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Highlights

• We present a high-order Implicit Large-Eddy Simulation approach for simulating transitional turbulent flows.
• The approach consists of a hybridized Discontinuous Galerkin method and a parallel Newton–Krylov–Schwarz solver.
• Numerical results show rapid convergence and excellent agreement with experimental data for Reynolds numbers up to 460,000.
• The boundary layer structure and transition mechanism for different flow conditions are investigated.



The hybridized Discontinuous Galerkin method for Implicit

Large-Eddy Simulation of transitional turbulent flows

P. Fernandez1,2,∗, N.C. Nguyen1,2, J. Peraire1,2

Abstract

We present a high-order Implicit Large-Eddy Simulation (ILES) approach for simu-

lating transitional aerodynamic flows. The approach consists of a hybridized Discon-

tinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equa-

tions, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear

system of equations. The combination of hybridized DG methods with an efficient

solution procedure leads to a high-order accurate NS solver that is competitive to

alternative approaches, such as finite volume and finite difference codes, in terms of

computational cost. The proposed approach is applied to transitional flows over the

NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers

up to 460,000. Grid convergence studies are presented and the required resolution

to capture transition at different Reynolds numbers is investigated. Numerical results

show rapid convergence and excellent agreement with experimental data. In short, this

work aims to demonstrate the potential of high-order ILES for simulating transitional

aerodynamic flows. This is illustrated through numerical results and supported by

theoretical considerations.

Keywords: Discontinuous Galerkin methods, Implicit Large-Eddy Simulation,

Navier-Stokes iterative solvers, High-order methods, Laminar separation bubble,

Transition to turbulence

1. Introduction

Numerical simulation of transitional turbulent flows is a challenging problem. First,

turbulent flows exhibit spatial and temporal scales that differ by several orders of

magnitude, thereby making numerical simulation of turbulence computationally de-

manding. Second, transitional flows are hard to predict due to the complex physi-
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cal phenomena that take place when the flow undergoes transition from laminar to

turbulent regime. Indeed, transitional turbulent flows are not yet well understood

theoretically despite being studied for over a century.

In spite of the availability of powerful supercomputers, complete information about

turbulent flows through Direct Numerical Simulation (DNS) remains intractable for

most practical applications. Large-Eddy Simulation (LES) is a viable alternative to

DNS. The central premise of LES is that large-scale eddies dominate the turbulent

transport and energy budget, so that a numerical simulation will provide a realistic

depiction of the flow if it captures those scales explicitly and somehow accounts for

the small scales that cannot be resolved. Also, the small scales tend to be more

homogeneous and isotropic, and thus easier to model. Strategies for dealing with

the small turbulent scales include explicit subgrid-scale (SGS) modeling and implicit

numerical dissipation.

In the classical (explicit) LES approach, the large-scale eddies of the flow field

are resolved and the small scales are modeled using a SGS model. The development

of SGS models has been a subject of intense interest for decades, in particular in the

1990s [22, 31]. It turns out, however, that the leading-order term of the truncation

error introduced by many numerical schemes is similar in form and magnitude to con-

ventional SGS models. As a rule of thumb, a stable numerical scheme often achieves

stability by introducing truncation errors that replicate the effect of the subgrid scales

into the resolved scales; which corresponds to dissipation in under-resolved turbulent

simulations. This has been known to be the case for monotone (and thus stable)

numerical schemes for about 20 years [4, 9, 14, 20, 27, 41] and is now also thought

to be the case for stabilized high-order methods [18, 32].

A natural alternative to the classical LES approach is therefore to use the numerical

dissipation of the discretization scheme to account for the dissipation that takes place in

the unresolved scales, leading to the so-called Implicit LES (ILES). The ILES approach

was first introduced in 1990 by Boris et al. [3] and has been successfully applied with

a number of different schemes, including finite volume methods [13, 15, 16], standard

[19] and compact [17, 46] finite difference methods, spectral difference methods [50],

spectral/hp element methods [24], flux reconstruction methods [36], and discontinuous

Galerkin methods [12, 33, 40, 47, 48, 49]. ILES benefits from its easy implementation

without a SGS model and currently gains considerable attention from researchers in the

computational fluid dynamics community. As pointed out by Spalart [45], this increase

in popularity may be attributed to the fact that research has failed to show an advantage

of sophisticated SGS models over the same-cost LES with a simplistic model –or even

with no model– and a slightly finer grid.

While second-order finite volume (FV) schemes have been widely used in academia

and industry for LES, transitional flows do share many features with wave propagation

phenomena for which high-order accuracy is known to be key. Let us consider natural

transition to turbulence. The main difficulty to numerically capture transition is the

very small magnitude of the perturbations that get exponentially amplified along the un-

stable portion of the laminar boundary layer. These small perturbations are ultimately

responsible for the so-called nonlinear breakdown and transition to turbulence. The

amplitude of these instabilities at the location in which the boundary layer becomes un-

stable is up to ten orders of magnitude below the freestream velocity [44]. As a result,
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very small amount of numerical dissipation and dispersion is needed to capture them

and accurately predict the transition location. Overdissipation of low-order schemes

may kill these small perturbations and lead to inaccurate transition prediction. This

motivates researchers to consider high-order methods for the simulation of transitional

flows.

High-order finite difference (FD), finite volume, and finite element (FE) methods

have been developed for numerical simulation of turbulent flows. Among them, we

rely on Discontinuous Galerkin (DG) finite element methods for several reasons. First,

DG methods are based on a strong mathematical foundation that can be exploited for

error estimation and mesh adaptation purposes. Also, they provide local conservation,

a stable discretization of the convective operator, and are well-suited for turbulent

simulations due to the ab initio separation of scales in the variational formulation. Most

importantly, DG methods allow for high-order implementations on complex geometries

and unstructured meshes. This is crucial for engineering purposes due to the need

to simulate complex three-dimensional geometries. On the other hand, DG methods

require significantly more operations per computational cell than FD and FV methods.

Hence, the need for more computationally efficient DG methods becomes apparent. In

the spirit of making DG methods competitive, researchers have recently developed the

Hybridizable DG (HDG) method [6, 34, 37] and the Embedded DG (EDG) method

[6, 7, 38]. These DG methods result in spatial discretizations that have fewer globally

coupled unknowns than other DG methods, thereby reducing the computational cost

and memory footprint.

At present, ILES of transitional flows using high-order DG methods is limited to

Reynolds numbers of 100,000 or less [12, 33, 40, 47, 48, 49]. It may be attributed to the

fact that higher Reynolds number flows would require significantly more computational

effort than standard DG methods could afford in most current computing clusters. This

motivates us to employ hybridized DG methods [11, 35], which generalize the HDG

and the EDG methods, for ILES of transitional turbulent flows. This work contains

novel contributions from the points of view of methodology and applications. In terms

of methodology, we develop parallel preconditioned Newton-GMRES solvers for the

nonlinear system arising from the hybridized DG discretization of the Navier-Stokes

equations. In terms of applications, this paper is, together with preliminary results in

[10, 11], the first attempt at the high-order DG ILES of transitional flows at Reynolds

number up to 460,000 that is beyond the existing simulations in the literature. We

believe that this work will hold a promising approach to simulate transitional flows and

contribute to the ongoing research into ILES of turbulent flows.

The paper is organized as follows. In Section 2, we describe the numerical dis-

cretization of the Navier-Stokes equations using hybridized DG methods. In Section

3, we discuss solution methods for the nonlinear system of equations arising from the

numerical discretization. In Sections 4 and 5, the proposed approach is applied to

the ILES of transitional flows over the NACA 65-(18)10 compressor cascade and the

Eppler 387 wing at Reynolds numbers ranging from 100,000 to 460,000. Finally, some

concluding remarks and a rationale for the success of high-order ILES for transition

prediction are presented in Section 6.
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2. Flow Discretization

In this section, we present an overview of hybridized discontinuous Galerkin meth-

ods for solving the unsteady, compressible Navier-Stokes equations.

2.1. Preliminaries and notation

2.1.1. Finite element mesh
Let Ω ⊆ R

d with d = 3 be a physical domain with Lipschitz boundary ∂Ω. We

denote by Th a collection of disjoint, regular, p-th degree curved elements K that

partition Ω, and set ∂Th := {∂K : K ∈ Th} to be the collection of the boundaries

of the elements in Th. For an element K of the collection Th, F = ∂K ∩ ∂Ω is a

boundary face if its d − 1 Lebesgue measure is nonzero. For two elements K+ and

K− of Th, F = ∂K+ ∩ ∂K− is the interior face between K+ and K− if its d − 1
Lebesgue measure is nonzero. We denote by EIh and EBh the set of interior and boundary

faces, respectively, and we define Eh := EIh ∪EBh as the union of interior and boundary

faces. Note that, by definition, ∂Th and Eh are different. More precisely, an interior

face is counted twice in ∂Th but only once in Eh, whereas a boundary face is counted

once both in ∂Th and Eh.

2.1.2. Finite element spaces
Let Pk(D) denote the space of complete polynomials of degree k on a domain D ∈

R
n, let L2(D) be the space of square-integrable functions on D, and letψp

K denote the

p-th degree parametric mapping from the reference element Kref to some element

K ∈ Th in the physical domain. We then introduce the following discontinuous finite

element spaces:

Qk
h =

{
r ∈ [L2(Th)]m×d : (r ◦ψp)|K ∈ [Pk(Kref )]

m×d ∀K ∈ Th
}
,

Vk
h =

{
w ∈ [L2(Th)]m : (w ◦ψp)|K ∈ [Pk(Kref )]

m ∀K ∈ Th
}
,

where m denotes the number of equations of the conservation law, i.e. m = d+2 for the

Navier-Stokes system. In addition, let us denote the p-th degree parametric mapping

from the reference face Fref to some physical face F by φp
F . We then introduce the

following traced finite element spaces on the mesh skeleton Eh:

M̂k

h =
{
μ ∈ [L2(Eh)]m : (μ ◦ φp

F )|F ∈ [Pk(Fref )]
m ∀F ∈ Eh

}
,

M̃k

h =
{
μ ∈ [C0(Eh)]m : (μ ◦ φp

F )|F ∈ [Pk(Fref )]
m ∀F ∈ Eh

}
,

where C0(D) is the space of continuous functions on D. Note that M̂k

h consists of

functions which are discontinuous at the boundaries of the faces, whereas M̃k

h consists

of functions that are continuous at the boundaries of the faces. We also denote by Mk
h

a traced finite element space that satisfies M̃k

h ⊆Mk
h ⊆ M̂k

h. In particular, we define

Mk
h =

{
μ ∈ [L2(Eh)]m : (μ ◦φp

F )|F ∈ [Pk(Fref )]
m ∀F ∈ Eh, andμ|EE

h
∈ [C0(EEh )]m

}
,
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where EEh is a subset of Eh. Note that Mk
h consists of functions which are continuous

on EEh and discontinuous on EHh := Eh\EEh . Furthermore, if EEh = ∅ then Mk
h =

M̂k

h, and if EEh = Eh then Mk
h = M̃k

h. Different choices of EEh lead to different

discretization methods that have different properties in terms of convergence rates,

stability, and number of globally coupled unknowns. We shall discuss various rational

choices in Section 2.3.

Next, we define several inner products associated with these finite element spaces.

In particular, given w,v ∈ Vk
h,W ,V ∈Qk

h and η, ζ ∈Mk
h, we write

(w,v)Th
=
∑

K∈Th

(w,v)K =
∑

K∈Th

∫
K

w · vK , (1a)

(W ,V )Th
=
∑

K∈Th

(W ,V )K =
∑

K∈Th

∫
K

W : V , (1b)

〈η, ζ〉∂Th
=
∑

K∈Th

〈η, ζ〉∂K =
∑

K∈Th

∫
∂K

η · ζ, (1c)

where : denotes the Frobenius inner product.

2.2. Governing equations

We consider the unsteady, compressible Navier-Stokes equations written in non-

dimensional conservation form as

q −∇u = 0, in Ω× (0, T ),

∂u

∂t
+∇ · F (u, q) = 0, in Ω× (0, T ).

(2)

Here, u = (ρ, ρvj , ρE), j = 1, ..., d is the m-dimensional vector of non-dimensional

conserved quantities, and F (u, q) are the Navier-Stokes fluxes of dimension m× d

F (u, q) =

⎛⎝ ρvj
ρvivj + δijp
vj(ρE + p)

⎞⎠−
⎛⎝ 0

τij
viτij + fj

⎞⎠ . (3)

For a Newtonian, calorically perfect gas in thermodynamic equilibrium, the non-dimensional

viscous stress tensor, heat flux, and pressure are given by

τij =
1

Re

[( ∂vi
∂xj

+
∂vj
∂xi

)
−2

3

∂vk
∂xk

δij

]
, fj = −

γ

Re Pr

∂T

∂xj
, p = (γ−1) ρ

(
E−1

2
vk vk

)
,

(4)

respectively. Here, Re denotes the freestream Reynolds number, Pr the Prandtl num-

ber, and γ the specific heat ratio. In particular, Pr = 0.72 and γ = 1.4 for air. The

freestream Mach number M∞ enters into the Navier-Stokes system through the non-

dimensional freestream pressure p∞ = 1/(γM2
∞).

5



2.3. The hybridized DG discretization

The hybridized DG discretization [35] of the governing equations (2) reads as

follows: Find
(
qh(t),uh(t), ûh(t)

)
∈Qk

h × Vk
h ×Mk

h such that(
qh, r

)
Th

+
(
uh,∇ · r

)
Th
−
〈
ûh, r · n

〉
∂Th

= 0, (5a)(∂uh

∂t
,w
)
Th

−
(
F (uh, qh),∇w

)
Th

+
〈
f̂h(ûh,uh, qh),w

〉
∂Th

= 0, (5b)〈
f̂h(ûh,uh, qh),μ

〉
∂Th\∂Ω

+
〈
b̂h(ûh,uh, qh),μ

〉
∂Ω

= 0, (5c)

for all (r,w,μ) ∈ Qk
h × Vk

h ×Mk
h and all t ∈ (0, T ). Equations (5a)-(5b) weakly

impose the Navier-Stokes equations, whereas Eq. (5c) weakly enforces the flux con-

servation across elements and the boundary conditions. Also, n is the unit normal

vector pointing outwards from the elements and b̂h is the boundary flux, whose precise

definition depends on the type of boundary condition. In particular, the following ap-

proximate non-reflecting boundary condition is imposed at the inlet and outlet sections

of the flow field:

b̂h =
1

2

(
An(ûh)+

∣∣An(ûh)
∣∣)·(ûh−uh)+

1

2

(
An(ûh)−

∣∣An(ûh)
∣∣)·(ûh−ub), (6)

where ub is a given boundary state and An = ∂
(
Finv · n

)
/∂u = XΛnX

−1 denotes

the Jacobian of the inviscid flux normal to the boundary. Also, |An| = X|Λn|X−1.

This corresponds, up to first order, to choosing the incoming Riemann invariants from

the boundary state ub and extrapolating the outgoing Riemann invariants from the

interior of the domain. Also, a non-slip, adiabatic wall boundary condition is used

on the airfoil surface, and periodicity is imposed on the remaining boundaries of the

domain. Finally, f̂h in Eq. (5) denotes the numerical flux defined as

f̂h(ûh,uh, qh) = F (ûh, qh) · n+ S(ûh,uh) · (uh − ûh). (7)

S ∈ R
m×m is the so-called stabilization tensor and plays an important role in the

accuracy and stability of the scheme. In particular, the following global Lax-Friedrichs-

like approach is used in this work:

Sij(ûh,uh) = Sij = λmax(uin) δij , (8)

where λmax(uin) denotes the maximum eigenvalue of |An(uin)| and uin is the inflow

state.

The semi-discrete system (5) is further discretized in time using L-stable, diago-

nally implicit Runge-Kutta (DIRK) schemes [1]. The use of L-stable schemes allows

for choosing the time-step size based on physical considerations instead of on numeri-

cal stability issues.

It remains to analyze the choice of EEh in the definition of the space Mk
h. Let us

consider two simple choices. The first one is EEh = ∅ and yields Mk
h = M̂k

h. This cor-

responds to the Hybridizable Discontinuous Galerkin (HDG) method [6, 34, 37]. The
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second choice is EEh = Eh and implies Mk
h = M̃k

h. This corresponds to the Embedded

Discontinuous Galerkin (EDG) method [6, 7, 38] and makes the approximation space

Mk
h continuous over Eh. Hence, the HDG method and the EDG method can be con-

sidered as two particular instances of a larger family of methods. In particular, the only

difference between HDG and EDG lies in the definition of the approximation space

Mk
h for the trace of the solution. This subtlety is responsible for important differences

between both schemes in terms of accuracy, stability, and computational efficiency. We

shall refer to this family of methods as hybridized Discontinuous Galerkin methods.

Another interesting choice of the approximation space Mk
h is obtained by setting

EEh = EIh . This implies M̃k

h ⊂ Mk
h ⊂ M̂k

h, and the resulting approximation space

consists of functions that are continuous everywhere but at the borders of the boundary

faces. The resulting method has an HDG flavor on the boundary faces and an EDG

flavor on the interior faces, and is therefore referred to as the Interior Embedded DG

(IEDG) method [35]. Figure 1 illustrates the degrees of freedom for the HDG method,

the IEDG method, and the EDG method in a four-element mesh. Again, the three

schemes differ from each other only in the degrees of freedom of the approximate trace.

We note that the IEDG method enjoys advantages of both HDG and EDG. First, IEDG

inherits the reduced number of global degrees of freedom, and thus the computational

efficiency, of EDG. In fact, the degrees of freedom of the approximate trace on EBh
can be locally eliminated without affecting the sparsity pattern of the Jacobian matrix;

which yields an even smaller number of global degrees of freedom than in the EDG

method. Second, the IEDG scheme enforces the boundary conditions as strongly as

the HDG method, hence retaining most of the stability and robustness of HDG. These

features make the IEDG method an excellent alternative to the HDG and EDG schemes.

Figure 1: Illustration of the degrees of freedom for the HDG method, the IEDG method, and the EDG

method. The blue nodes represent the degrees of freedom of the approximate solution (uh, qh), while the

red nodes represent the degrees of freedom of the approximate trace ûh.

3. Solution Method

The temporal discretization of the semi-discrete system (5) using a DIRK scheme

yields a nonlinear system of equations at every stage of every time step. In this section,

we propose a parallel Newton-GMRES method for the solution of this nonlinear system

of equations.
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3.1. Nonlinear solver

3.1.1. Newton’s method
Let us denote zh = (qh,uh) ∈ Qk

h × Vk
h. At any given step n = q(� − 1) + s

of a DIRK(q, r) scheme (q is the number of stages, r is the order of accuracy, � is the

current time step, and s = 1, ..., q is the current stage within the current time step),

the nonlinear system of equations that arises from the temporal discretization of the

semi-discrete form (5) can be written as

RVL(z
n
h , û

n
h) = 0, (9a)

RFC(z
n
h , û

n
h) = 0, (9b)

where RVL and RFC are the non-linear residuals associated to (5a)-(5b) and (5c), re-

spectively. The Newton’s method is used to solve the nonlinear system (9). Linearizing

(9) around the solution (zn,mh , ûn,m
h ) at the current Newton iteration m = 0, 1, ..., we

arrive at the following linear system[
An,m Bn,m

Cn,m Dn,m

](
δZn,m

δÛn,m

)
=

(
Fn,m

Gn,m

)
, (10)

where δZn,m is the vector of degrees of freedom for δzn,mh = (δqn,mh , δun,m
h ) ∈

Qk
h×Vk

h, and δÛn,m is the vector of degrees of freedom for δûn,m
h ∈Mk

h. The next

Newton iterate is defined as (zn,m+1
h , ûn,m+1

h ) := (zn,mh +δzn,mh , ûn,m
h +δûn,m

h ), and

this process is repeated until the norm of the full residual vectorRNS := (RVL,RFC)
is less than a specified tolerance.

3.1.2. Minimal residual algorithm for computing the initial guess
The convergence of Newton’s method depends on the initial guess (zn,0h , ûn,0

h ).
One common initialization strategy is to take the initial guess to be the solution at the

previous DIRK step, namely, (zn,0h , ûn,0
h ) := (zn−1

h , ûn−1
h ). In order to reduce the

number of Newton iterations relative to this simple initialization strategy, we propose a

minimal residual algorithm to compute a better initial guess. In particular, we express

the initial guess as a linear combination of the solutions at the J previous DIRK steps,

namely, (zn,0h , ûn,0
h ) :=

∑J
j=1 αj (z

n−j
h , ûn−j

h ). The coefficients αj are found as the

minimizer of the following nonlinear least squares problem

(α1, . . . , αJ) = arg min
(β1,...,βJ )∈RJ

∥∥∥∥∥∥RNS

( J∑
j=1

βj (z
n−j
h , ûn−j

h )

)∥∥∥∥∥∥
2

. (11)

This optimization problem is solved by using the Levenberg–Marquardt (LM) algo-

rithm [23, 28]. The LM algorithm requires us to compute the gradient vectors ∂||RNS||/∂βj ;

which are approximated by finite differences. Since this requires a small number of

residual evaluations and each residual evaluation is about two orders of magnitude

faster than the Jacobian computation, this minimal residual procedure adds very little

to the overall computational cost of the solution method.
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3.2. Linear solver

We describe next our approach for solving the linear system (10). Hereinafter, we

shall drop the superscripts n,m to simplify the notation.

3.2.1. Static condensation
Due to the discontinuous nature of the finite element spaces Qk

h and Vk
h, the matrix

A has block-diagonal structure. This allows us to inexpensively compute its inverse

and eliminate δZ to obtain a smaller linear system in terms of δÛ only as follows:

K δÛ = R, (12)

where K = D−C A−1B and R = G−C A−1F.

This is the global system to be solved at every Newton iteration. One of the

advantages of the hybridized DG methods lies in the fact that the size and number of

nonzeros of K are much smaller than those of the global matrix in other DG methods.

This is in turn due to the introduction of the approximate trace ûh as an explicit

unknown. As a result, the computational cost and memory footprint of the hybridized

DG methods can be several times smaller than in other DG methods [35].

3.2.2. Parallel GMRES solver with restricted additive Schwarz preconditioning
The linear system (12) is solved in parallel using the restarted Generalized Mini-

mal Residual GMRES(β) method [43] with iterative classical Gram-Schmidt (ICGS)

orthogonalization. A left preconditioner M−1 ≈ K−1 is used in order to accelerate

GMRES convergence, so that the linear system (12) is replaced by

M−1 K δÛ = M−1 R. (13)

In particular, we employ the restricted additive Schwarz (RAS) method [5] in order to

achieve excellent performance of the linear solver. This approach relies on a decompo-

sition of the unknowns in δÛ among parallel workers; which is performed as described

below.

Let P̂ denote the set of nodes {p̂1, p̂2, ...} used to approximate the solution trace

ûh, i.e., the red dots in Figure 1. These nodes will be refered to as traced nodes. We

first partition P̂ into N nonempty, nonoverlapping subdomains P̂
(0)
i , that is,

P̂ =
N⋃
i=1

P̂
(0)
i , P̂

(0)
i ∩ P̂

(0)
j = ∅ for i �= j, P̂

(0)
i �= ∅ for i = 1, ..., N. (14)

This is the “zero-overlap” decomposition and is computed by minimizing the edge-cut

of the p̂-to-p̂ connectivity graph through a multilevel k-way partitioning algorithm [25]

and the METIS software [26]. The “one-overlap” decomposition is then defined as the

collection of supersets of P̂
(0)
i obtained by including all the traced nodes immediately

neighboring the nodes in P̂
(0)
i . Using this idea recursively, we define a δ-overlap

decomposition P̂
(δ)
i for some nonnegative integer δ. Note that the δ-overlap decompo-

sition depends on which hybridized DG method is used to discretize the Navier-Stokes
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Figure 2: Illustration of the one-overlap decomposition for the HDG and IEDG schemes. The traced nodes

are first decomposed into two nonoverlapping subdomains. The one-overlap decomposition is obtained by

adding all the traced nodes immediately neighboring nodes in the nonoverlapping subdomains.

equations. Figure 2 depicts an illustration of the one-overlap decomposition for the

HDG and IEDG schemes.

The RAS preconditioner is then defined as

M−1 :=

N∑
i=1

R0
i K

−1
i Rδ

i , (15)

where Ki = Rδ
i K Rδ

i is the so-called subdomain problem and Rδ
i is the restriction

operator onto the subspace associated to the traced nodes in the δ-overlap subdomain

number i. We note that the choice δ = 0 leads to a block Jacobi (BJ) preconditioner at

the subdomain level. From our experience, δ = 1 provides the best balance between

computational cost per GMRES iteration and number of iterations for the flow regimes

considered in this work, and is therefore employed here. This is consistent with the

observation in [42].

In practice, we replace K−1
i by the inverse of the block incomplete LU factorization

with zero fill-in, BILU(0), of Ki, that is, K−1
i ≈ Ũ−1

i L̃−1
i . The BILU(0) factorization

in each subdomain is performed in conjunction with the Minimum Discarded Fill

(MDF) ordering algorithm [39]. Our parallel preconditioner is thus given by

M−1 :=

N∑
i=1

R0
i Ũ

−1
i L̃−1

i Rδ
i . (16)

Each GMRES iteration requires us to compute y = M−1Kr, where r is the current

Krylov vector. This is computed in two steps as

x = Kr, y = M−1x. (17)
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It remains to describe the implementation of these two operations: Matrix-vector prod-

uct and preconditioner solve.

Matrix-vector product and preconditioner solve
Fast matrix-vector products and preconditioner solves are required for an efficient

solution of the linear system (13). To that end, we exploit computer memory hierarchy

and cache policies. First, a block compressed row format is used to store Ki, as well as

its BILU(0) factors L̃i and Ũi. Second, in order to take advantage of spatial locality,

the blocks are stored in memory in the same order as they will be accessed for the

matrix-vector product and the preconditioner solve. For the BILU(0) factors, this is in

turn determined by the MDF ordering. This storage strategy increases the hit rate and

thus improves the performance of these memory bound operations.

The block matrix-vector products that comprise the full matrix-vector product and

preconditioner solve are performed first for the nodes on the interface between subdo-

mains and then for the interior nodes in order to overlap communication and compu-

tation as much as possible. These block matrix-vector products are computed through

the Basic Linear Algebra Subprograms (BLAS). This way, we exploit the structure of

K and M while performing the actual computations through highly optimized dense

linear algebra libraries.

Mixed-precision algorithm
A mixed-precision algorithm is used for the GMRES iteration. In particular, the

matrix-vector products and preconditioner solves are performed in single precision,

while the orthogonalization is performed in double precision. Since the former are

memory bound operations, a factor of two speedup is achieved. In our experience,

the number of GMRES and Newton iterations are largely unaffected by the type of

arithmetic thanks to the following factors. First, we solve a suitable non-dimensional

form of the Navier-Stokes equations, so that all the non-dimensionalized variables are

of order one. Second, the time-step size is chosen small enough to guarantee accuracy

and ensure the smooth convergence of the GMRES and Newton iterations even when

single precision is used.

Stopping criterion and adaptive tolerance
The stopping criterion for the GMRES iteration is based on the relative magnitude

of the norm of the residual and the right-hand side in Eq. (13). In particular, the GM-

RES iteration is performed until a quadratically convergent Newton iterate is obtained,

without the need for solving the linear system to machine precision. This is typically

achieved by reducing the initial residual by five or six orders of magnitude. Also,

the GMRES tolerance is adaptively increased to avoid unnecessary iterations when the

nonlinear residual is close to the nonlinear tolerance.

4. NACA 65-(18)10 compressor cascade

The proposed approach is first applied to transitional flows over a NACA 65-(18)10

linear compressor cascade at Reynolds number Re = 250, 000 and Mach number
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M∞ = 0.081. The blade solidity is σ = 1.0, the stagger angle ξ = 28.3 deg., and the

freestream turbulence intensity I∞ = 0.0. Two operating conditions are considered.

First, the relative angle between the freestream and the blade chord is set to 16.7 deg.

This corresponds to the design condition of the NACA 65-(18)10 compressor cascade

at this Reynolds number. Next, the angle of attack is increased to 25.7 deg. for an

analysis in off-design condition. This is 9.0 deg. larger than in design condition, and

will lead to early separation on the suction side and a large laminar separation bubble

on the pressure side. Our simulation results will be compared to those of a subgrid-

scale LES model discretized using a second-order finite volume code and 31,000,000

elements [30].

4.1. Details of the numerical discretization

The IEDG method and the third-order, three-stage DIRK(3,3) scheme are used for

the spatial and temporal discretization, respectively. The polynomial degree of the

IEDG approximation is set to k = 2 and the non-dimensional time-step to Δt∗ =
Δt·U∞/c = 0.005, where c denotes the blade chord and U∞ is the freestream velocity.

The resulting discretization is therefore third-order accurate in space and time.

The computational domain is partitioned using isoparametric hexahedral elements.

In particular, the three-dimensional meshes are generated through extrusion of two-

dimensional quadrilateral meshes with extrusion length equal to 0.1c. Due to the

chaotic nature of LES, the integration time is sufficiently large to ensure statistical

output convergence. The simulation is considered statistically converged when the L2-

norm of the covariance field of spanwise- and time-averaged pressure coefficient is

below 2c ·0.01. The variance of an ILES estimator is computed from the instantaneous

fields and the Generalized Central Limit Theorem.

The design and off-design conditions have been both simulated on a sequence of

finer and finer meshes until the transition location3 and the pressure coefficient are grid

independent and thus grid converged. The simulation is considered grid converged

when both the L2-norm of the difference of spanwise- and time-averaged pressure

coefficient between consecutive meshes is below 2c · 0.005, and the difference in the

transition location is below 0.0025c. This leads to the four computational meshes

whose details are summarized in Table 1. An estimate of the computational cost on

an Intel Xeon E5-2650 architecture is included as well. Also, Figure 3 shows a 2D

slice of mesh No. 2.

4.2. Grid convergence study and comparison to second-order SGS-LES

Figure 4 (left) shows the time and spanwise average of the negative pressure coef-

ficient in design condition computed with our high-order ILES and the second-order

FV SGS-LES in [30]. The ILES and the SGS-LES results show very good agreement,

except on the transition location on the pressure side. This in turn induces a discrepancy

on the reattachment location and the subsequent pressure rise, as illustrated in Figure

3Since the transition location is not a well-defined location, we use here the end of the separation bubble

as indicator of transition.
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Mesh No. k p No. elements Element type Global unknowns Cores × hours

1 2 2 95, 400 Hexes 810, 600 × 5 64× 20.3
2 2 2 201, 180 Hexes 1, 632, 828 × 5 128× 21.6
3 2 2 427, 040 Hexes 3, 365, 784 × 5 256× 23.0
4 2 2 909, 360 Hexes 6, 918, 290 × 5 512× 24.5

Table 1: Details of the computational meshes considered for the NACA 65-(18)10 compressor cascade.

Global unknowns indicates the number of unknowns in Eq. (13) and the ×5 factor accounts for the five

components in the Navier-Stokes system. The computational cost corresponds to an Intel Xeon E5-2650

architecture.

Figure 3: 2D slice of mesh No. 2 for the NACA 65-(18)10 compressor cascade.

4. Similarly, Figure 5 shows the negative of the spanwise- and time-averaged pres-

sure coefficient in off-design condition. The disagreement on the transition location

between the high-order ILES and the second-order SGS-LES is more profound than

in design condition. Since the transition location and the pressure coefficient seem

grid converged in the high-order ILES results for both operating conditions, these

discrepancies can be attributed to (1) unphysical dissipation introduced by the SGS

model in the laminar portion of the boundary layer, (2) under-resolution in the FV

SGS-LES results, or (3) other numerical artifacts in either simulation, such as spurious

reflections on the inflow and outflow boundaries of the computational domain.

We emphasize that high-order ILES achieves grid convergence on the transition

location and the pressure coefficient with two orders of magnitude fewer elements and

one order of magnitude fewer degrees of freedom4 (DOFs) than those used with the

second-order FV SGS-LES. While few grid convergence studies are available in the

literature of LES for turbomachinery flows, the spatial resolution required by the high-

order ILES is well below the ones typically used with low-order LES approaches. An

explanation for high-order ILES being able to accurately capture transition with such

few elements and degrees of freedom will be presented in Section 6.

4We use the term “degrees of freedom” here as an indicator of the resolution provided by our high-order

DG discretization in comparison with a second-order FV method. For example, a “5M DOFs” high-order

solution has the same number of effective grid points as a cell-centered finite volume discretization with 5M

elements.
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Figure 4: Negative spanwise- and time-averaged pressure coefficient computed with high-order ILES and

second-order FV SGS-LES for NACA 65-(18)10 in design condition. Iso-surface of the Q-criterion [21]

colored by pressure is shown on the right.

Figure 5: Negative spanwise- and time-averaged pressure coefficient computed with high-order ILES and

second-order FV SGS-LES for NACA 65-(18)10 in off-design condition. Iso-surface of the Q-criterion [21]

colored by pressure is shown on the right.
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4.3. Boundary layer analysis

We investigate the structure of the boundary layer (BL) and the transition mech-

anism using the high-order ILES results. The BL analysis is presented first for the

design condition and then for the off-design condition. The nomenclature and details

of the post-processing strategy are described in Appendix A.

The flow separates on the suction side at xs/c = 0.50 in design condition due

to the adverse pressure gradient (see Figure 4). This produces a laminar separation

bubble (LSB) and strongly destabilizes the boundary layer; which eventually transi-

tions to turbulence. After transition, the turbulent mixing leads to rapid reattachment at

xr/c = 0.71 and the separation bubble ends. The turbulent BL then remains attached

all the way until the trailing edge thanks to the resistance to separation provided by

the turbulent mixing. A similar behavior is observed on the pressure side, with BL

separation also at xs/c = 0.50 and reattachment at xr/c = 0.71. The laminar sepa-

ration and turbulent reattachment are illustrated in Figure 6 through the instantaneous

and time-averaged velocity magnitude fields. Similarly, the LSBs translate into the

pressure plateaux in Figure 4, followed by a rapid pressure rise after transition. These

plateaux are a consequence of the nearly-still fluid inside the laminar part of the bubble

being unable to sustain any significant pressure gradients. The turbulent mixing in

the turbulent portion of the bubble, however, can support the strong adverse pressure

gradient in Figure 4 [8].

Figure 6: Instantaneous (left) and time-averaged (right) velocity magnitude fields for NACA 65-(18)10 in

design condition.

Also, BL separation leads to an increase in the displacement thickness and thus

the shape parameter, as illustrated in Figure 7 for the suction side. The increase in

the shape parameter will be (indirectly) responsible for the rapid growth of instabilities

along the bubble, as discussed below. The large value of the displacement thickness

along the adverse pressure gradient in the turbulent portion of the bubble is responsible

for the so-called bubble drag and produces additional losses in the cascade. Once the

LSB ends, the displacement thickness and the shape parameter reduce back to attached

regime values. Then, the strong pressure gradient from the reattachment location to the

trailing edge leads to the final increase in the displacement and momentum thickness

in Figure 7.

Due to the lack of bypass and forced transition mechanisms and the quasi-2D

nature of the flow, natural transition through two-dimensional unstable modes is ex-

pected. This is numerically confirmed by the high-order ILES results. The two-
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Figure 7: Streamwise displacement and momentum thickness (left) and shape parameter (right) along the

suction side for NACA 65-(18)10 in design condition.

dimensional nature of transition is illustrated in Figure 8 through the much larger

amplitude of the streamwise instabilities compared to the cross-flow instabilities. In

particular, Tollmien-Schlichting (TS) waves form before the boundary layer separates,

and Kelvin-Helmholtz (KH) instabilities are ultimately responsible for transition after

separation5. The former are shown in Figure 9 (left) through the Gaussian-like shape of

the root mean square (RMS) in time of the fluctuating velocity magnitude at different

BL locations prior to separation. More specifically, the left plot in Figure 9 shows

the superposition of (1) TS waves and (2) pressure waves generated in the turbulent

boundary layer of the blade at hand and the neighboring blades. The latter effect is

responsible for the nonzero fluctuating velocity outside the boundary layer.

The growth rate of TS waves along the BL is exponential, as shown on the right of

Figure 9 and predicted by linear stability theory. It is worth noting the small magnitude

of the instabilities compared to the freestream velocity. This shows why very small

amount of numerical dissipation is required for transition prediction. Similarly, very

low numerical dispersion is needed to properly resolve all the frequencies present in the

transition process. After separation, TS waves turn into KH instabilities as illustrated in

Figure 10. KH modes produce very rapid vortex growth and are ultimately responsible

for natural transition in the separated shear layer. Turbulence constitutes a new, “stable”

flow regime that prevents instabilities to keep growing exponentially in space and time.

The non-dimensional velocity profile at different locations along the turbulent por-

tion of the suction side BL are displayed in Figure 11 for the inner (left) and outer

(right) layers. High-order ILES properly captures the viscous sublayer u+ = n+;

which extends from n+ = 0 to n+ ≈ 8. Also, a log-layer u+ = (1/κ) log (n+) +C+

is observed from n+ ≈ 20 to n+ ≈ 200, where the exact extremes depend on the

5We consider TS and KH waves to be different phenomena. In particular, we refer to the unstable modes

of the Orr-Sommerfeld equation as TS modes if the boundary layer is attached, and as KH modes if the

boundary layer is separated.
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Figure 8: Amplitude of streamwise and cross-flow instabilities on the suction (left) and pressure (right) sides

for NACA 65-(10) in design condition.

Figure 9: TS waves (left) and streamwise amplification factor (right) on the suction side for NACA 65-

(18)10 in design condition. The box on the right figure indicates the region of the BL in which the TS waves

on the left are located.

17



Figure 10: Transition from TS to KH modes along the separated, suction side boundary layer for NACA

65-(18)10 in design (left) and off-design (right) conditions.

local Reynolds number and the pressure gradient. For moderate pressure gradients,

the numerical results fit well the experimentally measured value for the von Kármán

constant κ = 0.40±0.02 [2], while smaller values of κ are predicted for strong adverse

pressure gradients.

Figure 11: Non-dimensional turbulent velocity profiles in the inner (left) and outer (right) layers at different

locations along the suction side turbulent BL for NACA 65-(18)10 in design condition.

Next, we discuss the structure of the BL and the transition mechanism in off-

design condition. Some details will be omitted in this case due to the similarities

with the design condition. Again, the boundary layer undergoes laminar separation

and turbulent reattachment on both the suction and pressure sides, hence leading to a

LSB. The separation and reattachment locations are xs/c = 0.20 and xr/c = 0.38
on the suction side, and xs/c = 0.57 and xr/c = 0.89 on the pressure side. This
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is illustrated in Figure 12 through the instantaneous (left) and time-averaged (right)

velocity magnitude fields. The existence of separation bubbles is also clear from the

pressure plateaux in Figure 5, as well as from the streamwise displacement thickness

and shape parameter in Figure 13. It is worth noting the large size of the separation

bubble on the pressure side; which is typical of off-design operating conditions at low

Reynolds numbers. Also, the larger angle of attack with respect to the design condition

moves the LSB downstream on the pressure side and upstream on the suction side. In

particular, early separation and transition allow for a more gradual pressure recovery

along the suction side, and this translates into a suboptimal tangential force on the

blade. Again, TS waves and KH instabilities are responsible for natural transition to

turbulence, as illustrated in Figure 14 for the suction side. Finally, Figure 15 shows the

non-dimensional velocity profiles at different locations along the suction side turbulent

BL for the inner (left) and outer (right) layers.

Figure 12: Instantaneous (left) and time-averaged (right) velocity magnitude fields for NACA 65-(18)10 in

off-design condition.

Figure 13: Streamwise displacement and momentum thickness (left) and shape parameter (right) along the

pressure side for NACA 65-(18)10 in off-design condition.
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Figure 14: Amplitude of streamwise and cross-flow instabilities (left) and TS waves (right) on the suction

side for NACA 65-(10)18 in off-design condition.

Figure 15: Non-dimensional turbulent velocity profiles in the inner (left) and outer (right) layers at different

locations along the suction side turbulent BL for NACA 65-(18)10 in off-design condition.
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Figure 16: 2D slice of mesh No. 2 for the Eppler 387 wing. Tetrahedral meshes are created by subdividing

each hexahedron into 6 tetrahedra.

5. Eppler 387 wing

The results for the NACA 65-(18)10 compressor cascade demonstrate the rapid

grid convergence of high-order ILES to capture transition. In this section, we examine

the accuracy of the high-order ILES transition prediction capability by comparing it

to experimental data. In this spirit, we consider transitional flows over the Eppler 387

wing at Reynolds numbers of 100,000, 300,000, and 460,000. The angle of attack is set

to α = 4.0 deg. and the freestream turbulence intensity to I∞ = 0.0. The Mach number

M∞ is 0.08, 0.09, and 0.13 for the three Reynolds numbers considered, respectively.

As it happens, the experimental data for the Eppler wing [29] are arguably the most

accurate and reliable in the literature of transitional flows. This justifies the choice of

this test case for validation purposes.

5.1. Details of the numerical discretization

The HDG method and the DIRK(3,3) scheme are used for the spatial and temporal

discretization of the Navier-Stokes equations, respectively. The polynomial degree of

the numerical approximation is k = 4, hence yielding a scheme that is fifth-order

accurate in space and third-order accurate in time. The computational domain is parti-

tioned using isoparametric tetrahedral elements. The extrusion length in the spanwise

direction is 0.1c and the computational domain extends about 10 chords away from

the wing in the radial direction. Three meshes and non-dimensional time-steps are

considered; which correspond to uniform refinement in space and time. The details

of these meshes are summarized in Table 2, and Figure 16 shows a 2D slice of mesh

No. 2. The integration time is sufficiently large to ensure statistical convergence of

the transition location and the pressure coefficient. Grid convergence and statistical

convergence are evaluated based on the same criteria as described in Section 4.1. for

the NACA 65-(18)10 compressor cascade.
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Mesh No. k p No. Elements Element type Global unknowns Δt∗

1 4 4 64, 800 Tets 1, 959, 600 × 5 7.937E− 3
2 4 4 126, 360 Tets 3, 814, 380 × 5 6.300E− 3
3 4 4 254, 976 Tets 7, 687, 680 × 5 5.000E− 3

Table 2: Details of the computational meshes considered for the Eppler 387 wing. Global unknowns indicates

the number of unknowns in Eq. (13) and the ×5 factor accounts for the five components in the Navier-Stokes

system.

5.2. Grid convergence study and comparison with experimental data

The negative spanwise- and time-averaged pressure coefficient at Reynolds num-

bers 100,000, 300,000, and 460,000 are shown in Figures 17, 18 and 19, respectively.

The ILES simulations agree very well with the experimental data reported in [29].

In particular, the simulation results converge to the experimental data as the mesh is

refined. More importantly, the error in the transition location is below 0.01c, 0.005c,
and 0.01c at Reynolds number 100,000, 300,000, and 460,000, respectively, even with

mesh No. 1. The effective resolution of this mesh is equivalent to a cell-centered finite

volume discretization with 691,200 elements. Again, these numbers are much below

those typically needed with a low-order SGS-LES approach. Also, the transition from

laminar to turbulent regime can be more accurately predicted at Reynolds number of

300,000 than 100,000. As discussed in the next section, this is due to the differences in

the transition process between both Reynolds numbers.

Figure 17: ILES prediction of the transitional flow over the Eppler 387 wing at Re = 100, 000: Pressure

coefficient (left), instantaneous spanwise velocity (top right), and iso-surface of the Q-criterion colored by

pressure (bottom right).

The missing vortex upwash due to the finite extent of the computational domain

leads to a change in the effective angle of attack. This affects the pressure field around

the wing and is responsible for the mismatch near the leading edge with respect to the

experimental data. This motivates us to extend the computational domain 50 chords

away from the wing, and compare the results to those with a 10-chord domain and the

experimental data. In particular, the 50-chord mesh is an extension of the 10-chord
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Figure 18: ILES prediction of the transitional flow over the Eppler 387 wing at Re = 300, 000: Pressure

coefficient (left), instantaneous spanwise velocity (top right), and iso-surface of the Q-criterion colored by

pressure (bottom right).

Figure 19: ILES prediction of the pressure coefficient (left) and skin friction coefficient (right) for the Eppler

387 wing at Re = 460, 000.
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Figure 20: Pressure coefficient near the leading edge for different sizes of the computational domain for the

Eppler 387 wing at Re = 100, 000.

mesh No. 3 using the same geometric growth rate for the element size along the radial

direction as in the first 10 chords. The results at Reynolds number 100,000 are shown

in Figure 20. The change in the effective angle of attack is inversely proportional to

the radius of the computational domain and, in particular, a 50-chord domain leads to

Δα = 0.0709 deg. Also, the wind tunnel walls in [29] were located 13 chords away

from the wing; which makes the experimental data susceptible to small inaccuracies

as well. Overall, the agreement between the experimental data and the ILES results is

very good, and the minor discrepancies are within expected due to experimental errors,

the finite extent of the physical and computational domains, etc.

5.3. Boundary layer analysis

The boundary layer remains attached along the pressure side for the three Reynolds

numbers considered. In particular, the design of the Eppler 387 wing is such that the

adverse pressure gradient on the lower side takes place only in a very small region

near the leading edge, where the momentum thickness is small and the boundary layer

therefore very resistant to separation. The greater stability of the attached BL translates

into a fully laminar flow along the pressure side despite the relatively large value of the

Reynolds number. In fact, the amplitude of the TS waves remains at least two orders of

magnitude below the freestream velocity, as shown on the right of Figures 21 and 22.

The suction side boundary layer, however, undergoes laminar separation and turbu-

lent reattachment for the three Reynolds numbers. In particular, the separation bubble

extends from xs/c = 0.38 to xr/c = 0.80 at Re = 100, 000, from xs/c = 0.46
to xr/c = 0.55 at Re = 300, 000, and from xs/c = 0.46 to xr/c = 0.52 at

Re = 460, 000. This is reflected in the pressure plateaux in Figures 17, 18 and 19, the

average velocity magnitude fields in Figure 23, and the increase in the displacement

thickness and the shape parameter in Figures 24 and 25. Also, it results in rapid

amplification of KH instabilities in the separated shear layer and eventual transition
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Figure 21: Amplitude of streamwise and cross-flow instabilities along the suction (left) and pressure (right)

sides for the Eppler 387 wing at Reynolds number 100,000.

to turbulence, as shown on the left of Figures 21 and 22. Since the process is analogous

to that described for the NACA 65-(18)10 compressor blade, the details are omitted

here.

At Reynolds numbers of 300,000 and 460,000, the amplitude of the BL instabilities

at the separation location is only one order of magnitude below the transition threshold,

hence leading to rapid transition and reattachment. The small size of the LSB has

important consequences from a physical and numerical point of view. From a physical

perspective, it reduces the bubble drag and thus the overall drag coefficient. From

a numerical perspective, it makes transition easier to predict. This is in turn due to

the transition process taking place under smaller values of the shape parameter H .

Indeed, although the length and time scales of the BL instabilities scale as Re−1/2 for

a fixed value of H , this may be leveraged by a smaller value of the shape parameter

itself and translate into the most unstable BL modes having larger length and time

scales. This is the case at Re = 300, 000 vs. 100, 000, and demonstrates that the

transition mechanism plays a key role in the resolution needed to capture transition and

that resolution estimates solely based on dimensional analysis are likely to fail for the

transition problem.

We finally note that the separation location coincides at Reynolds numbers of

300,000 and 460,000. This is consistent with the small separation bubble having a

negligible effect on the potential flow field around the wing, as illustrated in Figure 23,

and the Reynolds number independece of laminar boundary layer flows [8]. As such,

the displacement and momentum thickness (upon scaling by Re1/2) and the shape

parameter at Re = 460, 000 look indistinguishable from those at Re = 300, 000, and

for this reason have been omitted here.

6. Discussion and conclusions

We conclude the paper with a discussion on the rationale for the success of the

high-order ILES approach. Regarding high- vs. low-order, two main advantages could
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Figure 22: Amplitude of streamwise and cross-flow instabilities along the suction (left) and pressure (right)

sides for the Eppler 387 wing at Reynolds number 300,000.

Figure 23: Spanwise- and time-averaged velocity magnitude field for the Eppler 387 wing at Reynolds

number 100,000 (top), 300,000 (middle) and 460,000 (bottom).
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Figure 24: Streamwise displacement and momentum thickness (left) and shape parameter (right) along the

suction (top) and pressure (bottom) sides for the Eppler 387 wing at Reynolds number 100,000.
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Figure 25: Streamwise displacement and momentum thickness (left) and shape parameter (right) along the

suction side for the Eppler 387 wing at Reynolds number 300,000.

be argued in favor of high-order methods for transition prediction. First, they may be

able to capture transition in situations in which low-order schemes fail to give accurate

results. Second, for some intended accuracy, they could provide a numerical solution

in less computational time. These two points are actually related. Low-order schemes

can always be accurate enough if the spatial and temporal resolutions are sufficiently
fine. However, this may render them so computationally expensive that they become

less competitive than their high-order counterparts. As discussed before, transition is

a very subtle process and high-order accuracy is key to capture the delicate physical

phenomena that take place during transition from laminar to turbulent regime.

Indeed, our numerical results showed that high-order methods require significantly

fewer elements and degrees of freedom than low-order methods by one or two orders

of magnitude. This is justified by the following observation: Simulating transition
is challenging mostly due to the small magnitude of the instabilities involved, rather
than due to their length and time scales. A low-order scheme may kill the small

instabilities because of high numerical dissipation even when the mesh size and time-

step size are sufficiently small to represent the length and time scales of the instabilities.

The number of degrees of freedom to capture transition can therefore be significantly

reduced by increasing the accuracy order of the numerical scheme.

It is known that high-order methods become less and less efficient as the order

of accuracy increases beyond a certain value. Hence, there will be an optimal range

for the order of accuracy to yield the best trade-off between accuracy and efficiency.

Through our own experience, the hybridized DG methods reach their best performance

for transitional flows when the polynomial degree k is in the range between 2 and 4;

that is, when the order of accuracy is between 3 and 5. Numerical results presented in

this paper indicate that this range is adequate to accurately and efficiently resolve the

transition process at Reynolds number up to 460,000.

The ILES approach for transition prediction, as opposed to explicit SGS modeling,

is justified by the following observation: While some dissipation is required to account
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for the unresolved scales in a turbulent flow, this is not the case along the laminar
portion of the boundary layer in which the transition process takes place. As such,

directly removing spurious diffusion coming from a SGS model, as ILES does, turns

out to be a better approach. Whether ILES is also preferred for the turbulent portion of

the boundary layer is the subject of ongoing research.

In summary, this work demonstrates the potential of high-order ILES as a promis-

ing approach to simulate transitional turbulent flows. This was illustrated through

numerical results and supported by theoretical considerations. Future work will focus

on the extension of the approach to separated and fully turbulent flows at high Reynolds

numbers.
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Appendix A. Boundary layer post-processing

This Appendix introduces the nomenclature and methodology employed for the

boundary layer (BL) post-processing in Sections 4 and 5. The BL analysis is based on

a pseudo-velocity defined as

u∗(s, n) :=

∫ n

0

(ω × n̂) dn′, (A.1)

where ω denotes vorticity, and (s, n) is the set of curvilinear coordinates associated

to the airfoil surface. In particular, s = (s1, s2) and n are the coordinates along

the streamwise, cross-flow, and outward normal to the airfoil directions, respectively.

Also, the unit vectors associated to these coordinates are denoted by ŝ1, ŝ2 and n̂,

respectively. Unlike the actual velocity, this pseudo-velocity asymptotes to a constant

outside the boundary layer, even with strong curvature, thus making the edge of the

boundary layer a well-defined location [48].

In particular, the BL edge ne is computed as the first location along n-direction

simultaneously satisfying

‖ω̄‖ n < ε1 ‖ū∗‖ ,
∥∥∥∥∂ω̄∂n

∥∥∥∥ n2 < ε2 ‖ū∗‖ , (A.2)

where ε1 = 0.01 and ε2 = 0.1 are some properly tuned constants for a systematic

and robust detection of the BL edge, and the overbar denotes temporal and cross-flow

averaging, i.e.,

ω̄(s1, n) :=
1

T ·Δs2

∫ T

0

∫ Δs2

0

ω(s, n, t) ds2 dt. (A.3)
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Cross-flow averaging corresponds to ensemble averaging due to the quasi-2D nature of

the geometry and boundary conditions in this work, and is therefore used to accelerate

the convergence of the statistics of the turbulent flow.

The local streamwise and cross-flow unit vectors are defined as

ŝ1(s1) := ūe/ūe, ŝ2(s1) := ŝ1 × n̂, (A.4)

where ue = u∗(ne) is the pseudo-velocity at the edge of the boundary layer and

ue = ||ue||2 is its magnitude. Also, the average ū1 and fluctuating u′
1 streamwise

velocities are given by

ū1(s1, n) = ū
∗(s1, n) · ŝ1(s1, n), u′

1(s, n, t) := u1(s, n, t)− ū1(s1, n), (A.5)

whereas the streamwise displacement thickness, momentum thickness, and shape pa-

rameter read as

δ∗(s1) :=

∫ ne

0

(
1− ū1

ue

)
dn,

θ(s1) :=

∫ ne

0

(
1− ū1

ue

) ū1

ue
dn,

H(s1) :=
δ∗

θ
.

(A.6)

The amplitude A1 and amplification factor N1 of streamwise perturbations at the bound-

ary layer location s1 are given by

A1(s1) =
1

ue(s1)
√
ne(s1)

√∫ ne

0

u′
1
2 dn, N1(s1) := ln

(
A1(s1)

A1,0

)
, (A.7)

where A1,0 is some reference amplitude. We note that A1,0 shifts N1(s1) by a constant

factor but it does not affect its growth rate. The cross-flow version of the previous

quantities are defined in an analogous manner.

Finally, the non-dimensional velocity u+ and distance to the wall n+ in the inner

layer of the turbulent BL read

u+ :=
ū1

uτ
, n+ :=

n

lτ
, (A.8)

where uτ =
√

τw/ρ denotes the shear velocity and lτ = ν/uτ is the wall unit length.

Similarly, the non-dimensional velocity defect Δu+ and distance to the wall η in the

outer layer are given by

Δu+ :=
ū1 − ue

uτ
, η :=

n

δ∗
. (A.9)

These BL quantities are necessary to analyze the structure of the boundary layer and

the transition mechanism, as discussed in Sections 4 and 5.
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