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We present a fast, direct and adaptive Poisson solver for complex two-dimensional 
geometries based on potential theory and fast multipole acceleration. More precisely, the 
solver relies on the standard decomposition of the solution as the sum of a volume integral 
to account for the source distribution and a layer potential to enforce the desired boundary 
condition. The volume integral is computed by applying the FMM on a square box that 
encloses the domain of interest. For the sake of efficiency and convergence acceleration, 
we first extend the source distribution (the right-hand side in the Poisson equation) to 
the enclosing box as a C0 function using a fast, boundary integral-based method. We 
demonstrate on multiply connected domains with irregular boundaries that this continuous 
extension leads to high accuracy without excessive adaptive refinement near the boundary 
and, as a result, to an extremely efficient “black box” fast solver.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The solution of the Poisson equation is a critical task in many areas of computational physics. The corresponding solvers 
need to be able to handle complex, multiply connected geometries, to be fast, adaptive, and to yield high order accuracy. 
Speed is of particular importance when the Poisson equation is part of a larger system of equations or in the inner loop 
of an optimization process. And since the physical quantity of interest is often the gradient of the solution, rather than the 
solution itself [36,44,11,35,29], partial derivatives of the solution must be computable with high accuracy as well.

Integral equation techniques have the potential to address all the challenges mentioned above. Complex geometries may 
be handled by decomposing the solution to Poisson’s equation as the sum of a particular solution v that does not satisfy 
the proper boundary condition in general, plus a homogeneous solution uH that solves Laplace’s equation and is chosen 
so that the full solution u = v + uH satisfies the proper boundary condition. Fast and accurate solvers can be designed 
based on this construction. Indeed, several efficient and accurate integral equation based schemes exist to compute the 
solution of Laplace’s equation on complex geometries [21,5,6], and fast and accurate evaluation of the particular solution 
v on fully adaptive grids by use of the Fast Multipole Method (FMM) has also been demonstrated for Poisson’s equation 
[14,27]. Furthermore, in integral equation formulations derivatives do not have to be computed through direct numerical 
differentiation. Instead, one can analytically differentiate the kernels in the integral representation of the solution, and thus 
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obtain integral representations for the derivatives of the solution as well. As a result the numerical error for the derivatives 
often converges at the same rate as the error for the solution itself [35,27].

Remarkably, despite all the strengths described above, we are not aware of an integral equation based Poisson solver for 
planar problems that combines all the features at once. In [14,18], grid adaptivity and FMM acceleration are demonstrated, 
but only simple geometries are considered. In contrast, in [32], Poisson’s equation is solved for complex geometries and 
with FMM-accelerated quadratures, but the solver relies on fast methods for uniform grids [30,31]. The purpose of this 
manuscript is to close this gap and to present an adaptive, FMM-accelerated Poisson solver for complex geometries. We 
achieve this in the following way. We embed the irregular domain � on which Poisson’s equation needs to be solved in 
a larger square domain �B . We decompose the solution to Poisson’s equation as u = v + uH , and compute the particular 
solution v on �B with a fast and accurate solver for square domains [14]. In order to calculate v in this way, we need 
to extend the source function f on the right-hand side of Poisson’s equation beyond the domain � where it is originally 
given. We show that global function extension for f , constructed by solving Laplace’s equation or a higher order partial 
differential equation on the domain R2 \ �, leads to a robust, efficient and accurate algorithm for the evaluation of v . This 
idea is very similar in spirit to the extension technique recently presented by Stein et al. [43] for the immersed boundary 
method, but quite different in its implementation. Our approach for computing uH is standard in its formulation [19], but 
it relies on numerical tools developed recently for optimized performance. Specifically, we represent uH as a layer potential 
whose density solves a second-kind integral equation. We use generalized Gaussian quadrature [7,8] to approximate the 
integrals, a fast direct solver [23] to compute the density and an FMM accelerated quadrature by expansion (QBX) algorithm 
[26] to evaluate uH inside �.

The structure of the article is as follows. In Section 2 we present our formulation for the solution to Poisson’s equation, 
which is based on standard potential theory. We stress its computational challenges, which are then addressed in the 
following sections. In Section 3, we describe an efficient and accurate algorithm for the evaluation of the particular solution 
v and its derivatives in a square box. While this algorithm plays a central role in our approach to the problem, the section 
is relatively brief because our solver relies on an implementation of the algorithm and techniques that have been discussed 
in detail elsewhere [14,27]. In Section 4, we explain how we use a global function extension algorithm in combination with 
a box Poisson solver for the computation of the particular solution v on the whole square domain �B . This is a key element 
of our solver, which allows us to deal with complex geometries in an efficient manner. To illustrate the method, we focus 
on a C0 global function extension for simplicity. As we will show, for such extensions the super-convergence property of 
integral equation based schemes mentioned above, in which the error in the derivatives and the solution converge at the 
same rate, does not hold. We explain the reason for this discrepancy and discuss what is required for a global function 
extension method to achieve super-convergence in Sections 4.1 and 5.4. In Section 5, we present our numerical method for 
calculating the homogeneous solution uH , as well as the function extension. Both are expressed as layer potentials and are 
computed in very similar ways. In Section 6 we study the performance of our new solver for two Poisson problems on a 
multiply connected domain. We summarize our work in Section 7 and suggest directions for future work.

2. The potential theoretic approach to Poisson’s equation

In this article, we consider the solution u to Poisson’s equation with Dirichlet boundary conditions given by

�u = f in � (1)

u = g on ∂� (2)

where � is a smooth planar domain, which may or may not be multiply connected. The standard potential theory-based 
approach to the solution of (1)–(2) proceeds as follows. The first step is to calculate a particular solution, i.e. a function v
which satisfies only equation (1) but does in general not satisfy equation (2). A natural candidate for v is given by

v(x) =
∫
�

G(x,y) f (y)dy, (3)

where G(x, y) is the free-space Green’s function for Poisson’s equation. For planar problems, G(x, y) = − log(||x − y||)/2π . 
This is the situation we will consider in this article. Once v has been computed, the second step is to compute a homoge-
neous solution with appropriate boundary conditions. Specifically, one solves the following Dirichlet problem

�uH = 0 in � (4)

uH = g − v|∂� on ∂�. (5)

The solution to (1)–(2) is then the sum, u = v + uH . There are many options for the numerical implementation of these 
two steps and we will not attempt to provide an exhaustive review of them here. Instead, we focus on our new approach, 
which is designed to address situations for which the domain � may be irregular and where derivatives of the solution are 
also required with high accuracy. The purpose of this section is to give a short overview of our approach. This overview is 
divided into two subsections: subsection 2.1 concerns the computation of v , and subsection 2.2 describes the computation 
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of uH . The presentation in these two subsections is meant to give a general idea of our numerical scheme, and is brief on 
purpose. We provide detailed descriptions of our numerical methods to calculate of v and uH in Sections 3 and 4 for v , and 
Section 5 for uH .

2.1. Computing the particular solution

There are two challenges associated with the evaluation of the particular solution v through the integral (3). First, 
accurate quadratures must be used in order to handle the logarithmic singularity. Second, given a quadrature rule, the naïve 
numerical approach to computing (3) would require O(N2) work for a domain with N discretization nodes. It is now well 
known that the computational work can in fact be reduced to O(N) via the fast multipole method [10]. Furthermore, for a 
fixed domain �, the quadrature rules for a weakly singular kernel G(x, y) can be precomputed using an adaptive, brute-force 
procedure [16]. As a result, there exist particularly efficient O(N) algorithms, including optimized versions of the FMM [14], 
to compute the integral (3) for problems specified on a box. We choose such an algorithm for our solver, and provide some 
details of this type of method in Section 3.

For irregular domains �, however, the situation is quite different. The calculation of appropriate quadratures is much 
more difficult and fewer optimizations of the FMM are available. A natural strategy, then, for irregular domains is to consider 
a larger, square domain �B containing � and to instead compute

v(x) =
∫

�B

G(x,y) fe(y)dy, (6)

where fe is defined on all of �B , and constructed such that fe = f on �. One of the main novelties of our work is to 
compute fe via global function extension: fe restricted to R2 \ � is the solution of an elliptic partial differential equation 
with Dirichlet data fe = f on ∂�. The PDE is solved with a standard integral equation representation. We elaborate on this 
idea in Section 4.

Remark 1. It should be noted here that the solution provided by any Poisson solver is a valid particular solution, though 
it will not necessarily be equal to the one given by (3). This includes, in particular, the solutions produced by FFT-based 
solvers for rectangular and circular domains, which are very fast in terms of work per grid point. The method of [32] uses 
such a particular solution, computed via Buneman’s method [9] and the modified stencils developed in [30]. A recent paper, 
[46], offers an alternative FFT-based algorithm for evaluating the particular solution on uniform grids. By regularizing the 
Fourier transform of the Green’s function, the method is able to utilize the FFT to evaluate the convolution (3) rapidly and 
with spectral accuracy on a uniform grid. We have chosen the algorithm of [14] because of its facility with adaptive grids, 
but much of the discussion of this paper would also apply to adapting the algorithm of [46] for use with irregular domains. 
To demonstrate the efficacy of the algorithm of [14], we compute an example on a highly-adaptive grid in Section 6.

2.2. Computing the homogeneous solution

A standard approach to the solution of Laplace’s equation is to represent the solution uH as a layer potential with 
unknown density μ on the boundary. The representation should be chosen so that imposing the boundary conditions 
results in an invertible, second kind integral equation (SKIE) for the density on the boundary. This is a well-studied area 
and there exist appropriate integral representations for multiply connected domains [34,20], unbounded domains [19], and 
for situations with other types of boundary conditions [33]. Further references can be found in the previously cited papers, 
and we recommend [19,4] for very clear treatments of this topic.

Once a suitable representation for uH is chosen, the discretization of the problem is then simply a matter of quadrature 
for the resulting SKIE. In general, the integral kernel may be singular and the choice of quadrature requires attention [1,
25,26,21,7,8]. Once discretized, there are many tools available for the fast solution of the resulting linear system, which we 
briefly discuss in Section 5. For this article, we choose a direct method [23] that is optimized for the type of problems 
considered here.

After the density σ is computed, the solution uH can be evaluated in the domain. This step is trivially direct but it is 
not without its difficulties. With N discretization points in the domain and M discretization points on the boundary, naïve 
computation of the necessary integrals would require O(MN) work. This work can be reduced to O(M + N) with the FMM. 
Because the integral kernel of the solution representation is nearly singular for discretization points near the boundary, 
computing the potential uH to high accuracy at such points requires special quadrature schemes. Such schemes have been 
developed recently [21,26], and for our solver we choose to rely on the quadrature by expansion method (QBX) [26], which 
we also briefly discuss in Section 5. In two dimensions, the scheme of [21] would likely offer better performance than that 
of [26]. Indeed, the method of [21] has been shown to be effective for highly irregular geometries [33]. We have chosen 
the quadrature by expansion framework because it applies to a large class of integral kernels and extends readily to three 
dimensions.
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Fig. 1. In the figure on the left, the leaves of a quad-tree are shown and the boxes in the near field of the box B are marked with an N while the boxes 
in the far field of B are marked with an F . The same quad tree is shown on the right and the boxes for which B is in the far field are marked with an 
asterisk (*), these boxes being in F(B).

3. Box codes

This section reviews relevant features of the algorithm of [14], which is the original “box code”, and which we have 
implemented in our solver. By “box codes”, we mean a class of fast solvers which are used to evaluate integrals of the form

V f (x) =
∫
�

G(x,y) f (y)dy , (7)

where the integral kernel G(x, y) is a translation invariant Green’s function, the domain � is a box, and f (y) is a given 
density. We take G(x, y) = − log ‖x − y‖/2π in what follows.

3.1. Outline of a box code

As in all fast multipole methods, an FMM-based box code is based on a hierarchical division of space. Specifically, the 
domain is taken to be the root box (level 0) of a quad-tree. The finer levels are obtained by subdividing boxes from the 
previous level into four equal parts. After a box is subdivided, the four resulting boxes on the next level are its children. The 
quad-tree for a box code is thus fairly typical for an FMM. The primary distinction of a quad-tree as used in a box code is 
that it is typically a level restricted tree, i.e., adjacent leaf boxes are required to be no more than one level apart in the tree 
hierarchy.

When computing (7), a choice has to be made as to how the function f is represented on each leaf box of the quad-tree. 
The standard choice, as in [14], is to represent f by collocation points (for monomials, Chebyshev polynomials, etc.) on each 
leaf box, using the same points scaled for each level. Then, a reasonable subdivision criterion for a box is whether or not 
the function f is well approximated by its interpolant up to a given tolerance on that box. This criterion makes a box code 
an adaptive method, with the order of accuracy determined by the order of the polynomial approximation on each box.

After the quad-tree is formed, we have that � = ∪ j B j where the B j are leaf boxes and on each leaf box there is a 
polynomial p j which approximates the density f . Let f̃ , defined by setting f̃ (x) = p j(x) for x ∈ B j , be the approximation of 
f over the whole domain. The box code proceeds to evaluate the potential V f̃ (x), where the evaluation points x are taken 
to be the collocation points of the polynomials p j . Let V f̃ (x) be the computed values of V f̃ (x). To evaluate the volume 
integral at other points in the domain, we evaluate the polynomial which interpolates the values V f̃ (x) on each box. We 
denote this piecewise polynomial function by ṽ . The distinction between ṽ and V f̃ is subtle but necessary here. For the 
sake of speed, a box code only evaluates V f̃ at the collocation nodes. The operator V is approximated more or less exactly 
so the error is determined by the interpolation error for f̃ . The values of ṽ incur further interpolation error, which depends 
on the order of the interpolation on leaf boxes and the smoothness of V f̃ . We address the error analysis in more detail in 
Section 3.3.

For a quad-tree with N total collocation points, computing V f̃ would require O(N2) operations if done naïvely. This cost 
can be reduced to O(N) by using the fast multipole method. In the context of this article, it is only necessary to describe 
the result of the FMM. For a detailed account of the structure of the FMM, see [10,24,14].

Let B j be a leaf box of the quad-tree with width h. The “near field” of B j is defined to be any leaf box whose interior 
intersects the interior of the box of width 3h centered at B j . The boxes which are not in the near field of B j are said to be 
in the “far field.” Because the boxes in the far field of B j are separated from B j by a box of at least the same size as B j , 
these boxes are said to be “well separated.” Let F(B j) = {i : B j is in the far field of Bi} be the set of leaf boxes for which 
B j is well separated and � j = ∪i∈F(B j)Bi be the union over these leaf boxes. For a non-uniform tree, it is not necessarily 
the case that the boxes of F(B j) and the far field of B j are the same. See Fig. 1 for examples of these sets. In O(N) time, 
the FMM computes functions � j for each leaf box B j which are expansions (more precisely, the sum of a Taylor expansion 
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and a number of multipole expansions) approximating the influence of all leaf boxes in F(B j) at any point in B j , i.e. for 
any x ∈ B j

� j(x) ≈
∫
� j

G(x,y) f̃ (y)dy .

With � j computed, it is possible to compute the volume integral (7) by directly adding the influence of leaf boxes for which 
B j is in the near field, i.e. for any x ∈ B j

V f̃ (x) ≈ � j(x) +
∑

i /∈F(B j)

∫
Bi

G(x,y) f̃ (y)dy,

where the second term on the right-hand side is evaluated by direct computation, using a high order quadrature rule. This 
step is O(1) per point because the number of boxes for which B j is in the near field and the cost of evaluating � j are 
bounded independent of N . For a given precision εV , the computed values

V f̃ (x) = � j(x) +
∑

i /∈F(B j)

∫
Bi

G(x,y) f̃ (y)dy, (8)

satisfy

|V f̃ (x) − V f̃ (x)| ≤ εV ‖ f̃ ‖L1 .

To achieve this bound for smaller values of εV , the FMM uses higher-order expansions to approximate � j . See [17] for more 
on the error analysis of the FMM.

While O(N) is indeed optimal in terms of complexity, the numerical scheme presented in [14] is particularly fast in 
terms of work per gridpoint. For far field interactions, the speed is due in part to the fact that the translation of multipole 
expansions is diagonalized through the use of plane wave expansions, see [14] and [24] for details. For near field interac-
tions, the speed is due to the use of precomputed tables. Because the tree is level-restricted, there are a limited number of 
near field interactions possible, up to scale. Therefore, if the possible interactions are stored for a unit box, the influence of 
any box on a box in its near field can be computed at the cost of a small matrix–vector product.

3.2. Derivatives of the potential

In many physical applications, the derivatives of the volume potential V f (x) are the quantities of interest, instead of 
V f (x) itself. Once the values of the potential V f̃ are computed, one could differentiate the piecewise polynomial function, 
ṽ , which interpolates the potential on each leaf box to obtain an approximation of the derivatives. This computation results 
in derivative values which have an order of accuracy that is one less than the order of accuracy for the potential.

Instead, the derivatives can be computed by recognizing that they are given by another volume integral, e.g.

∂x1 V f (x) =
∫
�

∂x1 G(x,y) f (y)dy . (9)

In fact, the volume integral for the derivatives can be computed alongside the evaluation of the volume integral for the 
potential with modest impact on the run time. As in the case of computing the potential, the near-field interactions can 
be calculated making use of precomputed tables. The far-field interactions can be computed by differentiating the local 
expansion for the far-field, i.e. by differentiating � j(x), which is typically a much higher order approximation than the 
order of the interpolation on leaf boxes. The result of computing the derivatives of the solution with this approach is that 
the derivatives display the same convergence rate as the potential. For the calculations presented in this article, the authors 
have implemented such a scheme. A similar approach to computing derivatives was taken in [27].

3.3. Error analysis for smooth f

As above, let f̃ denote the piecewise polynomial approximation to f for a given tree and let V f̃ denote the computed 
value of V f̃ , as defined in equation (8). Suppose that the fast multipole method is applied with precision εV and that 
the local interaction tables are computed to at least that precision. Then, the error in V f̃ at a collocation node x has the 
following bound:

|V f̃ (x) −V f̃ (x)| ≤ εV ‖ f̃ ‖1 . (10)

That is, the values of V f̃ (x) are computed at the collocation nodes with an error that depends only on the truncation order 
of the fast multipole method. It then follows that the total error at any given collocation node x is bounded by
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|V f (x) −V f̃ (x)| ≤ |V f̃ (x) −V f̃ (x)| + |V ( f̃ − f )(x)| ≤ εV ‖ f̃ ‖1 + C�‖ f̃ − f ‖∞ , (11)

for a constant C� which is independent of f and given by

C� = max
x∈�

∫
�

|G(x,y)|dy . (12)

The bound (11) provides an a priori estimate of the accuracy of the solution which depends only on the values of the data f . 
This is useful when designing adaptive refinement strategies as one can simply check whether f is well approximated on 
each leaf in the tree. On a uniform tree, we see that the order of accuracy of the overall scheme depends on the order 
of accuracy of the local polynomial approximation to f on leaf nodes. Finally, we note that (11) only depends on the fact 
that V is a bounded operator from L∞ to L∞ . In particular, it is clear that (11) holds analogously for ∇V and that on a 
uniform tree we should see the same order of accuracy for the potential and gradient values (this is sometimes referred to 
as “super-convergence”).

4. Box codes for irregular domains

Perhaps the most natural idea to compute a particular solution v to Poisson’s equation for an arbitrary irregular domain 
by using a box code is as follows. Suppose � is the irregular domain and �B is a box such that � ⊂ �B . Then, a particular 
solution on � can be computed as in (6), so long as an extension fe on �B \ � of the right-hand side f is given.

In many cases of practical interest, a smooth or continuous extension fe of f is readily available. The density f may 
for example describe a compactly supported distribution of electric charges which smoothly goes to zero on the boundary 
of �. Likewise, the magnetohydrodynamic equilibrium of a plasma confined in a tokamak is given by a semilinear Poisson 
equation in which the right-hand side f smoothly goes to zero on the boundary of � in most situations [35,29]. In such 
cases, fe ≡ 0 on �B \ � is a natural and satisfying choice.

In the general case, however, fe does not have an obvious physical meaning, and the extension fe is constructed as a 
purely mathematical artifice required by the box solver. The problem of specifying a function fe such that fe = f on � is 
extremely open; we narrow it by looking for an extension fe that is favorable in terms of the efficiency and accuracy of the 
box code.

4.1. Error analysis for non-smooth densities

To motivate our construction of fe , we first perform a heuristic but more detailed analysis of the error bound (11) for 
densities fe which are not necessarily smooth on the box �B . Using the standard multi-index notation, let ∂α = ∂

α1
x1 ∂

α2
x2

and |α| = α1 + α2. Then the differentiability class Ck(A) of a domain A is defined to be the set of functions g such that 
∂α g is continuous for each α with |α| ≤ k, with the convention that C−1(A) is the set of bounded functions which are 
possibly discontinuous. For a density fe ∈ Ck(�B) and a uniform tree with leaf boxes of width h, let f̃e be the numerical 
approximation as in the previous section, using interpolants of order p (degree p − 1) on each box. Standard error estimates 
imply that

‖ fe − f̃e‖∞ = O(hm) , (13)

where m = min(k, p). If the additional assumption is made that fe is piecewise Ck+l for some l ≥ 1 (e.g., for a domain 
A ⊂ �B , the density fe ∈ Ck+l(A) and fe ∈ Ck+l(�B \ A)) and globally Ck (so that any discontinuities in the k +1st derivative 
occur across ∂ A) then the approximation order is improved to m = min(k + 1, p), see, inter alia, [12].

These bounds suggest that the scheme should have O(1) error for a piecewise smooth density which is discontinuous 
across some boundary. However, in practice the observed convergence rate is faster, even for the derivatives of V fe . The 
reason for this is that the bound (11) only makes use of the fact that V and its derivatives are bounded on L∞ . It does 
not take into account the fact that they are given by weakly singular integrals. One could thus seek a tighter bound for the 
error |V fe(x) − V f̃e(x)|, but with our construction of the solution given by Equations (3), (4) and (5), it suffices to see how 
good of a particular solution V f̃e is. For this purpose, let x be contained in a box B j and let � j denote the union over all 
boxes for which B j is in the far-field, as already defined in Section 3.1. We can write

V f̃e(x) =
∫
�

G(x,y) f̃e(y)dy (14)

=
∫

�\� j

G(x,y) f̃e(y)dy +
∫
� j

G(x,y) f̃e(y)dy . (15)

The contribution to V f̃e(x) from the second term is harmonic. The contribution from the first term is the relevant one 
regarding the quality of V f̃e as a particular solution, since the particular solution is only defined to within the addition of 
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a homogeneous solutions. Let h be the side length of the box B j . If we consider the error without the far-field contribution, 
we have∣∣∣∣∣∣∣

∫
�\� j

G(x,y) f̃e(y)dy −
∫

�\� j

G(x,y) fe(y)dy

∣∣∣∣∣∣∣ ≤ ‖ f̃e − fe‖∞
∫

�\� j

|G(x,y)|dy (16)

= O(h2| log h|)‖ f̃e − fe‖∞ . (17)

For the derivative values we have the analogous bound∣∣∣∣∣∣∣
∫

�\� j

∇G(x,y) f̃e(y)dy −
∫

�\� j

∇G(x,y) fe(y)dy

∣∣∣∣∣∣∣ ≤ ‖ f̃e − fe‖∞
∫

�\� j

|∇G(x,y)|dy (18)

= O(h)‖ f̃e − fe‖∞ . (19)

There are two main conclusions from the preceding analysis. The first conclusion is the intuitive result that the 
smoother fe is the better the approximation of the particular solution. The more interesting conclusion is that fe may 
not need to be quite as smooth as we may have initially expected. Specifically, in our implementation, we use 4th order 
interpolants on each leaf box. Suppose we discretize the domain with a uniform tree and leaf boxes of side length h. For 
a piecewise smooth density fe which is discontinuous, the above bounds imply (nearly) 2nd order accuracy in the values 
of the particular solution and 1st order accuracy in the gradient. Similarly, for a piecewise smooth density fe which is 
continuous, they imply (nearly) 3rd and 2nd order accuracy, respectively. These bounds are consistent with our numerical 
results, as we demonstrate in Section 6.

Finally, note that (17) and (19) also imply that we do not expect to observe “super-convergence” for piecewise smooth 
densities unless they are of sufficient smoothness globally. While super-convergence would be a desirable property, we 
have found that adaptive refinement strategies can be advantageously used to obtain the desired high-accuracy (though not 
necessarily high-order accurate) values for derivatives of the potential. We present these numerical results in more detail in 
Section 6.

4.2. Global function extension

In previous attempts to use box codes for irregular domains, two main extrapolation techniques were used. The first, 
which we call “extrapolation by zero”, simply sets the density fe to be zero outside the domain [14]. In this case, the 
function fe is as smooth as the original density f inside the domain and trivially smooth outside the domain. Therefore, 
the estimates for piecewise smooth functions apply and we see that the scheme should converge with a rate O(h2| log h|)
for a uniform tree. The reader may keep in mind that for such situations, a box code relying on an adaptive tree is more 
efficient in terms of degrees of freedom than a code using a uniform tree. Even if so, adaptive refinement for functions with 
a discontinuity requires trees with a large number of refinement levels and therefore a large number of grid points. This can 
make the “extrapolation by zero” approach computationally costly. The second extrapolation method uses local polynomial 
approximations to f to extrapolate f outside the domain over short distances [28]. A major limitation of this method is 
that it results in a smooth fe for individual leaf boxes but has no guarantees of smoothness across boxes. Since there can be 
discontinuities in fe across boxes near the original domain, the computed potential V fe may be unresolved on those boxes. 
This issue seems to be inherent in local extrapolation methods. That is why we seek out a global extrapolation method 
which improves on the naïve global “extrapolation by zero” approach, in terms of both speed and accuracy.

The global extrapolation method we adopt is similar in spirit to the one recently proposed in [43] in a different context, 
and can be explained in a few words. Let w solve the PDE

�w = 0 in R
2 \ �

w = f on ∂�
, (20)

subject to the condition that w(x) is bounded as ‖x‖ → ∞. Then, the function fe defined by

fe(x) = f (x) for x ∈ �

fe(x) = w(x) for x ∈ �B \ �
(21)

is globally continuous, as smooth as f on �, and smooth on �B \ �. While this may at first seem like a computationally 
expensive way to extrapolate f , the analytical and numerical machinery required to solve this problem is in fact the same 
as that required to solve the harmonic problem (4)–(5), which is used to enforce the boundary condition of the original 
Poisson problem ((1)–(2)).

Note that the method can be generalized to compute globally Ck extrapolations of f by solving polyharmonic equations. 
For example, a C1 extrapolation can be computed by solving the following biharmonic problem:
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�2 w = 0 in R
2 \ �

w = f on ∂�

∂ν w = ∂ν f on ∂�

w = 0 on ∂�e

∂ν w = 0 on ∂�e

, (22)

where �e is some domain containing � and ∂ν denotes differentiation in the direction of the unit normal ν at the given 
point of the boundary. Once w is computed, fe is as defined in the continuous case. While the methods for Equation (22) are 
not as well developed as in the Laplace case, there exist similar potential-theory based integral equations and fast solution 
methods for the solution of the biharmonic problem. See, for instance, P. Farkas’ PhD thesis [15]. There are two main reasons 
to not consider extrapolations based on polyharmonic equations of higher order than the biharmonic equation: (1) very few 
numerical tools have been developed for such equations and (2) the equations require to provide high order derivatives of 
the data f in the direction normal to the boundary, which in most physical applications are not readily available, and can 
be challenging to compute with high accuracy numerically, even when using integral equation based methods [40].

For our numerical tests, and in the version of the code which will be available online, only the harmonic expansion 
calculated by solving (20) is implemented. The details of our implementation are given in Section 5 in parallel with the 
calculation of uH , since both computations rely on the same mathematical and numerical tools.

5. Computing the homogeneous solution and the harmonic extension

In this section, we describe how we compute the homogeneous solution uH which solves the harmonic problem ((4)–(5)). 
Since we use similar numerical techniques to solve this problem and to compute the global function extension through (20), 
we will also discuss the latter, and highlight the small differences between the two situations.

5.1. Layer potentials

Before we proceed, we should clarify what we mean by a multiply connected domain and the normal direction to the 
boundary curve. Let � be an interior domain with boundary ∂�. For a multiply connected domain, ∂� is given as the 
union over disjoint, closed curves ∂� = ⋃l

i=0 �i , with �0 corresponding to the outer boundary. The normal direction on 
each component �i is taken to be the direction pointing away from � and is denoted by ν . To denote the normal at a 
specific point x, we use the notation ν(x). For �0, this vector points to the exterior of the curve and for �i , i = 1, . . . , l, 
this points to the interior of the curve. To see a simple illustration of such a domain and its normal vectors, see Fig. 2 in 
Section 6.

We write both the homogeneous solution uH and the extension w of f in �B \ � as layer potentials [19]. Specifically, 
for the homogeneous solution we write

uH (x) = Sμ(x) + Dμ(x) (23)

where μ is an unknown density, and

Sμ(x) =
∫
∂�

G(x,y)μ(y)dy , (24)

Dμ(x) =
∫
∂�

∂νy G(x,y)μ(y)dy (25)

with ∂νy denoting differentiation in the direction ν(y). The function Sμ(x) is known as a single layer potential, and Dμ(x)

is known as a double layer potential [19].
For the harmonic function extension, we write w as

w(x) = Dσ(x) + W σ (26)

where σ is an unknown density, and

W σ =
∫
∂�

σ (y)dy. (27)

Now, let Sμ(x0), Dμ(x0) and Dσ(x0) denote the restrictions of S and D to points x0 on the boundary ∂�, where the 
integrals are taken in the Cauchy principal value sense when necessary. uH (x) and w(x) reach the following limiting values 
as x approaches a point x0 on the boundary [19]

lim uH (x) = g(x0) − ṽ(x0) = −1
μ(x0) + Sμ(x0) +Dμ(x0) (28)
x→x0 ,x∈� 2
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and

lim
x→x0 ,x∈�

w(x) = f (x0) = 1

2
σ(x0) +Dσ(x0) + W σ . (29)

(28) is a second kind integral equation (SKIE) for μ, and (29) an SKIE for σ .
At this point, we have the desired integral representations for uH and for w , and equations for their associated densities. 

The representation (23) for uH has been used in commercial software [45] and is known in the integral-equations com-
munity [20] but the authors are unaware of any treatment of the Fredholm alternative as applied to the resulting integral 
equation (28). We consider a proof of the invertibility of (28) to be beyond the scope of this paper but note that the argu-
ment of Lemma 29 in [37] can be modified to provide a proof of its invertibility, even on multiply-connected domains. The 
invertibility of (29) is well-known [19].

We now discuss the numerical methods we chose to solve (28) and (29) and to evaluate the integrals in (23) and (26).

5.2. Solving the second kind integral equations for the densities

In our solver, we discretize ∂� using panels of 16 scaled Legendre nodes. Our numerical methods rely on the following 
simplifying assumptions concerning the boundary ∂�: (1) the boundary is Cn for some large n and (2) the panels are chosen 
fine enough so that for source and target nodes on distinct, non-adjacent panels the integrals of the layer potentials are 
computed to high precision using the standard Gaussian weights (the “source” and “target” terminology is explained below). 
Note that there exist more complex algorithms that would allow us to relax both assumptions, and their implementation 
in our solver will be the subject of future work. To relax the first assumption, one could use any of the methods described 
in [22,4,8,42] to allow domains with corners. While the second assumption is not necessarily much of a limitation on the 
types of domains which can be handled by our solver, the fineness implied by this assumption can lead to too great a 
computational burden for certain domains, such as domains in which the boundary comes close to intersecting itself. There 
are methods in development, as in the planned sequel to [38], which provide a more efficient approach for such cases.

Now, let ∂� be discretized into L panels using M = 16L total nodes and denote the ith node by xi . Using generalized 
Gaussian quadrature for the interactions between nodes on the same and adjacent panels and the standard, scaled Gaussian 
weights otherwise, we obtain a Nyström discretization of (28) and (29):

g(xi) − ṽ(xi) = −1

2
μi +

M∑
j=1

(
G(xi,x j)μ jω

s
i, j + ∂ν j G(xi,x j)μ jω

d
i, j

)
, (30)

f (xi) = 1

2
σi +

M∑
j=1

(
∂ν j G(xi,x j)σ jω

d
i, j + σ jω j

)
(31)

where μi = μ(xi), σi = σ(xi), ∂ν j denotes differentiation in the direction ν(x j), and the ωs
i, j , ω

d
i, j , and ω j correspond to 

integration weights. We note that the expressions above are a slight abuse of notation as the Green’s function and its 
derivatives are undefined when j = i. The true formula is more generally a function of the boundary and the kernel but 
we find the above more edifying. In the current context, the relevant piece of information is that there exist weights ωs

i, j , 
ωd

i, j , and ω j such that the quadratures appearing in the second kind equations can be evaluated with high-order accuracy. 
For a more detailed treatment of the generalized Gaussian quadrature framework, see [8]. In the following sections, we will 
refer to the ω j , which are given by appropriately scaling the standard Gauss–Legendre weights, as the smooth quadrature 
weights.

There exist many tools available for the fast solution of the linear systems (30) and (31). There are iterative solution 
techniques, e.g. GMRES [41], which perform well for linear systems discretized from SKIEs on simple domains. The com-
putational cost of such a scheme is typically dominated by a term of the order qT where q is the number of iterations 
required to converge and T is the amount of work for a matrix–vector product. For well-conditioned problems with M
boundary nodes, typically q = O(1) and the cost of T can be reduced to O(M) with an FMM. There are also fast-direct 
solution methods, i.e., methods which construct, in O(M) or O(M log M) time, a representation of the inverse of the system 
matrix which can be applied in O(M) or O(M log M) time. For such direct methods, the cost of forming the representation 
of the inverse is often much greater than that of the FMM, while the speed of applying the inverse, once computed, is 
often faster than the FMM. Fast-direct solvers can be particularly useful for problems in highly-irregular domains, in which 
the iteration count of an iterative solver may be too high or unpredictable. They are also advantageous for cases in which 
several Laplace problems need to be solved for a fixed domain, since the high initial cost only has to be paid once. For our 
solver, we implemented the direct method developed by [23], which is optimized for the type of problems considered here, 
and found that it gave very satisfactory performance.

5.3. Evaluation of uH and w by quadrature by expansion

Once μ and σ are computed, we evaluate uH and w by direct computation of the integrals (23) and (26). This step can 
at first appear complicated because the integral kernels are near singular for the evaluation of points near the boundary 
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of the domain. We resolve the difficulty by computing the integrals for points near the boundary using the quadrature 
by expansion (QBX) method. We will not present the fundamentals of the QBX scheme here, since clear presentations 
for situations very closely related to the one we encounter here can be found in [26,5,40,3]. We will however stress two 
modifications to the standard QBX scheme which we implemented in our solver. First, we accelerated the evaluation of 
the layer potentials with the FMM (a similar but more sophisticated acceleration scheme is presented in [38]). Second, we 
developed a variant of QBX which allows, after precomputation of the field at a fixed number of points, the evaluation 
of the field anywhere in the domain in O(1) time [3]. This is particularly convenient for the evaluation of the function 
extension when we construct the adaptive tree, since the grid points at which the values of the layer potential are desired 
may not be known a priori.

5.3.1. Explanation of the algorithm
Let us discuss these two modifications to the standard QBX method in more detail. Consider, for example, the evaluation 

of the layer potential uH = Sμ + Dμ. We use the notation as above for the discretization nodes xi , the smooth quadrature 
weights ωi , and the boundary normals ν i = ν(xi) of ∂�. Let ci be the QBX centers, located at a distance ri from the 
boundary: ci = xi − riν i . In the QBX method, the potential u is approximated by a power series in the disc of radius ri
about ci , denoted by Bri (ci). For any x in Bri (ci), we write

uH (x) ≈ Re

( p∑
l=0

αl,i(z − ξ)l

)
, (32)

where z = x1 + ix2 and ξ = ci,1 + ici,2.
We will present a simple method for computing the QBX coefficients, αl,i , with FMM acceleration. For points x which 

are sufficiently far from the boundary, the values of uH can be evaluated with high accuracy using the smooth integration 
weights ω j , i.e. the formula

uH (x) ≈
M∑

j=1

(
G(x,x j)μ jω j + ∂ν j G(x,x j)μ jω j

)
(33)

is accurate for such points. Naïvely, the computational cost of evaluating the sum (33) is O(MN) for N targets x. This sum 
can be computed at N targets with cost O(M + N) using a standard FMM [17,10,24]. Therefore, if the coefficients αl,i can 
be recovered from function evaluations of uH , they can be computed with FMM acceleration.

Let 0 < δ < 1 be given. Consider the integral of the power series approximation to uH (32) about the circle of radius δri
about ci . We have

1

2π

2π∫
0

uH (ci + δri(cos θ, sin θ)) dθ ≈ 1

2π
Re

⎛⎝ 2π∫
0

p∑
l=0

αl,i (δri)
l eilθ dθ

⎞⎠ = Re
(
α0,i

)
, (34)

where we have used the orthogonality properties of complex exponentials. Note that Re
(
α0,i

)
is precisely what is needed to 

evaluate the first term in the expansion (32). By similar reasoning, the coefficients αl,i can be recovered from the following 
integral on the circle of radius δri about ci :

αl,i = 1

πδlrl
i

2π∫
0

uH (ci + δri(cos θ, sin θ)) e−ilθ dθ . (35)

The layer potential uH is smooth on the circle of radius δri , so the αl,i can be computed with high order accuracy using 
the trapezoidal rule to discretize the integral (35). Let M Q B X equispaced points yi, j be placed on the circle ∂ Bδri (ci). The 
values uH (yi, j) can be computed accurately using the smooth quadrature weights for ∂� to approximate the single and 
double layer potentials there, assuming that (1 − δ)ri is large enough (this is the closest that yi, j will be to the boundary). 
For sufficient sampling, M Q B X should be taken larger than 2p.

Once the coefficients are computed, the power series (32) can be used to approximate the potential at targets which are 
close to the boundary. High accuracy can be obtained when ri is sufficiently small.

With these preliminaries in place, the FMM-accelerated algorithm for the evaluation of the potential at N targets ti can 
be described in the following steps:

• Place M centers at the points ci = xi − riν i .
• Define M Q B X equispaced points yi, j for j = 1, . . . , M Q B X on the circle of radius δri about each center ci .
• Call the FMM to evaluate uH at the targets ti and the points yi, j , where the layer potentials are approximated using the 

smooth quadrature weights ωi . This is an O(MM Q B X + N) procedure.
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• Compute the coefficients αl,i for each center as in (35), using the trapezoidal rule. This takes O(MM Q B X log M Q B X )

work for M Q B X > 2p using the FFT.
• For each target which is within (1 − δ)ri of any boundary node xi , let c j be the nearest QBX center. The smooth rule 

might not be accurate for this target, so instead use the value given by the power series (32) about ci . The cost for this 
is O(p) per target.

The scheme presented above is satisfactory if the targets ti are all known in advance. However, when constructing the 
adaptive tree, the potential associated with the function extension may have to be evaluated at new targets t. For the new 
targets which are close to the boundary, the potential can be computed using the expansion about the nearest QBX center. 
For the targets further from the boundary, we avoid calling the FMM again to compute the potential there. Instead, we store 
the multipole and local expansion coefficients computed for all boxes in the hierarchy during the initial call to the FMM. 
The values of the potential at the new targets t can then be evaluated in O(pF MM) work for each target, where pF MM is 
the order of the multipole and local expansions in the FMM [3].

5.3.2. Choosing the QBX parameters
In the above, we have avoided the key topic of how to select ri , the radius of the QBX expansion. For the sake of 

argument, we will assume for now that δ ≤ 3/4. This must be done to balance two competing concerns: (1) that (1 − δ)ri ≥
ri/4 is sufficiently large so that uH (yi, j) can be computed accurately using the smooth quadrature weights, ωi , and (2) that 
ri is sufficiently small so that the truncated power series (32) is an accurate approximation of uH . While it may seem unclear 
whether choosing an appropriate ri is indeed possible, this fact was proven in [13]. Now, if the discretization node xi is on 
a boundary panel of length hi , it can be shown that setting ri = 4hi provides high accuracy when using 16 Legendre nodes 
on each panel. However, having the center so far places further restrictions on the discretization of the domain, since no 
boundary points are allowed to be in the interior of the QBX disc. Thus, in practice one often takes ri = hi and computes 
uH (yi, j) using the smooth weights for an oversampled version of the boundary.

We finally get to the choice of the parameter δ. Two issues must be considered. The first is that (1 − δ)ri must be 
sufficiently large, as noted above. For larger δ, the boundary must be oversampled more in order to compute uH accurately 
at the yi, j . The second issue is numerical stability. It is clear that for a very small choice of δ, there may be numerical 
issues in determining the difference between various points yi, j . However, there is a more important source of error to 
consider for small δ. By examining the formulas for the QBX coefficients (35) and the power series (32), we see that any 
error in computing the αl,i can be amplified by a factor of 1/δp in the worst case, i.e. for points on the boundary of the 
QBX disc. From this, we can see that for a higher-order scheme (larger p) it is desirable to have a larger δ and therefore 
more oversampling of the boundary. This phenomenon — the need to oversample more for a higher order scheme — will 
be familiar to practitioners of QBX.

Let xi be a boundary point and hi the length of its boundary panel. For the computations in Section 6, we used the 
following parameters in the QBX scheme:

• (Distance to QBX center) ri = hi

• (QBX order) p = 8
• (Number of points in integral) M Q B X = 40
• (Radius for integral) δri = 3ri/4, i.e. δ = 3/4
• (FMM order) pF MM = 52
• (Boundary oversampling factor) nover = 4

Note that by “oversampling the boundary” we mean that we place 16nover Legendre nodes on each panel instead of 16. The 
parameters above were found to work well in practice but more optimal choices may be possible.

Remark 2. The idea of using equispaced points on a circle to form a power series expansion of a harmonic function is 
reminiscent of the “fast multipole method without multipoles” of [2].

5.4. Derivatives of uH

As mentioned in the introduction, the values of the derivatives of the solution are important for many physical applica-
tions. Unfortunately, there are two sources of difficulty for obtaining high accuracy values of the derivative with our scheme 
when solving with Dirichlet boundary conditions. The first is that the standard QBX method loses precision when computing 
derivatives of a double layer potential. The second source of difficulty stems from the nature of the Dirichlet problem and 
the way that we interpolate function values in an embedded boundary method. We address these issues in detail in the 
next two sections, and show that while the first issue can be avoided with a clever use of the Cauchy–Riemann equations, 
the second issue is intrinsic to the fact that the scheme we present in this article relies on C0 extension.
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5.4.1. Derivatives of a double layer potential
In the QBX setting, the derivatives of the layer potentials can be obtained by differentiating the QBX power series 

expansion. This works well for the single layer potential but has been observed to result in the loss of precision for the 
double layer potential [26]. The cause of this loss of precision is unclear but may result from the hyper-singular nature of 
the derivatives of the double layer potential as operators on the boundary.

It was pointed out to us by Manas Rachh and Leslie Greengard [39] that the evaluation of the derivatives of the double 
layer potential can be accomplished by differentiating the density along the boundary and using the QBX algorithm for the 
Cauchy kernel (which behaves like the double layer kernel). The key observations are that

Dμ(x) = Re

(
− 1

2π i

∫
μ(ξ)

ξ − z
dξ

)
, (36)

(
∂x1 − i∂x2

)
Dμ(x) = − 1

2π i

∫
μ(ξ)

(ξ − z)2
dξ , (37)

− 1

2π i

∫
μ(ξ)

(ξ − z)2
dξ = − 1

2π i

∫
μ′(ξ)

ξ − z
dξ , (38)

where z = x1 + ix2 and ξ = y1 + iy2 for y ∈ ∂�. Let τ denote the unit tangent on the boundary and ∂τ denote differentiation 
along the boundary. The following steps summarize the algorithm for computing ∇Dμ implied by the above observations:

• Compute the derivative ∂τμ using spectral differentiation on each panel of Legendre nodes.
• Compute

F (x) = − 1

2π i

∫
∂τμ(ξ)

ξ − z
dξ , (39)

with z = x1 + ix2 for each target x using a standard QBX algorithm.
• Obtain the values of the gradient by

∂x1(Dμ(x)) = Re(F (x)) , (40)

∂x2(Dμ(x)) = − Im(F (x)) . (41)

With the above algorithm, the difficulties associated with evaluating derivatives of the double layer potential are avoided 
by instead evaluating the derivative of a function along a curve, which is relatively simple with our discretization of the 
boundary with panels of Legendre nodes. We have implemented this method for the computations in Section 6.

5.4.2. Embedded boundary methods and the Dirichlet boundary condition
We will introduce some notation in order to discuss the effect of the boundary correction on the overall error. Let û(x)

be the computed value of the solution u at a point x and ûH (x) be the computed value of uH (x). Let V fe be the volume 
integral of fe , V f̃e be the computed values of V fe at the grid points, and ṽ(x) be the interpolation of those computed 
values at any given point x, as in Section 3. Likewise, let ∇V fe be the gradient of the volume integral of fe , ∇V f̃e be the 
computed values of ∇V fe at the grid points, and g̃(x) be the interpolation of those computed values at any given point x. 
Recall that u is given by

u(x) = V fe(x) + uH (x) , (42)

where uH (x) solves

�uH = 0 in � (43)

uH = g − V fe|∂� on ∂� . (44)

A conservative estimate of the error is then given by

|u(x) − û(x)| ≤ |V fe(x) − ṽ(x)| + |uH (x) − ûH (x)| . (45)

Likewise, we have

|∇u(x) − ∇û(x)| ≤ |∇V fe(x) − g̃(x)| + |∇uH (x) − ∇ûH (x)| . (46)

We have addressed the error due to the volume integral (the first term on the right-hand sides of (45) and (46)) in Sec-
tions 3 and 4. We will now discuss the effect of the error in the boundary correction (the second term on the right-hand 
sides of (45) and (46)).

In most of the numerical tests we perform in Section 6, the discretization error, solution error, and QBX error associated 
with the boundary integral are made to be so small that the error in the boundary correction uH is dominated by the error 
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in the interpolated values of the volume potential on the boundary. In other words, we assume that ûH is exactly a solution 
of

�ûH = 0 in � (47)

ûH = g − ṽ|∂� on ∂� , (48)

and the source of the error is that we are solving for the wrong boundary condition. By the maximum principle, we have 
that

|uH (x) − ûH (x)| ≤ max
y∈∂�

|V fe(y) − ṽ(y)| , (49)

so that this error is of the same order as the contribution from the volume integral. Let us now turn to the error in ∇ûH . 
We may make the same assumption about the discretization error, but need to have a close look at the boundary value 
problem ∇ûH solves. For a function ψ defined on the boundary ∂�, let DtN[ψ] denote the Dirichlet-to-Neumann map 
applied to ψ , i.e. if ϕ is the solution of

�ϕ = 0 in � (50)

ϕ = ψ |∂� on ∂� , (51)

then DtN[ψ] = ∂νϕ|∂� . Having introduced this notation, we may write that ∇ûH is a solution of the following

�∇ûH = 0 in � (52)

∇ûH = νDtN[g − ṽ] + τ∂τ (g − ṽ)|∂� on ∂� . (53)

Again, we may apply the maximum principle to obtain

|∇uH (x) − ∇ûH (x)| ≤ max
y∈∂�

|∇V fe(y) − ν(y)DtN[ṽ](y) − τ (y)∂τ ṽ(y)| . (54)

We see that the accuracy of the gradient of the potential will be affected more strongly than the accuracy of the potential by 
the error in the boundary correction because the gradient of the solution of the Laplace Dirichlet problem depends on the 
accuracy of the tangential derivative (and Dirichlet-to-Neumann map) of the boundary values. This is typically not a concern 
in the integral equations context, for two reasons. First, one usually assumes that one has high order accurate values for the 
boundary data. Second, the evaluation of the gradient of a layer potential is smoothing for points sufficiently far from the 
boundary. However, in the context of the Poisson solver we present in this article, the tangential derivative of ṽ is, as an 
analytic matter, one order lower than the order of ṽ (this is because ṽ is a polynomial on each box) and the value of the 
gradient may be requested arbitrarily close to (or even on) the boundary. This loss of accuracy for the boundary data results 
in a similar loss of accuracy for the computed gradient.

For a smoothly extended function fe , a potential way to address this problem is as follows. The box code can be used to 
compute ∇V f̃e at the collocation points in the same way that V f̃e is computed. The interpolant of the gradient computed 
this way, which we call g̃, is the same order as ṽ . We can then construct a new approximation to V fe on the boundary 
by first computing g̃ · τ along the boundary, where τ is the tangent vector of the curve, and then computing its indefinite 
integral panel-wise (we correct for the constant using ṽ , again panel-wise). The resulting function is the same order accuracy 
as ṽ but its derivative is a better approximation to the derivative of V f̃e . We investigate the merits of this alternative 
approach numerically in Section 6.

Unfortunately, this approach does not appear to improve the order of accuracy for non-smooth fe . As noted in Section 4.1, 
we expect the convergence of the computed gradient to be one order lower than the potential for an extended density fe

obtained through continuous extension or extension by zero, i.e. there is no advantage to using g̃ as it is already one order 
of accuracy lower than ṽ . This was evident in numerical experiments, where the accuracy in the derivatives was comparable 
using this new approximation to V f̃e instead of ṽ . We therefore leave these results out of the next section. In the case that 
a Ck extension is available for sufficiently large k, this technique may prove important to achieving super-convergence.

6. Numerical results

In order to verify the preceding analysis and test the performance of the numerical method we propose in this article, 
we have implemented a Poisson solver in Fortran which combines all the different modules we presented in the previous 
sections. The volume integral code is a modified version of the original Fortran code of [14] (using fourth order interpolants 
on leaf boxes), with some added OpenMP parallelism and the modification for computing gradient values discussed in 
Section 3.2. The codes for the boundary correction and the continuous extension were written specifically for this work, and 
are based on the methods described in Sections 4 and 5. We are currently documenting the numerical solver we used to 
generate the results shown below, and will make it freely available online at a later date.
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Fig. 2. The domain � and its boundary �. The axes coincide with the boundary of the containing box �B . Two outward-pointing boundary normal vectors 
are indicated by arrows.

For each numerical test, we have used the domain � shown in Fig. 2, which has an irregular boundary and is multi-
ply connected. The interfaces of this domain are specified by parametric equations in polar coordinates. Specifically, each 
interface is given by a set of points (θ, r(θ)) for θ ∈ [0, 2π), where r(θ) = c0 + ∑

j(c j cos( jθ) + d j sin( jθ)). The choice of 
the coefficients was arbitrary. For reference, the non-zero coefficients for the outer boundary were c0 = 0.25, d3 = c6 = c8 =
c10 = 0.01, c5 = 0.02. The non-zero coefficients for the inner boundary were c0 = 0.05, c2 = d3 = c5 = c7 = 0.005.

Let Np denote the number of panels used in the discretization of the boundary and M = 16 ∗ N p denote the total number 
of boundary points (we use 16 Legendre nodes on each panel throughout). For the volume integral nodes, let NV denote the 
total number of points in �B and N� denote the number of points inside �. For each test, we approximated the relative 
L∞ error,

E(ψ) = max� |ψexact − ψnumerical|
max� |ψexact | ,

where ψ is either the potential or its derivatives, by sampling at 106 points randomly placed in �. These points were 
kept the same for each discretization level for the sake of convergence tests. We report the error in the gradient below 
as 

√
E(ux)2 + E(u y)2. In the error analysis of this section, the density for the boundary correction is computed with high 

accuracy (say 12 digits) and the corresponding layer potential is evaluated with high accuracy as well (say 12 digits for 
the potential and 8–9 digits for its gradient). With this assumption, the error will be primarily a function of the number of 
discretization nodes in the volume, i.e. N� .

All computations were performed on a desktop computer with an Intel® Xeon(R) CPU E3-1220 v5 (3.00 GHz, 4 core) and 
16 Gb of memory. A few of the computations depend only on the boundary and therefore take the same amount of time 
for each discretization level. In the first example, the boundary was discretized with M = 9,280 nodes. The precomputation 
time for the direct solver took 1.20 and 1.80 seconds for the continuous function extension and boundary correction linear 
systems, respectively. The precomputation time to allow for O(1) access to the layer potential took 0.60 and 1.20 seconds 
for the continuous function extension and boundary correction layer potentials, respectively. The solution in the second 
example is much more irregular than in the first and thus more boundary points were required. For this case, the boundary 
was discretized with M = 14,208 nodes. The precomputation time for the direct solver took 1.57 and 2.89 seconds for the 
continuous function extension and boundary correction linear systems, respectively. The precomputation time to allow for 
O(1) access to the layer potential took 1.10 and 1.99 seconds for the continuous function extension and boundary correction 
layer potentials, respectively. We consider these computational costs to be modest and emphasize that the precomputation 
of the fast-direct solver must only be done once per domain. We report on the speed of the volume integral code and the 
evaluation of the layer potentials below.

6.1. A note on adaptivity

When a smooth extension fe is known, the bound (11) of Section 3.3 implies a rather straightforward a priori adaptive 
discretization strategy: for a given tolerance, refine the tree until the local polynomial interpolant on each leaf box approxi-
mates fe within that tolerance, which can be tested by comparing fe and the interpolant on a finer grid. It turns out that 
this strategy will result in an overall error well below the desired tolerance. A modification which, in practice, gets closer 
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Fig. 3. The extended density fe for Example 1 using extension by zero (left) and continuous extension (right).

to the desired tolerance is to refine until the error in the local polynomial interpolation times the area of the box is within 
the tolerance on each leaf box.

For piecewise smooth fe , we saw in Section 4.1 that the bound (11) may be pessimistic. However, the analysis of that 
section offers little in terms of an a priori discretization strategy. If the above strategy for smooth fe is implemented, the 
accuracy of the resulting scheme is often not even competitive with a uniform grid. We consider the problem of efficient 
a priori adaptive discretization to be open in this setting but have empirically found the following scheme to compare 
favorably to uniform discretization in our tests: weight the error approximation using the size of the given leaf box as 
described above but using the area of the leaf box for boxes which intersect the boundary (where fe is less smooth) and 
using the sidelength of the leaf box otherwise. In this sense, we are more forgiving of the approximation error for boxes 
where fe is merely continuous.

It seems that in many situations an a posteriori discretization strategy would be more efficient in terms of accuracy per 
grid point. While this may be an intuitive statement, it is not clear whether an a posteriori scheme would be more efficient 
in terms of accuracy per flop because such a scheme may require several successive iterations. We do not attempt to answer 
this question here but emphasize that the issue with (11) is a matter of efficiency rather than correctness, i.e. if an a priori
bound is required, (11) provides one, it just may be an over-estimate.

6.2. Example 1

For Example 1, we choose a known, relatively smooth solution u given by

u(x) = sin(10(x1 + x2)) + x2
1 − 3x2 + 8 (55)

and calculate f analytically by direct differentiation, and g by evaluating u on ∂�. Fig. 3 shows heat maps of the corre-
sponding fe obtained by zero extension and by continuous extension. Example 1 is relatively simple on purpose, in order 
to test the validity of the analysis of the previous sections.

First, consider the question of super-convergence for a smooth extension fe . This is simple to test numerically as the 
formula (55) for u is smooth on R2. In Section 5, we noted that the boundary correction can be computed with two different 
types of boundary data. Let version 1 denote the boundary data obtained from ṽ and version 2 denote the boundary 
data obtained by integrating τ · g̃, where we have reused the notation of Section 5. We perform a convergence test on 
uniform trees for both versions 1 and 2. According to the analysis of the preceding sections, version 1 should display fourth 
order convergence for the potential and sub-fourth order convergence for the gradient, while version 2 should display 
super-convergence, i.e. fourth order for both the potential and gradient.

In Fig. 4, we see that the analysis is largely confirmed. While we cannot conclude decisively regarding the convergence 
order of the gradient for version 1, it is indeed fourth order for version 2. Note that the slope seems to taper off for the last 
point, which is likely due to the fact that one is approaching the accuracy of the QBX evaluation of the derivative. In terms 
of accuracy per grid point, version 2 is clearly superior to version 1.

Next, we consider the question of the convergence order using extension-by-zero and continuous extension with a layer 
potential. The analysis of Section 4.1 suggests that we should see second order convergence for the potential and first 
order convergence for the gradient using extension-by-zero. This should be improved to third order for the potential and 
second order for the gradient by using continuous extension. As a reminder, these rates are to be compared with the 
rates implied by the coarser error bound (11), which suggests that the extension-by-zero scheme would not converge and 
that the continuous extension scheme would be merely first order in the potential and derivative. To test the reasoning of 
Section 4.1, we performed a convergence test of the extension by zero and continuous extension methods on uniform trees.

The results are shown in Fig. 5, and confirm that the analysis of Section 4.1 gives a better sense of the convergence rate 
than a naïve application of the bound (11).

Next, we consider the question of adaptive grid refinement. An adaptive grid should be able to provide significant gains, 
especially for the nonsmooth fe . For the results presented here, we use an adaptive tree based on a priori error estimates, 
as described in the previous subsection. This refinement rule tends to place more boxes near the boundary because of the 
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Fig. 4. Example 1, smooth extension. Accuracy of versions 1 (green circles) and 2 (red diamonds) for the potential (left) and gradient (right).

Fig. 5. Example 1, convergence rates on a uniform tree. Accuracy of the potential (left) and gradient (right) versus the number of discretization nodes N�, 
using either extension-by-zero (green circles) or continuous extension (red diamonds).

Fig. 6. Example 1. An example adaptive tree for the continuously extended fe .

irregularity of fe across the boundary, as shown in Fig. 6. We only present results corresponding to continuous extension 
here, as our refinement rule did not work well with zero extension, and is not relevant in the case of the smooth fe since 
there is little difference between adaptive and uniform discretization in that case.
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Fig. 7. Example 1. Using continuous extension, a plot of the error in the potential (left) and error in the gradient (right) versus the number of discretization 
nodes N� , for both uniform (green circles) and adaptive trees (red diamonds).

Table 1
Box code timing information for Example 1 with continuous function extension and a uniform 
tree.

N� NV tV N�/tV NV /tV

2.9290e+03 1.6384e+04 3.0193e−02 9.7009e+04 5.4264e+05
1.1717e+04 6.5536e+04 4.4461e−02 2.6353e+05 1.4740e+06
4.6846e+04 2.6214e+05 1.2574e−01 3.7256e+05 2.0848e+06
1.8739e+05 1.0486e+06 3.9343e−01 4.7629e+05 2.6652e+06
7.4955e+05 4.1943e+06 1.4926e+00 5.0218e+05 2.8101e+06
2.9983e+06 1.6777e+07 7.3144e+00 4.0991e+05 2.2937e+06

Table 2
Box code timing information for Example 1 with continuous function extension and an adap-
tive tree.

N� NV tV N�/tV NV /tV

6.2928e+04 1.1685e+05 7.5608e−02 8.3229e+05 1.5454e+06
1.1291e+05 2.3666e+05 1.2941e−01 8.7251e+05 1.8287e+06
3.0310e+05 5.6781e+05 2.7364e−01 1.1077e+06 2.0750e+06
9.1144e+05 1.5124e+06 6.4442e−01 1.4144e+06 2.3468e+06
1.4207e+06 2.7318e+06 1.1932e+00 1.1906e+06 2.2895e+06
4.4043e+06 7.3749e+06 3.0303e+00 1.4534e+06 2.4337e+06

In Fig. 7, we see modest improvement in the accuracy of the potential and significant improvement in the accuracy of 
the gradient using adaptive discretization. We note that for the tests with adaptive grids much larger values of N� could be 
achieved. This is because the memory consumption of the volume integral code depends on NV , the total number of nodes 
in the box �B . The uniform tree rather inefficiently places many points outside of �, whereas the adaptive tree places 
relatively few points because the extended function is quite smooth outside of �, where it is harmonic.

We conclude this section on Example 1 by analyzing the run time performance of the box code and of the evaluation 
of layer potentials. Figures for the box code are given in Tables 1 and 2, and figures for the evaluation of layer potentials 
are given in Tables 3 and 4. tV denotes the time for the box code, tQ P denotes the time for QBX precomputation (forming 
the expansions for O(1) access to the field, as described above), and t Q E denotes the time for QBX evaluations at each 
node in the domain. Each of these times includes the time required to evaluate both the potential and the gradient. The 
performance is only reported for continuous extension; the results for extension by zero and smooth extension are similar.

There are a few points to highlight from Tables 1 and 2. We see that NV /tV is roughly constant for large NV , indicating 
that the FMM indeed scales linearly in terms of the total number of FMM nodes. One of the strengths of a box code is that 
this ratio is similar for uniform and adaptive trees. Further, the throughput is quite good, at about 2.5 million points per 
second. We include the ratio N�/tV because the number of grid points inside the domain seems to be the more natural 
figure of merit. For a uniform tree (Table 1), we have that N� is a fixed fraction of NV , so that N�/tV is some fraction of 
NV /T V ; here it is typically around 470 thousand points per second. In the adaptive case (Table 2), the nodes can be placed 
more intelligently inside the domain and we see that the throughput — in terms of N�/tV — is better than in the uniform 
case.
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Table 3
QBX timing information for Example 1 with continuous function extension and a uniform tree.

N� t Q P t Q E N�/(t Q P + t Q E ) N�/t Q E

2.9290e+03 1.1848e+00 1.3120e−03 2.4694e+03 2.2325e+06
1.1717e+04 1.1697e+00 3.2675e−03 9.9892e+03 3.5859e+06
4.6846e+04 1.1825e+00 1.2799e−02 3.9192e+04 3.6601e+06
1.8739e+05 1.2034e+00 5.4077e−02 1.4902e+05 3.4652e+06
7.4955e+05 1.1677e+00 1.8898e−01 5.5249e+05 3.9663e+06
2.9983e+06 1.1896e+00 7.4644e−01 1.5487e+06 4.0168e+06

Table 4
QBX timing information for Example 1 with continuous function extension and an adaptive 
tree.

N� t Q P t Q E N�/(t Q P + t Q E ) N�/t Q E

6.2928e+04 1.1912e+00 1.7972e−02 5.2042e+04 3.5014e+06
1.1291e+05 1.1744e+00 3.1084e−02 9.3665e+04 3.6325e+06
3.0310e+05 1.1708e+00 7.9357e−02 2.4245e+05 3.8195e+06
9.1144e+05 1.1733e+00 2.3131e−01 6.4889e+05 3.9404e+06
1.4207e+06 1.1770e+00 3.6280e−01 9.2264e+05 3.9159e+06
4.4043e+06 1.1733e+00 1.1130e+00 1.9264e+06 3.9572e+06

Tables 3 and 4 show that the run time for QBX is similar for volume nodes arranged in uniform or adaptive trees, as one 
might expect. If one only considers the cost of the evaluations, we see that the throughput, N�/tQ E , is roughly constant 
at about 3.9 million points per second. The precomputation time, t Q P , depends only on the number of boundary nodes 
M and is large relative to tQ E until N� is of the order of a few millions. When this precomputation time is included, the 
throughput, N�/(tQ P + tQ E), is still quite high, on the same order as the box code for large N� . Of course, for a boundary 
with many discretization nodes M , one expects this to no longer be the case.

6.3. Example 2

For Example 2, we choose an exact solution u with a sharp ridge along the x2 axis, given by

u(x) = sin(10(x1 + x2)) + x2
1 − 3x2 + 8 + e−500x2

1 . (56)

As before, we obtain a closed form formula for f by calculating the Laplacian of u. Observe that f has very sharp variations. 
This example was chosen on purpose to specifically illustrate and analyze the value of adaptive mesh refinement. As in 
Example 1, g is computed with arbitrary accuracy by evaluating u on ∂�. The function g also has sharp variations, and so 
does the volume integral. In order to better resolve the boundary data we thus use M = 14,208 boundary nodes in this 
example, as opposed to M = 9,280 in Example 1.

First, consider the question of super-convergence for a smooth extension fe . Let version 1 and version 2 of the boundary 
data be defined as in Example 1. We perform a convergence test on uniform trees for both versions 1 and 2. As before, 
version 1 should display fourth order convergence for the potential and sub-fourth order convergence for the gradient, 
while version 2 should display super-convergence. This is precisely what we see in Fig. 8. For each version, the initial 
convergence order is slow, likely a result of the irregularity of f . It is unclear what the eventual convergence order of the 
gradient is for version 1 but it is fourth order for version 2. As in Example 1, the accuracy of version 2 is much better.

Next, we consider the question of the convergence order using extension-by-zero and continuous extension with a layer 
potential. In Fig. 9, we plot the error for the potential and gradient for increasing N� on uniform trees with both extension-
by-zero and continuous extension. For this example, the two methods have similar error until N� is large because the 
irregularity in the solution is unresolved by the grid for small N�. Once N� is sufficiently large, we see that the conver-
gence rate for continuous extension is faster, though the specific rates are not as clear as they were for Example 1.

Fig. 9 also demonstrates that a uniform grid does a poor job of giving high accuracy for the gradient. We now test the 
effect of adaptive mesh refinement as in Example 1. Fig. 10 shows a representative adaptive tree for Example 2. The a priori
refinement strategy places many boxes near the irregularity in fe . Because the continuous extension is smooth outside of �, 
the effect of the “ridge” on the x2 axis does not extend far outside of the domain.

As in Example 1, the adaptive discretization strategy provides modest improvement in the accuracy of the potential 
(and eventually no improvement at all). An explanation for this is that the solution u is much smoother than f , so we 
greatly over-resolve u when we construct the tree with the goal of resolving f . In other words, the a priori refinement 
strategy is eventually less efficient than the uniform strategy in terms of the accuracy of the potential. In contrast, adaptive 
discretization provides significant gains in the accuracy of the gradient. This is because the gradient is less smooth and more 
difficult to resolve than u so that the additional boxes used to resolve f are not as wasteful. Note also that once again, for 
the tests with adaptive grids much larger values of N� could be achieved, for the same reasons as in Example 1 (Fig. 11).
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Fig. 8. Example 2, smooth extension. Accuracy of versions 1 (green circles) and 2 (red diamonds) for the potential (left) and gradient (right).

Fig. 9. Example 2, convergence rates on a uniform tree. Accuracy of the potential (left) and gradient (right) versus the number of discretization nodes N�, 
using either extension-by-zero (green circles) or continuous extension (red diamonds).

Fig. 10. Example 2. An example adaptive tree for the continuously extended fe .



20 T. Askham, A.J. Cerfon / Journal of Computational Physics 344 (2017) 1–22
Fig. 11. Example 2. Using continuous extension, a plot of the error in the potential (left) and error in the gradient (right) versus the number of discretization 
nodes N� , for both uniform (green circles) and adaptive trees (red diamonds).

Table 5
Box code timing information for Example 2 with continuous function extension and a uniform 
tree.

N� NV tV N�/tV NV /tV

2.9290e+03 1.6384e+04 1.0521e−01 2.7840e+04 1.5573e+05
1.1717e+04 6.5536e+04 4.5237e−02 2.5901e+05 1.4487e+06
4.6846e+04 2.6214e+05 1.1961e−01 3.9166e+05 2.1917e+06
1.8739e+05 1.0486e+06 3.9992e−01 4.6856e+05 2.6220e+06
7.4955e+05 4.1943e+06 1.4935e+00 5.0188e+05 2.8084e+06
2.9983e+06 1.6777e+07 7.0171e+00 4.2728e+05 2.3909e+06

Table 6
Box code timing information for Example 2 with continuous function extension and an adap-
tive tree.

N� NV tV N�/tV NV /tV

3.4204e+04 3.8032e+04 4.5255e−02 7.5581e+05 8.4039e+05
6.5547e+04 7.0480e+04 5.4312e−02 1.2069e+06 1.2977e+06
1.9972e+05 2.0987e+05 1.1204e−01 1.7826e+06 1.8732e+06
4.8924e+05 5.1256e+05 2.3064e−01 2.1212e+06 2.2223e+06
9.0490e+05 9.6006e+05 4.0450e−01 2.2371e+06 2.3735e+06
2.9398e+06 3.0676e+06 1.1827e+00 2.4857e+06 2.5937e+06

Table 7
QBX timing information for Example 2 with continuous function extension and a uniform tree.

N� t Q P t Q E N�/(t Q P + t Q E ) N�/t Q E

2.9290e+03 2.5967e+00 1.2099e−03 1.1274e+03 2.4209e+06
1.1717e+04 1.8191e+00 3.3716e−03 6.4292e+03 3.4752e+06
4.6846e+04 1.7931e+00 1.2859e−02 2.5940e+04 3.6431e+06
1.8739e+05 1.7918e+00 4.8408e−02 1.0183e+05 3.8710e+06
7.4955e+05 1.7931e+00 2.0054e−01 3.7597e+05 3.7377e+06
2.9983e+06 1.8273e+00 7.3797e−01 1.1688e+06 4.0629e+06

Finally, we present run time performance results as we did for Example 1 (Tables 5–8). The conclusions here are the 
same as the ones for Example 1. Observe in particular that the performance of the box code is nearly the same here as it 
was for Example 1, even though the trees used in this example are highly adaptive. This is one of the major advantages of 
the numerical method we present in this article.

7. Conclusion

We have demonstrated that continuous global function extension constructed as the solution of an exterior Laplace prob-
lem provided an effective framework to apply adaptive FMM based Poisson solvers to problems with complex geometries. 
We found that the desirable properties of the FMM are kept intact with such a method: the amount of work still scales 



T. Askham, A.J. Cerfon / Journal of Computational Physics 344 (2017) 1–22 21
Table 8
QBX timing information for Example 2 with continuous function extension and an adaptive 
tree.

N� t Q P t Q E N�/(t Q P + t Q E ) N�/t Q E

3.4204e+04 2.1972e+00 1.1984e−02 1.5483e+04 2.8541e+06
6.5547e+04 2.1816e+00 2.5388e−02 2.9700e+04 2.5818e+06
1.9972e+05 2.1215e+00 5.0410e−02 9.1958e+04 3.9620e+06
4.8924e+05 2.0789e+00 1.2520e−01 2.2197e+05 3.9077e+06
9.0490e+05 1.8968e+00 2.2485e−01 4.2651e+05 4.0245e+06
2.9398e+06 2.1047e+00 7.7307e−01 1.0216e+06 3.8028e+06

linearly with the number of degrees of freedom in the computational domain and is competitive with classical FFT-based 
solvers in terms of work per grid point, despite the flexibility of adaptive mesh refinement. This holds even for multiply 
connected domains with irregular boundaries. The adaptive refinement capability of our new solver plays a crucial role in 
guaranteeing an efficient use of the degrees of freedom in the system, and in obtaining high accuracy for the gradient of 
the potential. Finally, for the particular situations in which a smooth global extension is readily available without resort-
ing to numerical computation, as is for example the case of an extension by zero in plasma physics applications [29], we 
have presented a numerical method which leads to the same order of convergence for the gradient of the potential as the 
potential itself. In our implementation of the FMM, this translates to 4th order convergence for both the potential and the 
gradient, and the order of convergence can be increased by choosing higher order basis functions [14].

Of course, when continuous extension is employed, the convergence order of the method is not particularly high. We 
demonstrated above that adaptive refinement can help improve the accuracy per degree of freedom in this case, particularly 
for the gradient, but the low order of accuracy is really a result of compromise. The method of this paper emphasizes ease of 
use, domain flexibility, speed, and compatibility with adaptive refinement strategies. To achieve these goals we have chosen 
an embedded boundary method (for ease of use and domain flexibility) built on a box code (for speed and handling highly 
adaptive grids). Because it is an embedded boundary method, high order accuracy is more difficult to achieve. However, the 
method asks for very little from the user. Only a parametric description of the boundary and a method for evaluating f
accurately in the domain must be provided. In particular, no special quadrature rules are required, as is the case for a 
boundary fitted mesh, and there are no requirements on the accuracy of derivatives of the user-provided f . As noted in 
Section 4.2, when accurate derivatives of f are available, an extension computed as the solution of a polyharmonic equation 
would result in a higher order method.

The capabilities of our solver can be extended in a number of ways. First, C1 function extension provided by the solution 
of an exterior biharmonic problem would lead to faster convergence for the solution and gradient than we have obtained 
with C0 extension, provided that accurate values for the gradient of f are available on the boundary. Second, one could 
allow for boundaries with corners and which nearly self-intersect. Numerical tools addressing these two challenges have 
recently been developed, but have not yet been implemented in the Poisson context. Fortunately, the overall method is 
largely agnostic as to how the function extension and harmonic correction are computed, so that new methods may be 
swapped in when they become available. Finally, much of the technology and analysis required for this work extends to 
three dimensions in a straightforward manner. This is the subject of ongoing work, with progress to be reported at a later 
date.
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