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We show how to construct a convolution kernel that has a desired anisotropic surface 
tension and desired anisotropic mobility to be used in threshold dynamics schemes 
for simulating weighted motion by mean curvature of interfaces, including networks of 
them, in both two and three dimensions. Moreover, we discuss necessary and sufficient 
conditions for the positivity of the kernel which, in the case of two-phase flow, ensures 
that the resulting scheme respects a comparison principle and implies convergence to 
the viscosity solution of the level set formulation of the flow. In particular, we show, 
in a barrier-type statement, that the kernel cannot possibly be positive unless both the 
mobility and the surface tension satisfy necessary conditions in three dimensions, and give 
a complete characterization. Among other results is a threshold dynamics scheme that is 
guaranteed to dissipate a non-local approximation to the interfacial energy in the fully 
anisotropic, multiphase setting, using the new kernel construction.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Originally proposed by Merriman, Bence, and Osher (MBO) in [33,32], threshold dynamics – also known as diffusion 
or convolution generated motion – is a very efficient algorithm for approximating the motion by mean curvature of an 
interface. The algorithm generates a discrete in time approximation to mean curvature motion by alternating two very 
simple steps: convolution with a kernel, and pointwise thresholding. In its simplest form (for isotropic, two-phase mean 
curvature flow), it generates the approximate solutions �k at time t = kδt from an initial condition �0 ⊂R

d as follows:

Algorithm: (MBO’92): Given a time step size δt > 0, alternate the following steps:

1. Convolution:

ψk = 1

(δt)
d
2

K

(
x√
δt

)
∗ 1�k (1)

2. Thresholding:

�k+1 =
{

x : ψk(x) ≥ 1

2

∫
Rd

K dx

}
. (2)
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The convolution kernel K :Rd →R was chosen in [33] to be the Gaussian

K (x) = 1

(4π)
d
2

exp

(
−|x|2

4

)
(3)

but the possibility of choosing other kernels is also mentioned in [32]. With K given by (3), the boundary of the set ∂�k can 
be shown to evolve, to leading order, by mean curvature motion; see e.g. [39] for a truncation error analysis, and e.g. [16,27]
for proofs of convergence. Among the benefits of Algorithm (1) and (2) are 1. implicit representation of the interface as in 
the phase field or level set methods, allowing for graceful handling of topological changes, 2. unconditional stability, where 
the time step size is restricted only by accuracy considerations, and 3. very low per time step cost when implemented on 
uniform grids.

Motion by mean curvature arises as L2 gradient descent, in an appropriate sense, for perimeter of sets, which in turn 
appears in variational models for a great variety of applications. These range from image processing and computer vision 
(e.g. the Mumford–Shah model [36] for image segmentation) to materials science (e.g. Mullins’ model [35] for grain bound-
ary motion in polycrystals). More recently, such variational models and their minimization via gradient descent have also 
been applied in the context of machine learning and artificial intelligence (e.g. graph partitioning models for supervised 
clustering of data [17]). The MBO scheme, its variants, and its extensions have attracted sustained interest in the context 
of each one of these applications. In this paper, we will focus on applications in materials science, where anisotropic and 
multiphase versions of mean curvature motion play a central role.

The question of whether threshold dynamics algorithm (1) and (2) can be extended to anisotropic curvature flows, by 
appropriate choice of the convolution kernel K in (1), has been the topic of numerous investigations in the literature; a 
summary is given in Section 3. The present paper is devoted to providing a decisive, constructive answer to this ques-
tion, by showing how to choose the kernel K given a desired possibly anisotropic surface tension and possibly anisotropic 
mobility for the interface. Combined with new multiphase versions of threshold dynamics recently proposed in [14], the 
kernel constructions of this paper yield unconditionally stable schemes for the weighted mean curvature flow of a general 
n-phase network by allowing n-choose-2 anisotropic surface tensions and n-choose-2 anisotropic mobilities (one pair for 
each interface in the network) to be individually specified. This full level of generality is also a first for threshold dynamics 
schemes.

2. Preliminaries and notation

We will be concerned with possibly anisotropic interfacial energies defined on partitions of a domain D . D will typi-
cally be the d-dimensional annulus, i.e. a cube in Rd with periodic boundary conditions. By a partition of D , we mean a 
prescribed number N of sets �1, . . . , �N ⊆ D that satisfy

N⋃
i=1

�i = D and �i ∩ � j = (∂�i) ∩ (∂� j) for i 	= j (4)

Let Hs denote the s-dimensional Hausdorff measure on D . Given a non-negative, continuous, even function σ : Sd−1 → R
+

with σ(x) > 0 for x 	= 0, we first consider the two-phase surface energy

E(�,σ ) =
∫
∂�

σ (n(x))dHd−1 (5)

where n(x) denotes the outward unit normal to ∂�. We will also consider the multiphase extension of energy (5) to 
partitions. Let N ∈N

+ denote the number of phases, and define the set of distinct pairs of indices:

IN = {(i, j) ∈ {1, . . . , N} × {1, . . . , N} : i 	= j}. (6)

Our multiphase energy is:

E(�, σ ) =
∑

(i, j)∈IN

∫
(∂�i)∩(∂� j)

σi, j(n(x)) dHd−1(x) (7)

where we write � = (�1, . . . ,�N ). It will be convenient to assume that σ has been extended to σ :Rd →R
+ as

σ(x) = |x|σ
(

x

|x|
)

for x 	= 0 (8)

so that it is positively 1-homogeneous. We will assume that σ is then a convex function on Rd; this condition will ensure 
well-posedness of the two-phase energy (5). Define the unit ball (i.e. the Frank diagram) Bσ of σ as
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Bσ = {x : σ(x) ≤ 1}
which is thus a closed, convex, centrally symmetric set. We will further require Bσ to be smooth and strongly convex: There 
exists R such that Bσ is supported by balls of radius R that contain it. In particular, we stay clear of the crystalline cases 
(where Bσ is a polytope) except via approximation. In two dimensions, we will also write σ = σ(θ), where θ is the angle 
that the unit normal makes with the positive x1-axis. In that case, strong convexity of Bσ is equivalent to the condition

σ ′′(θ) + σ(θ) > 0.

Given a set 	 ⊂R
d , its support function h	 is defined to be

h	(x) = sup
y∈	

x · y. (9)

Note the simple but useful fact

h	1+	2 = h	1 + h	2 (10)

where 	1 + 	2 denotes the Minkowski sum of the sets 	1 and 	2:

	1 + 	2 = {x : x = x1 + x2 with x1 ∈ 	1 and x2 ∈ 	2} (11)

i.e. it is just the dilation of 	1 by 	2. The Wulff shape Wσ associated with the anisotropy σ is defined as

Wσ =
{

y : sup
x∈Bσ

x · y ≤ 1

}
,

i.e. it is the unit ball of the support function hBσ of Bσ ; in yet other words, it is the unit ball of the dual norm to σ . The 
sets Bσ can therefore in turn be obtained from Wσ by the formula

Bσ =
{

x : sup
y∈Wσ

x · y ≤ 1

}
,

exhibiting the well known duality between Bσ and Wσ . Our assumptions on Bσ imply that Wσ is also strongly convex and 
has smooth boundary.

We will denote the spherical Radon transform of an even function f : Sd−1 → R by

Js f (n) =
∫

Sd−1∩n⊥

f (x)dHd−1(x). (12)

Closely connected with the spherical Radon transform Js is the cosine transform T , also defined on even functions on the 
sphere, as follows:

T f (n) =
∫

Sd−1

f (x) |x · n| dHd−1(x). (13)

The relation between Js and T is given by

�T = T � = Js (14)

where � = 

Sd−1 − (d − 1)I and 


Sd−1 denotes the surface Laplacian (i.e. the Laplace–Beltrami operator) on Sd−1. The 
operators Js , T , and of course � are symmetric, in the sense that∫

Sd−1

φLψ dHd−1 =
∫

Sd−1

ψLφ dHd−1 (15)

for L ∈ {Js, T , �}, where φ and ψ are any two smooth functions on Sd−1. They also commute with one another. For a 
given anisotropy σ with a strongly convex Bσ and smooth ∂ Bσ , its generating function ω : Sd−1 → R is defined to be the 
following even function:

ω := T −1σ = �J −1
s σ = J−1

s �σ . (16)

For d = 2, the expression (16) for the generating function of an anisotropy simplifies to

ω(θ) = 1 {
σ ′′ (θ − π )

+ σ
(
θ − π )}

(17)

4 2 2
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where θ denotes the polar angle of an x ∈ S
1; see e.g. [13]. We will use the following definition of the Fourier transform 

on R
d:

f̂ (ξ) =
∫
Rd

f (x)e−ix·ξ dξ so that f (x) = 1

(2π)d

∫
Rd

f̂ (ξ)eiξ ·x dξ

for e.g. f in Schwartz class.
For d = 2 or 3, we will study approximations for L2 gradient flow of energies (5) and (7), which are known as weighted 

mean curvature flow (of an interface and a network). The normal speed of an interface in three dimensions under this flow 
is given by

v⊥(x) = μ(n(x))
((

∂2
s1
σ(n(x)) + σ(n(x))

)
κ1(x) +

(
∂2

s2
σ(n(x)) + σ(n(x))

)
κ2(x)

)
(18)

where κ1 and κ2 are the two principal curvatures, and ∂si denotes differentiation along the great circle on S2 that passes 
through n(x) and has as its tangent the i-th principal curvature direction. In two dimensions, the expression simplifies to

v⊥(x) = μ(n(x))
(
σ ′′(n(x)) + σ(n(x))

)
κ(x). (19)

While materials science literature e.g. [12,24] appears to allow the mobility factor μ : Sd−1 → R
+ in (18) or (19) to 

be any positive function of the normal, a natural and important subclass of mobilities are those μ that have a convex
one-homogeneous extension (as in (8)) to Rd . Indeed, as explained in [6], motion law (18) arises as gradient descent for 
energy (5) with respect to a norm μ : Rd → R on normal vector fields on ∂� e.g. via the well-known discrete-in-time 
minimizing movements [11] procedure of Almgren, Taylor and Wang [2], and independently, Luckhaus and Sturzenhecker 
[29]:

�k+1 = arg min
�

⎧⎪⎨⎪⎩E(�,σ ) + 1

δt

∫
���k

dμ∗
�k (x)dx

⎫⎪⎬⎪⎭ (20)

where dμ∗
�k denotes the distance function to the interface ∂�k at the k-th time step, with respect to the dual norm μ∗ of the 

norm μ:

μ∗(x) = sup
y : μ(y)≤1

x · y.

It is the unique viscosity solution of the Hamilton–Jacobi equation

μ2 (∇u) = 1 for x ∈ (∂�k)c,

u = 0 for x ∈ ∂�k
(21)

which can be used to verify consistency of scheme (20). The set of convex mobilities μ thus constitute a distinguished 
subclass and will be the subject of particular attention in Section 4.1.2.

In addition to (18), a condition known as the Herring angle condition [23] holds along triple junctions: For d = 3, at a 
junction formed by the meeting of the three phases �i , � j , and �k , this condition reads

(�×ni, j)σi, j(ni, j)+ (�×n j,k)σ j,k(n j,k)+ (�×nk,i)σk,i(nk,i)+n j,iσ
′
i, j(ni, j)+nk, jσ

′
j,k(n j,k)+ni,kσ

′
k,i(nk,i) = 0 (22)

where ni, j is the unit normal vector to the interface (∂�i) ∩ (∂� j) pointing in the �i to � j direction, � = n j,k × ni, j is a 
unit vector tangent to the triple junction, and σ ′

i, j(ni, j) denotes derivative of σi, j taken on S2 in the direction of the vector 
� × ni, j . In the isotropic setting, (22) simplifies to the following more familiar form, known as Young’s law:

σi, jni, j + σ j,kn j,k + σk,ink,i = 0. (23)

Finally, we note that well-posedness (lower semi-continuity) of the multiphase energy (7) in its full generality is a 
complicated matter [3]. At the very least, the surface tensions σi, j : Rd → R

+ need to be convex and satisfy a pointwise 
triangle inequality

σi, j(n) + σ j,k(n) ≥ σi,k(n) (24)

for all distinct i, j, and k, and all n ∈ S
d−1. In case the σi, j are positive constants, (24) is known to be also sufficient for 

well-posedness of model (7).
The variational model (4) and (7) on partitions and the dynamics (19) subject to (22) it generates, play a central role in 

models of microstructural evolution in polycrystalline materials starting with the work [35] of Mullins. Such materials are 
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very common; they include, for instance, most metals and ceramics. Each phase �i in (4) represents a microscopic single 
crystal piece of the material, called a grain, distinguished from its neighbors only by its differing crystallographic orientation. 
The mismatch in crystal orientations across grain boundaries ∂�i ∩ ∂� j contribute to the excess internal energy (7) which 
is dissipated through a reconfiguration of the microstructure when the material is annealed (held at high temperature). The 
shapes and sizes of the grains have dramatic implications for physical properties, such as conductivity and yield strength, of 
a polycrystalline material. For an introduction to this application, including derivations of the relevant formulas recalled in 
this section, see e.g. [26,21,42]. Background on the transforms (12) and (13) quoted above and their significance in convex 
geometry can be found in e.g. [20,7,22].

3. Previous work

Generalizations of Merriman, Bence, and Osher’s Algorithm (1) and (2) to anisotropic surface energies have been consid-
ered in a number of works in the existing literature. The basic idea is to take the convolution kernel K to be a more general 
kernel (than the Gaussian) satisfying the properties

K (x) ∈ L1(Rd) , xK (x) ∈ L1(Rd), and K (x) = K (−x) (25)

together with∫
Rd

K (x)dx > 0. (26)

For convenience, from now on we will write

Kε(x) = 1

εd
K
( x

ε

)
for the rescaled versions of a given convolution kernel K .

One of the first contributions to the study of Algorithm (1) and (2) with general convolution kernels is by Ishii, Pires, 
and Souganidis [27], who establish the convergence of the algorithm to the viscosity solution of the equation

ut = F (D2u, Du) (27)

where

F (M, p) =
⎛⎜⎝ ∫

p⊥

K (x)dHd−1(x)

⎞⎟⎠
−1 ⎛⎜⎝1

2

∫
p⊥

〈Mx , x〉K (x)dHd−1(x)

⎞⎟⎠ (28)

for p ∈ R
d and M a d × d symmetric matrix, provided that K is a positive convolution kernel with certain additional decay 

and continuity properties. Positivity of the kernel is required for the scheme to preserve the comparison principle that 
applies to underlying interfacial motion, and is essential for the viscosity solutions approach taken in [27]. On the other 
hand, the consistency calculation given in the paper applies to more general (e.g. sign changing) kernels (and also appears 
in [39] for the special case of a Gaussian). This study extends to the case of anisotropic curvature motions earlier proofs 
of convergence appearing in [16] and [4] for the isotropic version of the scheme that uses the Gaussian as the convolution 
kernel.

The paper by Ishii et al. does not address the inverse problem of constructing a convolution kernel for a given surface 
tension (and possibly a mobility), which is perhaps the more practical problem from a numerical methods perspective. The 
first contribution in this direction is by Ruuth and Merriman in [40], who propose a construction in 2D . Given an anisotropy 
f : [0, 2π ] →R

+ , the focus of the authors is to construct a kernel (characteristic function of a judiciously chosen star shaped 
domain) that, when used in threshold dynamics, would generate a normal speed of the form

v⊥(x) = (
f ′′(θ) + f (θ)

)
κ(x) (29)

where θ is the angle that the unit outer normal n(x) at x makes with the positive x-axis. This approach conflates the 
contributions to v⊥ in (19) from mobility and surface tension factors. Indeed, there are infinitely many surface tension 
and mobility pairs (σ , μ) that correspond to the same f and hence the same normal speed in (29); the discussion in 
[40] does not elucidate the two factors. This is a particularly important matter in multiphase flows, since surface tensions 
determine the equilibrium condition at junctions according to (22). And in fact, it turns out that for Ruuth and Merriman’s 
construction, the corresponding surface tension is not given by f in (29); see [13] for a detailed discussion. On the plus 
side, these kernels are positive (being characteristic functions) and thus preserve the comparison principle.
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More recently, Bonnetier et al. [8] have proposed a construction that works in both 2D and 3D. The Fourier transform of 
their kernels is explicit in terms of the surface tension:

K̂ (ξ) = exp
(
−σ 2(ξ)

)
. (30)

It turns out that the corresponding mobility satisfies μ := σ identically, see [13]. This construction often yields non-positive 
kernels, even in two dimensions, preventing the authors from giving a rigorous proof of convergence. Moreover, as soon as 
the anisotropy σ does not have an ellipsoid as its unit ball, (30) has a singularity at the origin, leading to slow decay of K . 
We will revisit this construction in Section 4.2 and remedy some of its shortcomings.

In [15], a variational formulation for the original MBO scheme (1) and (2) was given. In particular, it was shown that the 
following functional defined on sets, with kernel K chosen to be the Gaussian G , which had previously been established 
[1,34] to be a non-local approximation to (isotropic) perimeter, is dissipated by the MBO scheme at every step, regardless 
of time step size:

E√
δt(�, K√

δt) = 1√
δt

∫
�c

K√
δt ∗ 1� dx. (31)

Thus, (31) is a Lyapunov functional for algorithm (1) and (2), establishing its unconditional gradient stability. Moreover, the 
following minimizing movements [2,29] interpretation involving (31) for algorithm (1) and (2) was given in [15]:

�k+1 = arg min
�

E√
δt(�, K√

δt) + 1√
δt

∫
(1� − 1�k )K√

δt ∗ (1� − 1�k ) dx (32)

where the kernel K was again taken to be G . In [15], variational formulation (31) and (32) was also extended to the 
multiphase setting.

Let us recall the following fact from [15] that ensures (31) is a Lyapunov functional for scheme (1) and (2), establishing 
the connection between the variational problem (31) and threshold dynamics, and underlining the significance of K̂ :

Proposition 1 (from [15]). Let K satisfy (25) and (26). If K̂ ≥ 0, threshold dynamics algorithm (1) and (2) decreases energy (31) at 
every time step, regardless of the time step size.

In [15], the variational formulation (32) was then extended to the multiphase energy (7) in case the surface tensions σi, j

are constant but possibly distinct:

E(�, σ ) =
∑

(i, j)∈IN

σi, j Hd−1(∂�i ∩ ∂� j) (33)

in which case the Lyapunov functional becomes

E√
δt(�, K√

δt) = 1√
δt

∑
(i, j)∈IN

σi, j

∫
� j

K√
δt ∗ 1�i dx. (34)

We also consider a relaxation of (34):

E√
δt(u, K√

δt) = 1√
δt

∑
(i, j)∈IN

σi, j

∫
D

u j K√
δt ∗ ui dx (35)

over the following convex set of functions satisfying a box constraint:

K =
{

u ∈ L1(D, [0,1]N ) :
N∑

i=1

ui(x) = 1 a.e. x ∈ D

}
. (36)

There is a corresponding minimizing movements scheme that can be derived from (35) that leads to the following extension 
of threshold dynamics to the constant but possibly unequal surface tension multiphase energy (33):
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Algorithm: (from [15]): Given a time step size δt > 0, alternate the following steps:

1. Convolution:

ψk
i = K√

δt ∗
∑
j 	=i

σi, j1�k
j
. (37)

2. Thresholding:

�k+1
i =

{
x : ψk

i (x) ≤ min
j 	=i

ψk
j (x)

}
. (38)

Various conditions are provided in [15] for ensuring that Algorithm (37) and (38) is unconditionally gradient stable (de-
creases energy (34) for any δt > 0). The question turns out to be interesting, with connections to isometric embeddability of 
finite metric spaces into Euclidean spaces. In particular, the triangle inequality (24) on σi, j appears to be neither necessary 
nor sufficient.

It turns out that the minimizing movements interpretation is especially helpful in the anisotropic setting, as it allows 
identifying easily a normal dependent surface tension and a normal dependent mobility factor associated with a given 
convolution kernel; moreover, this understanding can then be extended to the full multiphase, anisotropic setting. We recall 
the following facts from [13] in this connection:

Proposition 2 (from [13]). Let � be a compact subset of Rd with smooth boundary. Let K : Rd → R be a kernel satisfying (25). Then:

lim
δt→0+ E√

δt(�, K√
δt) =

∫
∂�

σK
(
n(x)

)
dHd−1(x)

where the surface tension σK :Rd → R
+ is defined as

σK (n) := 1

2

∫
Rd

|n · x|K (x)dx. (39)

A stronger, Gamma convergence version of Proposition 2 is given in [14] for a class of kernels that include sign changing 
ones. In polar coordinates, the expression for the surface tension σK that corresponds to a given convolution kernel K is:

σK (n) = 1

2

∞∫
0

rd
∫

Sd−1

|n · x|K (rx)dHd−1(x)dr. (40)

We should also note, as is done in [13], that equations (16) and (40) imply the generating function ωK of the anisotropy 
σK that corresponds to a given kernel K is given by:

ωK (n) := 1

2

∞∫
0

K (rn)rd dr. (41)

In [13], the following expression is obtained for the mobility μK associated with a given kernel K :

1

μK (n)
:=

∫
n⊥

K (x)dHd−1(x). (42)

Equation (42) can alternatively be written using the spherical Radon transform Js:

1

μK
= Js

∞∫
0

K (rn)rd−2 dr. (43)

Also in [13], the following alternative expressions for σK and μK in terms of the Fourier transform K̂ of the convolution 
kernel K are provided:
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σK (n) = − 1

2π
F. P.

∫
R

K̂ (nξ)

ξ2
dξ , and

μK (n) = 2π

⎛⎝∫
R

K̂ (nξ)dξ

⎞⎠−1

.

(44)

We also need the following Barrier Theorem from [13] that places a restriction on the positivity of convolution kernels in 
terms of the Wulff shape Wσ of the given anisotropy σ .

Theorem 1 (from [13]). Threshold dynamics algorithm (1) and (2) with a positive kernel K can approximate weighted mean curvature 
flow (18) associated with an anisotropic surface tension σ : Sd−1 → R (for some choice of mobility μ : Sd−1 → R) if and only if the 
corresponding Wulff shape Wσ is a zonoid.

Let us briefly recall zonoids – also known as projection bodies. They are centrally symmetric convex bodies that are 
limits, in the Hausdorff topology, of zonotopes, which are defined as (finite) vector sums of line segments. In Rd , a convex 
polytope with nonempty interior is a zonotope if and only if every d −1 dimensional face of it is a zonotope. Thus, for d = 2, 
any centrally symmetric, convex body is a zonoid. For d = 3, this is no longer the case: a convex polytope is a zonotope only 
if its faces are centrally symmetric polygons, and the closure of such polytopes forms a strict subset of centrally symmetric 
convex bodies. A simple example of a non-zonoid in R3 is the octahedron. Moreover, there exists a neighborhood of the 
octahedron that contains no zonoids. Theorem 1 implies that there is no monotone threshold dynamics scheme for an 
anisotropy σ the Wulff shape Wσ of which falls into such a neighborhood, even though Wσ may be smooth and strongly 
convex. See [20,7] for these facts and much more information about zonoids.

Finally, we recall from [14] that simple modifications to the original threshold dynamics algorithm (1) and (2) may allow 
relaxing the conditions on the convolution kernel and its Fourier transform without sacrificing some of the desirable prop-
erties discussed above. For example, the following single growth version, introduced in [14], possesses the energy dissipation 
property described in Proposition 1 for the much larger class of convolution kernels that can be expressed as a sum of a 
positive kernel and one with a positive Fourier transform:

K = K 1 + K 2 with K 1 ≥ 0 and K̂ 2 ≥ 0.

It entails two convolutions per time step vs. one for the original scheme:

Algorithm 3: (from [14]): Given a time step size δt > 0, alternate the following steps:

1. First convolution:

ψk = K√
δt ∗ 1�k . (45)

2. First thresholding:

�k+ 1
2 =

⎧⎪⎨⎪⎩x : ψk(x) ≥ 1

2

∫
Rd

K dx

⎫⎪⎬⎪⎭∪ �k. (46)

3. Second convolution:

ψk+ 1
2 = K√

δt ∗ 1
�

k+ 1
2
. (47)

4. Second thresholding:

�k = �k+ 1
2 \

⎧⎪⎨⎪⎩x : ψk+ 1
2 (x) ≤ 1

2

∫
Rd

K dx

⎫⎪⎬⎪⎭ . (48)

In addition to dissipating energy (34) for a much wider variety of convolution kernels, Algorithm (45)–(48) is monotone for 
positive kernels, and thus can be shown to converge to the viscosity solution of the corresponding geometric evolution (27)
in this case; see [14].

Extensions of the multiphase, isotropic, unequal surface tension Algorithm (37) and (38) of [15] to the fully anisotropic, 
multiphase setting of energy (7) are in principle easy to come up with, and have been described in [13] and [14]. The 
analogue of the Lyapunov functional (34) in this setting, i.e. the non-local approximation to (7), is simply
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E√
δt

(
�,K√

δt

)= 1√
δt

∑
(i, j)∈IN

∫
�i

(
Ki, j

)√
δt ∗ 1� j dx (49)

where each component Ki, j of the collection of kernels K satisfies

1

2

∫
Rd

|n · x|Ki, j(x)dx = σi, j. (50)

One of the main contributions of this paper, presented in Section 4, shows how to construct well-behaved kernels K that 
satisfy (50) while having prescribed, possibly anisotropic mobilities. The most straightforward, immediate extension of al-
gorithm (37) and (38) to energy (49) is Algorithm (89) and (90) that is recalled from [13] in the Appendix. It works well 
in practice, as shown in numerical experiments in [13] as well as in Section 5.2 of this work. However, verifying rigorously 
that it dissipates energy (49) for a wide enough class of surface tensions to be of interest in applications appears to be 
difficult. On the other hand, Algorithm (45)–(48) can also be extended to the fully anisotropic, multiphase setting of energy 
(7) while ensuring dissipation of the corresponding Lyapunov functional (49) for essentially all surface tensions of interest 
in applications. This extension, Algorithm (91)–(95) recalled in the Appendix from [14], is demonstrated and compared to 
the simpler Algorithm (89) and (90) on the numerical experiments of Section 5.2 using the new kernels constructed in 
Section 4 of this paper.

4. The new convolution kernels

In this main section of the paper, we present two new constructions of a convolution kernel K for a given, possibly 
anisotropic, target surface tension σ∗ : Sd−1 → R

+ and target mobility μ∗ : Sd−1 → R
+ . Both two and three dimensions are 

addressed. Both constructions identify the mobility and surface tension factors, and are therefore suitable for use in the 
multiphase setting.

The first construction, presented in Section 4.1, yields smooth, compactly supported kernels that are positive, so that 
scheme (1) and (2) preserves the monotonicity (comparison principle) of the underlying evolution (18). As already implied 
by the barrier Theorem 1, there is necessarily a difference between two and three dimensions in this endeavor. Our results 
give a fairly complete picture of when this goal can be accomplished, and how to do it. These kernels do not necessarily 
have positive Fourier transforms, but the variant (45)–(48) of threshold dynamics in the two-phase, and (91)–(95) in the 
multi-phase setting, ensure dissipation of the corresponding energy (31) and (34).

The second construction, presented in Section 4.2, is a variant of the construction of [8] and is the more general: It allows 
any convex surface tension σ∗ and any positive mobility μ∗ , both in two and three dimensions, and yields a convolution 
kernel K the Fourier transform K̂ of which is positive: K̂ ≥ 0. Moreover, unlike in [8], the resulting kernel is always Schwartz 
class. Threshold dynamics scheme (1) and (2) using such a kernel thus dissipates the non-local interfacial energy (31)
according to Proposition 1. However, as in [8], these kernels may not be positive, even in two dimensions.

4.1. Positive kernels

In this section, we present new, positive convolution kernels for possibly anisotropic, desired surface tension and mobility 
pairs (σ∗, μ∗), leading to monotone threshold dynamics schemes. There are significant differences in two and three dimen-
sions, so these two cases are discussed separately below. Proposition 3 in Section 4.1.1 yields positive, compactly supported, 
and smooth convolution kernels for essentially any anisotropic surface tension and mobility pair in two dimensions. In three 
dimensions, Lemma 1 and Proposition 4 of Section 4.1.2 essentially classify all anisotropic surface tension and mobility pairs 
for which such a kernel can be found, and for all such cases exhibit the desired kernels explicitly. Let us summarize the 
implication of these constructions by the following immediate consequence of results from [27] and [13]:

Corollary 1. In two dimensions, given essentially any anisotropic surface tension and mobility pair, a convolution kernel can be found 
such that two-phase threshold dynamics algorithms (1) and (2) and (45)–(48), when extended to bounded uniformly continuous 
functions in the standard manner, converge to the viscosity solution of the corresponding evolution (18) on any finite time interval. 
Proposition 3 exhibits these kernels.

In three dimensions, there are surface tension and mobility pairs for which a monotone threshold dynamics scheme cannot be 
constructed. For essentially all those for which it can, Proposition 4 exhibits kernels with which the extension of algorithms (1) and (2)
and (45)–(48) to uniformly continuous functions will again converge to the viscosity solution of the corresponding evolution.

Our approach is as follows: Given (σ∗, μ∗), according to (39) and (42), we will need to solve the following coupled 
system of integral equations:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
Rd

K (x)|n · x|dx = σ∗(n), and

∫
n⊥

K (x)dHd−1(x) = 1

μ∗(n)

(51)

for the unknown function K . Note that there is in fact vast non-uniqueness of the solution, so it may be possible to impose 
additional conditions (besides positivity).

System (51) can be more conveniently expressed using the cosine and spherical Radon transforms as in formulas (41)
and (43):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
0

K (rn)rd dr = ω∗(n) := T −1σ∗(n), and

∞∫
0

K (rn)rd−2 dr = J−1
s

[
1

μ∗

]
(n).

(52)

For both d = 2 and d = 3, the essential idea is the following: Formulas (39) and (42) indicate that surface tension and 
mobility of a kernel vary differently as the convolution kernel is dilated along radial directions. We exploit this simple 
observation. With that in mind, let η : R →R be the following compactly supported, smooth, positive bump function:

η(x) =
⎧⎨⎩exp

(
− 1

x2(x − 2)2

)
if x ∈ (0,2),

0 otherwise.

(53)

For j ∈N
+ , let

m j =
2∫

0

x jη(x)dx (54)

denote its moments.

4.1.1. Positive kernels in 2D
In two dimensions, it turns out that a positive, smooth, compactly supported convolution kernel that is strictly positive at 

the origin can be constructed for any given surface tension and mobility pair (σ∗, μ∗) that satisfies the following minimal 
assumptions:

(1.1) Bσ∗ is strongly convex and ∂ Bσ∗ is smooth,
(1.2) μ∗ : S1 → R

+ \ {0} is smooth.

We have

Proposition 3. Under conditions (1.1) and (1.2) on σ∗ and μ∗ , there exists a positive, smooth, compactly supported convolution kernel 
K :R2 → R

+ such that σK = σ∗ and μK = μ∗ .

Proof. To solve the system (51), we look for a kernel K that in polar coordinates has the form

K (r, θ) = α(θ)η (β(θ)r) (55)

where α, β : R →R
+ are π -periodic, smooth functions. Substituting (55) into (52) gives

α(θ)

β3(θ)
m2 = ω∗(θ), and

α(θ)

β(θ)
m0 = J−1

s

[
1

μ∗

]
(θ).

(56)

Note that for d = 2,

J−1
s

[
1

μ

]
(θ) = 1

μ
(
θ − π

) (57)

∗ ∗ 2
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and by (17),

ω∗(θ) = 1

4

{
σ ′′∗

(
θ − π

2

)
+ σ∗

(
θ − π

2

)}
. (58)

Note that by our assumption on Bσ∗ above, ω∗(θ) > 0 on θ ∈ [0, 2π ]. Solving system (56) for α and β and using (57) and
(58) gives

α(θ) =
(

4m2

m3
0μ

3∗
(
θ − π

2

) [
σ ′′∗

(
θ − π

2

)+ σ∗
(
θ − π

2

)]) 1
2

β(θ) =
(

4m2

m0μ∗
(
θ − π

2

) [
σ ′′∗

(
θ − π

2

)+ σ∗
(
θ − π

2

)]) 1
2

(59)

Formulas (55) and (59) give an explicit prescription for the convolution kernel in terms of the desired surface tension σ∗
and mobility μ∗ . �
Remark. The kernel can be easily modified to be strictly positive at the origin: Replace (σ∗, μ∗) in the construction with 
(σ̃∗, μ̃∗) where

σ̃∗(x) = σ(x) − ε and
1

μ̃∗(x)
= 1

μ∗(x)
− ε

and ε > 0 is chosen small enough so that B σ̃ is strongly convex and μ̃∗ > 0. Denote the resulting kernel K̃ . Then, the kernel 
K = K̃ + exp

(−ε|x|2) satisfies σK = σ∗ and μK = μ∗ . �
4.1.2. Positive kernels in 3D

The situation is more complicated in three dimensions. The essential question is positivity of the right hand sides of the 
system of integral equations (52) that entail the inverse cosine and inverse spherical Radon transforms. It turns out that 
such positivity questions are intimately connected with long studied problems and certain mathematical objects arising in 
convex geometry. This connection with convex geometry literature was already noted and utilized in [13] in formulating its 
barrier Theorem 1 quoted in Section 3. That theorem says that a necessary condition for a positive convolution kernel to be 
found for the target anisotropy σ∗ : S2 → R

+ (regardless of the mobility) is that the corresponding Wulff shape Wσ∗ be a 
zonoid (also known as a projection body), an important class of centrally symmetric convex bodies that appear prominently 
in the convex geometry literature; see Section 3 for a brief discussion and e.g. [7,20] for much more.

When we confront the question of simultaneously achieving both a target zonoidal surface tension σ∗ and a target mobil-
ity μ∗ with a positive convolution kernel, a related class of objects, known as intersection bodies [30], and their connections 
to a widely studied problem known as the Busemann–Petty problem [10], again from convex geometry, come into play. In 
what follows, we will need to appeal to the resolution of this problem in [19] for the case d = 3.

Our first result in this direction is the barrier type Lemma 1 below. It states that in order to accommodate a wide enough 
class of mobilities μ∗ using positive convolution kernels, we need to demand more from Wσ∗ than just being a zonoid. The 
issue is that there are strongly convex and smooth zonoids the generating functions ω∗ of which vanish somewhere on S2. 
If ω∗ corresponding to σ∗ vanishes even at a single point, however, it turns out μ∗ cannot arise from the gradient descent 
formulation (20) of the interfacial motion (18):

Lemma 1. Let σ∗ : R3 → R
+ be an anisotropy such that Wσ∗ is a smooth and strongly convex zonoid. If K is a positive convolution 

kernel such that σK = σ∗ and its corresponding mobility μK : S2 →R
+ \ {0} is smooth with a convex one-homogeneous extension to 

R
3 , then Wσ∗ can be written as the Minkowski sum of a zonoid and a sphere.

In particular, a threshold dynamics scheme that is consistent with an evolution law (18) arising from the gradient descent formula-
tion (20) cannot possibly be monotone unless Wσ∗ is the dilation of a zonoid by a sphere.

Proof. By hypothesis, μK = μ∗ extends as a norm to R3. Therefore, 1
μ∗ is the radial function of a convex body in R3. By 

Theorem 5.2 and its Corollary 5.3 in [19], we have

J−1
s

[
1

μ∗

]
> 0 (60)

on S2. (Close inspection of Theorem 5.1 in [19] indicates inequality (60) is strict under our assumptions on μ.) Then, (43)
implies that
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∞∫
0

K (rx)r dr > 0 for all x ∈ S
2. (61)

But then, we also have

ω∗(x) = ωK (x) =
∞∫

0

K (rx)r3 dr > 0 for all x ∈ S
2. (62)

Let ε = 1
2 minx∈S2 ω∗(x) > 0, and define the new anisotropy

σ ′∗(n) =
∫
S2

(ω∗(x) − ε) |x · n|dH2(x). (63)

Then, we can write

σ∗(x) = σ ′∗(x) + ε|x| (64)

so that by (10),

hWσ∗ = hWσ ′∗
+ hWε|x| . (65)

That implies

Wσ∗ = Wσ ′∗ + Wε|x|. (66)

Wσ ′∗ is a zonoid since its generating function is ω∗ − ε ≥ 0, and Wε|x| is a sphere. �
Lemma 1 motivates placing the assumption on σ∗ that Wσ∗ be the dilation of a zonoid by a sphere, which we will 

adopt for the rest of this section. This is a dense subset of zonoids in the Hausdorff metric. As another difference of three 
dimensions from two, it turns out that even with this stronger assumption on σ∗ , the mobility factor μ∗ in a given target 
surface tension and mobility pair (σ∗, μ∗) needs to satisfy certain additional necessary conditions in order for there to exist 
a positive convolution kernel K with σK = σ∗ and μK = μ∗ . Indeed, unlike for d = 2, not every positive function can arise 
as the mobility associated with a convolution kernel via equation (42), even if σ∗ satisfies the conclusion of Lemma 1. This 
can be seen with the following example: Take μ∗ to be

μ∗(θ,φ) =
(
Js

[
1 − 2η

(
φ − 1

2

δ

)])−1

(67)

Choosing δ > 0 small enough, we see that μ∗(n) > 0 for all n ∈ S
2. Assume that for some K ≥ 0, we have μK = μ∗ . Then, 

by (43) and the injectivity of Js , we have

∞∫
0

K (r, θ,φ)r3 dr = 1 − 2η

(
φ − 1

2

δ

)
. (68)

The left hand side is always positive, but the right hand side is negative for φ ≈ 0, which is a contradiction.
The good news is that for the large and natural class of convex mobilities, it is possible to construct positive convolution 

kernels, as long as the surface tension satisfies the conclusion of Lemma 1. In d = 3, we are thus led to the following 
assumptions on the pair (σ∗, μ∗):

(2.1) Bσ∗ is strongly convex and ∂ Bσ∗ is smooth,
(2.2) Wσ∗ is the dilation of a zonoid by a sphere,
(2.3) μ∗ : S2 →R

+ \ {0} is smooth, and

(2.4) μ∗ : R3 → R
+ defined as μ∗(x) = |x|μ∗

(
x
|x|
)

is convex.

It is worth repeating that condition (2.2) is essentially necessary, as explained above. It is also quite general, since it allows 
approximating any anisotropy that can arise as the continuum limit of a ferromagnetic Ising model; see e.g. the discussion 
in [13]. Furthermore, condition 4 is very natural: It merely stipulates that evolution (18) arises as gradient descent for the 
variational model (5) with respect to a possibly anisotropic norm on normal vector fields, as discussed in Section 2. We can 
now present our construction:
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Proposition 4. Under conditions (2.1)–(2.4) on σ∗ and μ∗ , there exists a positive, smooth, compactly supported convolution kernel 
K :R3 →R

+ such that σK = σ∗ and μK = μ∗ .

Proof. As for d = 2, we look for a kernel K that in spherical coordinates has the form

K (r, θ,φ) = α(θ,φ)η (β(θ,φ)r) (69)

where α, β : R2 → R
+ are 2π -periodic in each variable, smooth, and invariant under (θ, φ) → (θ + π, φ + π). Substituting 

(69) into (52) this time gives

α(θ,φ)

β4(θ,φ)
m3 = ω∗(θ,φ), and

α(θ,φ)

β2(θ,φ)
m1 = J−1

s

[
1

μ∗

]
(θ,φ).

(70)

Hypothesis on σ∗ ensures that ω∗(θ, φ) > 0. Thanks again (as in Lemma 1) to Theorem 5.2 of [19],

J−1
s

[
1

μ∗

]
> 0 (71)

since our hypothesis on μ∗ implies that 1
μ∗ is the radial function of a convex body with smooth boundary.

Solving for α(θ, φ) and β(θ, φ) in (70), we get

α(θ,φ) = m3

m2
1

(
J−1

s

[
1
μ∗

])2

J−1
s �σ∗

, and

β(θ,φ) =
m3J−1

s

[
1
μ∗

]
m1J−1

s �σ∗

(72)

expressed in terms of standard transforms. Both are positive functions. Formulas (69) and (72) provide an explicit prescrip-
tion for the desired convolution kernel, which is positive. �
Remark. In fact, in the language of e.g. [18,19,30], a mobility μ∗ can arise from a positive convolution kernel in threshold 
dynamics algorithms if and only if 1

μ∗ is the radial function of an intersection body. However, this characterization is almost 
by definition of an intersection body (which is not as transparent as that of a zonoid), and therefore does not shed much 
light on the matter.

4.2. Kernels with positive Fourier transform

It turns out that we can construct a smooth, rapidly decaying convolution kernel with positive Fourier transform, in any 
spatial dimension d, as long as the target surface tension σ∗ : Sd−1 → R

+ and the target mobility μ∗ : Sd−1 →R
+ satisfy the 

minimal assumptions (1.1) and (1.2) of Section 4.1.1. Our construction and resulting kernels are similar to those of [8], but 
are more general since we accommodate any mobility, whereas the kernels of [8] are restricted to the (important) special 
case μ∗ = σ∗ . Moreover, the kernels of [8] are singular in the Fourier domain for all but ellipsoidal anisotropies, leading to 
slow decay in the physical domain. This technical issue is also easily rectified with our construction.

Recall that according to (44), we can find a kernel K with the desired target surface tension and mobility by solving the 
system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F. P.
∫
R

K̂ (nξ)

ξ2
dξ = −2πσ∗(n), and

∫
R

K̂ (nξ)dξ = 1

2πμ∗(n)
.

(73)

This is particularly simple since the equations are pointwise in n ∈ S
d−1 (unlike in the physical space construction of 

Section 4.1, as we shall see). We have:

Proposition 5. Under conditions (1.1) and (1.2) on σ∗ and μ∗ , there exists a convolution kernel K : Rd → R in Schwartz class and a 
constant γ > 0 such that σK = σ∗ , μK = γμ∗ , and ̂K ≥ 0.
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Proof. Let ζ : R →R be a smooth function that satisfies the following conditions:

(2.1) ζ(x) ≥ 0 and ζ(x) = ζ(−x) for all x,
(2.2) ζ(x) = 0 for |x| ≤ 1,
(2.3) ζ(x) = x2 for |x| ≥ 2.

We want to construct a kernel K such that K̂ will satisfy (73). Let α, β : Rd → [0, ∞] be one homogeneous functions. 
Then define the kernel K by:

K̂ (ξ) = 1

2
exp

(
− ζ

(
α(ξ)

))+ 1

2
exp

(
− ζ

(
β(ξ))

))
. (74)

Substituting (74) into (73) yields the following equations on α and β in terms of the targets σ∗ and μ∗:

γμ−1∗ (n) = 1

4π

∫
R

exp
(

− ζ
(
ξα(n)

))+ exp
(

− ζ
(
ξβ(n)

))
dξ (75)

and

σ∗(n) = 1

4π

∫
R

1 − exp
(

− ζ
(
ξα(n)

))
ξ2

+
1 − exp

(
− ζ

(
ξβ(n)

))
ξ2

dξ. (76)

Note that we have introduced a constant γ to the mobility μ to ensure that a solution will exist. Let

s0 = 1

4π

∫
R

e−ζ(ξ)dξ and s2 = 1

4π

∫
R

1 − e−ζ(ξ)

ξ2
dξ.

Then, with the changes of variables ξ → ξα(n) and ξ → ξβ(n), equations (75) and (76) become

γμ−1∗ (n)

s0
= 1

α(n)
+ 1

β(n)
, (77)

and

σ∗(n)

s2
= α(n) + β(n). (78)

To simplify notation let a(n) = γμ−1∗ (n)

s0
and b(n) = σ∗(n)

s2
. Eliminating β(n) in (77) and (78) and rearranging leads to the 

following quadratic in α(n):

α(n)2 − b(n)α(n) + b(n)

a(n)
= 0. (79)

Solving for α(n) in (79) and then for β(n) in (78), we get

α(n) = 1

2s2γ
1
2

(
γ

1
2 σ∗ +

√
γ σ 2∗ − 4s0s2μ∗σ∗

)
(80)

β(n) = 1

2s2γ
1
2

(
γ

1
2 σ∗ −

√
γ σ 2∗ − 4s0s2μ∗σ∗

)
(81)

In order for both solutions to be real we need b(n) ≥ 4
a(n)

. Therefore, we need to choose γ such that γ ≥ 4s0s2μ∗(n)
σ∗(n)

for 
all n. We also do not want the discriminant to vanish, since this may introduce singularities into α(n), β(n) that are not 
present in the anisotropy and mobility. Indeed as long as the discriminant does not vanish α and β will have the same 
differentiability properties as μ∗ and σ∗ . However, at the same time, we would like α(n) and β(n) to be as close to each 
other as possible so that the kernel is easy to sample. This suggests that a good choice for γ is

γ = (1 + ε) max
n∈Sd−1

4s0s2μ∗(n)

σ∗(n)
(82)

for some small ε > 0. Formulas (74), (77) and (78) provide an explicit prescription for the desired kernel K . �
As explained in [13], equations (51) along with the favorable smoothness and decay properties noted above imply that 

kernels (74) satisfy all the conditions for the consistency step of the convergence proof in [27]; we thus have the following 
as an immediate consequence:
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Corollary 2. For essentially any given anisotropic surface tension and mobility pair, whether in two or three dimensions, there exists a 
Schwartz class convolution kernel using which threshold dynamics algorithm (1) and (2) is consistent with the evolution law (18).

Although the sign changing character (in physical space) of the convolution kernels in this section (as well as in [8]) 
precludes an immediate proof of convergence (to the corresponding viscosity solution) in the mold of [27], numerical 
evidence does not indicate any adverse effects, at least in the two phase setting.

5. Numerical evidence

We demonstrate the new kernel constructions of Section 4 on both two and multi-phase curvature flow problems, and 
in two dimensional cases compare against front tracking simulations. To compare with front tracking whenever possible, we 
focus mostly on regular behavior (i.e. no topological changes), but of course, as is well known, threshold dynamics methods 
shine when it comes to gracefully handling topology changes. (Experiment of Fig. 6 clearly indicates that this major benefit 
of threshold dynamics is completely preserved by the new algorithms and constructions of the present paper.) Section 5.1
is devoted to experiments with two-phase anisotropic flows, while Section 5.2 focuses on multi-phase anisotropic flows. We 
demonstrate the original threshold dynamics algorithm (1)–(2), as well as its recent, fully anisotropic, multiphase extensions 
Algorithm (89) and (90) and Algorithm (91)–(95) that are recalled in the Appendix, using these kernels.

The front tracking algorithm used for two dimensional comparisons represents the interfaces via explicit parametriza-
tions. As such, it is essentially a finite differences discretization for a coupled system of parabolic PDEs in one space 
dimension, and can thus yield very accurate benchmark results by choosing a very fine discretization. (A parametric ap-
proach can be taken to models of this paper also in 3D, see e.g. [5]. Unfortunately, topological changes are a serious 
difficulty with this approach, especially in 3D, and a major motivation for methods that represent interfaces implicitly, 
such as that of this paper, or the phase field, or the level set method.) We used explicit (forward Euler) time stepping to 
keep matters as simple as possible. In our implementation, triple junctions are common discretization points for the curves 
that meet at them. Their coordinates are updated not directly by the curvature flow PDE, but by iteratively optimizing the 
energy of the system with respect to these coordinates only, at every time step, much as described in [28]. This is how 
the Herring condition (22) is imposed at the junctions. As is well known, the parametrization of the curves can drift very 
far from an arc-length parametrization, resulting in very non-uniformly spaced points on the curves, adversely effecting the 
stability (CFL) condition [9]. Hence, as is customary in front tracking, we periodically reparametrize the curves by arc-length, 
though as seldomly as possible to prevent accumulation of errors caused by small but inevitable perturbation to the curves 
during the process (an alternative is the approach of [25], or of e.g. [5] that also works in 3D, which maintain a regular 
parametrization through tangential velocities).

A few comments are in order regarding implementation of threshold dynamics algorithms as well. The consistency cal-
culations (truncation error analysis) carried out e.g. in [27,39,13] reveal that in the two-phase setting, one would expect an 
error O (δt) as δt → 0. Similar calculations in [38] indicate that in the presence of junctions, the error becomes O (

√
δt), 

which is easy to understand: the kernels have width 
√

δt and hence start sensing the junction at any point of compara-
ble distance on the smooth interfaces. Although these are modest convergence rates, they can be easily improved e.g. by 
Richardson extrapolation demonstrated in [37,38] to be effective on threshold dynamics schemes, with or without junc-
tions. Other important improvements include implementation on adaptive grids while maintaining the efficiency of Fourier 
transform based convolutions, also developed and demonstrated in [38] to achieve excellent accuracy.

Since our focus in this study is primarily on developing and verifying the requisite theory that enables adapting threshold 
dynamics to contexts in which no version of it so far exists due to a lack of fundamental understanding, we work with 
essentially the most basic version of the algorithms, except for the following well-known and very simple implementation 
detail to enhance spatial resolution: The convolution step arising in each threshold dynamics algorithm considered – such 
as (1) of the original MBO scheme (1) and (2) – yields a smooth level set function that can be used (via interpolation) 
to estimate what fraction of each grid cell is occupied by the evolving set at the next time step, which can then be used 
in representing the characteristic function of the set. The more involved improvements mentioned above, which are very 
important in practical applications of threshold dynamics, can of course also be implemented on the new algorithms and 
using the new kernels developed in this paper.

In all the examples, the computational domain is a discretization of [0, 1]d , with d = 2 or 3.

5.1. Two-phase, anisotropic flows

(a) As an initial, modest test of the proposed kernel constructions, consider the task of simulating anisotropic, two-phase 
curvature flow in 2D given by (19), with the following choice of surface tension and mobility:

σ(x1, x2) =
√

x2
1 + 4x2

2 and μ(x1, x2) = 1. (83)

Note that the corresponding Wulff shape is an ellipse in this case:

Wσ =
{
(x1, x2) : x2

1 + 1
x2

2 ≤ 1

}
. (84)
4
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Fig. 1. Evolution of an initial circle (black) under motion (19) with surface tension and mobility given by (83), computed using threshold dynamics algorithm 
(1) and (2) and the convolution kernels from Sections 4.2 and 4.1 (red), compared against benchmark result obtained with front tracking (blue). (a) Using 
the convolution kernel with positive Fourier transform of Section 4.2. (b) Using the positive convolution kernel of Section 4.1. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

The construction of Section 4.1 yields the following positive convolution kernel: K given in polar coordinates by (55) with

α(θ) = m
1
2
2

4m
3
2
0

(
1 + 3 sin2 θ

) 3
4 and β(θ) = m

1
2
2

2m
1
2
0

(
1 + 3 sin2 θ

) 3
4 . (85)

When η in the definition (55) of K is given by (53), the relevant moments (54) appearing in (85) are approximately

m0 ≈ 0.3403 and m2 ≈ 0.3737. (86)

Fig. 1 shows the result of computation starting with a circle of radius 1
4 as the initial condition, and ending at time 

t = 1
80 . The red curves are the result of threshold dynamics with the new kernels, with a spatial discretization of 256 × 256

and using 25 time steps of size 5 ·10−4. Front tracking result, serving as our benchmark and shown in blue, used 128 points 
to discretize the curve and required 20480 time steps.
(b) A more interesting anisotropy for numerical exploration is

σ(x1, x2, x3) = max
{|x1|, |x2|, |x3|

}
(87)

i.e. the �∞ norm that has as its Wulff shape the octahedron:

Wσ = {
(x1, x2, x3) : |x1| + |x2| + |x3| ≤ 1

}
. (88)

Consider this with e.g. the constant mobility μ = 1. Since Wσ is not a zonoid, according to Theorem 1, there exists no 
positive convolution kernel using which threshold dynamics scheme (1) and (2) can even approximate the corresponding 
flow. The new, fully general kernel construction of Section 5.1, however, easily yields a Schwartz class kernel K with positive 
Fourier transform that is consistent with this choice of anisotropy and mobility. Fig. 2 shows evolution of a cube under a 
volume preserving version [41,31] of Algorithm (1) and (2) as implemented in [43] or [13] using the kernel construction of 
Section 5.1 using this anisotropy and mobility pair.

5.2. Multi-phase, anisotropic flows

Consider the initial three phase configuration shown in Fig. 4(a), subject to the following surface tension and mobility pairs:

σ1,2(x1, x2) =
√

x2
1 + x2

2 μ1,2(x1, x2) = 1,

σ1,3(x1, x2) =
√

1

4
x2

1 + x2
2 +

√
x2

1 + 1

4
x2

2 μ1,3(x1, x2) = 2x2
1 + 3x2

2

4
√

x2
1 + x2

2

σ2,3(x1, x2) =
√

x2
1 + 25

16
x2

2 μ2,3(x1, x2) = 1.

The corresponding Wulff shapes for these anisotropies are shown in Fig. 5.
The positive kernel construction given in Section 4.1 yields convolution kernels of the form

Ki, j(r, θ) = αi, j(θ)η
(
rβi, j(θ)

)
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Fig. 2. Evolution of a cube under volume preserving weighted mean curvature flow towards its Wulff shape the octahedron, with surface tension given by 
the �∞ norm and constant mobility. The corresponding kernel was obtained from the construction of Section 4.2. Compare with a similar experiment in 
[13] that uses a different convolution kernel that has the same surface tension but different mobility.

where, for example, α1,3 and β1,3 are given by

α1,3(θ) = m
1
2
2

2m
3
2
0

(
cos2(θ) + 1

4 sin2(θ)
) 3

4
( 1

4 cos2(θ) + sin2(θ)
) 3

4√(
cos2(θ) + 1

4 sin2(θ)
) 3

4 + ( 1
4 cos2(θ) + sin2(θ)

) 3
4

(
1

2
+ 1

4
sin2(θ)

)− 3
2

and

β1,3(θ) = 2m
1
2
2

m
1
2
0

(
cos2(θ) + 1

4 sin2(θ)
) 3

4
( 1

4 cos2(θ) + sin2(θ)
) 3

4√(
cos2(θ) + 1

4 sin2(θ)
) 3

4 + ( 1
4 cos2(θ) + sin2(θ)

) 3
4

(
1

2
+ 1

4
sin2(θ)

)− 1
2

Fig. 3 shows plots of these kernels.
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Fig. 3. The kernels (a) K1,2, (b) K1,3, (c) and K2,3 obtained from the construction of Section 4.1 for the surface tensions and mobilities used in the triple 
junction example of Fig. 4.

Fig. 4(b) shows the resulting configuration at t = 0.01 computed using these kernels in threshold dynamics Algorithm 
(89) and (90) on a 256 × 256 grid with 20 time steps of size δt = 5 · 10−4, and compared to the benchmark front tracking 
result computed using 200 grid points along each one of the three curves and 8000 time steps of size δt = 1.25 ·10−6. There 
is very good agreement. We note that the kernels of Section 4.2 could have also been used in this example, since positivity 
of the convolution kernels or their Fourier transforms is sufficient for Algorithm (89) and (90) to dissipate the multiphase 
non-local energy (34). Although numerical experiments with these kernels suggest convergence to the correct evolution, the 
error appears to be dramatically larger than that of using kernels of Section 4.1. We leave finding a more accurate version of 
the construction in Section 4.2 to a future study, and recommend kernels of Section 4.1 over them in the multiphase setting 
instead.

Finally, Fig. 6 demonstrates how the seamless behavior through topological changes of the original threshold dynamics 
algorithm of [32] is entirely preserved by its extensions to the fully anisotropic, multiphase setting provided by Algorithms 
(89) and (90) and (91)–(95). An initial condition consisting of 27 phases, obtained from a Voronoi construction for points 
chosen uniformly at random in a periodic domain of size 128 × 128 × 128, is evolved via Algorithm (89) and (90) using two 
different sets of surface tensions and mobilities: one in which all mobilities and surface tensions are equal and isotropic 
(where algorithm of [32] can be used), and another in which there is one distinguished phase, i = 1, whose interfaces with 
other phases are anisotropic both in mobility and surface tension. Myriad topological changes occur on the surface of the 
“grain”, as quadruple points collide and split, and existing facets are destroyed and new ones are formed.

6. Conclusions

We have presented two simple and practical methods to construct convolution kernels to be used in threshold dynamics 
schemes for curvature motion in two or three dimensions. Our constructions allow, for the first time, specifying a possibly 
anisotropic surface tension and possibly anisotropic mobility simultaneously: these are encoded into the convolution kernel. 
Combining the new kernel constructions with extensions of threshold dynamics algorithms presented in [14], we arrived at 
unconditionally gradient stable schemes for fully anisotropic, multiphase motion by weighted mean curvature of networks in 
two and three dimensions. This level of generality allows specifying n-choose-2 anisotropic surface tensions and n-choose-2
anisotropic mobilities for a network of n phases. Numerical experiments indicate that in the multiphase setting, one of our 
new kernel constructions gives significantly more accurate results than the other.
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Fig. 4. Evolution of a three-phase configuration with a pair of triple junctions under anisotropic curvature flow; each interface has a distinct prescribed 
surface tension (two of them anisotropic), two have constant mobility, and one has a normal dependent prescribed mobility, as described in detail in 
Section 5.2. (a) The initial condition. (b) Final configuration computed using threshold dynamics Algorithm (89) and (90) and the positive kernel construc-
tion presented in Section 4.1 (red), compared to the benchmark result computed using front tracking (blue). (c) The same evolution computed using two 
different threshold dynamics algorithms: Algorithm (89) and (90) shown in thin, solid vs. Algorithm (91)–(95) shown in thick, dashed line. Algorithm (89)
and (90) is faster, but Algorithm (91)–(95) has guaranteed unconditional gradient stability for essentially any collection of N-choose-2 anisotropic surface 
tension and mobility pairs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The Wulff shapes corresponding to the anisotropies used in the triple junction example. From left to right: Wσ1,2 , Wσ1,3 , and Wσ2,3 .

Along the way, our work has also elucidated necessary and sufficient conditions for the positivity of the convolution 
kernel used in a threshold dynamics scheme in terms of the surface tension and mobility factors of the desired weighted 
mean curvature flow.
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Appendix A

We recall from [13] and [14] extensions of the isotropic but unequal surface tension, multi-phase version of threshold 
dynamics Algorithm (37) and (38) that was originally obtained in [15] to the fully anisotropic, multi-phase setting. Let 
the surface tensions σi, j : Sd−1 → R

+ and mobilities μi, j : Sd−1 → R
+ be given. Let Ki, j be convolution kernels that have 

these surface tensions and mobilities according to formulas (39) and (42) constructed, for example, by one of the methods 
presented in Sections 4.2 and 4.1.

We start with the following completely straight forward generalization of Algorithm (37) and (38), from [13]:

Algorithm: (from [13]) Given a time step size δt > 0, alternate the following steps:

1. Convolution:

ψk
i =

∑
j 	=i

(
Ki, j

)√
δt ∗ 1

�k
j
. (89)

2. Thresholding:

�k+1
i =

{
x : ψk

i (x) ≤ min
j 	=i

ψk
j (x)

}
. (90)

Although Algorithm (89) and (90) works well in practice, as shown in numerical experiments of [13] as well as Section 5.2
of this study, it appears difficult to establish that it dissipates the corresponding nonlocal energy (49). In [14], slightly more 
expensive variants of (89) and (90) along the lines of Algorithm (45)–(48) are proposed that ensure energy dissipation at 
the expense of a greater number of convolution operations per time step. The added complexity does not scale with the 
number of grid points, but with the number of partitions, and thus remains manageable. We recall one of these, Algorithm 
(91)–(95), below. According to Proposition 4.5 in [14], it dissipates energy (49) for a very wide class of kernels that includes 
any kernel constructed in Section 4 of this work. Together, the algorithm and the new convolution kernels thus provide an 
unconditionally stable numerical scheme for the multiphase anisotropic energy (7) and its gradient descent dynamics (18)
and (22) at essentially full generality.
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Algorithm: Given an initial partition �0 = {�0
i }N

i=1, the (k + 1)th iteration �k+1 is obtained from 
�k by a series of substeps indexed by (m, n) ∈ IN . For (m, n) 	= (1, 2) let p(m, n) denote the prede-
cessor of (m, n) in the dictionary ordering of IN and define �k,p(1,2) = �k and �k,(N,N−1) = �k+1. 
Then �k,(m,n) is obtained from �k,p(m,n) as follows:

1. For each (i, j) ∈ IN form the convolutions:

ψ
k,(m,n)
i, j (x) = (Ki, j)

√
δt ∗ 1

�
k,p(m,n)

j
(91)

2. For each i form the sums:

�
k,(m,n)
i (x) =

∑
j 	=i

ψ
k,(m,n)
(i, j) (x) (92)

3. Threshold the mth function:

Gk,(m,n) = {x ∈ D : min
i

�
k,(m,n)
i (x) = �

k,(m,n)
m (x)} (93)

4. Grow set m into set n only:

�
k,(m,n)
m = �

k,p(m,n)
m ∪ (Gk,(m,n) ∩ �

k,p(m,n)
n ) (94)

5. Update set n:

�
k,(m,n)
n = �

k,(m,n)
n \ (Gk,(m,n) ∩ �

k,p(m,n)
n ) (95)

Let us also quote the following statement from [14] that concerns the stability of Algorithm (91)–(95):

Proposition 6 (from [14]). Let each convolution kernel Ki, j be of the form Ki, j = K 1
i, j + K 2

i, j , with K 1
i, j ≥ 0 and K̂ 2

i, j ≥ 0. Then, 
Algorithm (91)–(95) dissipates energy (49) at every time step.

Finally, note that all the new kernel constructions presented in this paper satisfy the conditions of Proposition 6.
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