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A rescaled matrix-valued dissipation is reformulated for the Roe scheme in low Mach-
number flow regions from a well known family of local low-speed preconditioners 
popularized by Turkel. The rescaling is obtained explicitly by suppressing the pre-
multiplication of the preconditioner with the time derivative and by deriving the full set 
of eigenspaces of the Roe–Turkel matrix dissipation. This formulation preserves the time 
consistency and does not require to reformulate the boundary conditions based on the 
characteristic theory. The dissipation matrix achieves by construction the proper scaling 
in low-speed flow regions and returns the original Roe scheme at the sonic line. We 
find that all eigenvalues are nonnegative in the subsonic regime. However, it becomes 
necessary to formulate a stringent stability condition to the explicit scheme in the low-
speed flow regions based on the spectral radius of the rescaled matrix dissipation. With 
the large disparity of the eigenvalues in the dissipation matrix, this formulation raises a 
two-timescale problem for the acoustic waves, which is circumvented for a steady-state 
iterative procedure by the development of a robust implicit characteristic matrix time-
stepping scheme. The behaviour of the modified eigenvalues in the incompressible limit 
and at the sonic line also suggests applying the entropy correction carefully, especially for 
complex non-linear flows.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Low-speed preconditioning based on Chorin artificial compressibility has become widely used for computing low-speed 
flow configurations with numerical schemes developed for compressible flows. This local preconditioning technique was 
designed to achieve an optimal conditioning of the iterative procedure and to guaranty the proper scaling of the artifi-
cial dissipation when the Mach number approaches zero. The low-speed preconditioning approach has proved to be very 
efficient to overcome the accuracy issue of compressible flow solvers in the incompressible limit. Actually, the low-speed 
preconditioning should always be used since many industrial applications are characterized by mixed compressible and 
incompressible flows, over a wide range of Reynolds numbers.

However, this approach suffers from the complexity of its practical implementation. Since the local preconditioner mod-
ifies the characteristic relations, all boundary conditions based on characteristic variables or Riemann invariants must be 
reformulated accordingly. For large aerodynamics codes in which a large number of boundary conditions may be imple-
mented, it is then necessary to reformulate most of the boundary conditions. Furthermore, the extension to unsteady flows 
is not trivial and without a special treatment, time-accuracy may be lost.
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Thus, a practical point of view has essentially motivated this contribution. For the compressible Euler equations, it 
was found interesting to investigate the effect of removing the pre-multiplication of the preconditioning matrix with the 
time-derivative of the independent flow variables. This formulation sometimes called improperly “preconditioning of the 
stabilization terms only” has been investigated particularly by Guillard and Viozat in [1,2] and by Birken and Meister in 
[3]. This formulation actually doesn’t improve the conditioning and yields a large disparity in the eigenvalues of the matrix 
dissipation. However, this issue can be circumvented with some augmented Jacobi preconditioning, as mentioned in [4]. In 
addition, with this simplification, the explicit scheme recovers a basic structure with the centred scheme and stabilization 
terms. Then it becomes no longer necessary to reformulate the characteristic curves for the preconditioned Jacobian matrix 
and the time accuracy is preserved. Some recent attempts of improving the accuracy of conservative schemes in the low 
speed limit may have been also motivated by a drastic simplification of the implementation of the low-speed precondition-
ing. This is especially the case of the Rieper low Mach-number fix proposed in [5], and the Thornber et al. “Low Mach” 
LMRoe scheme [6] modifying jumps of the discrete velocities, which was further developed by Oßwald et al. with the “Low 
dissipation Low Mach” L2Roe scheme [7]. This may also explain the success of the AUSM-family schemes and their modifi-
cation for low Mach-number flows [8,9]. An alternative to modifying the matrix dissipation is to introduce a modified speed 
of sound, as considered by Rossow [10], and further extended in [11]. This approach was also investigated by Li and Gu in 
[12].

The problem of the accuracy in the asymptotic limit of the incompressible flow for the discretization of the normalized 
Euler equations was first addressed by Guillard and Viozat [1,2]. For their “preconditioning of the stabilization terms only” 
formulated with the Roe scheme as defined in [2], it was shown that the checkerboard modes for the leading and second-
order pressure fields are cancelled out by the rescaled matrix dissipation and that the pressure field should be constant in 
space up to a fluctuation in space of order two. Furthermore, the authors have clearly pointed out a lack of dissipation of 
the standard conservative schemes in the incompressible limit.

A number of authors have further considered the discrete analysis based on the normalized equations for the asymptotic 
behaviour of the pressure and velocity fields. An “all-speed Roe scheme” has been developed by Li and Gu [13] in order 
to recover at the discrete level the divergence constraint of the leading order velocity and the Poisson equation for the 
second-order pressure, which are not satisfied by the preconditioned Roe scheme formulated in [1,2]. However, checker-
boards modes are not automatically suppressed by their numerical flux and a low Mach number fix proposed by Rieper for 
the Roe’s approximate Riemann solver [5] seems attractive, as combining the advantages in the incompressible limit of both 
approaches investigated in [1] and [13].

Over the last years, many modified Roe-type [1,5–7,13,14,12], AUSM-type [8,9], flux-splitting [15] or Godunov-type 
schemes [16,18] have been formulated to apply conservative finite-difference schemes to low-speed flows. It has been found 
necessary to propose a unified theoretical framework to analyse their respective discrete properties and to understand why 
they fail to be accurate in the incompressible limit without specific corrections. It is worth mentioning the work of Li and 
Gu for the analysis of Roe-type schemes [12], based on the flux splitting of the dissipation vector introduced in [17] and 
the contribution of Dellacherie for Godunov-type schemes [18] using the Hodge decomposition for solutions derived from 
the one-dimensional barotropic Euler equations.

On the other hand, few contributions have addressed the numerical stability of shock-capturing schemes adapted for 
low-speed flows. A Fourier Analysis is carried out by Dellacherie for the one-dimensional wave equations using the low 
Mach Godunov scheme and an explicit CFL condition is formulated for both the explicit and the implicit scheme [18]. 
For a formulation of the compressible Euler equations with “preconditioning of the stabilization terms only”, the issue of 
the stability for a matrix-valued dissipation formulated from the Lax–Friedrich scheme is pointed out for the first time in 
[3] on the basis of the asymptotic behaviour of the largest eigenvalue in the incompressible limit. Formulating a stability 
criteria is also an essential feature when designing numerical schemes for complex flows, especially when an “all-speed 
scheme” is being developed. Results obtained by Birken and Meister clearly show for the Euler equations that the standard 
CFL condition used for the computation of compressible flows is no longer valid in the incompressible limit and that a 
stringent stability condition for the time step with �t � O(M2) when the Mach number M → 0 must be accounted for 
when the “preconditioning of the stabilization terms only” is considered. Nevertheless, the eigenspaces of the matrix-valued 
dissipation are not derived and a practical CFL condition for the local time step is not formulated explicitly for the fastest 
acoustic speed.

The main concern of this contribution is to reformulate a consistent matrix-valued dissipation with the low-speed limit 
and the transonic regime, and the corresponding stability condition, in the multidimensional case. We have considered 
the Roe scheme [19] as baseline formulation for the matrix dissipation. The necessary rescaling of the Roe scheme in the 
incompressible limit is formulated from a family of preconditioners popularized by Turkel [20–26]. The scheme is also 
sometimes termed as the Roe–Turkel scheme [2,18]. This reformulation corresponds to a drastic change of the stabilization 
terms and therefore the necessary Von Neumann criteria for the linear stability must be reconsidered completely. This 
can be achieved only by deriving the eigenvalues and the full set of the right and left eigenvectors of the matrix-valued 
dissipation, which surprisingly has never been done so far. The diagonalization of the rescaled matrix-valued dissipation 
must be achieved for the computation of complex flows, also because somehow an entropy fix may be used to prevent 
eigenvalues from approaching zero and to select the relevant physical solution satisfying the entropy condition across shocks.

With this reformulation, we lose the optimal conditioning but we save the essential feature of the accuracy in the 
incompressible limit. In particular, we see that by forcing the proper scaling of the dissipation matrix, we cannot avoid 
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the two-timescale issue, since the isentropic solution breaks up into a fast component that should disappear when the 
Mach number goes to zero, and a slow component solution of the incompressible equations [16]. The system then becomes 
very stiff and numerically difficult to solve with the explicit scheme and a time step defined by the stability condition 
for the fastest acoustic speed. For steady-flow problems, a robust implicit scheme must be developed to improve both the 
stability and the damping properties of the iterative procedure. An augmented Runge–Kutta/implicit scheme developed by 
Rossow in [10] especially addresses this analytical stiffness in the incompressible limit. However, we must stress that our 
final objective is not to develop an optimal approach specialized to handle almost incompressible flows, but only a more 
accurate compressible flow solver in low speed flow regions, without reformulating the boundary conditions and keeping 
the consistency in time for unsteady flows.

In the following, we shall reformulate the rescaled Roe scheme following Turkel’s analysis, and the corresponding stability 
condition for the explicit scheme. For steady-state problems, a robust implicit scheme is developed in order to circumvent 
the severe stability bound occurring for low Mach number flows. The implicit scheme is characterized by a characteristic 
time-step matrix, enforcing the damping properties of the numerical procedure. For transonic flows, it is shown how that 
the entropy fix and the characteristic time-step matrix must be carefully formulated in order to transition smoothly to 
the Roe scheme. Preliminary results for low-speed and transonic flows are presented. As expected, it is experienced that a 
consistent approximation is achieved with the rescaled matrix dissipation in the incompressible limit. It is also shown in 
the transonic case that the known spurious entropy produced by the Roe scheme at the stagnation point is strongly reduced 
by the rescaling of the Roe matrix dissipation.

2. Formulation of the rescaled Roe scheme

2.1. General framework

The rescaled Roe scheme is based on the generalization of low-speed preconditioners due to Turkel [21–23], formulated 
for the independent variables W0 = [p, u, v, S]T in the two-dimensional case, where p is the pressure u, v are the velocity 
components and S is the entropy. In all the following, ρ is the density, a denotes the speed of sound and M the Mach 
number.

The family of preconditioners we shall consider contain a free parameter β as formulated by Choi–Merkle and is defined 
for the W0 variables with

P0
−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2

β2
0 0 δ

αu

ρβ2
1 0 0

αv

ρβ2
0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β2

a2
0 0 −β2

a2
δ

− αu

ρa2
1 0

αu

ρa2
δ

− αv

ρa2
0 1

αv

ρa2
δ

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

With δ = 0 and α = 0 we get the family of preconditioners including the Weiss–Smith formulation [17], while setting 
δ = 1 and α = 0 we recover the preconditioner introduced by Choi and Merkle [27]. The case α = 0 corresponds to the 
original artificial compressibility method formulated for the primitive variables while α = −1 corresponds to the artificial 
compressibility method formulated in conservation form [20]. The value α = 1 may be also considered for viscous flow 
[29]. To transition smoothly to transonic flow, we demand that β2

a2 → 1 with α = 0 and δ = 0 as M → 1. In that case the 
preconditioning matrix returns the identity matrix.

In our implementation, the Choi–Merkle preconditioning parameter will assume the following formulation

β2

a2
= min(max(M2, ε2),1), (2)

where ε2 is a cut-off value, which may depend on the flow physics. It may become necessary to enforce the accuracy 
and especially the robustness of the preconditioned scheme in stagnation point regions and in the boundary layer with 
high-aspect ratio grids. It has been especially demonstrated in [28] that a better control of the free parameter β2

a2 has 
to be achieved in the low Reynolds number flow regions. The authors suggest the cut-off value ε2 to be related to the 
isentropic Mach number inside the boundary layer. In [29,31], the “inviscid” preconditioning parameter is modified for high 
lift configurations and a cell Reynolds number is considered as a viscous correction.

It is worth mentioning that for subcritical or transonic inviscid flows, it is essential to set the small parameter ε2 to a 
much smaller value than the reference Mach number M2∞ to preserve the higher accuracy of the rescaled Roe scheme in 
the low-speed flow regions. In our low-speed flow computations, the small parameter ε2 is set to a cut-off value for all 
inflow Mach numbers considered. In [1], the use of the small parameter ε2 was not mentioned. This doesn’t seem to create 
any numerical difficulties. On the other hand, no spurious dissipation effects due to corrected eigenvalues are introduced. 
For low Mach-number flow computations, the Van Leer formulation was also considered
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β2

a2
= min(

2M2

1 − 2M2
,1), so

β2

a2
= 1 as M ≥ 0.5. (3)

The rescaled Roe scheme is intended to be used in the compressible regime, and is formulated in a final analysis for the 
conservative variables W by removing the pre-multiplication of the time derivative with the preconditioning matrix

�W = −�t

[(
∂ F

∂x
+ ∂G

∂ y

)
− ∂

∂x

(
hx

2
P −1|P A|∂W

∂x

)
− ∂

∂ y

(
hy

2
P −1|P B|∂W

∂ y

)]
, (4)

where hx and hy are some space increments, A and B are the flux Jacobian matrices in the (x, y) space directions and 
P is the preconditioner (1) expressed for the conservative variables. We can see that this semi-discrete scheme is a time-
consistent discretization of the Euler equations based on a backward Euler approximation of the time derivative. In the 
framework of a steady state problem, the time step �t is replaced by a local time step. Additionally the formulation (4)
alleviates its implementation in a CFD code since once removed the pre-multiplication of the preconditioner with the time 
derivative, there is no need to reformulate the boundary conditions using the characteristic theory or the Riemann invari-
ants.

Thus, this reformulation corresponds to a different approach, aiming at only modifying the Roe matrix dissipation as 
investigated over the last decade by many authors (Li & Gu, Rossow, Rieper followed by Thornber and Oßwald, and some 
others). The scheme must be interpreted as a consistent rescaling of the dissipation for low-speed flows, but not as a 
preconditioning method, as it doesn’t improve the condition number of the iterative procedure. The stability bound is 
drastically modified in the low-speed flow regions. As demonstrated in [3], the stability must be reconsidered from matrices 
P−1|P A| and P −1|P B|. It becomes then essential to reformulate the Von Neumann condition by deriving algebraically the 
corresponding eigenspaces and eigenvalues. This can be achieved step by step as indicated in the two next sections, starting 
from the stream-aligned formulation of the Euler equations for the symmetrizing entropic variables.

2.2. One-dimensional formulation

In order to investigate the limit to incompressible equations as the Mach number goes to zero, we follow Turkel [25] and 
explicitly describe the scheme for the one-dimensional equations, including a second-order artificial viscosity term. For the 
equations termed in entropic variables, we shall consider first a streamwise two-dimensional coordinate system with the 
x-axis aligned to the flow. Then setting ∂v

∂ y = 0, ∂ p
∂ y = 0 in the Euler equations and taking as independent variables for the 

pressure d	 = dp
ρa and dS = dp−a2dρ

ρa proportional to the entropy for the symmetrizing variables, the equations for v and S
decouple and so we shall consider the two acoustic equations. Let introduce some artificial dissipation terms with constant 
coefficients. We then get the following scheme in differential dW̃0 = [d	, du]T variables

⎧⎪⎪⎨
⎪⎪⎩

∂	

∂t
+ u

∂	

∂x
+ a

∂u

∂x
= Q 1,1

∂2	

∂x2
+ Q 1,2

∂2u

∂x2
,

∂u

∂t
+ a

∂	

∂x
+ u

∂u

∂x
= Q 2,1

∂2	2

∂x2
+ Q 2,2

∂2u

∂x2
.

(5)

In matrix form, the previous system reads

∂W̃0

∂t
+ Ã0

∂W̃0

∂x
= Q

∂2W̃0

∂x2
. (6)

The limit to incompressible equations for the scheme (5) has been investigated in [25,26]. Within a formal asymptotic analy-
sis, the mesh size being kept constant, it was found that in the incompressible limit, the proper scaling of the matrix-valued 
dissipation requires

Q 1,1 = O(
1

M2
), Q 1,2 = O(

1

M
), Q 2,1 = O(

1

M
), Q 2,2 = O(1). (7)

This is not satisfied when the dissipation is some function of the matrix | Ã0|. For the system in variables dW̃0 , the precon-
ditioner becomes

P̃0
−1 =

⎛
⎜⎜⎝

a2

β2
0

αua
2

1

⎞
⎟⎟⎠ , P̃0 =

⎛
⎜⎝

β2

a2
0

−αu
1

⎞
⎟⎠ . (8)
β a
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The preconditioned Jacobian matrix

P̃0 Ã0 =

⎛
⎜⎜⎝

β2

a2
u

β2

a

a

(
1 − α

u2

a2

)
(1 − α)u

⎞
⎟⎟⎠ , (9)

has the two acoustic eigenvalues λ±⎧⎪⎨
⎪⎩

λ0 = u,

λ± = zu ±
√

(zu)2 + β2

a2
(a2 − u2), z = 0.5

(
1 − α + β2

a2

)
.

(10)

We have the following diagonalization | P̃0 Ã0| = R̃|�|R̃−1
, where |�| = diag(|λ+|, |λ−|), R and R̃

−1
are respectively the 

matrices of the right and left eigenvectors

R̃ =

⎛
⎜⎜⎝

β2

a

β2

a

λ+ − β2

a2
u λ− − β2

a2
u

⎞
⎟⎟⎠ , R̃

−1 = 1

(λ+ − λ−)

⎛
⎜⎝

a

β2 [λ+ − (1 − α)u] 1

− a

β2 [λ− − (1 − α)u] −1

⎞
⎟⎠ . (11)

In the dW̃0 variables, the rescaled Roe scheme is characterized by the matrix-valued dissipation

Q̃ 0 = P̃0
−1| P̃0 Ã0| = P̃0

−1
R̃|�|R̃−1

.

In the following, we will assume the flow subsonic. Let χ = (zu)2 + β2

a2 (a2 − u2). We always have χ > 0 and

χ ≥ (zu)2 ⇒ (
zu − √

χ
) (

zu + √
χ

) ≤ 0.

Hence, eigenvalues λ+ and λ− (10) have opposite signs for a subsonic flow with

if u ≤ 0 → λ− ≤ 0 ⇒ λ+ ≥ 0,

if u ≥ 0 → λ+ ≥ 0 ⇒ λ− ≤ 0.

Thus |λ+| = λ+ and |λ−| = −λ− and we get an explicit expression of the dissipation matrix

P̃0
−1| P̃0 Ã0| = 1√

χ

⎛
⎜⎜⎝

[
zM2 +

(
1 − M2

)]
a2 z u a

[
z + α

(
1 − M2

)]
u a

[
zM2 + β2

a2

(
1 − M2

)]
a2

⎞
⎟⎟⎠ , (12)

where M = |u|
a

. Note that for the two acoustic equations

P̃0
−1| P̃0 Ã0| = 1√

χ

[
zu Ã0 + β2

a2
(a2 − u2) P̃0

−1
]

(13)

as a consequence of the Cayley–Hamilton theorem (see Appendix A). Thus, the dissipation matrix can be interpreted as a 
weighted average between the Jacobian matrix and the preconditioner.

At a sonic point the second coefficient vanishes and it can be easily verified that for both possible values u = ±a the 
rescaled matrix dissipation returns | Ã0| for α = 0. Let be Q ij the coefficients of matrix (12). In the limit to the incompress-
ible equations, assuming the flow isentropic, with β2 � u2 =O(1), we successively have

β2

a2
� u2

a2
= O(M2), χ = z2u2 + β2

(
1 − M2

)
� u2 = O(1),

and

Q 11 = 1√
χ

[
zM2 +

(
1 − M2

)]
a2 � a2

|u| = O(
1

M2
), Q 12 = 1√

χ
z u a � a = O(

1

M
)

Q 21 = 1√
χ

[
z + α

(
1 − M2

)]
u a � a = O(

1

M
), Q 22 = 1√

χ

[
zM2 + β2

a2

(
1 − M2

)]
a2 � |u| = O(1).
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Then, as M → 0

P̃0
−1| P̃0 Ã0| �

⎛
⎜⎝ O(

1

M2
) O(

1

M
)

O(
1

M
) O(1)

⎞
⎟⎠ , (14)

and the scheme gives by construction the correct asymptotic order for the artificial dissipation terms.

We also see that matrix P̃0
−1| P̃0 Ã0| has two real eigenvalues given by

μ± = a

2
√

χ̃

[
2z + α

(
1 − M2

)
± √

�
]
, (15)

with

� =
(

1 − β2

a2

)2 (
1 − M2

)2 + 4z
[

z + α
(

1 − M2
)]

M2, χ̃ = z2M2 + β2

a2
(1 − M2).

These acoustic eigenvalues are also given in [3] for the one-dimensional system in conservative variables, with a different 
formalism. We also find that both eigenvalues μ± are positive as long as the flow is subsonic with

μ+μ− = Q 11 Q 22 − Q 12 Q 21 = det
(

P̃0
−1| P̃0 Ã0|

)
,

and

det
(

P̃0
−1| P̃0 Ã0|

)
=

[(
z − β2

a2

)2 − α β2

a2

]
u2 + β2

[
z2 − β2

a2

]
u2 + β2

(
a2 − u2

)
= a2 − u2 = det

(
| Ã0|

)
> 0.

Note that rescaled matrix dissipation is symmetric for α = 0 and therefore is positive definite with the two positive eigen-
values for in case of subsonic flow. This property is lost by any change of variables that does not preserve the symmetry of 
P̃0

−1| P̃0 Ã0|. In the incompressible limit, the eigenvalues behave as

μ± � a2

2|β|
[

1 + β2

a2
± |1 − β2

a2
|
]

.

Since β2

a2 ≤ 1

μ+ � a2

|β| = O(
1

M2
), μ− � |β| = O(1).

Thus, in the asymptotic limit acoustics waves associated to μ+ will travel at infinite speed while acoustic waves associated 
to μ− are slowed down to the flow velocity. This is a general behaviour of the eigenvalues μ± in the low speed limit, 
because (7) holds necessarily with the coefficients Q ij , for a proper scaling of the artificial dissipation, whatever the defini-
tion of the preconditioner P̃0 . Note that this asymptotic behaviour is also independent of the parameter α. This raises the 
well known singularity of the two time-scale problem. The optimal conditioning is lost and is even worse that the original 
system. The behaviour of eigenvalues μ± in the low Mach number limit will become critical for the stability of the rescaled 
Roe scheme and a CFL condition must be formulated accordingly. For the other extreme case, at a sonic line with α = 0, we 
see that we recover the absolute values of the unpreconditioned system

μ+ = 2a, μ− = 0.

When the preconditioning is not activated, setting α = 0 and β2

a2 = 1 in expressions (15) gives μ± = a(1 ± M) = a ± |u|, the 
eigenvalues of | Ã0| recast for the velocity module.

We can also easily derive the following diagonalization of the rescaled matrix dissipation

P̃0
−1| P̃0 Ã0| = R̃0�̃R̃0

−1
, (16)

where �̃ = diag(μ+, μ−), R̃0 is the matrix of the right eigenvectors and R̃0
−1

is obtained by direct inversion of R̃0

R̃0 =
(

[μ+ − Q 22] Q 12

Q 21 [μ− − Q 11]

)
, R̃0

−1 = 1

det
(

R̃0

)
(

[μ− − Q 11] −Q 12

−Q 21 [μ+ − Q 22]

)
, (17)
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with the determinant of matrix R̃0 given by

det
(

R̃0

)
= [μ− − Q 11] [μ+ − Q 22] − Q 12 Q 21 = μ+ [μ− − Q 11] + μ− [μ+ − Q 22]

= [μ+ − Q 22] [μ− − μ+] = [Q 11 − μ−] [μ− − μ+] .
(18)

At a stagnation point, Q 12 = 0, Q 21 = 0, and

μ+ = Q 11 = a2

|β| , μ− = Q 22 = |β|, μ+ − μ− = |β|
(

a2

β2
− 1

)
.

Thus with μ+ − μ− 	= 0, we always have μ− − Q 11 	= 0, μ+ − Q 22 	= 0, and the decomposition (16) can never become 
singular in the range |u| < a. Additionally, with α = 0, since by construction μ+ + μ− = Q 11 + Q 22, we have

(μ+ − Q 22)Q 12 + (μ− − Q 11)Q 21 = 0 with Q 12 = Q 21, (19)

and we can see that the right and left eigenvectors are orthogonal. In this special case

det
(

R̃0

)
= −

[
(μ+ − Q 22)

2 + Q 2
12

]
.

Then defining

M̃0 = 1√
(μ+ − Q 22)2 + Q 2

12

R̃0 (20)

the symmetric matrix P̃0
−1| P̃0 Ã0| is diagonalized by the following unitary congruence

P̃0
−1| P̃0 Ã0| = M̃0�̃M̃0

T
. (21)

2.3. Multidimensional extension

We derive the multidimensional extension of the previous analysis, assuming the flow subsonic. Let be dW̃0 =
[d	, du, dv, dS]T the set of entropy variables for the two-dimensional Euler equations. In matrix form, the two-dimensional 
rescaled Roe scheme is formulated as follows

∂W̃0

∂t
+ Ã0

∂W̃0

∂x
+ B̃0

∂W̃0

∂ y
= hx

2
P̃0

−1| P̃0 Ã0|∂
2W̃0

∂x2
+ hy

2
P̃0

−1| P̃0 B̃0|∂
2W̃0

∂ y2
. (22)

We know from Turkel that the eigenvalues of the preconditioned Jacobian matrix P̃0 Ã0 are independent of the parameter δ
in the preconditioner [23]. This is also true for the rescaled matrix dissipation P̃0

−1| P̃0 Ã0|. Thus, in the following, we will 
set δ = 0 in the family of preconditioners, as we are basically interested in finding out a stability criteria for the rescaled 
Roe scheme.

For the multidimensional extension, we consider a general direction n = [nx, ny]T and we shall express the Jacobian 
matrix in the general form Ã0(n) = nx Ã0 + ny B̃0 . It is indeed important in the following analysis to differentiate the local 

Mach number M =
√

u2 + v2

a
defining the preconditioning parameter β2

a2 and the directional Mach number Mn = |q|
a|n|

arising explicitly in the multidimensional formulation of the rescaled matrix dissipation.
The preconditioner P̃0 is formulated from (1) with δ = 0 in dW̃0 variables. The preconditioned Jacobian matrix then 

reads

P̃0 Ã0(n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β2

a2
q

β2

a
nx

β2

a
ny 0

a
(

nx − αuq

a2

)
q − αunx −αuny 0

a
(

ny − αvq

a2

)
−αvnx q − αvny 0

0 0 0 q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where in all the following q = unx + vny is the normal velocity. In the multidimensional case, we have the following 
diagonalization | P̃0 Ã0(n)| = R̃|�|R̃−1

given in [23] for eigenvalues
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⎧⎪⎨
⎪⎩

λ0 = q,

λ± = zq ±
√

(zq)2 + β2

a2

(
a2|n|2 − q2

)
with z = 0.5

(
1 − α + β2

a2

)
.

(23)

In case of subsonic flow, we know the sign of the two acoustic eigenvalues, with λ+ ≥ 0 and λ− ≤ 0. Therefore

|�| = diag(λ+,−λ−, |q|, |q|).
We proceed as for the one-dimensional case to find an explicit expression of the matrix valued dissipation

P̃0
−1| P̃0 Ã0(n)| = P̃0

−1|R̃|�|R̃−1
.

Let first introduce the following coefficients, functions of the directional Mach number

Q 11 = 1√
χ

|n|2
[

zM2
n +

(
1 − M2

n

)]
a2, Q 12 = 1√

χ
z q a,

Q 21 = 1√
χ

|n|2
[

z + α
(

1 − M2
n

)]
q a, Q 22 = 1√

χ
|n|2

[
zM2

n + β2

a2

(
1 − M2

n

)]
a2,

and

χ = (zq)2 + β2

a2

(
a2|n|2 − q2

)
= a2|n|2

[
z2M2

n + β2

a2
(1 − M2

n)

]
.

With λ± given by (23), and using the identity (λ+ − q)(λ− − q) = αq2 − β2|n|2, we also define

ξx = αuq − β2nx

αq2 − β2|n|2 , ξy = αvq − β2ny

αq2 − β2|n|2 ,

and

ζx = ny(uny − vnx)

αq2 − β2|n|2 , ζy = −nx(uny − vnx)

αq2 − β2|n|2 .

We see that

ξxnx + ξyny = 1 and ζxnx + ζyny = 0. (24)

The rescaled matrix dissipation can be expressed as follows

P̃0
−1| P̃0 Ã0(n)| =

⎛
⎜⎜⎜⎜⎜⎝

Q 11 nx Q 12 ny Q 12 0

ξx Q 21 − αζxa|q| nxξx(Q 22 − |q|) + |q| nyξx(Q 22 − |q|) 0

ξy Q 21 − αζya|q| nxξy(Q 22 − |q|) nyξy(Q 22 − |q|) + |q| 0

0 0 0 |q|

⎞
⎟⎟⎟⎟⎟⎠ . (25)

In the incompressible limit, as M −→ 0, we find that

P̃0
−1| P̃0 Ã0(n)| �

⎛
⎜⎜⎜⎜⎜⎝

O( 1
M2 ) O( 1

M ) O( 1
M ) 0

O( 1
M ) O(1) O(1) 0

O( 1
M ) O(1) O(1) 0

0 0 0 O(1)

⎞
⎟⎟⎟⎟⎟⎠ as M −→ 0,

which gives by construction the proper scaling in the incompressible limit [25,26].
From expression (25), we can easily find the eigenvalues μ of the matrix Q̃ 0 . Using the identities (24), we find for the 

linear waves

μ0 = |q| (double),

and for the acoustic waves

μ± = 1
[

Q 11 + Q 22 ±
√

(Q 11 − Q 22)
2 + 4 Q 12 Q 21

]
.

2
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Upon substitution with the expressions of the Q ij

μ± = a|n|
2
√

χ̃

[
2z + α(1 − M2

n) ± √
�

]

with � =
(

1 − β2

a2

)2 (
1 − M2

n

)2 + 4z
[

z + α(1 − M2
n)

]
M2

n, χ̃ = z2M2
n + β2

a2
(1 − M2

n).

(26)

We find as expected from the one-dimensional analysis that as long as the flow remains subsonic, the eigenvalues μ± are 
positive with the following identity

μ+μ− = a2|n|2 − q2. (27)

Thus, with α = 0 and μ0 ≥ 0, the rescaled matrix dissipation formulated for the set of independent variables dW̃0 is positive 
semidefinite in the subsonic range. For the two extreme cases

as Mn −→ 0 ⇒ μ+ � a2

|β| |n| = O(
1

M2
), μ− � |β||n| = O(1), μ0 � O(1)

as Mn −→ 1 ⇒ μ+ � 2a|n|, μ− � 0, μ0 � a|n|.
As anticipated in the one-dimensional case, we can see that severe stability constraints will occur in the incompressible 
limit, as it is discussed later.

In the multidimensional case, we find the following decomposition as a consequence of the Cayley–Hamilton theorem 
for 4 × 4 matrices

P̃0
−1| P̃0 Ã0(n)| = 1√

χ

[
zq Ã0(n) + β2

a2
(a2|n|2 − q2) P̃0

−1
]

+ (|q| − Q 22)L̃0(n) (28)

with

L̃0(n) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

−αζxa nyξy 0 0

−αζya 0 nxξx 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

The matrix (|q| − Q 22)L̃0(n) has essentially |q| − Q 22 as non-zero eigenvalue with |q| � Q 22 in the whole subsonic range 
except in the low speed limit. It doesn’t affect the pressure equation. On the other hand, the resulting matrix of the two 
first contributions has the two acoustic eigenvalues μ± > 0 and double eigenvalue Q 22 > 0. For the two acoustic equations, 
it was found that the contribution (|q| − Q 22)L̃0(n) does not exist. In addition, this “acoustic” contribution has the same 
behaviour as the rescaled matrix dissipation in the low speed limit. So, the resulting matrix of the two first contributions is 
close to the rescaled matrix dissipation (25). At a sonic point, i.e. |q| = a|n|, if α = 0 we also get Q 22 = a|n|. Therefore the 
two last contributions vanish and again for both possible values q = ±a|n| we check that P̃0

−1| P̃0 Ã0(n)| = | Ã0(n)|.
In the multidimensional case, we derive the following diagonalization of the rescaled matrix dissipation

P̃0
−1| P̃0 Ã0(n)| = R̃0�̃R̃0

−1
,

with �̃ = diag(μ+, μ−, |q|, |q|), R̃0 is the matrix of the right eigenvectors

R̃0 =

⎛
⎜⎜⎜⎜⎜⎝

(μ+ − Q 22) Q 12 0 0

[ξx Q 21 − αζxa|q|R1] [ξx (μ− − Q 11) − αζxa|q|R2] −ny 0[
ξy Q 21 − αζya|q|R1

] [
ξy (μ− − Q 11) − αζya|q|R2

]
nx 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ , (29)

where

R1 = μ+ − Q 22

μ+ − |q| , R2 = Q 12

μ− − |q| ,

and R̃0
−1

is the matrix of the left eigenvectors
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R̃0
−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(μ− − Q 11)

D
− Q 12

D
nx − Q 12

D
ny 0

− Q 21

D

(μ+ − Q 22)

D
nx

(μ+ − Q 22)

D
ny 0

−αζa|q|L1 −ξy − αζya|q|L2 ξx + αζxa|q|L2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

with

ζ = ζx

ny
= −ζy

nx
= (uny − vnx)

αq2 − β2|n|2 ,

and

L1 = Q 22 − |q|
(μ+ − |q|) (μ− − |q|) , L2 = Q 12

(μ+ − |q|) (μ− − |q|) ,

where D = det
(

R̃0

)
given by (18).

The above scaling of the eigenvectors corresponds to the most straightforward extension of the one-dimensional formu-
lation (17). It is worth noticing that the apparent singularity μ− − |q| = 0 which may occur in the definition of coefficients 
R1, L1 and L2 if α 	= 0 for a specific directional Mach number Mn < 1, root of the non-linear equation

M2
n + μ+

a|n| Mn − 1 = 0,

doesn’t create any numerical difficulty. We actually find by a deep inspection of the eigenspaces corresponding the second 
right eigenvector and to the third left eigenvector that if μ− = |q|, then necessarily the velocity vector is aligned with 
the actual direction n and therefore ζx = ζy = ζ = 0. Thus, for this specific state, the second right eigenvector and the 
third left eigenvector recover non-singular expressions. It will be also shown in the stability analysis that μ+ > |q| for all 
possible values of the preconditioning parameter α. So the above diagonalization can never become singular in practice in 
the subsonic range.

We also remind that by turning off the preconditioning matrix with β2

a2 = 1 with α = 0, expressions (29)–(30) do not 
return the right and left eigenvector matrix of | Ã0(n)|, associated to eigenvalues |λ+| = |a|n| + q| and |λ−| = |a|n| − q|. 
They actually correspond to the diagonalization of matrix | Ã0(n)| with the acoustic eigenvalues recast for the module of 
the normal velocity a|n| + |q| and a|n| − |q|. In the case q −→ −a|n|, we especially see that |λ+| −→ 0 and |λ−| −→ 2a|n|
while μ+ −→ 2a|n| and μ− −→ 0 respectively. This justifies to formulate carefully a possible entropy fix at the sonic line 
as described later.

In the special case α = 0, we also see that the “shear” and “entropic” eigenvectors are both orthogonal to the acoustic 
eigenvectors. Taking |n| = 1, with (19) the acoustic eigenvectors are also orthogonal to each others and the diagonalization 
with unitary congruence (20)–(21) can be applied. So the symmetry properties of the original unpreconditioned system 
are preserved for the rescaled matrix dissipation. However, this is no longer true when the rescaled matrix dissipation is 
formulated from the primitive or conservative variables since the eigenvectors are modified by any change of variables. We 
know from [30] that the non-normality of the preconditioned system leads to significant robustness problems at stagnation 
points.

3. Stability analysis for the explicit scheme

We now consider the explicit scheme with rescaling of the dissipation matrix derived in the previous section, ex-
pressed for the conservative variables W . In the two-dimensional case, the explicit discretization at time tn = n�t for 
xi j = (iδx, jδy), where δx and δy are the constant mesh spacing in the (x, y) directions, can be formulated with the finite-
difference scheme in conservation form

�W i j

�t
+

hi+ 1
2 j − hi− 1

2 j

δx
+

g i j+ 1
2

− g i j− 1
2

δy
= 0, (31)

with the time increment �W i j = W n+1
i j − W n

i j . For the first-order Roe scheme, the numerical flux writes in the x-direction

hi+ 1
2 j = 1

2

[
F (W n

i j) + F (W n
i+1 j)

]
− 1

2
|Aroe|i+ 1

2 j

(
W n

i+1 j − W n
i j

)
. (32)

For the rescaled Roe scheme, we substitute (32) with

hi+ 1 j = 1 [
F (W n

i j) + F (W n
i+1 j)

]
− 1

P−1|P A|i+ 1 j

(
W n

i+1 j − W n
i j

)
, (33)
2 2 2 2
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and matrix P −1|P A| formulated for the Roe average. There is no need to explicitly formulate the matrix dissipation for the 
conservative variables. In practice, the dissipation vector can always be computed using similarity transformations following 
the algebraic algorithm described in [23]

P −1|P A|i+ 1
2 j

(
W n

i+1 j − W n
i j

)
=

[
∂W

∂W̃0
R̃0�̃R̃0

−1 ∂W̃0

∂W

]
i+ 1

2 j

(
W i+1 j − W i j

)
.

The stability constraint is strongly concerned with the spectral radius ρ(P −1|P A|) of the matrix-valued dissipation. It can 
be demonstrated in the multi-dimensional framework that (see Appendix B)

ρ(P −1|P A|) = μ+ ∀Mn ≤ 1, (34)

for all possible values of the parameter α. Furthermore, if α = 0, we also have μ+ ≥ ρ(A) = |q| + a|n| for all Mn ≤ 1 which 
is not always the case with α = 1 or α = −1. At the sonic line, with Mn = 1 in expressions (26), μ+ returns ρ(A) for all α.

Following the linear Von-Neumann analysis carried out by Birken and Meister for the Lax–Friedrich scheme in [3], we 
finally conclude that the stability condition for the explicit rescaled Roe scheme is formulated for the fasted wave speed as 
follows

�t ≤ h

μ+
� O(M2) as Mn → 0, ∀α (35)

and

�t ≤ h

|q| + a|n| as Mn → 1 and Mn ≥ 1, with α = 0 (36)

where h represents some characteristic cell distance. So for steady-state problems, the local time step will be very small 
� O(hM2) in the low-speed flow regions only. In supersonic flow regions, the “standard” stability condition (36) must be 
applied. Therefore, with the strong limitation on the time step, an efficient implicit stage must be added to the baseline 
explicit rescaled Roe scheme for the steady-state problem.

It is interesting to compare the acoustic eigenvalues μ± of the rescaled matrix dissipation with the original eigenvalues 
|λ±| = |a|n| ± q| in the whole subsonic range Mn ≤ 1. In the next figures, all eigenvalues are normalized by the local speed 
of sound and therefore can be expressed only as functions of the dimensionless normal velocity 

q

a|n| ∈ [−1, 1] (= u
a in 

the one-dimensional case). The eigenvalues μ± strongly depend on the local Mach number M within the parameter β2

a2

with a noticeable effect of the second parameter α for low Mach numbers. In Fig. 1–3 we have compared the effect of 
α = −1, α = 0 and α = 1, considering different values of the local Mach number. As demonstrated above, we see that μ+
is the largest eigenvalue in the entire subsonic range with μ+ > |q|, ∀α, μ+ ≥ ρ(A) for α = 0 and that μ− takes small 
values especially when M ≤ 0.1. The value of α has little impact on μ− but has a large effect on μ+ in the incompressible 
limit, as illustrated in Fig. 1 for M = 0.1. As it can be clearly seen, the stiffness of the rescaled matrix dissipation increases 
dramatically as the local Mach number is becoming smaller and smaller. The worst situation arises for α = 1, which could 
not be tested in our computations of low Mach-number flows. Globally α = −1 gives the better conditioning except when 

q

a|n| → 0 where the asymptotic value of μ+ is reached. This asymptotic value given by 
a2

|β| |n| is independent of α but 

strongly depends on the local Mach number. When M → 1, the effect of α is almost negligible and the stiffness of the 
rescaled Roe matrix becomes identical to the original Roe matrix (see Fig. 3 for the case M = 1 with μ+ = ρ(A) if α = 0).

4. Implicit matrix time-stepping scheme for the steady-state problem

4.1. Formulation

The Jacobi preconditioning or preconditioning-squared is known to smooth out high frequency errors and is especially 
efficient with the multigrid technique to accelerate the convergence. It basically doesn’t help to improve the stiffness of the 
rescaled Roe scheme in the low speed limit. On the other hand the low-speed preconditioning is not designed to treat high 
frequency errors. Turkel suggested to combine both approaches [4,31]. However, here we apply a block Jacobi preconditioner 
to the rescaled Roe scheme in order to formulate an implicit matrix time-stepping scheme for the steady-state problem in 
the sense that each characteristic variables is updated with its own �t(k) [32]. Actually the matrix time-stepping approach 
provides a mechanism enforcing the damping properties of the scheme, as it is described next within a linear stability 
analysis. In the case of the rescaled Roe scheme, the formulation of a time-step matrix is not obvious, since the dissipation 
matrix is not an explicit function of the original Jacobian matrix. For the fully discrete scheme in a two-dimensional Carte-
sian mesh (31) with the numerical flux corresponding to the rescaled Roe scheme (33), the Jacobi preconditioning may be 
formulated as follows
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Fig. 1. Dimensionless eigenvalues for the original matrix-valued dissipation (Roe) and for the rescaled Roe scheme when M = 0.1.

Fig. 2. Dimensionless eigenvalues for the original matrix-valued dissipation (Roe) and for the rescaled Roe scheme when M = 0.3.

Fig. 3. Dimensionless eigenvalues for the original matrix-valued dissipation (Roe) and for the rescaled Roe scheme when M = 1.
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(
A p + B p

ρ(P −1|P A|) + ρ(P −1|P B|)�W

)
i j

= −�t

(
hi+ 1

2 j − hi− 1
2 j

δx
+

g i j+ 1
2

− g i j− 1
2

δy

)
, (37)

where the matrix coefficients A p and B p must fulfil the following conditions:

1. The eigenvectors must be the same as the original Jacobian matrix in order to preserve the formulation of the charac-
teristics variables;

2. The eigenvalues must be nonnegative in order to let unchanged the signs of the characteristic speeds and bounded 
away from zero (thus positive) for the formulation of a characteristic time-step matrix;

3. The stability condition (35)–(36) must be satisfied for the characteristic variable corresponding to the fastest wave 
speed;

4. The matrix coefficients A p and B p should achieve a smooth transition with |A| and |B| at the sonic line.

Matrix coefficients A p = P−1|P A| and B p = P−1|P B| perfectly match conditions 2., 3. and 4. but must be rejected as not 
satisfying the first condition. Setting A p = |A| = R A |�A |R A

−1 and B p = |B| = R B |�B |R B
−1 satisfies conditions 1., 2. and 

4., provided that the vanishing eigenvalues |λ(k)| are corrected by some entropy fix. This latter choice reduces the spread of 
the characteristic speeds from a factor 1/M with respect to the formulation with the rescaled matrix dissipation. However, 
requirement 3. is lost with ρ(A) ≤ μ+ in general and in practice, this formulation is unstable and can be used only with 
small or moderate values of the CFL number. An intermediate choice is to build matrix coefficients from the eigenvectors of 
the original Jacobian matrix and the eigenvalues μ(k) of the rescaled matrix dissipation supposed to be all bounded away 
from zero. In that case, the eigenvalues μ(k) must be corrected to ensure the transition at the sonic line with |λ(k)| the 
eigenvalues of the original Roe matrix dissipation. This intermediate formulation provides optimal stability properties and 
yields a robust scheme but let the spread of the characteristic speeds unchanged with respect to the rescaled Roe scheme.

Hence, let consider A p = R A�̃A R A
−1 and B p = R B�̃B R B

−1, with �̃ = diag(μ(k)), R A and R B being the right eigen-
vector matrices of the original Jacobian matrices A and B . In a Cartesian mesh, the CFL condition can be expressed with a 
more restrictive formulation of the local time-step

�t = C F L
h

ρ(P −1|P A|) + ρ(P −1|P B|) .

We introduce a characteristic time-step matrix

�tc = C F L h
(

A p + B p
)−1 =

[
(R A�t A

−1 R A
−1) + (R B�tB

−1 R B
−1)

]−1
, (38)

where �t is the diagonal matrix

�t = diag(�t+,�t−,�t0,�t0) (39)

with

�t+ = C F L
h

μ+∗
, �t− = C F L

h

μ−∗
, �t0 = C F L

h

μ0∗
. (40)

The star symbol indicates that the eigenvalues may be bounded away from zero and especially that μ± must be modified to 
ensure that the above condition 4 is satisfied. This point is discussed later, in the supersonic flow extension of the rescaled 
Roe scheme.

Thus, the Jacobi preconditioner amounts to reformulate the original conservative scheme (31) with a time-step matrix

�W i j = −(�tc)i j

(
hi+ 1

2 j − hi− 1
2 j

δx
+

g i j+ 1
2

− g i j− 1
2

δy

)
.

This scheme has optimal properties in damping high frequency errors, and is well adapted to transonic flows. By setting P
to the identity matrix Id in (37), we can also formulate a matrix time-stepping scheme for the original Roe scheme with

�t+ = C F L
h

|λ+| , �t− = C F L
h

|λ−| , �t0 = C F L
h

|λ0| ,

and λ± = q ± a|n|, λ0 = q.
In order to overcome the issue of using very small time steps in the incompressible limit, we see that the matrix time-

stepping scheme must be combined with a robust implicit scheme allowing the use of large CFL numbers, as recommended 
in [3]. A usual way to define an implicit scheme for the Roe scheme, is to consider the following backward Euler scheme as 
formulated in [33] for an approximated differentiation of the Roe flux
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− σx A+
i− 1

2 j �W i−1 j + σx A−
i+ 1

2 j �W i+1 j

+
(

Id − σx A−
i+ 1

2 j + σx A+
i− 1

2 j − σy B−
i j+ 1

2
+ σy B+

i j− 1
2

)
�W i j

− σy B+
i j− 1

2
�W i j−1 + σy B−

i j+ 1
2

�W i j+1 = �W exp
i j

(41)

where �W exp
i j is the time increment for the explicit scheme, σx = �t

δx , σy = �t
δy and A+ , A− , B+ , B− are respectively the 

positive and negative parts of the flux Jacobian matrices A and B in the (x, y) space directions. For the rescaled Roe scheme, 
a baseline implicit scheme is then formulated by replacing in (41) respectively

A± 
−→ A ± P −1|P A|
2

= P −1(P A)± and B± 
−→ B ± P −1|P B|
2

= P −1(P B)±. (42)

The implicit scheme (41) can be also formulated for the characteristic matrix time-stepping scheme, upon the following 
substitutions

σx Id 
−→ 1

δx
�tc, σy Id 
−→ 1

δy
�tc . (43)

4.2. Stability of the implicit scheme

In the following, the stability of the implicit rescaled Roe scheme with scalar and matrix time-steps is considered. 
Both versions correspond actually to small perturbations of the original implicit Roe scheme (41) in the transonic regime. 
Both are especially unconditionally stable for the linear problem as shown below. But as the free-stream Mach number is 
decreasing, their dissipative properties substantially differ from the original Roe scheme. This can be pointed out within a 
Fourier analysis. Let (φ, θ) be the normalized wave numbers in the two space directions. Then, for the linear problem the 
amplification matrix takes the general form

G(φ, θ) = Id − H−1(φ, θ)K (φ, θ),

with for the implicit scheme H(φ, θ) = Id + K (φ, θ). We get successively

– For the original Roe scheme

K (φ, θ) = (1 − cos(φ))σx|A| + (1 − cos(θ))σy|B| + i sin(φ)σx A + i sin(θ)σy B

– For the rescaled Roe scheme

K (φ, θ) = (1 − cos(φ))σx P −1|P A| + (1 − cos(θ))σy P −1|P B| + i sin(φ)σx A + i sin(θ)σy B

– For the matrix time-stepping schemes, we replace σx and σy according to (43).

Stability and damping properties of the four schemes can be characterized by the following estimates, assuming all ma-
trix coefficients simultaneously diagonalizable according to the Lerat’s general framework [34,35]. Let introduce λ(k)

G the 
eigenvalues of the amplification matrix G(φ, θ) and respectively λ(k)

A , λ(k)
B and μ(k)

A , μ(k)
B the eigenvalues of the matrix coef-

ficients A, B and A p , B p , P−1|P A|, P−1|P B|. For the matrix time-stepping schemes, the time-step matrix has eigenvalues

�t(k) = C F L
h

|λ(k)
A | + |λ(k)

B |
(Roe scheme), �t(k) = C F L

h

μ
(k)
A + μ

(k)
B

(rescaled Roe scheme).

Important for differentiating the different formulations is to have a close upper estimate of the spectral radius of the 
amplification matrix. Without loss of generality, we have for the Roe scheme in one space-dimension

ρ(G) = 1

mink (|1 + λ
(k)
K |)

,

with

|1 + λK | = √
(1 + 2(1 − cos(φ))σ |λ|(1 + σ |λ|)) ≥ 1, ∀σ .

Denoting ν = σ |λ|, we see that ν 
−→ ρ(G)(φ, ν) is a strictly diminishing function and therefore

ρ(G) = 1√ ,

(1 + 2(1 − cos(φ))νmin(1 + νmin))
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where νmin = σmink (|λ(k)|) if no matrix time-stepping scheme is formulated, νmin = mink (σ
(k)|λ(k)|), σ (k) = �t(k)

δx with the 
matrix time-stepping scheme. The optimal rate of convergence to a steady state is then obtained for large CFL numbers 
with lim

C F L→∞ρ(G) = 0, ∀φ ∈ ]0, 2π [, ∀λ 	= 0. The same results hold for the two-dimensional problem with the upper-bound 
estimate

ρ(G) ≤ 1√
(1 + 2(1 − cos(φ))(νmin)x + 2(1 − cos(θ))(νmin)y

≤ 1, ∀σx,σy .

So the higher are (νmin)x or (νmin)y , the lower is ρ(G) and the better is the convergence rate to a steady state.
In the case of the rescaled Roe scheme, using similar arguments, we get in the one-dimensional case

ρ(G) = 1√
(1 + (1 − cos(φ))[2 + (1 − cos(φ))(νμ)min](νμ)min + sin2(φ)(νλ)min

,

where (νμ)min = σmink (μ
(k)), (νλ)min = σmink (|λ(k)|) if no matrix time-stepping scheme is formulated, (νμ)min =

mink (σ
(k)μ(k)), (νλ)min = mink (σ

(k)|λ(k)|) with the matrix time-stepping scheme.
Now comparing the effect of the matrix time-stepping scheme on the non-dimensional quantities (νmin)x and (νmin)y

for both the Roe scheme and the rescaled Roe scheme, we get

– For the Roe scheme:

σx|λ(k)
A | = �t

δx
|λ(k)

A | = C F L
h

δx

|λ(k)
A |

ρ(A) + ρ(B)
≤ C F L

h

δx

|λ(k)
A |

|λ(k)
A | + |λ(k)

B |
= �t(k)

δx
|λ(k)

A | = σ
(k)
x |λ(k)

A | ∀k,

and similarly σy |λ(k)
B | ≤ σ

(k)
y |λ(k)

B |, ∀k. Assuming that (νmin)x is reached for k = k0, we see that

(νmin)x = σx|λ(k0)
A | ≤ σx|λ(k)

A | ≤ σ
(k)
x |λ(k)

A |, ∀k ⇒ (νmin)x ≤ mink (σ
(k)
x |λ(k)

A |).
– For the rescaled Roe scheme, the previous result writes

[(νμ)min]x = σxμ
(k0)
A ≤ mink (σ

(k)
x μ

(k)
A ) and [(νλ)min]x = σx|λ(k0)

A | ≤ mink (σ
(k)
x |λ(k)

A )|.
Therefore the matrix time-stepping scheme always yields higher (νmin)x and (νmin)y and thus may improve the damping 
properties of the iterative procedure. It is also interesting to look at the situation in the incompressible limit. Since for the 
Roe scheme in a fixed mesh

|λ+| � |λ−| � O(
1

M
) and |λ0| � O(1) as M → 0,

with find that

(νmin)x � O(M) < mink (σ
(k)
x |λ(k)|) � O(1) as M → 0.

For the rescaled Roe scheme in the same conditions

μ+ � O(
1

M2
) and μ− � μ0 � O(1) as M → 0,

thus

[(νμ)min]x � O(M2) << mink (σ
(k)
x μ(k)) � O(1) as M → 0.

So the optimal damping properties of the matrix time-stepping scheme should be enforced in the incompressible limit.
It can also be demonstrated that the rescaled Roe scheme is also second-order dissipative in the sense of Kreiss [35] and 

can be used for the computation of non-linear flows.

5. Extension to transonic flows

The behaviour of the modified eigenvalues μ± and μ0 = |q| suggests to apply selectively the so-called entropy fix. With 
μ+ > 0, a correction has to be found only for μ0 at the stagnation point and for μ− at the sonic line, since the formulation 
of the rescaled matrix prevents μ− from being too small near a stagnation point. With μ− � |q| near the stagnation 
point, this suggests to equalize μ0 and μ− when M → 0. We suppose the Mach number to be small enough so that the 
preconditioning parameter recovers its cut-off value β2

a2 = ε2. Then, a possible correction will assume the following form

μ0 = max(|q|, εa|n|) with εa|n| = lim μ− � O(1). (44)

M→0
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This correction might be interpreted formally as similar to the first entropy correction proposed by Harten and Hyman [36]. 
However, notice that the quantity εa|n| is actually a bit smaller than the threshold employed for the entropy fix, which 
is usually based on some fraction of the spectral radius |q| + a|n| (even for the linear waves) and not on the local speed 
of sound only. For viscous or turbulent flows, as mentioned previously, the formulation of the cut-off value ε2 must be 
reconsidered, and the correction (44) may assume a different formulation.

Regarding the acoustic eigenvalue μ− at the sonic line when Mn = 1, it seems reasonable to be consistent with the 
formulation of the original matrix dissipation, by considering the same formulation of the entropy fix used for the Roe 
scheme. This choice is motivated by the extension to a supersonic flow described in the following. Considering again the 
symmetrizing entropic variables, in the case of subsonic flow |u| ≤ a we have the following diagonalization

| Ã0| =
(

a a

a −a

)( |u + a| 0

0 |u − a|

)(
1

2a
1

2a
1

2a − 1
2a

)
.

Although in case of transonic flow the entropic variables are not appropriate, suppose for the analysis that u → a. Then 
the acoustic eigenvalue |λ−| = |u − a| may be corrected by some entropy fix and therefore |λ−| → 0 is modified with | Ã0|
formulated for diag(|u + a|, �(|u − a|)), where � is some given cut-off function preventing |λ−| from reaching zero. On the 
other hand, assuming β2

a2 → 1 with α = 0 in the expression of the rescaled matrix dissipation as |u| → a, we get

P̃0
−1| P̃0 Ã0| =

( |u| u

u −|u|

)(
a + |u| 0

0 a − |u|

)( 1
2|u|

1
2u

1
2u − 1

2|u|

)
.

Thus at the sonic line, μ− = a − |u| → 0 and P̃0
−1| P̃0 Ã0| may be also reformulated with diag(a + |u|, �p(a − |u|)). The 

cut-off function �p(μ−) must be defined in order to assure P̃0
−1| P̃0 Ã0| → | Ã0| when |u| → a. In the limit |u| → a, when 

applying the entropy fix, we can see that we get the identity P̃0
−1| P̃0 Ã0| = | Ã0| provided that{

�p(μ−) = �(|λ+|) and μ+ = |λ−| if u → −a

�p(μ−) = �(|λ−|) and μ+ = |λ+| if u → a
(45)

If no entropy fix is applied

| Ã0| = P̃0
−1| P̃0 Ã0| =

(
a ±a

±a a

)
when u = ±a.

The formulation (45) of the entropy fix for the rescaled Roe scheme is unchanged by similarity transformations and can 
be also extended to the Euler equations in conservation form. The definition of �p is also formally unchanged in the 
multidimensional case, as indicated below. For complex non-linear flows, we may consider the classical Harten’s entropy fix 
formulated in [37]⎧⎨

⎩ �(|λ|) = λ2 + δ2
h

2δh
if |λ| < δh

�(|λ|) = |λ| if |λ| ≥ δh

(46)

with δh being the threshold for the correction of the eigenvalues approaching zero which is usually a fraction of ρ(A).
If the flow becomes locally supersonic, the formulation of the rescaled Roe scheme is no longer valid and the original Roe 

scheme must be selected. For the explicit scheme, it becomes then necessary to introduce a “switch” between the subsonic 
and supersonic flow conditions. The matrix valued dissipation Q must be formulated as follows

if a|n| − |q| ≥ 0 then Q = P−1|P A| else Q = |Aroe|,
with P−1|P A| = |Aroe| if |q| = a|n| and α = 0 provided that the rescaled matrix dissipation is formulated for the Roe’s 
average. In the supersonic flow regions, the CFL condition must be selected accordingly with (36). As aforementioned, the 
entropy fix must be applied selectively in order to assure a smooth transition with the Roe scheme near the sonic line. For 
the rescaled matrix dissipation, the entropy fix must be applied according to (45) with

�p(μ−) = �(|λ±|) and μ+ = |λ∓| if |q ± a|n|| ≤ δh,

whenever the Harten’s entropy fix (46) is considered.
Since μ+ → ρ(A) as M → 1, no special treatment has to be considered for the formulation of the scalar time-step. 

However, this is not true for the eigenvalues as illustrated in Fig. 1–3. So for the implicit scheme, in the formulation of 
the time-step matrix, a smooth transition A p = R A�̃A R A

−1 → |Aroe| can only be achieved by modifying the eigenvalues 
μ(k) . A possible reformulation of the acoustic speeds μ∗± in the time-step matrix (38)–(40) has been found by considering 
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Fig. 4. Dimensionless corrected eigenvalues μ∗± in the definition of time-step matrix (α = 0). Left: M = 0.1 with μ∗− = |Q 22 −a|n| zq√
χ

|, Right: M = 1.0 with 
μ∗− = |q − a|n|| ⇒ μ∗± = |λ±|.

the “acoustic portion” of decomposition (28). Upon substitution of matrices A and P −1 by their respective eigenvalues, 
we get

μ∗+ = Q 11 + a|n| zq√
χ

, μ∗− = |Q 22 − a|n| zq√
χ

|, (47)

where the absolute value on μ∗− ensures positivity. The behaviour of the normalized corrected eigenvalues (47) as func-

tion of 
q

a|n| is plotted in Fig. 4 left for M = 0.1 and α = 0. It can be especially seen that μ∗± → |λ±| the eigenvalues 

of |Aroe| as q → ±a|n| and that the asymptotic behaviour of μ∗+ � μ+ as |q| → 0 is reproduced by the correction. Note 
that μ∗− � |λ−| except when |q| → 0 where μ∗− may become singular. So the final expression of μ∗− is further simpli-
fied in order to avoid any singularity, and we simply take μ∗− = |λ−| = |q − a|n|| in the whole subsonic range |q| ≤ a|n|. 
So for the rescaled Roe scheme, the time-step matrix will assume the following expression for all inflow Mach num-
bers

�t+ = C F L
h

Q 11 + a|n| zq√
χ

, �t− = C F L
h

|q − a|n|| , �t0 = C F L
h

|q| . (48)

Thus, when M → 1 we have the smooth transition μ∗+ → |λ+| = |q +a|n|| with the matrix time-step formulated for the Roe 
scheme (see Fig. 4 right). In practice, |q −a|n|| and |q| may locally vanish or be very small and must be bounded away from 
zero with the entropy fix.

6. Computational results

We were basically interested in testing numerically the stability and the accuracy of the rescaled matrix dissipation for 
the Roe scheme in the two extreme cases M → 0 and M → 1. Flow configurations were then selected assuming steady 
conditions. In order to frame the assumption of inviscid flow considered previously and to demonstrate numerically the 
properties of the rescaled Roe scheme, we have considered a NACA0012 airfoil configuration widely used for the assessment 
of CFD solvers. The meshes used are the Vasseberg–Jameson meshes, a family of O-meshes generated from a conformal 
transformation, yielding quadrilateral cells with an aspect ratio of one, with gridlines essentially orthogonal at each vertex 
within the mesh [38]. This mesh topology allows to avoid introducing poor grid quality or highly grid stretching effects 
in the numerical solutions. Note that the original formulation in the CFD solver of the boundary conditions using the 
characteristic theory has been left unchanged when the rescaled Roe scheme was selected. In our implementation of the 
rescaled Roe scheme, we have considered the finite-volume method in structured grids. The implicit scheme (41) is solved 
iteratively using a LU-SGS method, with successive forward and backward diagonal sweeps within the mesh.

6.1. Low Mach number flows about the NACA0012 airfoil

The experiment of reference [1] was reproduced for the reformulation of the rescaled Roe matrix dissipation. In [1] the 
rescaled matrix dissipation was computed from the diagonalization of preconditioned Jacobian matrix |P A|, while in our 
implementation, the diagonalization was formulated from the full matrix P −1|P A| and the implicit scheme (41) with matrix 
coefficients (42) was used. The primary interest of this test case is to demonstrate that the proper scaling of the pressure 
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Fig. 5. Velocity contours with the inflow Mach number in the Vasseberg–Jameson mesh. Left: rescaled Roe scheme. Right: Roe scheme (V∞ = 270 m/s).

field is recovered at the discrete level in the incompressible limit by the rescaled Roe scheme. The test-case corresponds to 
a nonlifting solution at zero angle-of-attack. The grid considered for this preliminary assessment has Nc = 128 cells in both 
directions.

For the normalized equations, we know that the discrete solutions of the first-order Roe scheme support pressure fluc-
tuations in space of order M∞ , with p(x, t) = p0(t) + p1(x, t)M∞ , while in the continuous case, the pressure fluctuations 
scale as M2∞ . It was also demonstrated that the rescaled Roe scheme (with α = 0) support pressure fluctuations in space 
of second-order p(x, t) = p0(t) + p2(x, t)M2∞ . Thus, without preconditioning or rescaling of the dissipation operator, a com-
pressible flow solver usually fails to compute low Mach number flows.

A rigorous way to prove this result numerically consists in considering a sequence of computations with decreasing 
inflow Mach number using the same mesh and investigating whether the pressure fluctuations undergo a linear or quadratic 
behaviour with the Mach number. Looking for steady solutions, the pressure field will then assume the form p(x) = p0 +
δp(x), with δp(x) = p f (x)Mn∞ , where p0 is the leading order pressure corresponding to the thermodynamic static pressure, 
p f is the magnitude of the pressure fluctuations and n = 1 or 2 is the order of the fluctuations. Following [1], the accuracy of 
the computations in the incompressible limit can be characterized by the evolution of a normalized pressure field p̃ ∈ [0, 1]
and an indicator characterizing the order of the pressure fluctuations as the Mach number goes to zero. The normalized 
pressure used for the comparison of the pressure fields at different inflow Mach numbers is defined as

p̃(x) = p(x) − pmin

pmax − pmin
= p f (x) − (p f )max

(p f )max − (p f )min
= p̃ f (x),

and then also corresponds to a normalized field for pressure fluctuations. Note that the normalized pressure p̃ is indepen-
dent from the inflow Mach number and therefore as M∞ → 0, numerical solutions should also converge to a consistent 
approximation of the incompressible solution. A normalized pressure fluctuation δ p̃ is also introduced with

δ p̃ = pmax − pmin

pmax
�

[
(p f )max − (p f )min

p0

]
Mn∞ for M∞ << 1.

Since in the normalization process all flow variables are of the same order of magnitude (around unity), the above definition 
of δ p̃ gives the variation of the pressure fluctuations with the Mach number.

The behaviour p = O(1/M2) for the pressure field was reproduced for a fixed mesh within a sequence of computa-
tions by increasing the inflow pressure while keeping constant the inflow velocity and the density, for decreasing Mach 
numbers M∞ in the range 10−1 to 10−3. The entropy correction was deactivated for all inflow Mach numbers considered. 
Numerical experiments are represented in the next figures for the Van Leer formulation of the preconditioning parameter 
(3) and α = −1. As expected, solutions obtained with the rescaled matrix dissipation converge to a unique isentropic so-
lution with constant density, corresponding to a decoupling of the velocity and pressure fields, which cannot be achieved 
with the Roe scheme, as illustrated in Fig. 5–6. The behaviour of the pressure fluctuations with the inflow Mach number 
is represented in Fig. 7. With the rescaled Roe scheme, the pressure fluctuations exactly scale with M2∞ . As also indi-
cated, the same experience was conducted for the Choi–Merkle formulation of the preconditioning parameter (2) and α = 0, 
with exactly the same quadratic behaviour reproduced for the pressure fluctuations. As shown by many authors, we see 
that the Roe scheme supports fluctuations of order M∞ in the incompressible limit. Additionally, for inflow Mach num-
bers lower than 0.1, a grid-convergence study carried out in [2] rigorously demonstrates that the effort in grid density 
required to the Roe scheme to consistently converge to the correct pressure field is inversely proportional to the Mach 
number. This is a consequence of the behaviour of the leading order term of the truncation error in the incompressible 
limit.
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Fig. 6. Contours of the normalized pressure with the inflow Mach number in the Vasseberg–Jameson mesh. Left: rescaled Roe scheme. Right: Roe scheme.

Fig. 7. Pressure fluctuations with the inflow Mach number for the Roe scheme and the rescaled Roe scheme.

The effects of the matrix time-stepping scheme are illustrated in Fig. 8 for the rescaled Roe scheme. As demonstrated in 
the stability analysis, we experienced that the convergence rate is drastically increased when large CFL numbers are used, 
and the time-step matrix proved to be more efficient than the standard scalar time for any tested CFL number and any 
inflow Mach number. Largest CFL numbers used correspond to �t+ � O(h), so typically CFL � O(1/M2∞), with CFL = 102

for M∞ = 10−1, CFL = 104 for M∞ = 10−2 and CFL = 106 for M∞ = 10−3. The convergence rate is almost independent of 
the Mach number with the time-step matrix. In the Fig. 8, the limit cycle is defined with the numerical procedure unable 
to further damp out round-off errors. On the other hand, the zero level machine corresponds to the machine precision. 
Practically, the limit cycle is reached when the machine accuracy cannot further represent pressure disturbances of the 
order of round-off errors, corresponding to pressure fluctuations of order O(M2). This is a well known behaviour, as the 
rescaled Roe scheme does not damp out second-order pressure fluctuations occurring in the incompressible limit, without 
specific corrections not investigated in the present work. Therefore, as represented in the figures with the horizontal dotted 
lines, the limit cycle is shifted according to the inflow Mach number, from 13 orders of convergence when M∞ = 10−1 for 
pressure fluctuations of order O(10−2), to 9 orders of convergence when M∞ = 10−3, with pressure fluctuations of order 
O(10−6). A similar behaviour for the convergence histories is reported by Rossow [10]. However this is not a major issue, 
as the consistent solutions are obtained in the limit cycle.

The effect of a usual grid stretching was also investigated for the rescaled Roe scheme. The unique isentropic solution 
for the velocity field and the convergence history are plotted in Fig. 9. The same CFL numbers could be used in this 
conventional mesh, with a similar effect observed on the convergence rate with matrix time-stepping scheme. However, a 
much larger number of iterations is required to reach the limit cycle with the standard scalar time-step. The effect of the 
characteristic matrix time-step on the damping properties of the numerical procedure is much more pronounced in this 
highly stretched grid. It can be noted that the convergence rate to the steady state may be up to fifteen times faster with 
the matrix time-step.



196 J.-C. Boniface / Journal of Computational Physics 328 (2017) 177–199
Fig. 8. Convergence history for the rescaled Roe scheme with the inflow Mach number 10−1, 10−2 and 10−3. Solid lines: matrix time-step. Dashed lines: 
scalar time step. Normalized residuals by the maximum residual computed during the iterations.

Fig. 9. Effect of grid stretching on the rescaled Roe scheme. Left: Velocity contours with the inflow Mach number. Right: Convergence history with the 
inflow Mach number 10−1, 10−2 and 10−3 for the scalar (dashed lines) and the matrix (solid lines) time steps.

6.2. Transonic flow about the NACA0012 airfoil

A transonic flow condition for M∞ = 0.8, α = 00 was also considered in order to assess the smooth transition of the 
rescaled Roe scheme with the original Roe scheme at the sonic line, and the effect of the rescaled matrix dissipation at the 
stagnation point. This was achieved within grid convergence, considering 5 out of the 8 coarsest-to-finest meshes defined 
in [38], with dimensions 128×128 to 2048×2048 cells. So the finest grid used is composed of over 4 million cells. For the 
rescaled Roe scheme, the Choi–Merkle formulation of the preconditioning parameter (2) was selected, with ε2 = 0.01 <<

M2∞ and α = 0. For both schemes, the entropy fix was activated, with the special treatment described previously for the 
rescaled Roe scheme, and a second-order MUSCL extrapolation was considered. For a transonic flow, both schemes have a 
similar conditioning and therefore similar convergence rates were obtained, with zero-level machine convergence obtained 
for each mesh. Note that with the matrix time-stepping scheme, the Roe scheme also achieves a faster convergence to the 
steady state compared to the standard scalar time step.

The comparison for the pressure coefficient obtained in the finest mesh is plotted in Fig. 10 left. The respective solutions 
have a very similar discrete shock structure, with the same computed shock location. The effect of the proper scaling of the 
matrix dissipation has to be found near the stagnation point, where a slightly higher peak pressure is predicted with the 
rescaled Roe scheme. Then, the suction effect on the leading edge is slightly reduced and a larger pressure drag coefficient 
is found with the rescaled Roe scheme, for all meshes used in the grid-convergence study. A consequence of a better 
control of the numerical dissipation can be readily pointed out with the entropy distribution on the airfoil. The effect of 
the grid refinement on the entropy distribution is illustrated in Fig. 10 right for both schemes. A significant effect of the 
rescaled matrix dissipation can be especially observed on the spurious entropy generation at the stagnation point. Since for 
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Fig. 10. Comparison of the flow solution for the Roe scheme and the rescaled Roe scheme at M∞ = 0.8, α = 00. Left: pressure coefficient. Right: entropy 
distribution.

both schemes, the same definition of the entropy fix was considered, the strong reduction of the spurious entropy is the 
consequence of the rescaling of the Roe scheme in the low speed flow regions where high gradients of the solution are 
present. Similar effects were observed in sub-critical and in low-speed flow conditions.

7. Conclusions

A consistent matrix-valued dissipation with the low-speed limit and the transonic regime was derived from the Roe 
scheme, considering a family of preconditioners popularized by Turkel. The numerical method is characterized by the sup-
pression of the pre-multiplication of the preconditioner with the time derivative and the explicit scheme recovers a basic 
structure with the centred scheme and stabilization terms. This formulation of the matrix dissipation is interpreted as a 
rescaling of the Roe scheme for low Mach number flows. When the entropic variables are considered as independent vari-
ables, it is demonstrated that the rescaled matrix dissipation is positive semidefinite and can be diagonalized by unitary 
congruence. So, robustness problems could be significantly alleviated especially at stagnation points. However, our final 
objective is to developed a more accurate compressible flow solver in low speed flow regions, and the optimal normality 
properties of the rescaled matrix dissipation are lost by any change of variables. By construction, the rescaled Roe scheme 
gives the correct asymptotic order for the dissipation terms, and in particular returns the proper quadratic behaviour of the 
pressure fluctuations in the incompressible limit. However, as the Mach number goes to zero, the system becomes very stiff 
and very small time steps must be used, independently of the definition of the local preconditioner used for the formulation 
of the Roe–Turkel scheme. With the rescaling of the Roe scheme, it is then necessary to completely reformulate the sta-
bility condition. A CFL condition was formulated explicitly, based on the spectral radius of the rescaled matrix dissipation. 
For steady-state problems, it is shown that a robust implicit scheme can be formulated in order to circumvent the severe 
stability bound occurring for low Mach number flows. The implicit scheme is characterized by the introduction of a char-
acteristic time-step matrix, enforcing the damping properties of the scheme. Very large CFL numbers should be used in the 
incompressible limit, with tipically CFL � O(1/M2). However, as indicated in the introduction, the rescaled Roe scheme is 
intended to improve locally the prediction of complex high Reynolds number flows characterized by the coexistence of high 
gradients of the solution in mixed incompressible and compressible regions, arising typically in industrial configurations. 
For such complex flows, it is anticipated that the overall stability of the numerical procedure will not be dominated by the 
limited number of computational cells where the flowfield can be retained as incompressible. In transonic flow conditions, 
the rescaled Roe scheme ensures a smooth transition with the original Roe scheme, provided that the entropy fix is carefully 
formulated. A grid-convergence study demonstrates that the discrete shock structure is preserved with the TVD property 
enforced by the MUSCL extrapolation. As a consequence of the proper scaling of the matrix dissipation, a significant ef-
fect can be especially observed for the inviscid flow, with a drastic reduction of the spurious entropy generation at the 
stagnation point.

Acknowledgements

The author is grateful to his colleagues Lionel Castillon, Christelle Wervaecke and Antoine Dumont for providing the 2D 
CFD code together with many useful test-cases. The author also likes to express his thanks to Daniel Destarac for providing 
the Vasseberg–Jameson conformal grids.



198 J.-C. Boniface / Journal of Computational Physics 328 (2017) 177–199
Appendix A

The Cayley–Hamilton theorem states that substituting any square matrix M for its eigenvalues in the characteristic 
polynomial p results in the zero matrix p(M) = 0. Considering the special case of the 2 × 2 matrix | P̃0 Ã0| with positive 
eigenvalues, then | P̃0 Ã0|2 = ( P̃0 Ã0)

2 and the second-order characteristic polynomial reads

( P̃0 Ã0)
2 + c1| P̃0 Ã0| + c0 Id = 0,

where c1 is the sum of the diagonal elements and c0 the determinant. With the preconditioner being invertible, we then 
get by multiplying the characteristic polynomial with P̃0

−1

Ã0( P̃0 Ã0) + c1 P̃0
−1| P̃0 Ã0| + c0 P̃0

−1 = 0. (A.1)

Similarly, for matrix P̃0 Ã0 , the Cayley–Hamilton theorem amounts to the identity

Ã0( P̃0 Ã0) + d1 Ã0 + d0 P̃0
−1 = 0. (A.2)

By subtracting the polynomial identities (A.1) and (A.2), it can be easily observed that the dissipation matrix P̃0
−1| P̃0 Ã0|

can be interpreted as a weighted average between the Jacobian matrix Ã0 and the preconditioner P̃0
−1

, with

P̃0
−1| P̃0 Ã0| = 1

c1

[
d1 Ã0 + (d0 − c0) P̃0

−1
]
. (A.3)

This is explicitly formulated with (13). For the multidimensional 2D problem with 4 ×4 matrices, the decomposition (28) can 
be also demonstrated by routine calculations, considering a similar formal proof with 4th order characteristic polynomials. 
The existence of the L̃0 matrix can be easily established, as function of the preconditioning matrix P and the Jacobian 
matrix A. However the formulation of decomposition (28) and especially the formulation of the resulting sparse matrix 
L̃0 would require too much algebra if one tries to apply the Cayley–Hamilton theorem. Result (28) was actually obtained 
directly from matrix (25), following the decomposition derived for the 2 × 2 acoustic matrix.

Appendix B

In this appendix, it is demonstrated in a multi-dimensional framework that the spectral radius of the rescaled Roe matrix 
is given by the fastest acoustic speed μ+ for all possible values of the free parameter α.

We have ρ(P −1|P A|) = max(μ+, |q|) since μ+ > μ− . We found that μ+ > |q| when Mn → 0 and Mn → 1. This is 
actually true ∀Mn ≤ 1 and for α = 0, α = 1 and α = −1 as demonstrated in the following.

Using identity (27) and taking advantage of having both μ± ≥ 0, we can derive the following expression

(μ+ − |q|)(μ− + |q|) = a2|n|2
[

1 + Mn

√
�

χ̃
− 2M2

n

]
. (B.1)

From (B.1), we have the sufficient condition that as long as Mn ≤
√

2
2 , then μ+ − |q| ≥ 0 and ρ(P −1|P A|) = μ+ , without 

condition on the free parameter α. We also find that if � − χ̃ ≥ 0, then 
√

�
χ̃

≥ 1 and μ+ − |q| ≥ 0 with

1 + Mn

√
�

χ̃
− 2M2

n ≥ 1 + Mn − 2M2
n ≥ 0 for all 0 ≤ Mn ≤ 1.

We can formulate the quantity � − χ̃ as follows

� − χ̃ = P0(1 − M2
n) + P1M2

n,

with

P0 = (1 − β2

a2
)2(1 − M2

n) + 2α(1 − α + β2

a2
)M2

n − β2

a2
and P1 = 3

4
(1 − α + β2

a2
)2.

Since P1 > 0, a sufficient condition for � − χ̃ ≥ 0 is P0 ≥ 0. With α = 1, we see that as long as Mn lies in the range √
2

2 ≤ Mn ≤ 1, P0 ≥ 0. Thus setting α = 1 ensures μ+ − |q| > 0 and then ρ(P −1|P A|) = μ+ for all Mn ≤ 1. On the other 
hand, considering now the cases α = 0 and α = −1, we cannot conclude on the sign of μ+ − |q| by using the expression 
� − χ̃ . However, using identity (B.1), we also see that

(μ+ − |q|)(μ− + |q|)
(

1 + Mn

√
�

χ̃
+ 2M2

n

)
= a2|n|2

[
1 + 2Mn

√
�

χ̃
+ M2

n

(
� − 4M2

nχ̃

χ̃

)]
, (B.2)
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with χ̃ > 0. Following the same idea, we also have

(μ+ − ρ(A))(μ− + ρ(A))

(√
�

χ̃
+ 2Mn

)
= a2|n|2 (1 + Mn)

(
� − 4M2

nχ̃

χ̃

)
, (B.3)

where ρ(A) = |q| + a|n| is the spectral radius of the original Jacobian matrix.

With α = 0

� − 4M2
nχ̃ = (1 − β2

a2
)2(1 − M4

n) ≥ 0 for all 0 ≤ Mn ≤ 1.

With α = −1

� − 4M2
nχ̃ =

(
(1 − β2

a2
)2 − M2

n

)
(1 − M2

n) => 1 + M2
n

(
� − 4M2

nχ̃

χ̃

)
> 0 for all 0 ≤ Mn ≤ 1.

Then with identity (B.2), we conclude that ρ(P −1|P A|) = μ+ ∀Mn ≤ 1, and for all possible values of the parameter α. With 
α = 0 in identity (B.3), we also have μ+ ≥ ρ(A) for all Mn ≤ 1. However, this is not always the case with α = 1 or α = −1.
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