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The fully discrete adjoint equations and the corresponding adjoint method are derived 
for a globally high-order accurate discretization of conservation laws on parametrized, 
deforming domains. The conservation law on the deforming domain is transformed into 
one on a fixed reference domain by the introduction of a time-dependent mapping 
that encapsulates the domain deformation and parametrization, resulting in an Arbitrary 
Lagrangian–Eulerian form of the governing equations. A high-order discontinuous Galerkin 
method is used to discretize the transformed equation in space and a high-order diagonally 
implicit Runge–Kutta scheme is used for the temporal discretization. Quantities of interest 
that take the form of space–time integrals are discretized in a solver-consistent manner. 
The corresponding fully discrete adjoint method is used to compute exact gradients of 
quantities of interest along the manifold of solutions of the fully discrete conservation law. 
These quantities of interest and their gradients are used in the context of gradient-based 
PDE-constrained optimization.
The adjoint method is used to solve two optimal shape and control problems governed by 
the isentropic, compressible Navier–Stokes equations. The first optimization problem seeks 
the energetically optimal trajectory of a 2D airfoil given a required initial and final spatial 
position. The optimization solver, driven by gradients computed via the adjoint method, 
reduced the total energy required to complete the specified mission nearly an order of 
magnitude. The second optimization problem seeks the energetically optimal flapping 
motion and time-morphed geometry of a 2D airfoil given an equality constraint on the 
x-directed impulse generated on the airfoil. The optimization solver satisfied the impulse 
constraint to greater than 8 digits of accuracy and reduced the required energy between a 
factor of 2 and 10, depending on the value of the impulse constraint, as compared to the 
nominal configuration.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Optimization problems constrained by Partial Differential Equations (PDEs) commonly arise in engineering practice, 
particularly in the context of design or control of physics-based systems. A majority of the research in PDE-constrained 
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optimization has been focused on steady or static PDEs, with a large body of literature detailing many aspects of the subject, 
including continuous and discrete adjoint methods [1–5], parallel implementations [6,7], one-shot or infeasible path meth-
ods [6,8], and generalized reduced gradient or feasible path methods [1,9]. This emphasis on steady problems is largely due 
to the fact that (a) static analysis is sufficient for a large class of problems of interest and (b) unsteady analysis is expensive 
to perform in a many-query setting, such as optimization [10]. However, there is a large class of problems where steady 
analysis is insufficient, such as problems that are inherently dynamic and problems where a steady-state solution does not 
exist or cannot be found reliably with numerical methods. Flapping flight is an example of the first type, a fundamentally 
unsteady problem that has become increasingly relevant due to its application to Micro-Aerial Vehicles (MAVs) [11]. Sys-
tems with chaotic solutions, such as those encountered in turbulent flows, are an example of the second type of problems 
where steady analysis breaks down. Design and control of these types of systems calls for time-dependent PDE-constrained 
optimization of the form

minimize
U , μ

T∫
0

∫
�

j(U ,μ, t)dS dt

subject to

T∫
0

∫
�

c(U ,μ, t)dS dt ≤ 0

∂U

∂t
+ ∇ · F (U ,∇U ) = 0

(1)

where the last constraint corresponds to a system of conservation laws with solution U , parametrized by μ; the objective 
and constraint functions of the optimization take the form of space–time integrals of pointwise, instantaneous quantities of 
interest j and c over the surface of the body �.

In this work, the large computational cost associated with time-dependent PDE-constrained optimization will be ad-
dressed by two means. The first is the development of a globally high-order numerical discretization of conservation laws 
on deforming domains.1 For many important problems, high-order methods have been shown to require fewer spatial de-
grees of freedom [12] and time steps [13,14] for a given level of accuracy compared to low-order methods. Highly accurate 
quantities of interest, usually the time-average of a relevant surface- or volume-integrated quantity, is paramount, at least 
at convergence, since they drive the optimization trajectory through the objective function and constraints. Large errors in 
quantities of interest will cause the optimization procedure to be driven by discretization errors causing termination at a 
suboptimal design/control. The second approach to reduce the computational impact of time-dependent optimization is the 
use of gradient-based optimization techniques due to their rapid convergence properties, particularly when compared to 
derivative-free alternatives.

An efficient technique for computing derivatives of optimization functionals, required by gradient-based optimization 
solvers, is the adjoint method. It has proven its utility in the context of output-based mesh adaptivity and gradient-based 
PDE-constrained optimization as only a single linearized dual solve is required to compute the gradient of a single quantity 
of interest with respect to any number of parameters. In the context of partial differential equations, the adjoint equations 
can be derived at either the continuous, semi-discrete, or fully discrete level. The fully discrete adjoint method will be the 
focus of this work as it ensures discrete consistency [5,10] of computed gradients, i.e. the gradient of the discrete solution, 
including discretization errors, is computed. Discrete consistency is beneficial in the context of gradient-based optimization 
as inconsistent gradients may cause convergence of black-box optimizers to be slowed or hindered [15], unless specialized 
optimization algorithms are employed that handle gradient inexactness [16].

In this work, a globally high-order numerical discretization of general systems of conservation laws, defined on deforming 
domains, is introduced and the corresponding fully discrete adjoint equations derived. The goal is to harness the advantages 
of high-order methods in the context of gradient-based optimization. The solution of the adjoint equations – the dual solu-
tion – will be used to construct exact gradients of fully discrete quantities of interest. A Discontinuous Galerkin Arbitrary 
Lagrangian–Eulerian (DG-ALE) method [17] is used for the high-order spatial discretization. Previous work on the adjoint 
method for conservation laws on deforming domains predominantly considers a Finite Volume (FV) spatial discretization 
[1–4,18,13,5,19], and recently extended to DG-ALE schemes [20–22]. The DG-ALE discretization is chosen rather than FV 
due to its stable, high-order discretization of convective fluxes. The Geometric Conservation Law (GCL) is satisfied in the 
DG-ALE scheme through the introduction of an element-level auxiliary equation. The fully discrete adjoint equations de-
rived in this work fully incorporate this GCL augmentation [23], ensuring discrete consistency is maintained.

High-order temporal discretization will be achieved using a Diagonally Implicit Runge–Kutta (DIRK) [24] method, marking 
a departure from previous work on unsteady adjoints, which has mostly considered temporal discretization via Backward 
Differentiation Formulas (BDF) [9,18,13,19,22,25], with some work on space–time DG discretizations [23]. Apart from being 
limited to second-order accuracy, if A-stability is required, high-order BDF schemes require special techniques for initializa-
tion [14]. While DIRK schemes require additional work to achieve high-order convergence in the form of additional nonlinear 

1 As with all works on high-order methods, high-order accuracy relies on sufficient regularity in the solution.
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solves at a given timestep, this investment has been shown to be worthwhile [14]. The fully discrete, time-dependent adjoint 
equations corresponding to a Runge–Kutta temporal discretization has been studied in the context of ODEs [26] and optimal 
control [27,28]. A difficulty that arises when considering Runge–Kutta discretizations is the stages encountered during the 
primal (forward) and dual (reverse) solves will not align if the continuous or semi-discrete adjoint method is employed. 
This difficulty cannot arise in the fully discrete formulation as only the terms computed in the primal solve are used in the 
derivation of the discrete adjoint equations.

High-order discretization of integrated quantities of interest will be done in a solver-consistent manner, that is, spatial 
integrals will be evaluated via integration of the finite element shape functions used for the spatial discretization and 
temporal integrals evaluated via the DIRK scheme from the temporal discretization. This ensures the discretization order of 
quantities of interest exactly matches the PDE discretization. This marks a departure from the traditional method of simply 
using the trapezoidal rule for temporal integration of quantities of interest [10,13,19,22], which is limited to second-order 
accuracy. Since the fully discrete adjoint method is used, discretization of the quantities of interest is accounted for in the 
adjoint equations, which is the final component in ensuring discrete consistency of their gradients.

This notion of a solver-consistent discretization of quantities of interest has an immediate connection to adjoint-
consistency for stationary problems [29,30]. A necessary condition for adjoint-consistency is that the quantity of interest 
is discretized with the same scheme as the governing equations and boundary conditions [31]; however, this does not 
refer to the practical issue of evaluating the integrals that arise in the finite-dimensional primal or adjoint residual. Solver-
consistency ensures the same approximation is used to evaluate the integrals arising the primal residual and quantity of 
interest, and therefore the adjoint residual. A key property of adjoint-consistent discretizations is they possess optimal 
convergence rates in the L2-norm and in quantities of interest [32–34].

With the high-order numerical discretization in place, and the corresponding adjoint method developed, the proposed 
methodology is employed to solve deforming-domain PDE-constrained optimization problems, such as optimal control and 
shape optimization for fluid flows. Existing techniques for parametrizing the domain deformation include (a) boundary-
driven deformation where the deformation of a boundary is parametrized using existing techniques [35,36] and the domain 
is deformed using a structural analogy [37,13,19], and (b) analytical expressions for direct domain deformation [17,21]. The 
latter approach is adopted in this work. The proposed methodology, including the high-order primal discretization, fully 
discrete adjoint method, and domain parametrization, will be demonstrated on relevant optimal control and shape opti-
mization problems. An important component will be the incorporation of solution-based constraints, which has previously 
been done only through heuristic penalization of the objective function [22].

The remainder of this document is organized as follows. Section 2 introduces the general form of a system of conserva-
tion laws defined on deforming domains, as well as the globally high-order discretization using DG-in-space, DIRK-in-time 
and a solver-consistent discretization of output integrals. Section 3 derives the fully discrete adjoint method corresponding 
to the high-order discretization from Section 2, with relevant implementational details discussed in Section 4. Section 5
couples the adjoint framework to state-of-the-art optimization software to solve a realistic optimization problem of deter-
mining energetically optimal flapping motions of an airfoil. An alternate derivation of the adjoint equations is provided in 
Appendix A by interpreting the dual variables as Lagrange multipliers of an auxiliary PDE-constrained optimization problem.

2. Governing equations and discretization

This section is devoted to the treatment of conservation laws on a parametrized, deforming domain using an Arbitrary 
Lagrangian–Eulerian (ALE) description of the governing equations and exposition of a globally high-order numerical dis-
cretization of the ALE form of the system of conservation laws. Subsequently, Section 3 will develop the corresponding fully 
discrete adjoint equations and the adjoint method for constructing gradients of quantities of interest.

The methods introduced in this work are not necessarily limited to Partial Differential Equations (PDE) that can be writ-
ten as conservation laws (2). In Section 2.2, the chosen spatial discretization (discontinuous Galerkin Arbitrary Lagrangian–
Eulerian method) is applied to the PDE, resulting in a system of first-order Ordinary Differential Equations (ODE), which 
is the point of departure for all adjoint-related derivations. Time-dependent PDEs that are not conservation laws can be 
written similarly at the semi-discrete level after application of an appropriate spatial discretization, e.g. a continuous finite 
element method for parabolic PDEs. In this work, the scope is limited to first-order temporal systems, or those which are 
recast as such.

2.1. System of conservation laws on deforming domain: arbitrary Lagrangian–Eulerian description

Consider a general system of conservation laws, defined on a parametrized, deforming domain, v(μ, t), written at the 
continuous level as

∂U

∂t
+ ∇ · F (U , ∇U ) = 0 in v(μ, t) (2)

where the physical flux is decomposed into an inviscid and a viscous part F (U , ∇U ) = F inv(U ) + F vis(U , ∇U ), U (x, μ, t)
is the solution of the system of conservation laws, t ∈ (0, T ) represents time, and μ ∈ R

Nμ is a vector of parameters. This 
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Fig. 1. Time-dependent mapping between reference and physical domains.

work will focus on the case where the domain is parametrized by μ, although extension to other types of parameters, e.g. 
constants defining the conservation law, is straightforward.

The conservation law on a deforming domain is transformed into a conservation law on a fixed reference domain through 
the introduction of a time-dependent mapping between the physical and reference domains, resulting in an Arbitrary 
Lagrangian–Eulerian description of the governing equations.

Denote the physical domain by v(μ, t) ⊂ R
nsd and the fixed, reference domain by V ⊂ R

nsd , where nsd is the num-
ber of spatial dimensions. At each time t , let G be a time-dependent diffeomorphism between the reference domain and 
physical domain: x(X, μ, t) = G(X, μ, t), where X ∈ V is a point in the reference domain and x(X, μ, t) ∈ v(μ, t) is the 
corresponding point in the physical domain at time t and parameter configuration μ (see Fig. 1).

The transformed system of conservation laws from (2), under the mapping G , defined on the reference domain takes the 
form

∂U X

∂t

∣∣∣∣
X

+ ∇X · F X (U X , ∇X U X ) = 0 (3)

where ∇X denotes spatial derivatives with respect to the reference variables, X . The transformed state vector, U X , and its 
corresponding spatial gradient with respect to the reference configuration take the form

U X = gU , ∇X U X = g−1U X
∂ g

∂ X
+ g∇U · G, (4)

where G = ∇XG , g = det(G), v G = ∂x

∂t
= ∂G

∂t
, and the arguments have been dropped, for brevity. The transformed fluxes 

are

F X (U X ,∇X U X ) = F inv
X (U X ) + F vis

X (U X ,∇X U X ),

F inv
X (U X ) = g F inv(g−1U X )G−T − U X ⊗ G−1 v G ,

F vis
X (U X ,∇X U X ) = g F vis

(
g−1U X , g−1

[
∇X U X − g−1U X

∂ g

∂ X

]
G−1

)
G−T .

(5)

For details regarding the derivation of the transformed equations, the reader is referred to [17].
When integrated using inexact numerical schemes, this ALE formulation does not satisfy the Geometric Conservation Law 

(GCL) [38,17]. This is overcome by introduction of an auxiliary variable ḡ , defined as the solution of

∂ ḡ

∂t
− ∇X ·

(
gG−1 v G

)
= 0. (6)

The auxiliary variable, ḡ is used to modify the transformed conservation law according to

∂U X̄

∂t

∣∣∣∣
X

+ ∇X · F X̄ (U X̄ , ∇X U X̄ ) = 0 (7)

where the GCL-transformed state variables are

U X̄ = ḡU , ∇X U X̄ = ḡ−1U X̄
∂ ḡ

∂ X
+ ḡ∇U · G (8)

and the corresponding fluxes
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F X̄ (U X̄ ,∇X U X̄ ) = F inv
X̄

(U X̄ ) + F vis
X̄

(U X̄ ,∇X U X̄ ),

F inv
X̄

(U X̄ ) = g F inv(ḡ−1U X̄ )G−T − U X̄ ⊗ G−1 v G ,

F vis
X̄

(U X̄ ,∇X U X̄ ) = g F vis
(

ḡ−1U X̄ , ḡ−1
[
∇X U X̄ − ḡ−1U X̄

∂ ḡ

∂ X

]
G−1

)
G−T .

(9)

It was shown in [17] that the transformed equations (7) satisfy the GCL. In the next section, the ALE description of the 
governing equations (3) and (7) will be converted to first-order form and discretized via a high-order discontinuous Galerkin 
method.

2.2. Spatial discretization: arbitrary Lagrangian–Eulerian discontinuous Galerkin method

The ALE description of the conservation law without GCL augmentation will be considered first. To proceed, the second-
order system of partial differential equations in (3) is converted to first-order form

∂U X

∂t

∣∣∣∣
X

+ ∇X · F X (U X , Q X ) = 0

Q X − ∇X U X = 0,

(10)

where Q X is introduced as an auxiliary variable to represent the spatial gradient of the U X . Equation (10) is discretized 
using a standard nodal discontinuous Galerkin finite element method [39], which after local elimination of the auxiliary 
variables Q X leads to the following system of ODEs

MX
∂u X

∂t
= ru X (u X ,μ, t), (11)

where MX is the block-diagonal, symmetric, fixed mass matrix, u X is the vectorization of U X at all nodes in the high-order 
mesh, and ru X is the nonlinear function defining the DG discretization of the inviscid and viscous fluxes.

The GCL augmentation is treated identically, i.e. conversion to first-order form and subsequent application of the dis-
continuous Galerkin finite element method, where U X̄ is taken as the state variable. The result is a system of ODEs 
corresponding to a high-order ALE scheme that satisfies the GCL

Mḡ
∂ ḡ

∂t
= rḡ(μ, t)

MX
∂u X̄

∂t
= ru X̄

(u X̄ , ḡ,μ, t)
(12)

where each term is defined according to their counterparts in (11). From the conservation law defining ḡ (6), the cor-
responding flux is continuous, implying the physical flux gG−1 v G can be used as the numerical flux. This implies no 
information is required from neighboring elements and (6) can be solved at the element level, i.e. statically condensed. 
Furthermore, the ḡ residual, rḡ , does not depend on ḡ itself since the physical flux gG−1 v G is independent of ḡ .

Since the equation for ḡ does not depend on u X̄ , it can be solved independently of the equation for u X̄ . This enables ḡ
to be considered an implicit function of μ, i.e. ḡ = ḡ(μ, t) through application of the implicit function theorem. Then, (12)
reduces to

MX
∂u X̄

∂t
= ru X̄

(u X̄ , ḡ(μ, t),μ, t). (13)

Equations (11) and (13) are abstracted into the following system of ODEs

M
∂u

∂t
= r(u,μ, t), (14)

for convenience in the derivation of the fully discrete adjoint equations. Evaluation of the residual, r , in (14) at parameter 
μ and time t requires evaluation of the mapping, x(μ, t) and ẋ(μ, t), and ḡ(μ, t), if GCL augmentation is employed. The 
implicit dependence of ḡ on μ requires special treatment when computing derivatives with respect to μ, which will be 
required in the adjoint method (Section 3). Discussion of treatment of such terms will be deferred to Section 4.1.2.

A convenient property of this DG-ALE scheme is that all computations are performed on the reference domain which 
is independent of time and parameter. An implication of this is that the mass matrix of the ODE (14) is also time- and 

parameter-independent. This property simplifies all adjoint computations introduced in Section 3 as terms involving 
∂M

∂u

and 
∂M

∂μ
are identically zero. This, in turn, simplifies the implementation of the adjoint method and translates to com-

putational savings since contractions with these third-order tensor are not required; see [9] for a discretization with 
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Table 1
Butcher tableau for s-stage diagonally implicit 
Runge–Kutta scheme.

c1 a11

c2 a21 a22

.

.

.

.

.

.

.

.

.
. . .

cs as1 as2 · · · ass

b1 b2 · · · bs

parameter-dependent mass matrices and the corresponding adjoint derivation. In subsequent sections, it will be assumed 
that the mass matrix is time- and parameter-independent.

The DG-ALE scheme outlined in this section constitutes a spatial discretization, which yields a system of Ordinary Dif-
ferential Equations (ODEs) when applied to the PDE in (2). The semi-discrete form of the conservation law is the point of 
departure for the remainder of this document. The subsequent development applies to any system of ODEs of the form 
(14) without relying on the specific spatial discretization scheme employed. The DG-ALE scheme was chosen to provide a 
high-order, stable spatial discretization of the conservation law (2). With the high-order spatial discretization of the state 
equations introduced, focus is shifted toward high-order temporal discretization to yield a globally high-order accurate nu-
merical scheme.

2.3. Temporal discretization: diagonally implicit Runge–Kutta

The two prevailing classes of high-order implicit temporal integration schemes are: (a) Backward Differentiation Formulas 
(BDF) and (b) Implicit Runge–Kutta (IRK). BDF schemes are popular since high-order accuracy can be achieved at the cost of 
the solution of a single nonlinear system of equations of size Nu at each time step. However, they suffer from initialization 
issues and are limited to second-order, if A-stability is required. In contrast, IRK schemes are single-step methods that can 
be A-stable and arbitrarily high-order, at the cost of solving an enlarged nonlinear system of equations of size s · Nu , for an 
s-stage scheme. For practical problems, this can be prohibitively expensive, in terms of memory and CPU time.

A particular subclass of the IRK schemes, known as Diagonally Implicit Runge–Kutta (DIRK) schemes [24], are capable of 
achieving high-order accuracy with the desired stability properties, without requiring the solution of an enlarged system of 
equations. The DIRK schemes are defined by a lower triangular Butcher tableau (Table 1) and take the following form when 
applied to (14)

u(0) = u0(μ)

u(n) = u(n−1) +
s∑

i=1

bik
(n)
i

Mk(n)
i = �tnr

(
u(n)

i , μ, tn−1 + ci�tn

)
,

(15)

for n = 1, . . . , Nt and i = 1, . . . , s, where Nt are the number of time steps in the temporal discretization and s is the number 
of stages in the DIRK scheme. The temporal domain, [0, T ] is discretized into Nt segments with endpoints {t0, t1, . . . , tNt }, 
with the nth segment having length �tn = tn − tn−1 for n = 1, . . . , Nt . Additionally, in (15), u(n)

i is used to denote the 
approximation of u(n) at the ith stage of time step n

u(n)
i = u(n)

i (u(n−1), k(n)
1 , . . . , k(n)

s ) = u(n−1) +
i∑

j=1

aijk
(n)
j . (16)

From (15), a complete time step requires the solution of a sequence of s nonlinear systems of equation of size Nu .
Given this exposition on the spatio-temporal discretization of the deforming domain conservation law, the expression for 

the quantity of interest must be discretized. The next section introduces a spatio-temporal discretization of the quantities 
of interest that is consistent with that of the conservation law itself.

2.4. Solver-consistent discretization of quantities of interest

In this section, the high-order discretization of quantities of interest – space–time integrals of a nonlinear function of 
the solution of the conservation law – is considered. The output quantity takes the form

F(U ,μ, t) =
t∫ ∫

w(x, τ ) f (U ,μ, τ ) dS dτ . (17)
0 �



522 M.J. Zahr, P.-O. Persson / Journal of Computational Physics 326 (2016) 516–543
In the context of the optimization problem in (1), F corresponds to either the objective or a constraint function.
Discretization of quantities of interest will introduce an additional discretization error, on top of that in the approximation 

of U itself. To ensure the quantity of interest discretization does not dominate, thereby lowering the global order of the 
scheme, it is necessary that its discretization order matches that of the discretization of the governing equation. Clearly, it is 
wasteful to discretize this to a higher order than the state equation, using a similar argument.

For these reasons, discretization of (17) will be done in a solver-consistent manner, i.e. the spatial and temporal dis-
cretization used for the governing equation will also be used for the quantities of interest. Define fh as the approximation 

of 
∫
�

w(x, t) f (U ,μ, t) dS using the DG shape functions from the spatial discretization of the governing equations. Then, the 

solver-consistent spatial discretization of (17) becomes

Fh(u,μ, t) =
t∫

0

fh(u,μ, τ ) dτ , (18)

ensuring the spatial integration error in the quantity of interest exactly matches that of the governing equations. Solver-
consistent temporal discretization requires the semi-discrete functional in (18) be converted to an ODE, which is accom-
plished via differentiation of (18) with respect to t

Ḟh(u,μ, t) = fh(u,μ, t). (19)

Augmenting the semi-discrete governing equations with this ODE (19) yields the system of ODEs[
M 0
0 1

][
u̇
Ḟh

]
=

[
r(u,μ, t)
fh(u,μ, t)

]
. (20)

Application of the DIRK temporal discretization introduced in Section 2.3 yields the fully discrete governing equations and 
corresponding solver-consistent discretization of the quantity of interest (17)

u(n) = u(n−1) +
s∑

i=1

bik
(n)
i

F (n)

h = F (n−1)

h +
s∑

i=1

bi fh

(
u(n)

i , μ, tn−1 + ci�tn

)

Mk(n)
i = �tnr

(
u(n)

i , μ, tn−1 + ci�tn

)
,

(21)

for n = 1, . . . , Nt , i = 1, . . . , s, and u(n)
i is defined in (16). Finally, the functional in (17) is evaluated at time t = T to yield 

the solver-consistent approximation of F(u, μ, T )

F (u(0), . . . , u(Nt ),k(1)
1 , . . . ,k(Nt )

s ) = F (Nt )

h ≈ F(u,μ, T ). (22)

Remarks. In addition to the standard choice of w(x, t) = 1, other common choices include (a) instantaneous, spatially 
integrated quantities, i.e. w(x, t) = δ(t − t∗), (b) pointwise, temporally integrated quantities, i.e. w(x, t) = δ(‖x − x∗‖), and 
(c) pointwise, instantaneous quantities, i.e. w(x, t) = δ(‖x − x∗‖)δ(t − t∗). where x∗ ∈ � and t∗ ∈ (0, T ). For these specific 
choices of w(x, t), simplifications to the above discretization can be leveraged since the spatial and/or temporal integrals 
reduce to an evaluation of f at x = x∗ and/or t = t∗ .

While the spatially solver-consistent discretization of quantities of interest is widely used, particularly in the context of 
finite element methods, temporal discretization is commonly done via low-order quadrature rules, usually the trapezoidal 
rule [22,4,13,10,40]. The main advantage of this solver-consistent discretization is the asymptotic discretization order of the 
governing equation and quantity of interest are guaranteed to exactly match, which ensures there is no wasted error in 
“over-integrating” one of the terms. Furthermore, solver-consistency extends the notion of adjoint-consistency that requires 
the discrete adjoint equations represent a consistent discretization of the continuous adjoint equations, but does not nec-
essarily address the practical issue of evaluating the integrals that arise in each term of the finite-dimensional primal and 
adjoint residual. Solver-consistency ensures the integrals arising in the primal residual and quantity of interest are approx-
imated identically, which in turn implies that each term in the adjoint equations uses the same integral approximation. 
The solver-consistent discretization also has the advantage of a natural and convenient implementation given the spatial 
and temporal discretization implementation. Finally, this method has the additional convenience of keeping a high-order 

accurate “current” value of the integral, i.e. at time step n, F (n)

h ≈
tn∫

fh(τ )dτ to high-order accuracy. This property does not 

0
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hold for high-order numerical quadrature since 
tn∫

0

fh(τ )dτ will involve u(n+ j) , where j ≥ 1 depends on the quadrature rule 

used.

3. Fully discrete, time-dependent adjoint equations

The purpose of this section is to derive an expression for the total derivative of the discrete quantity of interest F in 
(22), which can be expanded as

dF

dμ
= ∂ F

∂μ
+

Nt∑
n=0

∂ F

∂u(n)

∂u(n)

∂μ
+

Nt∑
n=1

s∑
i=1

∂ F

∂k(n)
i

∂k(n)
i

∂μ
, (23)

that does not depend on the sensitivities of the state variables, 
∂u(n)

∂μ
and 

∂k(n)
i

∂μ
. Each of the Nμ state variable sensitivities 

is the solution of a linear evolution equation of the same dimension and number of steps as the primal equation (15), 
rendering these quantities intractable to compute when Nμ is large. Elimination of the state variable sensitivities from (23)
is accomplished through introduction of the adjoint equations corresponding to the functional F , and the corresponding dual 
variables. From the derivation of the adjoint equation in Section 3.1, an expression for the reconstruction of the gradient 
of F , independent of the state variables sensitivities, follows naturally. At this point, it is emphasized that F represents 
any quantity of interest whose gradient is desired, such as the optimization objective function or a constraint. This section 
concludes with a discussion of the advantages of the fully discrete framework in the setting of the high-order numerical 
scheme.

Before proceeding to the derivation of the adjoint method, the following definitions are introduced for the Runge–Kutta 
stage equations and state updates

r̃(0)
(u(0), μ) = u(0) − u0(μ) = 0

r̃(n)
(u(n−1), u(n), k(n)

1 , . . . ,k(n)
s , μ) = u(n) − u(n−1) −

s∑
i=1

bik
(i)
i = 0

R(n)
i (u(n−1),k(n)

1 , . . . ,k(n)
i ,μ) = Mk(n)

i − �tnr
(

u(n)
i , μ, tn−1 + ci�tn

)
= 0

(24)

for n = 1, . . . , Nt and i = 1, . . . , s. Differentiation of these expressions with respect to μ gives rise to the fully discrete 
sensitivity equations

∂ r̃(0)

∂μ
+ ∂ r̃(0)

∂u(0)

∂u(0)

∂μ
= 0

∂ r̃(n)

∂μ
+ ∂ r̃(n)

∂u(n)

∂u(n)

∂μ
+ ∂ r̃(n)

∂u(n−1)

∂u(n−1)

∂μ
+

s∑
p=1

∂ r̃(n)

∂k(n)
p

∂k(n)
p

∂μ
= 0

∂ R(n)
i

∂μ
+ ∂ R(n)

i

∂u(n−1)

∂u(n−1)

∂μ
+

i∑
j=1

∂ R(n)
i

∂k(n)
j

∂k(n)
j

∂μ
= 0

(25)

where n = 1, . . . , Nt , i = 1, . . . , s, and arguments have been dropped.

3.1. Derivation

The derivation of the fully discrete adjoint equations corresponding to the quantity of interest, F , begins with the intro-
duction of test variables

λ(0), λ(n), κ (n)
i ∈R

Nu (26)

for n = 1, . . . , Nt and i = 1, . . . , s. To eliminate the state sensitivities from the expression for 
dF

dμ
in (23), multiply the 

sensitivity equations (25) by the test variables, integrate (i.e. sum in the discrete setting) over the time domain, and subtract 
from the expression for the gradient in (23) to obtain
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dF

dμ
= ∂ F

∂μ
+

Nt∑
n=0

∂ F

∂u(n)

∂u(n)

∂μ
+

Nt∑
n=1

s∑
i=1

∂ F

∂k(n)
i

∂k(n)
i

∂μ
− λ(0)T

[
∂ r̃(0)

∂μ
+ ∂ r̃(0)

∂u(0)

∂u(0)

∂μ

]

−
Nt∑

n=1

λ(n)T

⎡
⎣∂ r̃(n)

∂μ
+ ∂ r̃(n)

∂u(n)

∂u(n)

∂μ
+ ∂ r̃(n)

∂u(n−1)

∂u(n−1)

∂μ
+

s∑
p=1

∂ r̃(n)

∂k(n)
p

∂k(n)
p

∂μ

⎤
⎦

−
Nt∑

n=1

s∑
i=1

κ (n)
i

T

⎡
⎣∂ R(n)

i

∂μ
+ ∂ R(n)

i

∂u(n−1)

∂u(n−1)

∂μ
+

i∑
j=1

∂ R(n)
i

∂k(n)
j

∂k(n)
j

∂μ

⎤
⎦ .

(27)

The right side of the equality in (27) is an equivalent expression for 
dF

dμ
for any value of the test variables since the terms in 

the brackets are zero, i.e. the sensitivity equations. Re-arrangement of terms in (27) leads to the following expression for 
dF

dμ
, where the state variable sensitivities have been isolated

dF

dμ
= ∂ F

∂μ
+

[
∂ F

∂u(Nt )
− λ(Nt )

T ∂ r̃(Nt )

∂u(Nt )

]
∂u(Nt )

∂μ
−

Nt∑
n=0

λ(n)T ∂ r̃(n)

∂μ
−

Nt∑
n=1

s∑
p=1

κ (n)
p

T ∂ R(n)
p

∂μ

+
Nt∑

n=1

[
∂ F

∂u(n−1)
− λ(n−1)T ∂ r̃(n−1)

∂u(n−1)
− λ(n)T ∂ r̃(n)

∂u(n−1)
−

s∑
i=1

κ (n)
i

T ∂ R(n)
i

∂u(n−1)

]
∂u(n−1)

∂μ

+
Nt∑

n=1

s∑
p=1

⎡
⎣ ∂ F

∂k(n)
p

− λ(n)T ∂ r̃(n)

∂k(n)
p

−
s∑

i=p

κ (n)
i

T ∂ R(n)
i

∂k(n)
p

⎤
⎦ ∂k(n)

p

∂μ
.

(28)

The dual variables, λ(n) and κ (n)
i , which have remained arbitrary to this point, are chosen as the solution to the following 

equations

∂ r̃(Nt )

∂u(Nt )

T

λ(Nt ) = ∂ F

∂u(Nt )

T

∂ r̃(n)

∂u(n−1)

T

λ(n) + ∂ r̃(n−1)

∂u(n−1)

T

λ(n−1) = ∂ F

∂u(n−1)

T

−
s∑

i=1

∂ R(n)
i

∂u(n−1)

T

κ (n)
i

s∑
j=i

∂ R(n)
j

∂k(n)
i

T

κ (n)
j = ∂ F

∂k(n)
i

T

− ∂ r̃(n)

∂k(n)
i

T

λ(n)

(29)

for n = 1, . . . , Nt and i = 1, . . . , s. These are the fully discrete adjoint equations corresponding to the primal evolution equations 
in (24) and quantity of interest F . Defining the dual variables as the solution of the adjoint equations in (29), the expression 

for 
dF

dμ
in (28) reduces to

dF

dμ
= ∂ F

∂μ
−

Nt∑
n=0

λ(n)T ∂ r̃(n)

∂μ
−

Nt∑
n=1

s∑
p=1

κ (n)
p

T ∂ R(n)
p

∂μ
, (30)

which is independent of the state sensitivities. Finally, elimination of the auxiliary terms, r̃(n) and R(n)
i , in equations (28)

and (29) through differentiation of their expressions in (24) gives rise to the adjoint equations

λ(Nt ) = ∂ F

∂u(Nt )

T

λ(n−1) = λ(n) + ∂ F

∂u(n−1)

T

+
s∑

i=1

�tn
∂r

∂u

(
u(n)

i , μ, tn−1 + ci�tn

)T
κ (n)

i

M
T κ (n)

i = ∂ F

∂k(n)
i

T

+ biλ
(n) +

s∑
j=i

a ji�tn
∂r

∂u

(
u(n)

j , μ, tn−1 + c j�tn

)T
κ (n)

j

(31)

for n = 1, . . . , Nt and i = 1, . . . , s and the expression for gradient reconstruction, independent of state sensitivities,
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dF

dμ
= ∂ F

∂μ
+ λ(0)T ∂u0

∂μ
+

Nt∑
n=1

�tn

s∑
i=1

κ (n)
i

T ∂r

∂μ
(u(n)

i , μ, tn−1 + ci�tn), (32)

specialized to the case of a DIRK temporal discretization. From inspection of (32), it is clear that the initial condition 

sensitivity 
∂u0

∂μ
is the only sensitivity term required to reconstruct 

dF

dμ
. The presence of this term does not destroy the 

efficiency of the adjoint method for two reasons: (a) only matrix–vector products with 
∂u0

∂μ

T

are required and (b) the 

parametrization of the initial condition is either known analytically (uniform flow, zero freestream, independent of μ, etc.) 

or is the solution of some nonlinear system of equations (most likely the steady-state equations). In the first case, λ(0)T ∂u0

∂μ

can be computed analytically once λ(0) is known. The next section details efficient computation of λ(0)T ∂u0

∂μ
using the 

adjoint method of the steady-state problem.

3.2. Parametrization of initial condition

Suppose the initial condition u0(μ) is defined as the solution of the nonlinear system of equations – whose Jacobian is 
invertible at u0(μ) – which is most likely the fully discrete steady-state form of the governing equations

R(u0(μ),μ) = 0. (33)

Differentiating with respect to the parameter μ leads to the expansion

dR

dμ
= ∂ R

∂μ
+ ∂ R

∂u0

∂u0

∂μ
= 0, (34)

where arguments have been dropped for brevity. Assuming the Jacobian matrix is invertible, multiply the preceding equation 
by the λ(0) and rearrange to obtain

−λ(0)T ∂u0

∂μ
=

[
∂ R

∂u0

−T

λ(0)

]T
∂ R

∂μ
. (35)

This reveals the term λ(0)T ∂u0

∂μ
can be computed at the cost of one linear system solve of the form 

∂ R

∂u0

T

v = λ(0) and an 

inner product v T ∂ R

∂μ
. The only operation whose cost scales with the size of μ is the evaluation of 

∂ R

∂μ
and subsequent 

inner product. Given this exposition on the fully discrete, time-dependent adjoint method and the discrete adjoint method 

for computing λ(0)T ∂u0

∂μ
, a discussion is provided detailing the advantages of the fully discrete framework when computing 

gradients of output quantities before discussing implementation details in Section 4.

3.3. Benefits of fully discrete framework

In the context of optimization, the fully discrete adjoint method is advantageous compared to the continuous or semi-
discrete version as it is guaranteed that the resulting derivatives will be consistent with the quantity of interest, F . This 
emanates from the fact that in the fully discrete setting, the discretization errors are also differentiated. This property is prac-
tically relevant as convergence guarantees and convergence rates of many black-box optimizers are heavily dependent on 
consistent gradients of optimization functionals.

Additionally, when Runge–Kutta schemes are chosen for the temporal discretization, the fully discrete framework is 
particularly advantageous since the stages are rarely invariant with respect to the direction of time, that is to say,

� ∃i, j ∈ {1, . . . , s} such that tn−1 + ci�tn = tn − c j�tn, (36)

where c is from the Butcher tableau. Temporal invariance of a Runge–Kutta scheme, as defined in (36) is significant when 
computing adjoint variables. During the primal solve, u will be computed at tn for n = 1, . . . , N and its stage values at 
tn−1 + ci�tn for n = 1, . . . , N and i = 1, . . . , s. If the same RK scheme is applied to integrate the semi-discrete adjoint 
equations backward in time, the primal solution will be required at tn − ci�tn for n = 1, . . . , N and i = 1, . . . , s. Due to 
condition (36), the solution to the primal problem was not computed during the forward solve. Obtaining the primal solution 
at this time requires interpolation, which complicates the implementation, degrades the accuracy of the computed adjoint 
variables, and destroys discrete consistency of the computed gradients. This issue does not arise in the fully discrete setting 
as only terms computed during the primal solve appear in the adjoint equations, by construction.

The next section is devoted to detailing an efficient and modular implementation of the fully discrete adjoint method on 
deforming domains.
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Algorithm 1 Primal solution: functional evaluation.

Input: Initial condition, u(0); parameter configuration, μ
Output: Integrated output quantity, F = F (Nt )

h , and primal state quantities, u(n) and k(n)
i for n = 1, . . . , Nt and i = 1, . . . , s

1: Initialize: F (0)

h = 0
2: for n = 1, . . . , Nt do
3: for i = 1, . . . , s do
4: Solve (15) for k(n)

i

Mk(n)
i = �tr

(
u(n)

i ,μ, tn−1 + ci�t
)

where u(n)
i = u(n−1) + ∑i

j=1 aijk
(n)
j

5: Write k(n)
i to disk

6: end for
7: Update u according to (15)

u(n) = u(n−1) +
s∑

i=1

bik
(n)
i

8: Update Fh according to (21)

F (n)

h = F (n−1)

h +
s∑

i=1

bi f
(

u(n)
i ,μ, tn−1 + ci�tn

)

9: Write u(n) to disk
10: end for

4. Implementation

Implementation of the fully discrete adjoint method introduced in Section 3 relies on the computation of the following 
terms from the spatial discretization

M, r,
∂r

∂u
,

∂r

∂u

T

,
∂r

∂μ
, fh,

∂ fh

∂u
,
∂ fh

∂μ
. (37)

Here, M is the mass matrix of the semi-discrete conservation law, and r is the spatial residual vector with derivatives 
∂r

∂u

(Jacobian) and 
∂r

∂μ
. As in the previous section, fh is the discretization of the spatial integral of the output quantity of interest 

with derivatives 
∂ fh

∂u
and 

∂ fh

∂μ
. The mass matrix, spatial flux, Jacobian of spatial flux, and output quantity are standard 

terms required by an implicit solver and will not be considered further. The Jacobian transpose is explicitly mentioned as 
additional implementational effort is required when performing parallel matrix transposition. The derivatives with respect 
to μ are rarely required outside adjoint method computations and will be considered further in Section 4.1. As indicated 
in Section 2.2, all relevant derivatives of the mass matrix are zero since it is independent of time, parameter, and state 
variable, which is an artifact of the transformation to a fixed reference domain.

The parallel implementation of all semi-discrete quantities in (37) is performed using domain decomposition, where each 
processor contains a subset of the elements in the mesh, including a halo of elements to be communicated with neighbors 
[41]. Linear systems of the form

∂r

∂u
x = b

∂r

∂u

T

x = b

are solved in parallel using a GMRES solver with a block Incomplete-LU (ILU) preconditioner.
Given the availability of all terms in (37), the solution of the primal problem and integration of the output quantity F is 

given in Algorithm 1. The solution of the corresponding fully discrete adjoint equation, and reconstruction of the gradient 
of F , is given in Algorithm 2.

A well-documented implementational issue corresponding to the unsteady adjoint method pertains to storage and I/O 
demands. The adjoint equations are solved backward in time and require the solution of the primal problem at each of the 
corresponding steps/stages. Therefore, the adjoint computations cannot begin until all primal states have been computed. 
Additionally, this implies all primal states must be stored since they will be required in reverse order during the adjoint 
computation. For most problems, storing all primal states in memory will be infeasible, requiring disk I/O, which must be 
performed in parallel to ensure parallel scaling is maintained. There have been a number of strategies to minimize the 
required I/O operations, such as local-in-time adjoint strategies [42] and checkpointing [43–45]. For the DG-ALE method 
in this work, the cost of I/O was not significant compared to the cost of assembly and solving the linearized system of 
equations.
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Algorithm 2 Dual solution: gradient evaluation.

Input: Primal state quantities, u(n) and k(n)
i for n = 1, . . . , Nt and i = 1, . . . , s; initial condition sensitivity, ∂u(0)

∂μ
; parameter configuration, μ

Output: Gradient of integrated output quantity, dF

dμ
, and dual state quantities, λ(n) and κ (n)

i for n = 1, . . . , Nt and i = 1, . . . , s
1: Read primal solution u(Nt ) from disk

2: λ(Nt ) = ∂ F

∂u(Nt )

T

3: Initial gradient of F with partial derivative and initial condition sensitivity

dF

dμ
= ∂ F

∂μ
+ λ(0)T ∂u0

∂μ

4: for n = Nt , . . . , 1 do
5: Read primal solution u(n−1) from disk
6: for i = s, . . . , 1 do
7: Read primal solution k(n)

i from disk

8: Solve (31) for κ (n)
i

M
T κ (n)

i = ∂ F

∂k(n)
i

T

+ biλ
(n) +

s∑
j=i

a ji�tn
∂r

∂u
(u(n)

j ,μ, tn−1 + c j�tn)T κ (n)
j

9: Update dF

dμ
according to (32)

dF

dμ
= dF

dμ
+ �tnκ

(n)
i

T ∂r

∂μ
(u(n)

i , μ, tn−1 + ci�tn)

10: end for
11: Update λ according to (31)

λ(n−1) = λ(n) + ∂ F

∂u(n−1)

T

+
s∑

i=1

�tn
∂r

∂u
(u(n)

i ,μ, ti + ci�tn)T κ (n)
i

12: end for

In this work, the 3DG software [46] was used for the high-order DG-ALE scheme. The temporal discretization and un-
steady adjoint method were implemented in the Model Order Reduction Testbed (MORTestbed) [47,48] code-base, which 
was used to wrap 3DG such that all data structures, and thus all parallel capabilities, were inherited.

4.1. Partial derivatives of residuals and output quantities

This section details computation of partial derivatives of the residual, r , and the output quantity, fh , with respect to the 
parameter μ. The DG-ALE discretizations of Section 2.2, with and without GCL augmentation, are considered separately as 
the implicit dependence of ḡ on μ requires special treatment.

4.1.1. Without GCL augmentation
When the GCL augmentation is not considered, the dependence of r and fh on the parameter μ is solely due to the 

domain parametrization. Therefore, the following expansion of the partial derivatives with respect to μ is exploited

∂r

∂μ
= ∂r

∂x

∂x

∂μ
+ ∂r

∂ ẋ

∂ ẋ

∂μ

∂ fh

∂μ
= ∂ fh

∂x

∂x

∂μ
+ ∂ fh

∂ ẋ

∂ ẋ

∂μ
(38)

where 
∂x

∂μ
and 

∂ ẋ

∂μ
are determined solely from the domain parametrization in Section 4.2 and the terms

∂r

∂x
,
∂r

∂ ẋ
,
∂ fh

∂x
,
∂ fh

∂ ẋ
(39)

are determined from the form of the governing equations and spatial discretization outlined in Section 2. From the expres-

sions in (38), the terms in (39) are not explicitly required in matrix form, rather matrix–vector products with 
∂x

∂μ
and 

∂ ẋ

∂μ
from Section 4.2 are required.

4.1.2. With GCL augmentation
For the DG-ALE scheme with GCL augmentation, the dependence of r and f on the parameter μ arises from two 

sources, the domain parametrization and the implicit dependence of ḡ on μ. Therefore, the chain rule expansions in (38)
must include an additional term to account for the dependence of ḡ on μ
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∂r

∂μ
= ∂r

∂x

∂x

∂μ
+ ∂r

∂ ẋ

∂ ẋ

∂μ
+ ∂r

∂ ḡ

∂ ḡ

∂μ

∂ f

∂μ
= ∂ f

∂x

∂x

∂μ
+ ∂ f

∂ ẋ

∂ ẋ

∂μ
+ ∂ f

∂ ḡ

∂ ḡ

∂μ
. (40)

Similar to the previous section, the terms 
∂x

∂μ
and 

∂ ẋ

∂μ
are determined solely from the domain parametrization in Section 4.2

and

∂r

∂x
,
∂r

∂ ẋ
,
∂r

∂ ḡ
,
∂ f

∂x
,
∂ f

∂ ẋ
,
∂ f

∂ ḡ
(41)

are determined from the form of the governing equations and spatial discretization in Section 2. The only remaining term 
∂ ḡ

∂μ
is defined as the solution of the following ODE

Mḡ
∂

∂t

(
∂ ḡ

∂μ

)
= ∂rḡ

∂μ
+ ∂rḡ

∂ ḡ

∂ ḡ

∂μ
= ∂rḡ

∂μ
, (42)

obtained by direct differentiation of (12). The last equality uses the fact that r ḡ is independent of ḡ, which can be deduced 
from examination of the governing equation for ḡ (6). Equation (42) is discretized with the same DIRK scheme used for the 
temporal discretization of the state equation.

Remarks. The special treatment of ḡ detailed in this section, including integration of the sensitivity equations (42), can be 
avoided by considering the ODEs in (12) directly without leveraging the fact that the ḡ equation is independent of u X̄ . This 
implies the state vector will contain an additional unknown for ḡ for each DG node. This increases the cost of a primal and 
dual solve, but simplifies the adjoint derivation and implementation, allowing the form in Section 4.1.1 to be used directly.

4.2. Time-dependent, parametrized domain deformation

A crucial component of the fully discrete adjoint method on deforming domains is a time-dependent parametrization of 
the domain, amenable to parallel implementation. A parallel implementation is required as domain deformation will involve 
operations on the entire computational mesh and will be queried at every stage of each time step of both the primal and 
dual solves, according to Algorithms 1 and 2. In this work, the domain parametrization is required to be sufficiently general 
to handle shape deformation, as well as kinematic motion. Additionally, the domain deformation must be sufficiently smooth 
to ensure sufficient regularity of the transformed solution, and the spatial and temporal derivatives must be analytically 
available for fast, accurate computation of the deformation gradient, G , and velocity, v X , of the mapping, G .

The domain deformation will be defined by the superposition of a rigid body motion and a spatially varying deformation. 
To avoid large mesh velocities at the far-field, which could arise from rigid rotations of the body, the blending maps of 
[17] are used. First, define a spatial configuration consisting of a rigid body motion ( Q (μ, t), v(μ, t)) and deformation 
(ϕ(X, μ, t)) to the reference domain

X ′ = Q (μ, t)X + v(μ, t) + ϕ(X,μ, t), (43)

which completely defines the physical motion of the body. This physical configuration is blended with the reference config-
uration according to

x = (1 − b(d(X)))X ′ + b(d(X))X (44)

where d(X) = ‖X − X0‖ − R0 is the signed distance from the origin X 0 to the circle of radius R0 centered at X0 and

b(s) =

⎧⎪⎨
⎪⎩

0, if s < 0

1, if s > R1

r(s/R1), otherwise

(45)

where r(s) = 3s2 − 2x3 for a cubic blending and r(s) = 10s3 − 15s4 + 6s5 for a quintic blending. Spatial blending of this form 
ensures the desired physical motion of the body, X ′ is exactly achieved within a radius R0 of the origin. Further, there is no 
deformation outside a radius R0 + R1 of the origin. In the annulus about the origin with inner radius R0 and outer radius 
R0 + R1, the spatial configuration is blended smoothly between these two spatial configurations.

The specific form of Q (μ, t), v(μ, t), and ϕ(X, μ, t) is problem-specific and will be deferred to Section 5. Assuming 

these terms are known analytically, the specific form of G = ∂x
, v X = ẋ = ∂x

, 
∂x

, and 
∂ ẋ

can be easily computed.

∂ X ∂t ∂μ ∂μ
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Table 2
Butcher Tableau for 3-stage, 3rd order DIRK 
scheme [24] α = 0.435866521508459, γ =
− 6α2−16α+1

4 , ω = 6α2−20α+5
4 .

α α
1+α

2
1+α

2 − α α
1 γ ω α

γ ω α

5. Applications

In this section, the high-order numerical discretization of a system of conservation laws and corresponding adjoint 
method is applied to the isentropic compressible Navier–Stokes equations to solve optimal control and shape optimization 
problems using gradient-based optimization techniques. The compressible Navier–Stokes equations take the form

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0, (46)

∂

∂t
(ρui) + ∂

∂xi
(ρuiu j + p) = +∂τi j

∂x j
for i = 1,2,3, (47)

∂

∂t
(ρE) + ∂

∂xi

(
u j(ρE + p)

) = −∂q j

∂x j
+ ∂

∂x j
(u jτi j), (48)

in v(μ, t) where ρ is the fluid density, u1, u2, u3 are the velocity components, and E is the total energy. The viscous stress 
tensor and heat flux are given by

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
and q j = − μ

Pr

∂

∂x j

(
E + p

ρ
− 1

2
ukuk

)
. (49)

Here, μ is the viscosity coefficient and Pr = 0.72 is the Prandtl number which we assume to be constant. For an ideal gas, 
the pressure p has the form

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
, (50)

where γ is the adiabatic gas constant. Furthermore, the entropy of the system is assumed constant, which is tantamount to 
the flow being adiabatic and reversible. For a perfect gas, the entropy is defined as

s = p/ργ . (51)

Using (51) to explicitly relate the pressure and density, the energy equation becomes redundant. This effectively reduces the 
square system of PDEs of size nsd + 2 to one of size nsd + 1, where nsd is the number of spatial dimensions. It can be shown, 
under suitable assumptions, that the solution of the isentropic approximation of the Navier–Stokes equations converges to 
the solution of the incompressible Navier–Stokes equations as the Mach number goes to 0 [49–51].

The DG-ALE scheme introduced in Section 2 is used for the spatial discretization of the system of conservation laws with 
polynomial order p = 3 and a diagonally implicit Runge–Kutta scheme for the temporal discretization. The DG-ALE scheme 
uses the Roe flux [52] for the inviscid numerical flux and the Compact DG flux [46] for the viscous numerical flux. The 
Butcher tableau for the three-stage, third-order DIRK scheme considered in this work is given in Table 2.

The instantaneous quantities of interest for a body, defined by the surface � , take the following form

Fx(U ,μ, t) =
∫
�

f (U ,μ, t) · e1 dS Fy(U ,μ, t) =
∫
�

f (U ,μ, t) · e2 dS

P(U ,μ, t) =
∫
�

f (U ,μ, t) · ẋ dS Px(U ,μ, t) =
∫
�

ẋ f (U ,μ, t) · e1 dS

Py(U ,μ, t) =
∫
�

ẏ f (U ,μ, t) · e2 dS Pθ (U ,μ, t) = −
∫
�

θ̇ f (U ,μ, t) × (x − x0) dS

(52)

where f ∈ R
nsd is the force imparted by the fluid on the body, ei is the ith canonical basis vector in Rnsd , x and ẋ are 

the position and velocity of a point on the surface �, and x, y, θ , ẋ, ẏ, θ̇ define the motion of the reference point, x0 (the 
1/3-chord of the airfoil, in this case); see Fig. 2. The Fx and Fy terms correspond to the total x- and y-directed forces on 
the body and P is the total power exerted on the body by the fluid. The total power P is broken into its translational, Px

and Py , and rotational, Pθ , components. For a 2D rigid body motion, an additive relationship among these terms holds
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Fig. 2. Airfoil

Table 3
Summary of parametrizations considered in Section 5.1. The number of clamped cubic spline knots 
used to discretize x(t), y(t), and θ(t) are mx + 1, my + 1, and mθ + 1, respectively. PI freezes the 
rigid body translation (mx = my = 0) and optimizes over only the rotation (mθ �= 0). PII optimizes 
over all rigid body degrees of freedom (mx = my = mθ �= 0).

ID PI PII

mx my mθ Nμ mx my mθ Nμ

1 0 0 2 3 2 2 2 9
2 0 0 6 7 6 6 6 21
3 0 0 10 11 10 10 10 33
4 0 0 15 16 15 15 15 48
5 0 0 25 26 25 25 25 78
6 0 0 50 51 50 50 50 153
7 0 0 100 101 100 100 100 303

P(U ,μ, t) = Px(U ,μ, t) +Py(U ,μ, t) +Pθ (U ,μ, t). (53)

The negative sign is included in the definition of Pθ due to the clockwise definition of θ in Fig. 2. In the remainder of this 
document, a superscript h will be used to denote the high-order DG approximation to these spatial integrals that constitute 
the instantaneous quantities of interest, e.g., Ph(u, μ, t) is the high-order approximation of P(U , μ, t), where u is the 
semi-discrete approximation of U . Temporal integration of the instantaneous quantities of interest leads to the integrated 
quantities of interest

Jx(U ,μ) =
T∫

0

∫
�

f (U ,μ, t) · e1 dS dt Jy(U ,μ) =
T∫

0

∫
�

f (U ,μ, t) · e2 dS dt

W(U ,μ) =
T∫

0

∫
�

f (U ,μ, t) · ẋ dS dt Wx(U ,μ) =
T∫

0

∫
�

ẋ f (U ,μ, t) · e1 dS dt

Wy(U ,μ) =
T∫

0

∫
�

ẏ f (U ,μ, t) · e2 dS dt Wθ (U ,μ) = −
T∫

0

∫
�

θ̇ f (U ,μ, t) × (x − x0) dS dt

(54)

which will be used as optimization functionals in subsequent sections. The terms Jx and Jy are the x- and y-directed 
impulse the fluid exerts on the airfoil, respectively, W is the total work done on the airfoil by the fluid, and Wx , Wy , and 
Wθ are the translational and rotational components of the total work. The fully discrete, high-order approximation of the 
integrated quantities of interest (DG in space, DIRK in time) will be denoted with the corresponding Roman symbol, e.g., 
W (u(0), . . . , u(Nt ), k(n)

1 , . . . , k(n)
s , μ) is the fully discrete approximation of W(U , μ).

5.1. Energetically optimal trajectory of 2D airfoil in compressible, viscous flow

In this section, the high-order, time-dependent PDE-constrained optimization framework introduced in this document 
is applied to find the energetically optimal trajectory of a 2D NACA0012 airfoil with chord length l = 1 and zero-thickness 
trailing edge. The governing equations are the 2D compressible, isentropic Navier–Stokes equations. The mission of the airfoil 
is to move a distance of −1.5 units horizontally and 1.5 units vertically in T = 4 units of time, with the restriction that 
θ(0) = θ(T ) = 0, i.e. the angle of attack at the initial and final time is zero. Additionally, to ensure smoothness of the motion 
and avoid non-physical transients, ẋ(0) = ẋ(T ) = ẏ(0) = ẏ(T ) = θ̇ (0) = θ̇ (T ) = 0 are enforced. The goal is to determine the 
trajectory x(t), y(t), θ(t) of the airfoil that minimizes the total energy required to complete the mission, i.e.,
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Fig. 3. Verification of adjoint-based gradient with fourth-order centered finite difference approximation, for a range of finite intervals, τ , for the total work 
W – the objective function in (56) – for parametrization PII (Table 3). The computed gradient match the finite difference approximation to about 10 digits 
of accuracy before round-off errors degrade the accuracy.

minimize
U , μ

W(U ,μ)

subject to x(0) = ẋ(0) = ẋ(T ) = 0, x(T ) = −1.5

y(0) = ẏ(0) = ẏ(T ) = 0, y(T ) = 1.5

θ(0) = θ(T ) = θ̇ (0) = θ̇ (T ) = 0

∂U

∂t
+ ∇ · F (U ,∇U ) = 0 in v(μ, t).

(55)

The trajectory of the airfoil – x(t), y(t), and θ(t) – is discretized via clamped cubic splines with mx + 1, my + 1, and 
mθ + 1 knots, respectively. The knots are uniformly spaced between 0 and T in the t-dimension and the knot values are 
optimization parameters. Table 3 summarizes two parametrizations considered in this section: (PI) the translational degrees 
of freedom – x(t) and y(t) – are frozen at their nominal value in Fig. 5 and the rotational degree of freedom – θ(t) – is 
parametrized with a mθ + 1-knot clamped cubic spline and (PII) all rigid body modes are parametrized with clamped cubic 
splines. The 7 IDs in Table 3 correspond to levels of refinement of the given parametrization with ID = 1 being the coarsest 
parametrization and ID = 7 the finest. With this parametrization of the airfoil kinematics, spatial and temporal discretization 
with the high-order scheme of Section 2 leads to the fully discrete version of the optimization problem in (55)

minimize
u(0), ..., u(Nt )∈RNu ,

k(1)
1 , ..., k(Nt )

s ∈RNu ,

μ∈RNμ

W (u(0), . . . , u(Nt ), k(1)
1 , . . . , k(Nt )

s , μ)

subject to x(0) = ẋ(0) = ẋ(T ) = 0, x(T ) = −1.5

y(0) = ẏ(0) = ẏ(T ) = 0, y(T ) = 1.5

θ(0) = θ(T ) = θ̇ (0) = θ̇ (T ) = 0

u(0) = u0

u(n) = u(n−1) +
s∑

i=1

bik
(n)
i

Mk(n)
i = �tnr

(
u(n)

i , μ, tn−1 + ci�tn

)
.

(56)

Before considering the optimization problem (56), the proposed adjoint method for computing gradients of quantities of 
interest on the manifold of fully discrete, high-order solutions of the conservation law (15) is verified against a fourth-order 
finite difference approximation. The finite difference approximation to gradients on the aforementioned manifold requires 
finding the solution of the fully discretized governing equations at perturbations about the nominal parameter configuration 
in Fig. 5. To mitigate round-offs errors as much as possible in the finite difference computation, the number of time steps 
was reduced to 10 and only half the trajectory was simulated. Fig. 3 shows the relative error between the gradients com-
puted via the adjoint method and this finite difference approximation for a sweep of finite difference intervals, τ . A relative 
error of nearly 10−11 is observed for a finite difference step of τ = 10−4. As expected, the error starts to increase after τ
drops too small due to the trade-off between finite difference accuracy and roundoff error.

A brief study of the convergence behavior of the underlying DG scheme is provided in Fig. 4 to justify our use of p = 3. 
In this study, no attempt is made to quantify convergence rates due to the sharp trailing edge of the NACA0012 that limits 
regularity of the solution. From Fig. 4, the higher order methods outperform the lower order ones in terms of error – in 
the work, W , and x-impulse, J x – for a given number of degrees of freedom (Nu ) and CPU time. All timings were obtained 
using 12 CPU cores.
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Fig. 4. Spatial convergence in quantities of interest for the DG-ALE-DIRK discretization for p = 1 ( ), p = 2 ( ), p = 3 ( ). All schemes use the 
DIRK3 temporal discretization (Table 2) with 1000 time steps to mitigate temporal error. The reference values W ∗ and J∗

x are produced from a simulation 
consisting of 250368 p = 4 elements and 1000 DIRK3 time steps.

Fig. 5. Trajectories of x(t), y(t), and θ(t) at initial guess ( ), solution of (56) under parametrization PI ( ), and solution of (56) under parametrization 
PII ( ) for ID = 7.

With this verification of the adjoint-based gradients and high-order accuracy, attention is turned to the optimization 
problem in (56). The optimization solver used in this section is L-BFGS-B [53], a bound-constrained, limited-memory 
BFGS algorithm. Fig. 5 contains the initial guess for the optimization problem in (56) as well as its solution under both 
parametrization, PI and PII, at the finest level of refinement (ID = 7). The initial guess for the optimization problem is a 
pure translational motion with θ(t) = 0. The solution under parametrization PI freezes the translational motion at its nomi-
nal value and incorporates rotational motion. The solution under parametrization PII increases the amplitude of the rotation, 
flattens the trajectory of x(t), and incorporates an overshoot in y(t) before settling to the required location, as compared to 
the optimal solution corresponding to PI.

The instantaneous quantities of interest for the nominal trajectory and solution of (56) under parametrizations PI and 
PII are included in Fig. 6. It is clear that the optimal solution under both parametrizations result in a time history of the 
total power that is uniformly closer to 0 than that at the nominal trajectory, which is expected since W is the objec-
tive function. With the exception of the edges of the time interval, the total power time history for the optimal solution 
under parametrization PII is uniformly closer to 0 than that of PI. The same observation holds for the power due to the 
translational motion, Ph

x and Ph
y . Whereas the total power corresponding to the nominal trajectory is due solely to the 

translational motion (since there is no rotation), the optimal solutions exchange large amounts of translational power for a 
small amount of rotational power. These observations can also be verified in Table 4 which summarizes the optimal values 
of the integrated quantities of interest.

The convergence of the total work, i.e., the objective function of the optimization problem, with iterations of the opti-
mization solver is summarized in Fig. 7 (left). Both parametrizations are included and iterations are agglomerated over all 
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Fig. 6. Time history of instantaneous quantities of interest (x-directed force – Fh
x (u, μ, t), y-directed force – Fh

y (u, μ, t), total power – Ph(u, μ, t), 
x-translational power – Ph

x (u, μ, t), y-translational power – Ph
y (u, μ, t), rotational power – Ph

θ (u, μ, t)) at initial guess ( ), solution of (56) under 
parametrization PI ( ), and solution of (56) under parametrization PII ( ) for ID = 7.

Fig. 7. Left: Convergence of total work W with optimization iteration for parametrization PI ( ) and PII ( ) for ID = 7. Both optimization problems 
converge to a motion with significantly lower required total work; PII finds a better motion than PI (in terms of total work) due to the enlarged search 
space, at the cost of additional iterations. Each optimization iteration requires a primal flow computation – to evaluate the quantities of interest – and 
its corresponding adjoint – to evaluate the gradient of the quantity of interest. Right: Convergence of optimal value of total work W as parameter space 
is refined for parametrization PI ( ) and PII ( ). This implies convergence to an optimal, smooth trajectory that is not polluted by its discrete 
parametrization.

IDs. The first iteration corresponds to a steepest descent step, which causes an adverse jump in the objective value. The 
following iterations make rapid progress toward the optimal solution, which is slowed as convergence is approached. The 
solver requires additional iterations to converge the solution corresponding to parametrization PII, which is expected due to 
the larger parameter space.

Next, convergence of the total work as the parameter space is refined is considered in Fig. 7 (right) and Table 4. 
This implies the optimal trajectory among all twice continuously differentiable functions is being approached. For both 
parametrizations, the optimal value of the total work agrees to 3 digits between IDs 6 and 7 (roughly a factor of 2 differ-
ence in dimension of parameter spaces) and 2 digits between IDs 3 and 7 (roughly a factor of 10 difference in dimension of 
parameter spaces). This sweep of optimization problems was repeated with a low-order method (p = 1) with a comparable 
number of degrees of freedom (Nu ). As expected, the same local optimum was obtained and the convergence behavior with 
respect to refinement in Nμ was very similar.

The motion of the airfoil and vorticity of the surrounding flow are shown in Fig. 8 (nominal trajectory), Fig. 9 (optimal 
solution under parametrization PI), and Fig. 10 (optimal solution under parametrization PII). The flow corresponding to the 
nominal configuration experiences flow separation and vortex shedding, which results in the relatively large amount of total 
energy to complete the mission. Fixing the translational motion and optimizing over the rotation (PI) dramatically reduces 



534 M.J. Zahr, P.-O. Persson / Journal of Computational Physics 326 (2016) 516–543
Table 4
Table summarizing integrated quantities of interest at optimal solution of (56) for each parametrization (PI, PII) for each level of refinement. The total work 
monotonically increases as Nμ increases for a given parametrization, which is expected due to the nested search spaces. For a fixed ID, the optimal total 
work for parametrization PII is larger than that for PI since the search space for PI is a subset of that of PII. The other integrated quantities are included for 
completeness, but do not exhibit trends (except for converging to a fixed value as Nμ increases) since they were not included in the optimization problem.

ID PI

1 2 3 4 5 6 7

W −2.1951e–01 −1.5881e–01 −1.5358e–01 −1.5128e–01 −1.5026e–01 −1.4950e–01 −1.4924e–01
W x 8.1329e–02 5.6090e–02 4.9543e–02 4.5924e–02 4.5085e–02 4.4712e–02 4.4707e–02
W y −2.3460e–01 −1.8153e–01 −1.7122e–01 −1.6544e–01 −1.6374e–01 −1.6298e–01 −1.6294e–01
Wθ 6.6234e–02 3.3370e–02 3.1906e–02 3.1768e–02 3.1604e–02 3.1223e–02 3.1010e–02
Fx −1.9234e–01 −1.3123e–01 −1.1886e–01 −1.1136e–01 −1.0912e–01 −1.0810e–01 −1.0800e–01
F y −5.1539e–01 −3.1711e–01 −3.1816e–01 −3.1877e–01 −3.2551e–01 −3.2959e–01 −3.3063e–01

ID PII

1 2 3 4 5 6 7

W −1.7357e–01 −1.2095e–01 −1.1733e–01 −1.1629e–01 −1.1603e–01 −1.1557e–01 −1.1502e–01
W x 9.6487e–03 −1.4123e–02 −1.4328e–02 −1.4967e–02 −1.5021e–02 −1.5061e–02 −1.5027e–02
W y −1.1041e–01 −6.2238e–02 −6.1036e–02 −6.0425e–02 −6.0032e–02 −5.9489e–02 −5.9245e–02
Wθ 7.2807e–02 4.4585e–02 4.1963e–02 4.0895e–02 4.0980e–02 4.1023e–02 4.0749e–02
Fx −4.1265e–02 2.8091e–02 2.7677e–02 2.9596e–02 2.9848e–02 3.0231e–02 3.0221e–02
F y −3.2231e–01 −1.064e–01 −1.0806e–01 −1.0890e–01 −1.1343e–01 −1.1626e–01 −1.1764e–01

Fig. 8. Flow vorticity around airfoil undergoing motion corresponding to initial guess for optimization, i.e., pure heaving ( ). Flow separation off leading 
edge implies a large amount of work required to complete mission. Snapshots taken at times t = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0.

the amount of shedding and consequently reduces the amount of work required. Optimizing the entire rigid body motion 
(PII) further reduces the shedding and required work.

5.2. Energetically optimal shape and flapping motion of 2D airfoil at constant impulse

In this section, the high-order, time-dependent PDE-constrained optimization framework introduced in this document is 
applied to find the energetically optimal flapping motion, under an impulse constraint, of a 2D NACA0012 airfoil (Fig. 11) 
with chord length l = 1 and zero-thickness trailing edge. The governing equations are the 2D compressible, isentropic 
Navier–Stokes equations.

The goal is to determine the flapping motion – y(t) and θ(t) – and shape – c(t) – of the airfoil that minimizes the total 
energy such than a x-impulse of q is achieved, i.e.,
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Fig. 9. Flow vorticity around airfoil undergoing motion corresponding to optimal pitching motion for fixed translational motion, i.e., solution of (56) under 
parametrization PI ( ). The pitching motion greatly reduces the degree of flow separation and vortex shedding compared to the initial guess, and 
requires less work to complete the mission. Snapshots taken at times t = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0.

Fig. 10. Flow vorticity around airfoil undergoing motion corresponding to optimal rigid body motion, i.e. solution of (56) under parametrization PII ( ). 
This rigid body motion further reduces the degree of flow separation and required work to complete the mission. This motion differs from the solution of 
PI as it has a larger pitch amplitude and slightly overshoots the final vertical position before settling to the required position. Snapshots taken at times 
t = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0.

minimize
U , μ

W(U ,μ)

subject to Jx(U ,μ) = q

∂U + ∇ · F (U , ∇U ) = 0 in v(μ, t).

(57)
∂t
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Fig. 11. Airfoil.

Table 5
Summary of parametrizations considered in Section 5.2. The num-
ber of periodic cubic spline knots used to discretize y(t), θ(t), 
and (̧t) are my + 1, mθ + 1, and mc + 1, respectively. FI freezes 
the airfoil shape and considers only rigid body motions (my =
mθ �= 0, mc = 0). FII parametrizes both shape and kinematic mo-
tion (my = mθ = mc �= 0).

FI FII

my mθ mc Nμ my mθ mc Nμ

4 4 0 6 4 4 4 9

The flapping frequency is fixed at 0.2, which corresponds to a period of T = 5. Proper initialization of the flow is the initial 
condition that results in a time-periodic flow [54] to completely avoid non-physical transients and simulate representative, 
in-flight conditions; this work uses a crude approximation that initializes the flow from the steady-state condition, simulates 
3 periods of the flapping motion, and integrates the quantities of interest over the last period only. The deformation of the 
domain is determined from the value of c(t) using the spatial blending map of Section 4.2 with

ϕ(X,μ, t) =
[

0

2c(t)e−[(X−x0)·e1]2

]
. (58)

The deformation in (58) is volume preserving since det(I + ∇Xϕ) ≡ 1, but it does not preserve the surface area of the 
airfoil. A number of engineering situations exist where time-dependent shape changes alter the surface area of an object 
in a flow including control surface deployment on vehicles and extending panels on wings [55]. Additionally, morphing in 
nature is not necessarily surface area preserving [56]. Previous work that has considered optimal time-morphed geometries, 
using a vortex-lattice flow solver, also considered non-area-preserving deformations [57,58]. The time-dependent surface 
area is accounted for in the quantities of interest (54) through the spatial integral over the time-dependent boundary, �, 
i.e., 

∫
� · dS .

The trajectory of the airfoil – y(t), and θ(t) – and its shape – c(t) – are discretized via cubic splines with my + 1, mθ + 1, 
and mc + 1 knots, respectively, with boundary conditions that enforce

y(t) = −y(t + T /2) θ(t) = −θ(t + T /2) c(t) = −c(t + T /2). (59)

These boundary conditions2 for y(t), θ(t), and c(t) correspond to a mirroring of the trajectory at t = T /2 and implicitly 
enforces periodicity with period T . The knots are uniformly spaced between 0 and T in the t-dimension and the knot values 
are optimization parameters. Since the unsteady simulation is initialized from the steady-state flow, non-zero velocities of 
the airfoil at t = 0 will result in non-physical transients. These transients are avoided by blending the periodic cubic spline 
smoothly to the zero function at the beginning of the time interval [22]. Let sy(t; μ), sθ (t; μ), and sc(t; μ) denote the 
periodic cubic spline approximations. Then, the flapping and shape trajectories are defined as

y(t) = b(t)sy(t;μ) θ(t) = b(t)sθ (t;μ) c(t) = b(t)sc(t;μ), (60)

where b(t) = 1.0 − e−t2
. Table 5 summarizes two parametrizations considered in this section: (FI) rigid body motion 

parametrized via cubic splines and shape fixed at nominal value and (FII) rigid body motion and shape of airfoil 
parametrized via cubic splines. With this parametrization of the airfoil kinematics and shape, spatial and temporal dis-
cretization with the high-order scheme of Section 2 leads to the fully discrete version of the optimization problem in (57)

2 Periodic and mirrored cubic splines of this form with m + 1 knots only have m degrees of freedom since the boundary condition prescribes the value 
of the m + 1 knot from the values of the others m.
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Fig. 12. Trajectories of y(t), θ(t), and c(t) at initial guess (—), solution of (61) under parametrization FI (q = 0.0: , q = 1.0: , q = 2.5: ), and 
solution of (61) under parametrization FII (q = 0.0: , q = 1.0: , q = 2.5: ) from Table 5.

Fig. 13. Time history of total power, Ph(u, μ, t), and x-directed force, Fh
x (u, μ, t), imparted onto foil by fluid at initial guess (—), solution of (61) under 

parametrization FI (q = 0.0: , q = 1.0: , q = 2.5: ), and solution of (61) under parametrization FII (q = 0.0: , q = 1.0: , q = 2.5: 
) from Table 5.

minimize
u(0), ..., u(Nt )∈RNu ,

k(1)
1 , ..., k(Nt )

s ∈RNu ,

μ∈RNμ

W (u(0), . . . , u(Nt ), k(1)
1 , . . . , k(Nt )

s , μ)

subject to J x(u(0), . . . , u(Nt ), k(1)
1 , . . . , k(Nt )

s , μ) = q

u(0) = u0

u(n) = u(n−1) +
s∑

i=1

bik
(n)
i

Mk(n)
i = �tnr

(
u(n)

i , μ, tn−1 + ci�tn

)
.

(61)

Given the gradient verification from the previous section, attention is turned directly to the optimization problem in (61)
for various values of the impulse constraint, q. The optimization solver used in this section is SNOPT [59], a nonlinearly 
constrained SQP method. Fig. 12 contains the initial guess for the optimization problem in (56) as well as its solution under 
both parametrization, FI and FII. The initial guess for the optimization problem is a pure heaving motion at a fixed shape, 
i.e., c(t) = θ(t) = 0. The solution under parametrization PI freezes the shape at its nominal configuration (NACA0012) and 
modifies the rigid body motion. Pitch is introduced for all values of the impulse constraint and the amplitude of the heaving 
motion is decreased for q = 0.0, 1.0 and increased for q = 2.5. The solution under parametrization PII reduces the heaving 
amplitude and slightly increases the pitch amplitude as compared to PI. It also introduces non-trivial camber.

The instantaneous quantities of interest – W and J x in this case – for the nominal motion and shape and solution of (61)
under parametrizations PI and PII are included in Fig. 13. It is clear that the optimal solution under both parametrizations 
result in a time history of the total power that is uniformly closer to 0 than that at the nominal trajectory, which is expected 
since W is the objective function. It is also clear that larger values of the impulse constraint require more power to complete 
the flapping motion. While it may not be clear from Fig. 13, the integration of Fh

x leads to an impulse that exactly conforms 
to the specified value of q. This can be seen more clearly in Fig. 14. These observations can also be verified in Fig. 14 and 
Table 6 that summarizes the optimal values of the integrated quantities of interest.
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Fig. 14. Convergence of quantities of interest, W and J x , with optimization iteration for parametrization FI (q = 0.0: , q = 1.0: , q = 2.5: ) 
and FII (q = 0.0: , q = 1.0: , q = 2.5: ) from Table 5. Each optimization iteration requires a primal flow computation – to evaluate quantities 
of interest – and its corresponding adjoint – to evaluate the gradient of quantities of interest.

Table 6
Table summarizing integrated quantities of interest at optimal solution of each optimization problem for each impulse level. In all cases, the desired value 
of J x is achieved to greater than 4 digits of accuracy. The optimal solution for larger values of the impulse constraint require more total work to complete 
flapping motion, i.e., work monotonically increases in magnitude as value of impulse constraint increases. Smaller values of total work are achievable if 
airfoil is allowed to morph its shape in addition its rigid body motion. The other integrated quantities are included for completeness, but do not exhibit 
trends since they were not in the optimization problem.

q Initial FI FII

0.0 1.0 2.5 0.0 1.0 2.5

W −9.4096e+00 −4.5695e–01 −2.1419e+00 −4.9476e+00 −4.3252e–01 −2.0271e+00 −4.6110e+00
W x 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
W y −9.4096e+00 −4.2807e–01 −2.0642e+00 −4.7967e+00 −3.7363e–01 −1.5413e+00 −3.3712e+00
Wθ 0.0000e+00 2.8883e–02 7.7694e–02 1.5083e–01 1.7101e–02 6.7900e–03 1.8744e–01
Fx −1.7660e–01 −4.0490e–11 −1.0000e+00 −2.5000e+00 1.6937e–10 −1.0000e+00 −2.5000e+00
F y 3.5413e–01 1.5989e–02 5.0480e–02 9.7240e–02 −1.5292e–02 4.8657e–02 9.6440e–02

Fig. 14 shows the convergence of the integrated quantities of interest with iterations in the optimization solver. The 
aforementioned observations can be verified by inspection of the final iteration: all impulse constraints are satisfied, larger 
values of q require more work to achieve, and morphing the shape of the airfoil allows for a slight reduction in the required 
work. After 20 iterations, the impulse constraint is satisfied for q = 0.0, 1.0 and reduction of the work has essentially ceased, 
implying the optimization could have been terminated at that point. The case with q = 2.5 requires an additional 15–20 
iterations to settle to a converged solution.

The shape and motion of the airfoil and vorticity of the surrounding flow are shown in Fig. 15 (nominal), Fig. 16 (optimal 
solution under parametrization FI for q = 2.5), and Fig. 17 (optimal solution under parametrization FII for q = 2.5). The flow 
corresponding to the nominal configuration experiences flow separation and vortex shedding, which results in the relatively 
large amount of total energy to complete the flapping motion and does not satisfy the impulse constraint. Fixing the shape 
and optimizing over the heaving and pitching motion (FI) dramatically reduces the amount of shedding and consequently 
reduces the amount of work required. Optimizing the shape in addition to the pitching and heaving motion (FII) further 
reduces the shedding and required work. The solution of FI and FII both satisfy the impulse constraint to greater than 8
digits of accuracy.

To conclude this section, a brief comparison of the optimal flapping motions found in this work are compared to those 
found in the literature. From Fig. 12, the pitch of the foil leads its plunge by approximately 90◦ in all optimal flapping mo-
tions, a result that was found in several works that range from experimental to computational [60,61,11,62]. The improved 
efficiency is largely due to a dramatic reduction in leading edge vortex shedding characteristic of pure heaving motions 
(Fig. 15) [60,11]. The specific pitching and heaving amplitudes were determined by the optimizer such that the impulse 
constraint is satisfied; as the impulse requirement is increased, the magnitude of the pitch and plunge increase and shed-
ding off the leading edge is induced (Fig. 16) [62]. The time-dependent shape deformation slightly reduces the magnitude 
of the vortices shedding off the leading edge, which can be seen by comparing Figs. 16 and 17.

6. Conclusion

This document discussed an Arbitrary Lagrangian–Eulerian formulation of conservation laws on deforming domains and 
a high-order spatial discretization using a discontinuous Galerkin finite element method, previously introduced in [17]. A di-
agonally implicit Runge–Kutta scheme was used for high-order temporal integration with the benefit of achieving stability 
beyond second-order and not coupling all intermediate states like general, implicit Runge–Kutta methods. High-order spa-
tial and temporal integration of quantities of interest was done in a solver-consistent manner, i.e., DG shape functions used 
for spatial integration and DIRK used for temporal integration. The result is a globally high-order accurate discretization of 
deforming domain conservation laws and relevant quantities of interest. The fully discrete adjoint equations for this glob-
ally high-order discretization were derived and the corresponding adjoint method introduced for computing gradients of 
quantities of interest along the manifold of high-order solutions of the conservation law. Implementation details regard-
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Fig. 15. Flow vorticity around flapping airfoil undergoing motion corresponding to initial guess for optimization problem (61), i.e., pure heaving (—). Flow 
separation off leading edge implies a large amount of work required for flapping motion. Snapshots taken at times t = 9.75, 10.8, 11.85, 12.9, 13.95, 15.0.

Fig. 16. Flow vorticity around flapping airfoil undergoing optimal rigid body motion corresponding to the solution of (61) under parametrization FI. The 
x-directed impulse is J x = 2.5. The pitching motion greatly reduces the degree of flow separation and vortex shedding compared to the initial guess, and 
requires less work to complete the flapping motion and generate desired impulse. Snapshots taken at times t = 9.75, 10.8, 11.85, 12.9, 13.95, 15.0.
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Fig. 17. Flow vorticity around flapping airfoil undergoing optimal deformation and kinematic motion, corresponding to the solution of (61) under 
parametrization FII. The x-directed impulse is J x = 2.5. The morphing further reduces the flow separation and work required to complete the flapping 
motion and generate desired impulse. Snapshots taken at times t = 9.75, 10.8, 11.85, 12.9, 13.95, 15.0.

ing computation of necessary partial derivatives and domain deformation were included. The adjoint method was used in 
the context of gradient-based optimization to solve two optimal shape and control problems constrained by the isentropic, 
compressible Navier–Stokes equations, one of which incorporated a physics-based constraint. The first optimization problem 
was determination of the energetically optimal trajectory of an airfoil; the optimization solver reduced the energy required 
to complete the specified mission nearly an order of magnitude. The second optimization problem was the determination 
of the energetically optimal flapping motion and airfoil shape such that the x-directed impulse on the airfoil was fixed at 
a prescribed value; the solver found a configuration that satisfied the constraint to greater than 8 digits of precision and 
reduced the required energy.

This work is an initial step toward problems of engineering and scientific relevance. While the work extends to multi-
physics problems defined on a single domain without modification, its extension to multiple domain problems – a canonical 
example being fluid–structure interaction problems – requires development, particularly if high-order accuracy is sought 
[51,63,25]. The extension to chaotic problems will also have significant engineering implications as this will be required to 
solve optimization problems governed by turbulent flow. Definition of a meaningful optimization problem in this context 
becomes a challenge as flow initialization [54] and sensitivity computation becomes difficult [64]. Low-order and high-order 
methods will both suffer from these difficulties as they arise from the chaotic nature of the physical problem. For this type 
of automated optimization approach to be competitive in engineering practice, the large cost associated with repeatedly 
solving the underlying partial differential equation must be addressed; two promising approaches are the use of inexact 
gradients [16] to accelerate adjoint computations and adaptive reduced-order models [48] to reduce the cost of the primal 
and sensitivity computations.
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Appendix A. Discrete adjoint equation derivation via Lagrange multiplier interpretation

In this section, an alternate derivation of the adjoint equations is provided using constrained optimization theory and the 
test variables introduced in Section 3.1 enter as Lagrange multipliers corresponding to constraints in an auxiliary optimization 
problem.

Fix μ̄ ∈ R
Nμ and consider the following auxiliary optimization problem, introduced purely for the derivation of the adjoint 

equations for a particular functional, F ,

minimize
u(0), ..., u(Nt )∈RNu ,

k(1)
1 , ..., k(Nt )

s ∈RNu

F (u(0), . . . , u(Nt ), k(1)
1 , . . . , k(Nt )

s , μ̄)

subject to r̃(0)
(u(0), μ̄) = 0

r̃(n)
(u(n−1), u(n),k(n)

1 , . . . ,k(n)
s , μ̄) = 0

R(n)
i (u(n−1), k(n)

1 , . . . ,k(n)
i , μ̄) = 0.

(A.1)

Similar to Section 3.1, F corresponds to any output functional whose gradient is desired. In the auxiliary optimization 
problem, only the state vectors are taken as optimization variables since μ̄ is fixed. If the discrete PDE has a unique solution, 
the solution of (A.1) is equivalent to the solution of the fully discrete PDE in (24). In this case, the optimization problem 
(A.1) is simply a feasibility problem since the optimal solution is independent of the objective function.

The Lagrangian [65] corresponding to the optimization problem in (A.1) takes the form

L(u(0), . . . , u(Nt ), k(1)
1 , . . . , k(Nt )

s ,λ(0), . . . , λ(Nt ), κ (1)
1 , . . . , κ (Nt )

s ) =

F (u(0), . . . , u(Nt ), k(1)
1 , . . . , k(Nt )

s , μ̄) −
Nt∑

n=0

λ(n)T
r̃(n) −

Nt∑
n=1

s∑
i=1

κ (n)
i

T
R(n)

i .
(A.2)

Then, (u(0)∗, . . . , u(Nt )∗, k(1)∗
1 , . . . , k(Nt )∗

s , λ(0)∗, . . . , λ(Nt )∗, κ (1)∗
1 , . . . , κ (Nt )∗

s ) is a critical point of (A.1) if it makes the 
Lagrangian stationary, i.e.

∂L
∂u(n)

= 0 n = 0, . . . , Nt

∂L
∂k(n)

i

= 0 i = 1, . . . , s, n = 1, . . . , Nt

∂L
∂λ(n)

= 0 n = 0, . . . , Nt

∂L
∂κ (n)

i

= 0 i = 1, . . . , s, n = 1, . . . , Nt .

(A.3)

The equations in (A.3) are the first-order optimality conditions, or the Karush–Kuhn–Tucker (KKT) conditions. The conditions 
in (A.3) on the derivatives of the Lagrangian with respect to the Lagrange multipliers recover the constraints in (A.1). From 

(A.3), the condition 
∂L

∂u(Nt )
= 0 gives rise to

∂ r̃(Nt )

∂u(Nt )

T

λ(Nt ) = ∂ F

∂u(Nt )
. (A.4)

The conditions on the derivatives of the Lagrangian with respect to the state variable u(n−1) for n = 1, . . . , Nt , result in

∂ r̃(n)

∂u(n−1)

T

λ(n) + ∂ r̃(n−1)

∂u(n−1)

T

λ(n−1) = ∂ F

∂u(n−1)

T

−
s∑

i=1

∂ R(n)
i

∂u(n−1)

T

κ (n)
i . (A.5)

Finally, the conditions on the derivatives of the Lagrangian with respect to the stage variables, k(n)
i for n = 1, . . . , Nt and 

i = 1, . . . , s, are expanded as

s∑
j=i

∂ R(n)
j

∂k(n)
i

T

κ (n)
j = ∂ F

∂k(n)
i

− ∂ r̃(n)

∂k(n)
i

T

λ(n). (A.6)

Equations (A.4)–(A.6), which correspond to the first two conditions in the KKT system (A.3) of the optimization problem in 
(A.1), are exactly the adjoint equations (29) derived in Section 3.1.



542 M.J. Zahr, P.-O. Persson / Journal of Computational Physics 326 (2016) 516–543
Substitution of the adjoint equation in (A.4)–(A.6) into the expression for dF
dμ in (28) recovers expression (30) for dF

dμ , 

which is independent of the state sensitivities. Finally, substitution of the expressions in (24) for r(n) and R(n)
i in the adjoint 

equations (A.4)–(A.6) and gradient reconstruction formula (32) recover their specialization to the case of a DIRK temporal 
discretization, i.e. (31) and (32), respectively.
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