gy = 1Vl g2y = (DD5 7, xD°y D% ¥)gs = (DDG V. xD*y D7 V)g < [Vlpso )|V Isso -

From Lemma 2.3, we know that the semi-norms |- s (@) and | - |50 (q) are equivalent. Thus we have

(DYD§ v, xD*y D7 v)q = | DYDY VIIE -

This proves (2.30). O
We are now in a position to derive the splitting error estimate.

Theorem 2.1. If 1 < o0, B <2 and a + B > 3, and the exact solution u is smooth enough, then we have the following error estimate:
||en||L2(Q) <cAt’, n=1,-- L, (2.32)

where c is a constant depending only on T, p, q, and the exact solution u.

Proof. By combining the different steps in (2.7)-(2.8), we obtain, for aln=0,1,...,L —1,
u™tt gyt q

At 2

Applying the Taylor expansion to the equation (2.1) yields
U(tny1) —ultn) 1

At 2

Then we deduce from subtracting (2.33) from (2.34)

1
(pD% +qDf, ) ™! +u™) — %At(DfilDﬁ/l)(u”H —u") 4 [Tz, (233)

(pD%, +qDf, ) (u(tng1) +u(tn)) + Fty ) +0(AP). (2.34)

en+1 P
At

1
= 5 (pDfyy +aDf)) (" +e") — P at (D2, 0"

q
1yl 4 \y|)(enJrl —e")

+ %At(%n@l)(u(tnﬂ) — u(ty)) + O (AL?).
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Noticing that the third term in the right-hand side is of order O (At2), we obtain

D?

el et = lAt(pD‘X‘ +gD? )€ +e) — ﬂAt (D% \yl)( e —e") + 0(AP). (2.35)

[yl |x]

Multiplying both sides of (2.35) by 2e™*! and integrating the resulting equation, we get

pq

1 = AtR; — —Atsz +(0(A3), e g, (2.36)

12
lle i

- en”§2(9) + ||€ (Q) “e ”LZ(Q)

where

((pD‘X‘-i-qDly‘)(enJrl+€n),€n+l)9,

Rz — ((D\X\ \yl)(en+1 en), en—H)Q.

By using Lemma 2.1, we obtain
Ri= p[(Dz et D%en+1)s2 _ (Dfe”,xD%e”)Q + (ij(enﬂ _{_en)’XD%(en—H +en))9]
g g g g £ g
+q[(D§ et yD2e"™) — (Die", yDZe"), + (D (" +eM), DI +eh),]. (2.37)
Similarly we have
§ pLontl _ny pEpdentl _ on
Ry = (DZyD2(e""! —e"),xD2Dj (e —eM),
a B o B
+(DZDj (" —e"), D7 yD2 (" —eM),

(2.38)

5 pbontt g g n+1 5 nbon < g n
+(DZyDze"™! yD2Dge" ), — (DZyD2e" xD2Dje"),

5 g n+1 ¢ B ot 5 g n ¢ &on
+(DZDye™ !, Dz yD2e" ), — (DZDye",xD2yD2e"),.

In virtue of Lemma 2.2 and Lemma 2.6, we observe that the terms (D (e"™! +e™), D7+ e"), and (Dy (e"t! 4e™),

.. L4 B B « B
yDE (! 4 e")), are non-positive, and the terms (D¢ ;D2 (e"*! — e”),xD%Df (€™t —eM), and (DgDj (e"! —e"),

XD%yD%(e”“ - e"))Q are non-negative for 1 <o, 8 <2 and o + B > 3. Dropping these terms from (2.37) and (2.38),
then bringing the above expressions into (2.36), we obtain, for aln=0,1,...,L —1,

n+12

B
”LZ(Q)_Af[p(D? "+],xDzen+])Q+q(D2 n+ D76”+1)Q]

lle

pq $ e onrl p2n5 ot $ndontl ¢ oot
+7At[(nyD2e .xD2DJe"™ g+ (DZDJe" ! D2 D2e" g

s o 4 B
< lle"If2q, — At[p(Di ", xDZeMq +q(Dye", yD2eMg]

o B « B a B o B
+ %Atz[w;yufe",xmn; eMa+(DZDe" D2y DZeM)g]+ 0(AR) €™ 2.

Repeating the above inequality from step n up to the first step, we get

n+1,2

”e ”LZ(Q)

Atl:p(DZ n+1 Dzen+])Q+q(D2 I’H—] Dgen-i-l)g:l

o B
+p2qA[ [(Dx Dzeﬂ+ ,XDZDze”'H)Q—i—(D DZ n+],xD7yD7€n+1)Q:|

g o £ 8
< 161 g, — A[p(DZ %, xDFe0)q + (D} €%, ,DIe%)q]

2 B a B a B o B n
+ 21 a0} ,D5e% (DE D} e + (DD} e, DT, Do e0g] + 0(A) Y 1 2 q.
k=0

Neglecting the initial error and taking into account the fact that the second and third terms in LHS are positive, we obtain
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A

n
1,2 k+1
e Mgy < 0A) Y 112

k=0

IA

Atz &
oAt + ﬁ(z e 12(0))°

At?
O(At ) + n Z ”ek+1 ”LZ(Q)

k=

IA

n—1

0t + - L s 122 + —||e"+1 132
k=0

IA

This gives

n—1

n
le"™ 2 q) < OAEH + 15 > e Iy .
k=0
Finally by using the Gronwall’s inequality, we have

n?

-+ <o(at? )exp(—) < 0(AtY.

||€ ”LZ(Q)

The proof is completed. O

3. Spectral method for the spatial discretization

In this section we propose a spectral method for the spatial discretization, and carry out a stability analysis for the
direction splitting spectral fully discrete scheme.

3.1. The spatial discretization

Let N be a non-negative integer, we denote by Py(A) the set of all polynomials of degree less or equal to N defined in A,
and set P°N<A> ($ €BN(A) : (1) =0}, Pu(2) =Pn(A) ® By(A), PY(Q) = (¢ € PN(RQ) : plon = 0). Let Sy = PR ().

Let {x, (also denoted, when the variable is y, by {y]} 0 with y; =x; for 0 <i < N) and {a)l} be the nodes and
associated welghts of the Legendre-Gauss-Lobatto quadrature in A, i.e., {x,} o are zeros of (1 — xz)L (x) where Ly is the
Legendre polynomial of degree N, and {a),}N o are such that

1

N
/fﬂ(X)dX =D 9w, Y € Pay_1(A).

) i=0

Let ¥ be the set of all collocation points, i.e., ¥ :={(x;,y;): 0 <1, j <N}, and X; the set of all interior collocation
points, i.e., Xy :={(x;, yj), 1 <1i, j <N —1}. We denote by Zy the polynomial interpolation operator based on the set %, i.e.,
In : C(Q) — Pn(), such that, for all f e C(),

INFGi, yj) = f(i, ¥)), Y(xi, yj) € X. (3.39)

We then define a number of discrete inner products:

N
(@, YINA =) )Y (xDwi, Yo, ¥ € CO(A), (3.40)
i=0
N
(U, vV)N.q = Z u(xi, yj)v(xi, ypwiwj, Yu, v € C%(L), (3.41)
i,j=0
N -
U, Vynao= Z(u(x, Y. v(x ¥)) @), Yu,v e, (3.42)
j=0
N —_
W, Vixne =) (U, y), v, y),0i, Yu,ve (@), (343)

i=0
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and its associated norm

IViin.@ = (v, V)N o IvlyNa=(v, V)y N VN = (v, v)xN Q-
It is well known (cf. [1]) that
lvilinve Z vz S lvallxn.e S 1Vally.na. YV € Pn($). (344)

In cases where no confusion would arise, €2 and A may be dropped from the notations.

Now we propose the following spectral method for (2.7)-(2.8) based on the weak formulation with Legendre-Gauss—
Lobatto quadratures.

o Let u% =TZnupg.

o Predictor for u’y"!. We compute the predictor &' by

n+1
E _uN 3.1 ¢ 4 n 3
(7, VN)N o = p((Dx Uy, xD2vn)y N+ (D2 uy, Dy VN)y,N,Q)

At
L a(DFu DS viden.a + DAL D valen.g) (3.45)
+ (f13+%, VNIN,Q. YVN E IP’?V(Q).
e Direction splitting: First find ;™ (x, y;) € P4 (A), j=0,..., N, such that, Yoy € P (A),
(Mu o) = p(DF Ol — ) v, D o)
IAt e N.A NI JI X A (3.46)
+p(DE T — Ul ), Dx%wN(x))A;
Then find u}yt! (xi, y) € P (A),i=0,..., N, such that, Yy € P (A),
(wm Y1) = a0y Wl — e ). D ()
TAt 0 NA NI Y A (3.47)

B
+a(yD % @l = ul)(xi, y), DF Y () -

Remark 3.1. We remark that in the right-hand sides of the above discretization, numerical quadratures are only used in the
direction in which non-fractional derivatives are applied. As it is known that the fractional derivative of a polynomial is
no longer a polynomial, and naive applications of Legendre-Gauss-Lobatto quadratures would result in a lose of accuracy.
In our implementation, we use an efficient way to evaluate the integrals in the right-hand sides in (3.45)-(3.47), which is
described below. A direct calculation shows

S - _ 1-s
Dypn (%) T s) dxf( ) pn(m)dT = (14X @(pn (X)),
DSPN(X)Z—ﬁd /(T - pn(D)dT = (1 - )" Y (PN K)),
where
1 —1
P(PN(X) = /(1 0)~°ply X+ 9+x2 )de,

1 L 1—x x4
W(pN(X))=—m/(1 +0) PN(TQ—F 3 )d@.
4

Obviously, if py(x) € Pn(A), then o(pn (X)), ¥ (PN (X)) € Py—1(A). Thus for py, gy € Pn(A), we have

(D3pN(X), xDSqN(X))p = f (1 =" 1+ Sp(pn )Y (gn (x))dx
A (3.48)
Zw(pN(xl SN En e S ) T,
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where {x/""}N ~and {w]""}IV are the Jacobi-Gauss-Lobatto points and weights associated with the weight function
a- x)V(l +x)7 The formula (3 48) will be used to evaluate the integrals in (3.45)-(3.47) in the direction where frac-
tional derivatives appear.

3.2. A proof of stability

We shall prove that the scheme (3.45)-(3.47) is unconditionally stable with respect to the initial data. To this end, we
denote, for any ¢ := {¢"}}_, with ¢" € L%(Q),

L

”‘p”,Z(LZ(Q)) AtZ”(ﬂ ”LZ(Q)’ “(DHIOC(LZ(Q)) Tax ”(p ”LZ(Q)
n=1

Theorem 3.1. If uy := {u’;\,}ﬁzo is the solution of (3.45)-(3.47) with f =0, and o + 8 > 3, then uy satisfies the following stability
inequality:

o
(1 B
+ Atcg||DZ un|?; + Ateglly D2 uyll

lun I3
2(12(@) (L2(9)) (L2(9)

a o« B
+ At2cq 5 (IDZ yD 2 unl3 (2, + 1:DE D3 unl3

(L2(2)) (LZ(Q))>

o 5 (3.49)
< c(nuoan(Q) + Atcq | D3 Uolifa g, + AtcgllyD 2 ol g

+ Ay 5(IDF D8 uol, ) + 1DE DS w0l g ))-

. ) . o om T
where c is a constant independent of the discretization parameters, C, = —p C0S ——, Cg = —( COS /37 and cy g depends on

2
atp

cos (5F ) and cos(#n).

Proof. By performing the Legendre-Gauss-Lobatto quadrature in the y-direction in (3.46), we obtain: Yvy € IP’?V(Q),

n%"r‘l _%-17\34-1 “ o
—_ " v DZ (et —ul),xD2v
( %At N)N, [( (77 N) X N)y,N,Q

( D2 (nn+l u’I'V), ij VN)y,N,Q]'

(3.50)

Similarly, by performing the Legendre-Gauss-Lobatto quadrature in the x-direction in (3.47), we get, Vvy € ]P’?\,(Q),

n+] n+1

-1 8
( 1 . VN)N [(D (uy™ —uR). yD? YN)xn.g
7 At 02 (3.51)

B
+(,DE @ —u), D3 W) na)

£
On the other hand, observing that the functions uj™', #i"", D} Wi —u}), and yD% LT —ul) are all polynomials of
degree less than or equal to N with respect to x, we derive from (3.47):

t
(M ) UND) = q2 [(D @ —ul)(, y), y DI YN )

B
+(y D@l —ul)x, ¥). Dy wN(y))A] (3.52)

+ (UNT X)L UND)) 0 VX E AL Y €PY(A),
where (-,-)n,a acts in the y-variable. Taking respectively the left-sided and the right-sided «-order derivative of both sides

of (3.52) with respect to x, we have

qAt

T2 (02D W — e )., DEN)

(DS 6 Y, UNOD) a4 = —
B
+(D°‘y1)z(u”+l u’,”v)(x,y),Dyzww(y))A]

+ (DI X 1), YN D)) y 00 VX E A, Y € PR(A),
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_gAt

(D*n % 1), UN D)) y 2

[( D“Dy Wi —ul) (%, y). yDEYn ()
23
+ (xD“ Dz(u”+1 un)(x,y), Dy wN(y))A]

UNT ) UND)) 0 VX E AL YN €PR(A).

+ (xD"
By using Lemme 2.1 to the above two equations with respect to the x-variable, we get the weak forms as follows: Vvy €

PR(Q),
(Dx nyt 1L DIvn)y N = qit[(D D (u"“—uN),xDz DZVN)Q
+(Dg,DE @ - uh).xDE D3 vy | (353)
+(D uy ,xDZVN)yNQ,
q—At[( DD —uly. Df Db vy),
(3.54)

DN DZvn)yNa
@ B a B
+ (D%, DE T —uh), DI DJvn) |

o
n+1 2
+(xD2U ,DZVN)y.N.Q-

From putting (3.45), (3.50), (3.51), (3.53), and (3.54) together, and taking vy = 2Atu”+l we obtain

(U“Jr1 - UTXJ,ZUHNH)N.Q
At[ (D3 (u’”rl +uN),xD%u',1\,+1)y N +p(x D% Wi +ul), D? u"“)y NGO
(3.55)

Juna ta(yD2 Tyt +ul), Dj ”nH)x,N,Q]

(D (un+1 4 uN) nyull‘l\f»l
At? . s .
P [0 D5 iy — . xD%, 05U ), + (DF D ! — ul, DF ,DFu ),
(D yDE @ — ) (DD, + (0, DE T —u, D D u ), ]
Applying similar techniques as in the proof of Theorem 2.1 to (3.55) yields
||u"Jrl ||N Q-+ IIu"“ — u’,{,||12\,’Q — ||”rlll||12v,gz
7ur;1+l)y N.Q "HI(DJ% urzilﬂ’yDz up N Q]
(3.56)

~ atfp (DI, D
At? o 23
+ 22 [0d puy 1, DED Il g + (Df Dyzu’;,“,xDZyDzu';v“)g]
o o 23
—at[p(D{ uy, xDFu)yne +a(DF u, yDEul)ne

PAAEEE LS B pSpEyn $58.0 pd
) [(D yDZuy,xD2Dyuy)q + (Dy DyuN,xDzyDzuN)Q]+Fn,

where

Fo= At[p(D @i ), DE Qi +ub),

+ q(D ht +ul), yD? (UnH + urlll))x,N,Q]

At?
| [(DXZ DI —u), DE D] (u"+1 —ul))

2

+ (DEDE @i —uny. D% Dbl — up)] -
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n+1 _

In virtue of Lemma 2.2 and Lemma 2.6, Fj, is non-positive, so that we can drop F, and [luy N”%\LQ from (3.56) to yield

1 1 1
1113, g+ A (cal DU 12 g+ csllD5 12 o)

+ Al 5 (105, D5 12, o) + 108 DF Ul 12 )
(3.57)

o B
2 2 2 2 2
< Ul I3 g + At(call DI UYI2 o + calIDF U IE v )

a g a B
+ A p(IDF yD 2 Uyl o + 1D D uhliZ g ).

(a+B)m cos (0 —B)m
2 2

or T
where ¢y = —p cos — v Cp = —qos ﬁ? and ¢y g = % max { cos
a,B<2,a+8>3,p>0,qg>0.
Finally, the desired result is obtained by summing up the above estimate fromn=0ton=M for 1 <M <L —1, and
using the norm equivalence in (3.44). O

}, which are all positive for 1 <

Remark 3.2. A direction splitting scheme similar to (3.45)-(3.47) can be constructed for the equation (2.1) with L defined
by

Lu=D?p(x, y)xD2u+D;q(x,y),D?u, (3.58)

Lu=D? p(x, y)xD%quyD%q(x, y)Dju, (3.59)

where p and g can be variable coefficients. Similar techniques as in the proof of Theorem 3.1 can be applied to establish
the unconditional stability. In fact, stable direction splitting schemes can be designed and analyzed as far as the underlying
operator is self-adjoint (it is an easy matter to verify that both operators defined in (3.58) and (3.59) are such operators).

Remark 3.3. For the time being, we are unable to prove the stability of the scheme for non-self-adjoint fractional operators
although the numerical experiment performed in the last section tends to predict the actual stability.

4. Numerical results
4.1. Implementation

We start with some implementation details of the scheme (3.45)-(3.47). First, we choose to use the Lagrangian poly-
nomials as basis, which it is extendable to more general problems, e.g., variable coefficients and/or deformed domains. Let
{hi:i=0,1,..., N} be the Lagrangian polynomials associated with the Legendre-Gauss-Lobatto points {x;}o<i<n. Then

P (A) =span{hj; i=1,2,---,N — 1},
PR () = span{hj®h;(y); i,j=1,2,---,N =1},
and uy can be expressed under this basis as follows:

N—1N-1

uN X y) = Y uhiohj(y). withu =uy(xi. y)).

i=1 j=1

At each step, let the test functions vy, @y, and ¥y go through all basis functions in IP’?\,(Q) and IP’%(A) respectively, we
arrive at the matrix equations

B(E"™! — u™)B = At(Aqu"B + Bu"Ag) + Bf" 1B, (41)
At

Tl+1 £n+1) — Aa(ﬂn_H _ ul’l)7 (42)

(1 gyt B_ﬁ n+1 _ My A 4.3

nT)B= > (u u')Ag, (4.3)

where the boldface lower letters mean matrices of the nodal values, e.g., u" = (u?j),-,j:L...N_] with u';j =uf(xi,yj), and so
on. In (4.1)-(4.3), B is the diagonal mass matrix B := diag(w1, w3, ..., wNy—1), As is the matrix form of the s-order fractional
derivative, i.e.,

(As)ij = (DZhj(2), ;D5 hi(2))a + (:D3hj(2), DI hi(2)a, 1,j=1,2,...,N — 1. (4.4)
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Table 1
Errors in L2-norm and convergence orders for the numerical solution obtained at T =1 and N =50 for several pair of o and g.
At a==12 rate a=1.01,=1.99 rate a==19 rate
0.1 1.5297e-05 - 6.7742e-05 - 8.8618e-04 -
0.05 3.8200e-06 2.0016 1.6983e-05 1.9960 2.1439e-04 2.0474
0.02 6.1097e-07 2.0004 2.7178e-06 1.9998 3.4009e-05 2.0094
0.01 1.5270e-07 2.0004 6.7945e-07 2.0000 8.4920e-06 2.0017
0.005 3.8145e-08 2.0011 1.6986e-07 2.0000 2.1224e-06 2.0004
0.002 6.0824e-09 2.0037 2.7169e-08 2.0003 3.3958e-07 2.0000
0.001 1.5494e-09 19729 6.7848e-09 2.0016 8.4916e-08 1.9996
107° -
O o=p=1.2 e
1074k | —O— 0=1.01,3=1.99 e |
— B8 -o0=B=1.9 o -
s Slope=2 _-7 o~ 4

error in logscale

-10 )
0.001  0.002

0.005 0.01 0.02 0.05 0.1
Atinlogscale

Fig. 1. Plot of the errors in L?-norm as a function of At.

The entries of As are computed by using (3.48). It is assumed that the boundary conditions are already incorporated into
the matrix operators.

Note that A, and Ag are symmetric matrices, we will use the conjugate gradient iteration to solve the matrix equtions
(4.2) and (4.3).

If no dimensional splitting was used, we will have a linear system as

At
BuTH-]B _ 7(AOluTl-‘r'lB + Bun+1Aﬁ) — F(un’ fﬂ-‘r%).

In this case, the computational cost will be O(N*) per iteration, and the storage cost will be O(N2) with N being the
number of spatial grid points in one direction. This is comparable to the finite difference method using the same total grid
number. However the fast solver proposed by Wang and Basu [24] in the finite difference framework is not extendable to
the spectral method due to the lack of matrix structure.

4.2. Numerical results

In this subsection, we present some numerical results to verify the stability and accuracy of the proposed numerical
method.

Example 4.1 (Time and space accuracy). We consider the 2D time-dependent space fractional diffusion equation (2.1) with
the exact solution:

3

ux, y,t)y=e"tsindwxsin®wy, (4.5)

1
where c is constant. We take p =q = 3

We first investigate the time accuracy, i.e., the direction splitting error. We plot in Fig. 1 the L? errors at T =1 with
respect to At in log-log scale for c =1 and a number pair of @ and 8. The polynomial degree for the spatial approximation
is taken large enough, i.e., N = 50, such that the spatial discretization error is negligible compared to the time discretization
error. Detailed error values are listed in Table 1. The presented results clearly indicate that the proposed direction splitting
scheme is of second order accuracy for any o« and B ranging from 1 to 2.



210 E Song, C. Xu / Journal of Computational Physics 299 (2015) 196-214
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Fig. 2. Errors in L?-norm as a function of N for several values of « and .
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B N-0,+172)

102 -~ 1
~ - - =~ -AI\ -
el ~. el -
‘‘‘‘‘‘‘ - T -
0% T A E
~~~~~ ~Ao
‘‘‘‘‘‘‘‘ :‘A
-4 L L L L L
104 11 13 15 17 19 21

Fig. 3. Decay rates of the errors in L%-norm as functions of N for solutions with limited regularity.

We then investigate the space accuracy by checking the convergence behavior of numerical solutions with respect to the
polynomial degrees N. We plot in semi-log scale in Fig. 2 the L%-errors versus N for ¢ = 0, At = 0.001. It is observed that
the error variations are linear versus the degrees of polynomial N, which means that the convergence is exponential since
it is a semi-log plot.

Example 4.2 (Solutions with limited regularity). We consider an exact solution with limited regularity to examine the sharp-
ness of the error estimate for the spatial approximation. Precisely, we test the scheme for the exact solution

u(x, y,t) =1000e"1(1 — x*)Y (1 — y?)?, (4.6)

where y is a constant.

It can be verified that this solution belongs to HY+3 (2) in space if y is not an integer. We present the convergence result
in Fig. 3, in which the errors versus N are plotted for the solution with y = %, % computed with At =0.001, @ =1.99, and
B =1.01. It is shown that the convergence rate slows down as y, i.e., the regularity of the solution, decreases. A closer look
at the two different error curves corresponding to two values of y respectively predicts that the decay rate of the L?-error

is close to N-/+2),

Example 4.3 (Stability of the scheme for non-symmetric operators). Consider the following fractional diffusion equation with
non-symmetric fractional differential operators:
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Table 2

L?-errors and convergence rates for the non-symmetric equation with o = 8 = 1.9 for different coefficients p;, qj,i,j=1,2.
At p1=1,q1=0 rate p1=0.6,91=04 rate p1=0.8,9q1=0.2 rate
0.1 9.0324e-04 8.8687e-04 8.9233e-04
0.05 2.1842e-04 2.0480 2.1455e-04 2.0474 2.1584e-04 2.0476
0.02 3.4644e-05 2.0095 3.4035e-05 2.0094 3.4238e-05 2.0094
0.01 8.6505e-06 2.0018 8.4984e-06 2.0018 8.5492e-06 2.0017
0.005 2.1620e-06 2.0004 2.1240e-06 2.0004 2.1367e-06 2.0004
0.002 3.4590e-07 2.0001 3.3983e-07 2.0000 3.4186e-07 2.0000
0.001 8.6486e-08 1.9998 8.4979e-08 1.9996 8.5483e-08 1.9997

Table 3

L%-errors and convergence rates for the non-symmetric equation with & = 8 = 1.01.
At p1=0,q1=1 rate p1=03,q1 =0.7 rate p1=02,q1=0.8 rate
0.1 1.8133e-03 4.6149e-04 8.3572e-04
0.05 4.7782e-04 1.9241 1.1596e-04 1.9927 2.1159e-04 1.9817
0.02 7.7891e-05 19796 1.8580e-05 1.9984 3.3981e-05 1.9959
0.01 1.9528e-05 1.9959 4.6459e-06 1.9997 8.4999e-06 1.9992
0.005 4.8854e-06 1.9990 1.1615e-06 2.0000 2.1253e-06 1.9998
0.002 7.8183e-07 1.9998 1.8585e-07 1.9999 3.4006e-07 2.0000
0.001 1.9546e-07 2.0000 4.6461e-08 2.0000 8.5016e-08 2.0000

au(x, y,t)
) ’ o o ,B
e = P1D{uC Y, 0+ p2xD Uk y,0 +a1 Dyux, y,0 + 2 yDPu(x, v, 0 7
+fxy.0,
where p1 # p2, q1 #Z 2. The forcing function is given such that the exact solution is
ux, y,t)=e tsi”d wxsin®wy. (4.8)

In this test we aim at the numerical investigation of the stability of the direction splitting schemes constructed for the above
non-symmetric problem. The full discretization of the above problem results in a set of non-symmetric linear systems, which
is then solved by applying the Bi-CG algorithm. Tables 2 and 3 list the errors and their decay rates with respect to the time
step size for different coefficients p;,q;,i, j =1, 2. No instability has been encountered in the calculation, even for relatively
large time step sizes. Furthermore it is observed that the direction splitting scheme remains to be of second order for this
non-symmetric equation.

5. Conclusions

We have presented a spectral direction splitting method for the time-dependent two-dimensional space fractional dif-
fusion equation in a finite domain. The proposed method combines a direction splitting scheme in time with a mixed
Galerkin-collocation spectral method for the spatial discretization. A rigorous analysis was carried out, showing that the
overall scheme is unconditionally stable with a second order convergence in time. A number of numerical examples were
provided to demonstrate the efficiency of the method.

Appendix A
Here we give some basic properties of the spaces related to fractional derivatives, which is a simplified version of more

general results given in [11]. For the sake of simplification we only consider the 1D case.
For any positive integer n and n — 1 < s < n, the Caputo derivative of order s are defined as

™ g)d
left Caputo derivative: CDf((p(x) = T ) (xv— ;)i)_ni Vx € A, (A1)
D' [ oM
right Caputo derivative: D¢ (x) = Vx € A. (A2)

Fn—s)) (&—xs+

For any real s > 0, we define the spaces

HS(A) = {v; Vlligs (s < 00} . (A.3)
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with
3
IV lligs () = (||V||%’A+|V|’2H5(A)> o Whasay = D3V g 4 - (A4)
and
THY(A) := {v; IVIIrmsa) < 00} (A5)
with
3
IWlibsny = (VI3 4+ Vs ) IVirscay = [xD*v g 5 - (A6)

LemmaA.l Forreals, 0 <s < 1,if w € [HS(A) N HS(A), v € C*°(A), then

(Rniw(x), v(x))A = (w(x), fDSv(x))A. (A7)

Proof. By using integration by parts, we get

v(1)

RDSv() = ——————
T(1—s)(1-x)s$

+SDSv(x).
In fact, we have

1
-1 d v(é)

LHS = —
ra—s)ydxJ) (&—x)*

dé

“T—s) |dx 1—s

X

-1 Jd { vEIE -0

1 1
i = [vee -0 ds”

= - — _ / _n1-s
T I(1-s) |dx 1_s ] s | VEOE—0TdE

X

-1 d [v(1)(1—x)1-3 1 d / ]

1

/ I vee o]+

X

1
3 v(1) N -1 V(&)
T TA-s5)A—-x5 TA-s5) (—-x

1 —v(1) 1
TTA-s5) | (1=-x5 1-s

1
1—s

V/(E)(E — X)1_S|$=x]

dé

= RHS.
On the other hand, for w € H¥(A), we have, by Lemma 2.2 in [11],

X

lim / WE e —o.
x—»-1t) (x—§)°

-1

Then, by employing again integration by parts and using the above two equalities, we obtain

1 X
1 d
(Daw (), v(x), = /&/ wE) dg v(x) dx

I'd-s) (x—§)°
-1 -1
X 1 1 x
__v® w(§) de| - 1 [/ w() d& v'(x) dx
ra-sJ x=o ra-sJ J «-er

-1
M [ owe) 1 ([ v
v w v/ (x
= d§ — d d
F(l—s)_1 (1—¢)s § r(1_s)_/;§/(x_§)s x w(§)d
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1 1
_ v(1) -1 v/ (%)
‘/W(g)[m “oa—gr ‘ta-s ) a—er d] de
-1 £

=(w(), eD°v(§),. O
For general positive real s > 0, we have the following result.

Lemma A.2. For all positive real s > 0, if w € 'HS(A), v € C5°(A), then
(Dyw (), v(x), = (WX), xD’v(x)), . (A.8)

Proof. Let n be the integer such that n — 1 <s <n. By repeating integration by parts n times, we get

v (1)1 —x)i~s

_Cps
Fatj—s ~* D> v(x). (A.9)

«D V() =SDSv(x) + Z( 1)/

j=0

In virtue of the definition of Djw, we have, for the left-hand side of (A.8),

/ w(§)
F(n—s) dx" (x (x — &)s—n+1

1 x

_ w(E) o

- F("—S)//‘(x £)s—n+ dg viT (x)dx
52

oy v (x)
‘F(n—s)f / x— 5)5—"+1dxw($)d$

= (w®, §D$v(s>)A
Finally, using (A.9) gives (A.8). O

(Daw(x), v(x), = dg v(x) dx
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