
Journal of Computational Physics 408 (2020) 109309
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Meta-learning pseudo-differential operators with deep neural
networks

Jordi Feliu-Fabà a, Yuwei Fan b,∗, Lexing Ying c

a ICME, Stanford University, Stanford, CA 94305, United States of America
b Department of Mathematics, Stanford University, Stanford, CA 94305, United States of America
c Department of Mathematics and ICME, Stanford University, Stanford, CA 94305, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 June 2019
Received in revised form 4 November 2019
Accepted 3 February 2020
Available online 6 February 2020

Keywords:
Deep neural networks
Convolutional neural networks
Nonstandard wavelet form
Meta-learning
Green’s functions
Radiative transfer equation

This paper introduces a meta-learning approach for parameterized pseudo-differential
operators with deep neural networks. With the help of the nonstandard wavelet form,
the pseudo-differential operators can be approximated in a compressed form with a
collection of vectors. The nonlinear map from the parameter to this collection of vectors
and the wavelet transform are learned together from a small number of matrix-vector
multiplications of the pseudo-differential operator. Numerical results for Green’s functions
of elliptic partial differential equations and the radiative transfer equations demonstrate
the efficiency and accuracy of the proposed approach.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Many physical models for scientific and engineering applications can be written in a general form

Lηu(x) = f (x), x ∈ � ⊂ Rd (1.1)

for a domain � with appropriate boundary conditions, where Lη is often a partial differential or integral operator pa-
rameterized by a parameter function η(x). Solving for u(x) for a given f (x) amounts to representing the inverse operator
(sometimes also known as the Green’s function) Gη = L−1

η either explicitly or implicitly via an efficient algorithm. Repre-
senting Gη , even if implicitly, can be computationally challenging, especially for multidimensional problems. The past few
decades have witnessed steady progresses in developing efficient algorithms for this.

Problem statement This paper is concerned with a more ambitious task: representing the nonlinear map from η to Gη

M : η → Gη = L−1
η , (1.2)

when the operator Gη is a pseudo-differential operator (PDO) [60]. Although Lη and Gη can be linear operators, this map
M from η to Gη is highly nonlinear.

* Corresponding author.
E-mail addresses: jfeliu@stanford.edu (J. Feliu-Fabà), ywfan@stanford.edu (Y. Fan), lexing@stanford.edu (L. Ying).
https://doi.org/10.1016/j.jcp.2020.109309
0021-9991/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2020.109309
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:jfeliu@stanford.edu
mailto:ywfan@stanford.edu
mailto:lexing@stanford.edu
https://doi.org/10.1016/j.jcp.2020.109309
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2020.109309&domain=pdf

2 J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309
Background In the recent years, deep learning has become the most versatile and effective tool in artificial intelligence
and machine learning, witnessed by impressive achievements in computer vision [36,61,28], speech and natural language
processing [29,56,51,57,11], drug discovery [43] or game playing [54,15,58]. Recent reviews on deep learning and its impacts
on other fields can be found in for example [38,53]. At the center of deep learning, the model of deep neural networks (NNs)
provides a flexible framework for approximating high-dimensional functions, while allowing for efficient training and good
generalization properties in practice [42,47].

More recently, several groups have started applying NNs to partial differential equations (PDEs) and integral equa-
tions (IEs) arising from physical systems. In one direction, the NN model has been used to approximate solutions of
high-dimensional PDEs [37,55,14,49,4,6,13,25,32,41]. In a somewhat orthogonal direction, the NNs have been utilized to
approximate the high-dimensional parameter-to-solution of various PDEs and IEs [31,26,18,17,19,33,25,2,39,20].

Another topic from machine learning that is particularly relevant to this work is meta-learning or learning-to-learn [52,
3,27,21,59]. A meta-learning system learns to produce learning models for new tasks and scenarios from their metadata
with zero or minimum amount of new data, by leveraging the common structure among different tasks. Due to the low
requirements on new data points, meta-learning has gained a lot of attention in recent years in applications such as vision
and reinforcement learning.

Main idea Following these recent advances in applying NNs to physical models, this paper takes a deep learning approach
for representing the map in Eq. (1.2). The most straightforward solution would be to take a supervised learning approach,
i.e., trying to learn the map M : η → Gη from a large set of training data {(ηi, Gηi)}i . However, since it is often difficult or
even impossible to compute and store Gηi due to the enormous discretization size, this straightforward supervised learning
approach is not practical for Eq. (1.2).

Without explicit access to Gη , we take a meta-learning approach, i.e., learning to produce, for each new η, an NN
approximation to Gη . To do this, we are faced with two key difficulties.

• How should we represent the output Gη for an arbitrary input η?
• How should we represent the training data?

To address the first question, Gη should be represented in a compressed form. For pseudo-differential operators, several
compressed representations exist, including hierarchical matrices [22–24], discrete symbol calculus [10], etc. In this paper,
we choose to represent Gη with the nonstandard wavelet form introduced in [5]. The main advantage of the nonstandard
wavelet form is that the nonzero entries of this compressed representation are simply organized into a small number of
vectors. More precisely,

Gη ≈ WS[Cη]W T,

where W is a redundant form of a wavelet transform, Cη stands for the collection of vectors that contain the nonzero
entries of the compressed form, and S is a certain operator that generates a sparse matrix from the vector collection Cη .
Compared to [5], a key difference is that the current approach allows for W to be fine-tuned for the map M.

To address the second question, instead of explicitly representing Gηi , the training data consists of samples of the form

(ηi, { f i j, uij}),
where uij = Gηi f i j . For a fixed ηi , such data can be obtained by solving the equation Lηi ui j = f i j for each f i j , possibly with
a fast algorithm.

Putting these two pieces together, the meta-learning approach of this paper learns two following key objects from the
training data of form {(ηi, { f i j, uij} j)}i :

• a map from η to the vector collection Cη ,
• the M-dependent wavelet transform W .

Once trained, for a given test input η the architecture calculates Cη and returns a linear NN that implements WS[Cη]W T ≈
Gη .

Organization The rest of this paper is organized as follows. Section 2 briefly reviews the nonstandard wavelet form, used for
representing Gη . In Section 3, the NN architecture of the meta-learning approach is discussed in detail. Section 4 applies the
proposed NN to the Green’s function of elliptic PDEs, in both the Schrödinger form and the divergence form. The application
to the radiative transfer equation is presented in Section 5.

2. Nonstandard wavelet form

This section summarizes the nonstandard wavelet form proposed in [5]. To make things concrete, compactly supported
orthonormal Daubechies wavelets [8] are used as the basis functions as an example.

J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309 3
2.1. Wavelet transform

In the one-dimensional multiresolution analysis, one starts by defining a scaling function ϕ(x) that generates, through
dyadic translations and dilations, a family of functions

ϕ
(�)

k (x) = 2�/2ϕ(2�x − k), � = 0,1,2, . . . , k ∈Z. (2.1)

For each scale �, the functions {ϕ(�)

k } form a Ritz basis for a space V� , which satisfies a nested relationship V� ⊂ V�+1. This
nested property of {V�} implies the following dilation relation of the scaling function

ϕ(x) = √
2
∑
i∈Z

hiϕ(2x − i). (2.2)

For the Daubechies’ wavelets [8], the scaling function ϕ(x) has a compact support [0, 2p − 1] for a given positive integer p
and therefore the coefficients {hi} are only nonzero for i = 0, . . . , 2p − 1. The scaling function also satisfies the orthonormal
condition∫

R

ϕ(x − a)ϕ(x − b)dx = δa,b, ∀a,b ∈Z, (2.3)

which leads to an orthonormal condition for the coefficients {hi}∑
i∈Z

h2
i = 1,

∑
i∈Z

hihi+2m = 0, m ∈Z\{0}. (2.4)

Given the scaling function ϕ(x), another important component of the multiresolution analysis is the wavelet function
ψ(x), defined by

ψ(x) = √
2
∑
i∈Z

giϕ(2x − i), (2.5)

where gi = (−1)1−ih1−i for i ∈ Z. A simple calculation shows that the support of ψ(x) is [−p + 1, p] and {gi} is nonzero
only for i = −2p + 2, . . . , 1, based on the support of the ϕ and the nonzero entries pattern of {hi}. The Daubechies wavelets
are then defined as

ψ
(�)

k (x) = 2�/2ψ
(

2�x − k
)

, � = 0,1,2, . . . , k ∈Z. (2.6)

For a function v(x) ∈ L2(R), its scaling and wavelet coefficients d(�)

k and v(�)

k are defined as the inner product with the
scaling functions and the wavelets

v(�)

k :=
∫

v(x)ϕ(�)

k (x)dx, d(�)

k :=
∫

v(x)ψ(�)

k (x)dx. (2.7)

Using the recursive relationships of the scaling function Eq. (2.2) and the wavelet function Eq. (2.5), one obtains a recursive
relationship of the scaling and wavelet coefficients

v(�)

k =
∑
i∈Z

hi v(�+1)

2k+i , d(�)

k =
∑
i∈Z

gi v(�+1)

2k+i . (2.8)

By defining v(�) =
(

v(�)

k

)
k∈Z and d(�) =

(
d(�)

k

)
k∈Z , Eq. (2.8) can be written in a matrix form

v(�) =
(

W (�)
s

)T
v(�+1), d(�) =

(
W (�)

w

)T
v(�+1), (2.9)

where the operators W (�)
s and W (�)

w : �2(Z) → �2(Z) are banded with a bandwidth 2p due to the support of {hi} and {gi}.
By introducing the orthogonal operator W (�) =

(
W (�)

w W (�)
s

)
, Eq. (2.9) can be rewritten as(

d(�)

v(�)

)
=

(
W (�)

)T
v(�+1), v(�+1) = W (�)

(
d(�)

v(�)

)
. (2.10)

The procedure for computing the wavelet and scaling coefficients can be illustrated in the following diagram

· · · −→ v(�) −→ v(�−1) −→ v(�−2) −→ · · · −→ v(2) −→ v(1) −→ v(0)

↘ ↘ ↘ ↘ ↘ ↘ ↘
d(�) d(�−1) d(�−2) · · · d(2) d(1) d(0)

. (2.11)

4 J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309
The discussion until now is concerned with the wavelets on R. It is straightforward to extend it to the functions defined
on a finite domain with periodic boundary condition. If the function v(x) is periodic on a finite domain, for instance, [0, 1],
then the only modification is that all the shifts and scaling in the x variable are done modulus the integer. When working
with periodic functions, the procedure in Eq. (2.11) usually stops at a coarse level L0 = O (log2(p)) before the wavelet and
scaling functions start to overlap itself.

· · · −→ v(�+1) −→ v(�) −→ v(�−1) −→ · · · −→ v(L0)

↘ ↘ ↘ ↘ ↘
d(�+1) d(�) d(�−1) · · · d(L0)

. (2.12)

2.2. Nonstandard wavelet form for integral operator

Let A be an integral operator with kernel a(x, y), applied to periodic functions defined on [0, 1], i.e.,

u = Av, equivalently u(x) =
∫

a(x, y)v(y)dy. (2.13)

Denote by A(L) =
(

A(L)

k1,k2

)
∈R2L×2L

the Galerkin projection of A to the space V L , for a sufficiently deep level L, i.e.

A(L)

k1,k2
=

∫ ∫
ϕ

(L)

k1
(x)a(x, y)ϕ

(L)

k2
(y)dx dy.

The nonstandard form described in [5] is a remarkably efficient way to compress the matrix A(L) .
The main step for the nonstandard form is to treat A(L) as an image and use the 2D multiresolution analysis

D(�)

1,k1,k2
:=

∫∫
ψ

(�)

k1
(x)a(x, y)ψ

(�)

k2
(y)dx dy, D(�)

2,k1,k2
:=

∫∫
ψ

(�)

k1
(x)a(x, y)ϕ

(�)

k2
(y)dx dy,

D(�)

3,k1,k2
:=

∫∫
ϕ

(�)

k1
(x)a(x, y)ψ

(�)

k2
(y)dx dy, A(�)

k1,k2
:=

∫∫
ϕ

(�)

k1
(x)a(x, y)ϕ

(�)

k2
(y)dx dy,

(2.14)

for � = L0, . . . , L − 1, and k1, k2 = 0, . . . , 2� − 1. For convenience, these coefficients are organized into the matrix form as

A(�) = (A(�)

k1,k2
)k1,k2=0,...,2�−1, D(�)

j = (D(�)

j,k1,k2
)k1,k2=0,...,2�−1, j = 1,2,3. (2.15)

In this setting, a similar recursive relation to Eq. (2.10) can be obtained(
D(�)

1 D(�)
2

D(�)
3 A(�)

)
= (W (�))T A(�+1)W (�), � = L0, . . . , L − 1. (2.16)

If A is a Calderon-Zygmund operator, the entries of the matrices D(�)
j with j = 1, 2, 3 decay rapidly away from the diagonal.

For a prescribed relative accuracy ε , each matrix D(�)
j can be approximated by a band matrix by truncating at a band

of width O (log(1/ε)). Since the bandwidth is independent of the specific choices of �, j, or the mesh size N = 2L , the
nonstandard form of A stores only O (N) nonzero entries. The readers are referred to [5] for more details. With a slight
abuse of notation, the matrices D(�)

j are assumed to be pre-truncated in what follows.

One can assemble all the matrices D�
j and A(L0) together, by defining the matrix S(L) in a recursive way as

S(L0) =
(

D(L0)
1 D(L0)

2
D(L0)

3 A(L0)

)
, S(�+1) =

⎛⎝ D(�+1)
1 D(�+1)

2 0
D(�+1)

3 0 0
0 0 S(�)

⎞⎠ , � = L0, . . . , L − 1. (2.17)

The matrix S := S(L) is the nonstandard form of the matrix A = A(L) satisfying

A = W SW T. (2.18)

Here W is the extended wavelet transform matrix, defined in the recursive form as

T (L0) = W (L0), T (�+1) =
(

W (�+1) W (�+1)
s T (L0)

)
, � = L0, . . . , L − 1, W := T (L). (2.19)

Fig. 1 illustrates the matrices W and S along with the formulation Eq. (2.18).
To clarify the notations, we denote by W (�)

s and W (�)
w the transform matrices defined in Eq. (2.9) for the scaling and

wavelet parts on level �, respectively. W (�) = (W (�)
w W (�)

s) is the wavelet transform matrix at the level �.

J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309 5
Fig. 1. Illustration of A = W SW T with L0 = 0 and L = 3. The sparsity pattern of S is marked in gray.

2.3. Matrix-vector multiplication in the nonstandard form

With a Galerkin discretization of Eq. (2.13) at level L, the matrix-vector multiplication takes the form

u(L) = A(L)v(L). (2.20)

The nonstandard form allows for accelerating the evaluation of Eq. (2.20). Using the nonstandard form A(L) = W SW T

obtained above, the matrix-vector multiplication

u(L) = W SW Tv(L) (2.21)

can be split into four steps:

1. A(L) → S: generate the nonstandard form S from the matrix A(L) or the kernel a(x, y);
2. v(L) → v̂ := W T v(L): apply (forward) wavelet transform on v(L) to get v̂;
3. û := S v̂: evaluate the matrix-vector multiplication in the nonstandard form;
4. û → u(L) := W û: apply inverse wavelet transform on û to obtain u(L) .

The first step is computed using Eq. (2.16) if the matrix A(L) is given. The second step follows Eq. (2.10). The third step can
be written as(

w(�)

s(�)

)
=

(
D(�)

1 D(�)
2

D(�)
3 D(�)

4

)(
d(�)

v(�)

)
, (2.22)

where D(�)
4 = 0 for � = L0 + 1, . . . , L − 1 and D(L0)

4 = A(L0) . The fourth step is essentially an inverse wavelet transform,
implemented as

u(L0) = 0, u(�+1) = W (�)

(
w(�)

s(�) + u(�)

)
, � = L0, . . . , L − 1. (2.23)

A step-by-step description of these four steps are summarized in Algorithm 1.

2.4. The multidimensional case

The matrix-vector multiplication in the nonstandard form can be easily extended to the multidimensional case with the
help of multidimensional orthogonal wavelets (see [44] for more details). For instance, in the two-dimensional setting, one
defines at each scale � three different types of wavelets of the form

ψ
(�)

1,k(x, y) = ϕ
(�)

k1
(x)ψ(�)

k2
(y), ψ

(�)

2,k(x, y) = ψ
(�)

k1
(x)ϕ(�)

k2
(y), ψ

(�)

3,k(x, y) = ψ
(�)

k1
(x)ψ(�)

k2
(y), (2.24)

with k = (k1, k2) ∈Z2. Using these three types of wavelets, the transform matrix at each scale � used in Eq. (2.10) is rede-

fined to be W (�) =
(

W (�)
w,1 W (�)

w,2 W (�)
w,3 W (�)

s

)
. The 2D analog of Eq. (2.10) contains three types of wavelet coefficients⎛⎜⎜⎜⎝

d(�)
1

d(�)
2

d(�)
3

v(�)

⎞⎟⎟⎟⎠ =
(

W (�)
)T

v(�+1), v(�+1) = W (�)

⎛⎜⎜⎜⎝
d(�)

1
d(�)

2
d(�)

3
v(�)

⎞⎟⎟⎟⎠ . (2.25)

6 J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309
Algorithm 1 Compute u = Av using the nonstandard form of the wavelet transform.

Require: A(L) = A, v(L) = v , 0 ≤ L0 < L;
Ensure: u = u(L);

� Step 1: generate nonstandard form of A(L)

1: for � from L − 1 to L0 by −1 do

2:

(
D(�)

1 D(�)
2

D(�)
3 A(�)

)
= (W (�))T A(�+1)W (�)

3: end for

� Step 2: forward wavelet transform on v(L)

4: for � from L − 1 to L0 by −1 do

5:

(
d(�)

v(�)

)
= (W (�))T v(�+1)

6: end for

� Step 3: matrix-vector multiplication
7: D(�)

4 = 0 for � = L0 + 1, · · · , L − 1 and D(L0)
4 = A(L0)

8: for � from L0 to L − 1 do

9:

(
w(�)

s(�)

)
=

(
D(�)

1 D(�)
2

D(�)
3 D(�)

4

)(
d(�)

v(�)

)
10: end for

� Step 4: Inverse wavelet transform
11: u(L0) = 0
12: for � from L0 to L − 1 do

13: u(�+1) = W (�)

(
w(�)

s(�) + u(�)

)
14: end for
15: return u = u(L)

Similarly, the recursive relation Eq. (2.16) can be extended as well⎛⎜⎜⎜⎝
D(�)

1 D(�)
2 D(�)

3 D(�)
4

D(�)
5 D(�)

6 D(�)
7 D(�)

8
D(�)

9 D(�)
10 D(�)

11 D(�)
12

D(�)
13 D(�)

14 D(�)
15 A(�)

⎞⎟⎟⎟⎠ = (W (�))T A(�+1)W (�), � = L0, . . . , L − 1, (2.26)

where D(�)
j , j = 1, . . . , 15 are all sparse matrices with only O (4�) non-negligible entries in each. The matrix-vector multi-

plication follows the steps of Algorithm 1, with these necessary changes.

3. Meta-learning approach

The plan is to apply the nonstandard form to the operator Gη in Eq. (1.2)

u = Gη f , u(x) =
∫

gη(x, y) f (y)dy. (3.1)

With a slight abuse of notations, the same letters are used to denote the discretizations. The discrete version of Eq. (3.1)
takes the form

u = Gη f , u, f , η ∈ RN and Gη ∈RN×N , (3.2)

with N = 2L . The main goal of this paper is to construct a neural network to learn the map η → Gη .
Following Eq. (2.18) and applying the wavelet transform to the matrix Gη leads to

Gη ≈ W SηW T, (3.3)

where W is the extended wavelet transform matrix, independent of the parameter η. Since each block of matrix Sη is a
band matrix, the nonzero entries of each block can be represented by a set of vectors. Let us define C (�)

η , of size 2� × nc , to
be the collection of these vectors of Sη at level �, with nc dependent on the bandwidth and �. By introducing the collection
of vectors Cη := {C (�)

η }�=L0,...,L−1, Sη is uniquely determined by Cη , i.e.,

Sη ≡ S[Cη]
for a fixed embedding operator S determined by the sparsity pattern of Sη .

Given a set of training samples of the form

(ηi, { f i j, uij}), (3.4)

where uij = Gηi f i j can be obtained by solving Lηi ui j = f i j with right hand side f i j , the meta-learning approach first learns
both the map η → Cη and the wavelet transform matrix W . Once they are ready, given any new η, Gη can be approximated
by evaluating the map η → Cη and representing (3.3) in an NN form.

3.1. Neural network architecture

Using the factorization of Gη in Eq. (3.3), one can factorize uij = Gηi f i j as

uij ≈ W Sη W T f i j. (3.5)
i

J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309 7
Algorithm 2 Neural network architecture for meta-learning u = Gη f .

Require: f (L) = f , η(L) = η, α1, α2 ∈N;
Ensure: u;
� Module 1: Learn the map η → Sη

1: for � from L − 1 to L0 by −1 do
2: C (�)

η = ConvNet[�, α1, ncnn](η)

3: end for
4: Generate D(�)

j , j = 1, 2, 3, � = L0, . . . , L − 1 and A(L0) from C (�)
η , � = L0, . . . , L − 1

� Module 2: forward wavelet transform on v(L)

5: v(L) = f (L)

6: for � from L − 1 to L0 by −1 do
7: (d(�), v(�)) = FWT[α2](v(�+1))

8: end for

� Module 3: matrix-vector multiplication in the nonstandard form
9: D(�)

4 = 0 for � = L0 + 1, · · · , L − 1 and D(L0)
4 = A(L0)

10: for � from L0 to L − 1 do

11:

(
w(�)

s(�)

)
=

(
D(�)

1 D(�)
2

D(�)
3 D(�)

4

)(
d(�)

v(�)

)
12: end for

� Module 4: Inverse wavelet transform
13: u(L0) = 0
14: for � from L0 to L − 1 do
15: u(�+1) = IWT[α2]([w(�), s(�) + u(�)])
16: end for
17: Average over the channel direction of u(L) to give u;
18: return u

Similar to the matrix-vector multiplication in Section 2.3 of the nonstandard form, we propose a neural network for meta-
learning Eq. (3.5) with four modules:

1. η → Sη: a module learns the map η → Cη and then generates the banded sparse matrix Sη from Cη (denoted as
Sη = S[Cη]);

2. v(L) → v̂ := W T v(L): a module applies the forward wavelet transform to v(L) to generate v̂;
3. û := Sη v̂: a module evaluates the matrix-vector multiplication in the nonstandard form;
4. û → u(L) := W û: a module applies the inverse wavelet transform on û to generate u(L) .

Instead of computing Cη from the full operator Gη as described in Section 2.3. the first module forms Cη directly from
the parameter η using a deep NN. This module can be split into two steps: (1) carrying out the map η → C (�)

η for each scale
�; (2) constructing the nonstandard form Sη from Cη := {C (�)

η }�=L0,...,L−1. The NN architecture for the map η → C (�)
η is often

problem-dependent. For many applications, including the ones to be considered in Sections 4 and 5, the problem is often
translation-invariant, i.e., for any translation operator T ,

u = Gη f implies (T u) = G(Tη)(T f). (3.6)

For such problems, a convolutional NN is often used for its efficiency and robustness.
The second and fourth modules perform the forward and inverse wavelet transforms (as in Section 2.3), respectively, for

a specific wavelet basis. The selection of an effective wavelet basis is often problem-dependent. The capability of learning a
problem-dependent wavelet transform from data is essential for the accuracy of the NN architecture.

Combining these four modules results in the architecture summarized in Algorithm 2. An illustration is given in Fig. 2.
Below we describe details of the layers and parameters used in this architecture.

Implementation details The input, output, and intermediate data of the NN architecture are all represented with 2-tensors.
For a tensor of size N × α, we refer to N as the spatial dimensions and α as the channel dimension. The main tool is
the convolutional layer. Given an input tensor ξ of size N × α, the convolutional layers outputs a tensor ζ of size N ′ × α′
obtained via

ζi,c′ = φ

⎛⎝is+w−1∑
j=is

α−1∑
c=0

W j;c′,cξ j,c + bc′

⎞⎠ , i = 0, . . . , N ′ − 1, c′ = 0, . . . ,α′ − 1, (3.7)

where w is the window size, s is the stride and φ is the activation function, usually chosen to be a linear function, a rectified-
linear unit (ReLU) function, or a sigmoid function. We denote this convolutional layer as

ζ = Conv1d[α′, w, s, φ](ξ). (3.8)

8 J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309
Fig. 2. Illustration of the neural network architecture from Algorithm 2, with input vectors η and f and output vector u. Each of the four modules in
Algorithm 2 is represented by blocks with dashed contours. From left to right, the map η → Sη is the blue block, the forward wavelet transform applied
to f is the red block, the sparse matrix-vector multiplication with Sη is the transparent block, and the inverse wavelet transform is the green block. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The basic building blocks and layers used in Algorithm 2 are listed below.

• η → C (�)
η : C (�)

η = ConvNet[�, α, ncnn](η). As discussed above, it is often a convolutional NN if the system Eq. (3.1) is
translation invariant. Since the spatial size of η is greater than that of C (�)

η , ConvNet[�, α, ncnn] consists of ncnn convo-
lutional layers and several downsampling or pooling layers.

• Forward wavelet transform at level �: (d(�), v(�)) = FWT[α](v(�+1)). This is the NN representation of the first equation
in Eq. (2.10). It is implemented as f (�) = Conv1d[2α, 2p, 2, id](v(�)), where the first α and the last α channels of f (�)

are assigned to d(�) and v(�) , respectively.
• Inverse wavelet transform at level �: u(�+1) = IWT[α]([w(�), s(�)]). This is the NN representation of the second equation

in Eq. (2.10). The expression [w(�), s(�)] stands for concatenating the 2-tensors w(�) and s(�) of size 2(�) × α to a
2-tensor of size 2(�) × 2α along the channel dimension. This layer first applies the inverse transform, implemented by
Conv1d[2α, p, 1, id], and then reshapes the output of size 2� × 2α to a 2-tensor of size 2�+1 × α by a column-first
ordering.

The generation of D(�)
j and A(L0) from C�

η in Line 4 and the matrix-vector multiplication in Line 11 of Algorithm 2 require
some discussion. Fig. 3 illustrates two approaches for evaluating the matrix-vector multiplication of a band matrix whose
nonzero entries are stored in a set of vectors. The left figure corresponds to the case in Algorithm 2, while the right one is
used in the actual implementation. To avoid the copying and shifting of d(�) and v(�) , it is convenient to set α2 = α1 = α.
Though there are slightly more NN parameters in this case, this implementation change allows for a more flexible NN that
can learn faster.

J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309 9
Fig. 3. Two approaches to evaluate the multiplication of a band matrix (stored with vectors) with a vector. The left figure corresponds to the case in
Algorithm 2 and the right one is used in the implementation. The symbol � stands for element-wise multiplication.

3.2. The multidimensional case

Let us focus on the 2D case. The input, the output and the intermediate data are all 3-tensors of size N1 × N2 ×α, where
N = (N1, N2) is the spatial dimension and α is the channel dimension. The convolutional layer takes the form

ζi,c′ = φ

⎛⎝i1s+w−1∑
j1=i1s

i2s+w−1∑
j2=i2s

α−1∑
c=0

W j;c′,cξ j,c + bc′

⎞⎠ , i1 = 0, . . . , N ′
1 − 1, i2 = 0, . . . , N ′

2 − 1, c′ = 0, . . . ,α′ − 1, (3.9)

where the input ξ is of size N1 × N2 ×α and the output ζ is of size N ′
1 × N ′

2 ×α′ . Here, the same stride s and window size
w are used in both dimensions. We denote this convolutional layer as

ζ = Conv2d[α, w, s, φ](ξ). (3.10)

Algorithm 2 can be easily extended to the 2D case, following the same way that Algorithm 1 was extended in Section 2.4.
Since there are three different types of wavelets in 2D, the layers in Algorithm 2 are redefined as follows:

• η → C (�)
η module: C (�)

η = ConvNet[�, α, ncnn](η). This module is often a two-dimensional convolutional NN with several
downsampling or pooling layers.

• Wavelet transform at level �: (d(�)
1 , d(�)

2 , d(�)
3 , v(�)) = FWT[α](v(�+1)). This is implemented using f (�) = Conv2d[4α, 2p, 2,

id](v(�)). The first, second, third and last α channels of f (�) are assigned to d(�)
1 , d(�)

2 , d(�)
3 and v(�) , respectively.

• Inverse wavelet transform at level �: u(�+1) = IWT[α]([w(�)
1 , w(�)

2 , w(�)
3 , s(�)]. This is implemented by first computing

Conv2d[4α, p, 1, id]([d(�)
1 , d(�)

2 , d(�)
3 , v(�) + u(�)]), and then reshaping the output of size 2� × 2� × 4α to a 3-tensor of

size 2�+1 × 2�+1 × α. The reshape operation is performed as follows: (1) reshape the output to a 5-tensor of size
2� × 2� × 2 × 2 ×α by splitting the last dimension; (2) permute the second and third dimensions to obtain a 5-tensor of
size 2� × 2 × 2� × 2 × α; (3) group the first and second dimensions, and the third and fourth dimensions, respectively,
to obtain the resulting 3-tensor of size 2�+1 × 2�+1 × α.

4. Elliptic partial differential equations

This section applies the meta-learning approach described in Section 3 to the Green’s functions of elliptic PDEs, both in
the Schrödinger form and in the divergence form.

4.1. Schrödinger form

Consider the equation

−
u(x) + η(x)u(x) = f (x), x ∈ � = [0,1]d, (4.1)

with a periodic boundary condition, where η(x) > 0 is the potential and f (x) is the source term. Following the notations of
Section 1,

Lη = −
 + η(x), Gη = L−1
η , u = Gη f . (4.2)

Since the problem Eq. (4.1) is translation-invariant due to the periodic boundary condition, the map η → C (�)
η can be

represented with a convolutional NN. In what follows, we first derive the explicit dependence of C (�)
η on η using a linear

perturbative analysis and then report some numerical studies.

Mathematical analysis When η is close to a fixed homogeneous background η0 > 0, it is convenient to write

Lη = L0 − Eη, L0 = −
 + η0, Eη = diag (−η + η0). (4.3)

10 J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309
Let G0 = L−1
0 be the Green’s function of L0 with the periodic boundary condition. Using the Neumann series for the resolvent

(I − G0 Eη)−1 with |η(x) − η0| sufficiently small, one can write the Green’s function Gη as a perturbative expansion

Gη = (L0 − Eη)−1 = G0 + G0 EηG0 + G0 EηG0 EηG0 + (4.4)

For sufficiently small |η(x) − η0|, the operator Gη can be approximated by its linear part as

Gη ≈ G0 + G0 EηG0. (4.5)

Let g0(x) and gη(x) be the kernel of G0 and Gη , respectively. Since G0 is the Green’s function of −
 + η0 with the
periodic boundary condition, the kernel g0 is translation-invariant, i.e., g0(x, y) = g0(x − y). The wavelet-wavelet coefficients
of Gη at level � take the form

D(�)

1,k1,k2
=

∫∫
ψ

(�)

k1
(x)gη(x, y)ψ

(�)

k2
(y)dx dy

≈
∫∫

ψ
(�)

k1
(x)g0(x − y)ψ

(�)

k2
(y)dx dy +

∫∫∫
ψ

(�)

k1
(x)g0(x − z)(η(z) − η0)g0(z − y)ψ

(�)

k2
(y)dx dy dz

=
∫∫

ψ
(�)

k1
(x)g0(x − y)ψ

(�)

k2
(y)dx dy +

∫
ψ̃

(�)

k1
(z)ψ̃(�)

k2
(z)(η(z) − η0)dz,

(4.6)

where ψ̃(�)

k (z) := (g0 ∗ ψ
(�)

k)(z). For a fixed diagonal of D�
1 with k2 = k1 + c for a constant c, Eq. (4.6) states that the map

from η to D�
1,k1,k1+c for all possible k1 is simply a convolution with an addition of a term independent of η, which can be

simply represented by the Conv1d layer in Eq. (3.7). It is straightforward to extend the conclusion to D(�)

j,k1,k2
, j = 2, 3 and

A(L)

k1,k2
.

When |η(x) − η0| is not small, one can account for the nonlinearities neglected in the perturbative analysis by using
multiple convolutional layers and making use of nonlinear activation functions. In other words, it is natural to approximate
the map η → C (�)

η using a convolutional NN with enough layers and an appropriate window size [40,30,46].

Moreover, since the matrix Gη is a symmetric matrix, D(�)
1 and A(L0) are symmetric and (D(�)

2)T = D(�)
3 . In the im-

plementation, the symmetry is enforced by generating D(�)
3 from D(�)

2 , and replacing D(�)
1 (or A(L0)) by 1

2 (D(�)
1 + (D(�)

1)T)

(or 1
2 (A(L0) + (A(L0))T), respectively. Since the Schrödinger form considered in this section includes the periodic boundary

condition, the convolutional layers are all implemented with periodic padding.

Numerical results The NN discussed above is implemented in Keras [7] (running on top of TensorFlow [1]). The parameters
of the NN are initialized randomly from the normal distribution. The loss function is set to be the mean squared error

1

Nsamples
‖u − uNN‖�2 , (4.7)

where the exact solution, obtained by solving Eq. (4.2), is denoted as u and the NN prediction as uNN. Nsamples denotes the
number of samples. The NN is trained until convergence using the Nadam optimizer [12] with the learning rates equal to
10−3 for the 1D case and 10−4 for the 2D case. The batch size is set to be one percent of the number of training samples.
The support of the scaling function ϕ is chosen to be 2p = 6. The number of levels L − L0 in the wavelet transform is 6 for
the 1D case and 4 for the 2D case.

The data set contains 5, 000 different η and for each η Eq. (4.2) is solved with 20 randomly generated f using the
central difference scheme. Therefore, the number of training samples corresponds to the number of different { f i j}, rather
than different {ηi}. Half of the generated data is used for training data, while the other half is reserved for testing. The
accuracy of the NN is measured by the relative error in the �2 norm

ε = ‖u − uNN‖�2

‖u‖�2
. (4.8)

The training error εtrain and test error εtest are calculated by averaging the relative error over all training and test samples,
respectively. The number of parameters in the NN is denoted by Nparams. The operator error εop is calculated by averaging
the relative 2-norm error of the matrix

‖Gη − GNN
η ‖�2→�2

‖Gη‖�2→�2
(4.9)

over samples of the exact inverse operator Gη and its NN approximation GNN
η .

For the 1D case, the domain � = [0, 1] is discretized by a uniform Cartesian grid with 320 points. The positive potential
η(x) is generated by (1) sampling independently from N (0, 1) on a uniform grid with 40 points, (2) interpolating to the

J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309 11
Table 1
Relative error in approximating the solution to the Schrödinger form in the 1D case.

α ncnn Nparams εtrain εtest εop

5 5 30201 4.43e–3 4.74e–3 2.49e–3
5 7 38061 4.83e–3 5.18e–3 4.28e–3
7 5 58717 4.09e–3 4.35e–3 3.28e–3
7 7 74089 4.11e–3 4.42e–3 2.18e–3

Fig. 4. Two samples (one in red line and the other in blue dashed line) from the test set for the potentials η, the source terms f , the predictions uNN with
α = 5 and ncnn = 5, and their corresponding error for the Schrödinger form in the 1D case.

Table 2
Relative error in approximating the solution to the Schrödinger form in the 2D case.

α ncnn Nparams εtrain εtest εop

11 5 930447 2.21e–2 2.18e–2 4.17e–3
15 5 1226071 2.12e–2 2.10e–2 2.04e–3

320-point grid via a Fourier interpolation, and (3) point-wise exponentiating followed by a factor of 10 scaling. The source
term f (x) is generated by sampling independently from N (0, 1). The results for different values of α (channel number)
and ncnn (layer number) are reported in Table 1. The best approximation of the operator, obtained with α = 5 and ncnn = 5,
results in a test error of 4.7 × 10−3 and an operator error of 2.5 × 10−3 with only 3 × 104 parameters. The operator
error reported in Table 1 has been averaged among 100 different samples of Gη . Two random samples from the test data
are illustrated in Fig. 4 along with the NN prediction. A representative sample of the inverse operator Gη and its NN
approximation are displayed in Fig. 5.

For the 2D case, the domain � = [0, 1]2 is discretized with a 80 × 80 uniform Cartesian mesh. The potential η(x) is
generated by (1) sampling independently from N (0, 1) on a uniform mesh with 10 × 10 points, (2) then interpolating to
80 × 80 points via a Fourier interpolation, and (3) point-wise exponentiating followed by appropriate scaling. The source
term is sampled point-wisely from a standard Gaussian distribution. When trained with α = 11 and ncnn = 5, the NN
achieves a test error of 2.2 × 10−2 and an operator error of 4.2 × 10−3 with only 9.3 × 105 parameters, as reported in
Table 2. The operator error εop estimate is computed by averaging the error among 10 distinct samples of the inverse

12 J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309
Fig. 5. Operator approximation with α = 5 and ncnn = 5 for the Schrödinger form in the 1D case.

Fig. 6. A sample from the test set for the potential η, the source term f , the prediction uNN with α = 11 and ncnn = 5, and its corresponding error for
Schrödinger form in the 2D case.

operator Gη . The values of η and f of a representative sample are displayed in Fig. 6, along with the NN prediction and the
error.

4.2. Divergence form

The same NN architecture is applied to the Green’s functions of the divergence form

J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309 13
Table 3
Relative error in approximating the solution of divergence form in the 1D case.

α ncnn Nparams εtrain εtest

7 5 58717 7.27e–3 7.76e–3
7 7 74089 7.46e–3 8.29e–3
9 5 96625 6.05e–3 6.88e–3
9 7 122005 6.83e–3 8.21e–3

Fig. 7. Two samples (one in red line and the other in blue dashed line) from the test set for the distinct coefficients η, the source terms f , the predictions
uNN with α = 9 and ncnn = 5, and their corresponding error for the divergence form in the 1D case.

− ∇ · (η(x)∇u(x)) = f (x), x ∈ [0,1]d,∫
[0,1]d

u(x)dx = 0, (4.10)

with η(x) ≥ η0 > 0 along with the periodic boundary condition. Following the notations of Section 1,

Lη = −∇ · diag (η)∇, Gη = L−1
η in the constraint of

∫
[0,1]d

u(x)dx = 0. (4.11)

When η(x) is close to a fixed η0 > 0, the operator can be decomposed as

L0 = −η0
, Eη = ∇ · diag (η(x) − η0)∇, Lη = L0 − Eη. (4.12)

Since the operator Eη is linearly dependent on η, it is easy to check that the discussion for the Schrödinger form holds for
the divergence form case as well.

Numerical results The parameter field η(x) is generated in a way similar to the potential of the Schrödinger form, with the
difference that the scaling factor is set to 1/5 and an additive term of 0.5 is applied point-wise to avoid the ill-conditioning
of Gη . The numerical results for different choices of α (channel number) and ncnn (layer number) are summarized in Table 3.

14 J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309
For example, a test error of 6.9 × 10−3 is achieved at α = 9 and ncnn = 5 with 9.6 × 104 parameters. Two random samples
from the test data are illustrated in Fig. 7.

5. Radiative transfer equation with isotropic scattering

The radiative transfer equation (RTE) is a fundamental model for describing particle propagation, with applications in
many fields, such as neutron transport in reactor physics [48], light transport in atmospheric radiative transfer [45], heat
transfer [35], and optical imaging [34]. The steady-state RTE in the homogeneous scattering regime is

v · ∇xϕ(x, v) + (η(x) + ηa(x))ϕ(x, v) = η(x)u(x) + f (x), in � × Sd−1, � ⊂ Rd,

ϕ(x, v) = 0, on {(x, v) ∈ ∂� × Sd−1 : n(x) · v < 0},
u(x) = 1

4π

∫
Sd−1

ϕ(x, v)dv,

(5.1)

where ϕ(x, v) denotes the photon flux that depends on both space x and angle v , f (x) is the light source, η(x) is the
scattering coefficient, and ηa(x) is the physical absorption coefficient. In many applications, it is reasonable to assume ηa(x)
to be constant. Below, we focus on the most challenging case ηa(x) ≡ 0.

The numerical solution to the RTE has been extensively studied using the Monte Carlo methods and various discretiza-
tion schemes for the differential-integral formulation Eq. (5.1) of RTE. However, these approaches often suffer from the
high-dimensionality and non-smoothness of the photon-flux ϕ(x, v). The recent numerical work in [9,16,50] follows the
integral formulation by eliminating ϕ(x, v) from the equation and keeping only u(x) as unknown:(

I − Kηη
)

u = Kη f , (5.2)

where the operator Kη is defined as

Kη f =
∫

y∈�

kη(x, y) f (y)dy, kη(x, y) =
exp

(
−|x − y| ∫ 1

0 η(x − s(x − y))ds
)

4π |x − y|d−1
. (5.3)

The parameterized Green’s function operator for the steady-state RTE is then

Gη = (
I − Kηη

)−1
Kη. (5.4)

Since Kη is a dense operator, forming Gη following Eq. (5.4) is often computationally expensive. Instead, the meta-learning
approach developed above allows for approximating the map from η to Gη directly.

Section 4 argues that the map η → C (�)
η for the translation invariant operator can be represented by a convolutional NN.

A key observation for the current setting is that the integral equation Eq. (5.2) can be extended to the whole domain by
padding f and η with zero. As a result, the map from η to Gη can be represented by a convolutional NN with zero padding.

Numerical results The first test is concerned with the one-dimensional slab geometry, where the parameter η varies only in
the x1 direction (i.e., constant in the x2 and x3 directions). For this geometry, the integral equation Eq. (5.2) reduces to

(I − K (1)
η η)u(x) = K (1)

η f (x), Gη = (I − K (1)
η η)−1 K (1)

η , (5.5)

where x stands for only x1 and the operator K (1)
η is defined as

K (1)
η f (x) =

∫
y∈�

k(1)
η (x, y) f (x)dy,

k(1)
η (x, y) = 1

2
Ei

⎛⎝−|x − y|
1∫

0

η(x − s(x − y))ds

⎞⎠ , Ei(x) =
x∫

−∞

et

t
dt,

(5.6)

with the domain � = [0, 1]. In the implementation, [−x0, 1 + x0] is discretized by a uniform Cartesian mesh with N = 320
points, where x0 > 0 is selected such that there are 300 points in �. The scattering coefficient η is generated in the same
way for η(x) in Section 4 followed by appropriate rescaling. The source term f (x), positive due to physical considerations, is
generated by sampling independently from U(0, 1) instead of N (0, 1) and interpolated via Fourier interpolation. The values
of η and f outside of � are set to be 0. The results for different values of α (channel number) and ncnn (layer number) are
summarized in Table 4. A test error of 2.9 × 10−3 is achieved with as few as 3.4 × 104 parameters with α = ncnn = 5. Two
representative examples from the test set are shown in Fig. 8.

J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309 15
Table 4
Relative error in approximating the solution to the 1D RTE.

α K Nparams εtrain εtest

5 5 34131 2.48e–3 2.93e–3
5 7 41991 2.46e–3 3.01e–3
7 5 66403 1.92e–3 2.45e–3
7 7 81775 2.05e–3 2.36e–3

Fig. 8. Two samples (one in red line and the other in blue dashed line) from the test set with the scattering coefficients η, the source terms f , the
predictions uNN with α = 5 and ncnn = 5, and their corresponding error in the 1D RTE.

Table 5
Relative error in approximating the solution to the 2D RTE.

α K Nparams εtrain εtest

11 5 1287903 4.39e–3 4.39e–3
15 5 1663831 3.55e–3 3.55e–3

The second test is concerned with the 2D RTE. The domain � = [−x0, 1 + x0]2 is discretized with a uniform Cartesian
grid with 80 × 80 points, where x0 is chosen such that there are 70 × 70 points in �. The scattering coefficient is generated
following the same way of η in Section 4 for the 2D case, followed by an appropriate rescaling. The source term f (x) is
generated by sampling independently from U(0, 1) instead of N (0, 1). The values of η and f outside of � are set to be 0.
Results reported in Table 5 show that by setting α = 11 and ncnn = 5, the NN can achieve a test error of 4.4 × 10−3 with as
few as 1.3 × 106 parameters. A representative sample from the test set is illustrated in Fig. 9.

6. Conclusions

This paper presented a meta-learning approach for learning the map from the equation parameter η to the pseudo-
differential solution operator Gη . Motivated by the nonstandard wavelet form [5], the pseudo-differential operator is
compressed to a collection of vectors. The nonlinear map from the parameter to this collection of vectors and the wavelet

16 J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309
Fig. 9. A sample from the test set for the scattering coefficient η, the source term f , the prediction uNN with α = 11 and ncnn = 5, and the corresponding
error for the 2D RTE.

transform are learned hand-in-hand in the meta-learning approach. Numerical studies are carried out for the Green’s func-
tions of elliptic PDEs as well as the radiative transfer equation.

This approach can be extended in several directions. First, this paper is only concerned with linear operators Gη . This
work can be readily extended to nonlinear operators if a simple compressed representation (such as the collection of vectors
used here) can be identified. Second, the ConvNet module for the map η → C (�)

η can be replaced with the recently proposed
multiscale NNs [19,17,18], which are more effective for certain global-scale convolutions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The work of Y.F. and L.Y. is partially supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program. The work of J.F. is par-
tially supported by Stanford Graduate Fellowship in Science & Engineering and by “la Caixa” Fellowship, sponsored by the
“la Caixa” Banking Foundation of Spain under Fellowship LCF/BQ/AA16/11580045. The work of L.Y. is also partially supported
by the National Science Foundation under award DMS-1818449. This work is also supported by the GCP Research Credits
Program from Google and AWS Cloud Credits for Research program from Amazon.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: a system for large-scale machine
learning, in: OSDI, vol. 16, 2016, pp. 265–283.

[2] M. Araya-Polo, J. Jennings, A. Adler, T. Dahlke, Deep-learning tomography, Lead. Edge 37 (1) (2018) 58–66.

http://refhub.elsevier.com/S0021-9991(20)30083-8/bib74656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib74656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib41726179612D506F6C6F32303138s1

J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309 17
[3] Y. Bengio, S. Bengio, J. Cloutier, Learning a Synaptic Learning Rule, Université de Montréal, 1990, Département d’informatique et de recherche opéra-
tionnelle.

[4] J. Berg, K. Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317
(2018) 28–41.

[5] G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Commun. Pure Appl. Math. 44 (2) (1991) 141–183.
[6] G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355 (6325) (2017) 602–606.
[7] F. Chollet, et al., Keras, https://keras .io, 2015.
[8] I. Daubechies, Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math. 41 (7) (1988) 909–996.
[9] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 6 Evolution Problems II, Springer-Verlag,

Berlin Heidelberg, 2000.
[10] L. Demanet, L. Ying, Discrete symbol calculus, SIAM Rev. 53 (1) (2011) 71–104.
[11] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova Bert, Pre-training of deep bidirectional transformers for language understanding, arXiv preprint, arXiv:

1810 .04805, 2018.
[12] T. Dozat, Incorporating Nesterov Momentum Into Adam, 2016.
[13] W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic

differential equations, Commun. Math. Stat. 5 (4) (2017) 349–380.
[14] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, CoRR, arXiv:1710 .00211 [abs], 2017.
[15] R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Zidek, A. Nelson, A. Bridgland, H. Penedones, et al., De novo structure prediction with

deeplearning based scoring, Annu. Rev. Biochem. 77 (2018) 363–382.
[16] Y. Fan, J. An, L. Ying, Fast algorithms for integral formulations of steady-state radiative transfer equation, J. Comput. Phys. 380 (2019) 191–211.
[17] Y. Fan, J. Feliu-Fabà, L. Lin, L. Ying, L. Zepeda-Núñez, A multiscale neural network based on hierarchical nested bases, Res. Math. Sci. 6 (21) (2019).
[18] Y. Fan, L. Lin, L. Ying, L. Zepeda-Núñez, A multiscale neural network based on hierarchical matrices, Multiscale Model. Simul. 17 (4) (2019) 1189–1213.
[19] Y. Fan, C. Orozco-Bohorquez, L. Ying, BCR-Net: a neural network based on the nonstandard wavelet form, J. Comput. Phys. 384 (2019) 1–15.
[20] Y. Fan, L. Ying, Solving electrical impedance tomography with deep learning, J. Comput. Phys. 404 (2020) 109119.
[21] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, in: Proceedings of the 34th International Conference

on Machine Learning, vol. 70, ICML’17, 2017, JMLR.org.
[22] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices, Computing 62 (2) (1999) 89–108.
[23] W. Hackbusch, L. Grasedyck, S. Börm, An introduction to hierarchical matrices, Math. Bohem. 127 (229–241) (2002).
[24] W. Hackbusch, B.N. Khoromskij, S. Sauter, On H2-matrices, in: In Lectures on Applied Mathematics, Springer, 2000, pp. 9–29.
[25] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018) 8505–8510.
[26] J. Han, L. Zhang, R. Car, et al., Deep potential: a general representation of a many-body potential energy surface, arXiv preprint, arXiv:1707.01478, 2017.
[27] B. Hariharan, R. Girshick, Low-shot visual recognition by shrinking and hallucinating features, in: Proceedings of the International Conference on

Computer Vision, ICCV, 2017, pp. 3018–3027.
[28] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, 2016, pp. 770–778.
[29] G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T.N. Sainath, B. Kingsbury, Deep neural networks for

acoustic modeling in speech recognition: the shared views of four research groups, IEEE Signal Process. Mag. 29 (6) (2012) 82–97.
[30] A. Jacot, F. Gabriel, C. Hongler, Neural tangent kernel: convergence and generalization in neural networks, in: Proceedings of the 32Nd International

Conference on Neural Information Processing Systems, NIPS’18, USA, 2018, pp. 8580–8589, Curran Associates Inc.
[31] Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks, arXiv preprint, arXiv:1707.03351, 2017.
[32] Y. Khoo, J. Lu, L. Ying, Solving for high-dimensional committor functions using artificial neural networks, Res. Math. Sci. 6 (1) (2019) 1.
[33] Y. Khoo, L. Ying, SwitchNet: a neural network model for forward and inverse scattering problems, SIAM J. Sci. Comput. 41 (5) (2019) A3182–A3201.
[34] A.D. Klose, U. Netz, J. Beuthan, A.H. Hielscher, Optical tomography using the time-independent equation of radiative transfer–part 1: forward model, J.

Quant. Spectrosc. Radiat. Transf. 72 (5) (2002) 691–713.
[35] R. Koch, R. Becker, Evaluation of quadrature schemes for the discrete ordinates method, J. Quant. Spectrosc. Radiat. Transf. 84 (4) (2004) 423–435.
[36] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proceedings of the 25th International

Conference on Neural Information Processing Systems, vol. 1, NIPS’12, USA, 2012, pp. 1097–1105, Curran Associates Inc.
[37] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (5) (1998)

987–1000.
[38] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (436) (2015).
[39] Y. Li, J. Lu, A. Mao, Variational training of neural network approximations of solution maps for physical models, arXiv preprint, arXiv:1905 .02789, 2019.
[40] S. Liang, R. Srikant, Why deep neural networks for function approximation?, in: 6th International Conference on Learning Representations, ICLR 2018,

2018.
[41] Z. Liu, Y. Yang, Q. Cai, Neural network as a function approximator and its application in solving differential equations, Appl. Math. Mech. 40 (2) (2019)

237–248.
[42] R. Livni, S. Shalev-Shwartz, O. Shamir, On the computational efficiency of training neural networks, in: Advances in Neural Information Processing

Systems, 2014, pp. 855–863.
[43] J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, Deep neural nets as a method for quantitative structure–activity relationships, J. Chem. Inf. Model.

55 (2) (2015) 263–274, PMID, 25635324.
[44] S. Mallat, A wavelet tour of signal processing: the sparse way, in: A Wavelet Tour of Signal Processing: the Sparse Way, third edition, Academic Press,

Boston, 2008.
[45] A. Marshak, A. Davis, 3D Radiative Transfer in Cloudy Atmospheres, Springer Science & Business Media, 2005.
[46] I. Ohn, Y. Kim, Smooth function approximation by deep neural networks with general activation functions, Entropy 21 (7) (2019) 627.
[47] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and when can deep—but not shallow—networks avoid the curse of dimensionality: a review,

Int. J. Autom. Comput. 14 (5) (2017) 503–519.
[48] G.C. Pomraning, The Equations of Radiation Hydrodynamics, Courier Corporation, 1973.
[49] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations, CoRR,

arXiv:1711.10561 [abs], 2017.
[50] K. Ren, R. Zhang, Y. Zhong, A fast algorithm for radiative transport in isotropic media, J. Comput. Phys. 399 (2019) 108958.
[51] R. Sarikaya, G.E. Hinton, A. Deoras, Application of deep belief networks for natural language understanding, IEEE/ACM Trans. Audio Speech Lang.

Process. 22 (4) (2014) 778–784.
[52] J. Schmidhuber, Evolutionary Principles in Self-Referential Learning, PhD thesis, Institut F. Informatik, Tech. Univ. Munich, 1987.
[53] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85–117.

http://refhub.elsevier.com/S0021-9991(20)30083-8/bib42656E67696F31393930s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib42656E67696F31393930s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6265726732303137756E6966696564s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6265726732303137756E6966696564s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib626372s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6361726C656F32303137736F6C76696E67s1
https://keras.io
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib64617562656368696573313938386F7274686F6E6F726D616Cs1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4C696F6E73566F6C36s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4C696F6E73566F6C36s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib53796D6232303131s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6465766C696E3230313862657274s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6465766C696E3230313862657274s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib646F7A617432303136696E636F72706F726174696E67s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib5765696E616E32303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib5765696E616E32303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib446565705269747A32303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6576616E73323031386E6F766Fs1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6576616E73323031386E6F766Fs1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib66616E3230313866617374s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib66616E323031386D6E6E32s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib66616E323031386D6E6Es1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6263726E6574s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib66616E32303139656974s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib46696E6E32303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib46696E6E32303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6861636B627573636831393939737061727365s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6861636B627573636832303031696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4861636B6275736368323030304832s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib68616E32303138736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib68616E3230313764656570s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6C6F7773686F7432303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6C6F7773686F7432303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib48653230313644656570524Cs1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib48653230313644656570524Cs1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib48696E746F6E32303132s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib48696E746F6E32303132s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4A61636F7432303138s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4A61636F7432303138s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6B686F6F32303137736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6B686F6F32303139636F6D6D6974746F72s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib7377697463686E6574s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6B6C6F7365323030326F70746963616Cs1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6B6C6F7365323030326F70746963616Cs1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6B6F6368323030346576616C756174696F6Es1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4B72697A686576736B7932303132s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4B72697A686576736B7932303132s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6C616769617269733938s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6C616769617269733938s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6C6543756E6E32303135s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6C6932303139766172696174696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4C69616E6732303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4C69616E6732303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4C697532303139s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4C697532303139s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4C69766E693134s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4C69766E693134s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4D61536865726964616E32303135s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4D61536865726964616E32303135s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4D616C6C617432303039s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4D616C6C617432303039s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6D61727368616B323030353364s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib496C73616E6732303139s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib506F6767696F3136s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib506F6767696F3136s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib706F6D72616E696E67313937336571756174696F6E73s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4B61726E6932303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib4B61726E6932303137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib72656E3230313666617374s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib536172696B6179613134s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib536172696B6179613134s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib6D6574613837s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib5343484D4944485542455232303135s1

18 J. Feliu-Fabà et al. / Journal of Computational Physics 408 (2020) 109309
[54] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of go with deep
neural networks and tree search, Nature 529 (2016) 484–503.

[55] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[56] R. Socher, Y. Bengio, C.D. Manning, Deep learning for NLP (without magic), in: The 50th Annual Meeting of the Association for Computational Linguis-

tics, Tutorial Abstracts, vol. 5, 2012.
[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in Neural Informa-

tion Processing Systems, 2017, pp. 5998–6008.
[58] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A.S. Vezhnevets, M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al., StarCraft II: a new

challenge for reinforcement learning, arXiv preprint, arXiv:1708 .04782, 2017.
[59] J.X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J.Z. Leibo, R. Munos, C. Blundell, D. Kumaran, M. Botvinick, Learning to reinforcement learn, arXiv

preprint, arXiv:1611.05763, 2016.
[60] M.W. Wong, An Introduction to Pseudo-Differential Operators, vol. 6, World Scientific Publishing Company, 2014.
[61] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: Computer Vision - ECCV 2014–13 European Conference, 2014,

pp. 818–833.

http://refhub.elsevier.com/S0021-9991(20)30083-8/bib53696C76657232303136s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib53696C76657232303136s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib53696C76657232303136s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib7369726967616E6F3137s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib536F636865723132s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib536F636865723132s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib76617377616E6932303137617474656E74696F6Es1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib76617377616E6932303137617474656E74696F6Es1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib76696E79616C7332303137737461726372616674s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib76696E79616C7332303137737461726372616674s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib77616E673136s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib77616E673136s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib776F6E6732303134696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib5A65696C657232303134s1
http://refhub.elsevier.com/S0021-9991(20)30083-8/bib5A65696C657232303134s1

	Meta-learning pseudo-differential operators with deep neural networks
	1 Introduction
	2 Nonstandard wavelet form
	2.1 Wavelet transform
	2.2 Nonstandard wavelet form for integral operator
	2.3 Matrix-vector multiplication in the nonstandard form
	2.4 The multidimensional case

	3 Meta-learning approach
	3.1 Neural network architecture
	3.2 The multidimensional case

	4 Elliptic partial differential equations
	4.1 Schrödinger form
	4.2 Divergence form

	5 Radiative transfer equation with isotropic scattering
	6 Conclusions
	Acknowledgements
	References

