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In this paper we propose a new high order accurate space–time discontinuous Galerkin 
(DG) finite element scheme for the solution of the linear elastic wave equations in 
first order velocity-stress formulation in two and three-space dimensions on staggered
unstructured triangular and tetrahedral meshes. The method reaches arbitrary high order 
of accuracy in both space and time via the use of space–time basis and test functions. 
Within the staggered mesh formulation, we define the discrete velocity field in the control 
volumes of a primary mesh, while the discrete stress tensor is defined on a face-based 
staggered dual mesh. The space–time DG formulation leads to an implicit scheme that 
requires the solution of a linear system for the unknown degrees of freedom at the new 
time level. The number of unknowns is reduced at the aid of the Schur complement, so 
that in the end only a linear system for the degrees of freedom of the velocity field needs 
to be solved, rather than a system that involves both stress and velocity. Thanks to the 
use of a spatially staggered mesh, the stencil of the final velocity system involves only 
the element and its direct neighbors and the linear system can be efficiently solved via 
matrix-free iterative methods. Despite the necessity to solve a linear system, the numerical 
scheme is still computationally efficient. The chosen discretization and the linear nature 
of the governing PDE system lead to an unconditionally stable scheme, which allows large 
time steps even for low quality meshes that contain so-called sliver elements. The fully 
discrete staggered space–time DG method is proven to be energy stable for any order of 
accuracy, for any mesh and for any time step size. For the particular case of a simple 
Crank–Nicolson time discretization and homogeneous material, the final velocity system 
can be proven to be symmetric and positive definite and in this case the scheme is also 
exactly energy preserving. The new scheme is applied to several test problems in two and 
three space dimensions, providing also a comparison with high order explicit ADER-DG 
schemes.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Even nowadays the accurate simulation of elastic wave propagation in heterogeneous media involving complex geome-
tries is a very challenging task. In the past several numerical methods have been developed in order to solve the linear 
elasticity equations. Some classical finite difference methods can be found in [1–3] and for further extensions and develop-
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ments see, e.g. [4–10]. Concerning the class of pseudo-spectral methods we refer the reader to [11,12]. The spectral finite 
element method, originally introduced by Patera in [13], was applied to linear elastic wave propagation in a well-known 
series of papers, see e.g. [14–18] and references therein. We also mention here alternative developments in the field of 
stabilized continuous finite elements for elastic and acoustic wave propagation based on the velocity stress formulation, see 
e.g. [19–21].

A major challenge in the numerical simulation of linear elastic waves is the ability of the numerical scheme to accurately 
propagate complex wave patterns over long distances and for very long times. Therefore, the use of high order schemes 
in both space and time is necessary. For a quantitative accuracy analysis of high order schemes applied to elastic wave 
propagation, see e.g. [22,23]. The analysis is based on the misfit criteria developed in [24,25]. For an alternative study of 
high order DG schemes applied to wave propagation problems we refer to [26].

Another challenge is the discretization of complex geometries including both, complex surface topography as well as 
complex sub-surface fault structures. In this case, the use of unstructured simplex meshes composed of triangles or tetra-
hedra seems to be beneficial concerning the problem of mesh generation in complex geometries. Concerning high order 
explicit discontinuous Galerkin (DG) finite element schemes for linear elastic wave propagation on general unstructured 
meshes the reader is referred to [27–31] and to [32–34]. However, since the previous methods are explicit, they are only 
stable under a CFL-type stability condition on the time step that depends on the mesh quality as well as the polynomial 
approximation degree used. In particular, unstructured simplex meshes for complex 3D geometries may contain so-called 
sliver elements, which are tiny elements with very bad aspect ratio and which look like needles or thin plates. In the case 
of explicit time discretizations, such elements can be efficiently treated only at the aid of time-accurate local time stepping 
(LTS), see e.g. [31,35–39]. In this paper, we try to solve this problem in a different way using an efficient high order accurate 
implicit time discretization.

Our work is inspired by a new class of high order accurate semi-implicit discontinuous Galerkin finite element schemes 
on staggered meshes recently introduced in [40–46] for the numerical solution of the shallow water equations, the incom-
pressible and the compressible Navier–Stokes equations. Being semi-implicit, the previous methods allow large time steps. 
Furthermore, the use of an edge-based staggered grid allows to connect the discrete divergence operator with the discrete 
gradient operator. This leads to some interesting properties of the final pressure system that needs to be solved, which 
becomes symmetric and positive definite. The use of staggered meshes is state of the art for many finite difference schemes 
used in computational fluid dynamics [47–57] as well as for seismic wave propagation [6,58–60]. However, at present stag-
gered meshes are still almost unknown in the context of high order discontinuous Galerkin finite element methods for wave 
propagation. Apart from the above-mentioned references on semi-implicit staggered DG schemes [40–46], the authors are 
only aware of [61–65] and references therein concerning high order DG schemes for wave propagation using edge-based 
staggered grids. For central DG schemes, which use a vertex-based grid staggering, the reader is referred to [66,67]. How-
ever, none of those references uses space–time discontinuous Galerkin finite elements, where the basis and test functions 
depend not only on space, but both on space and time. The concept of space–time DG schemes was introduced by van 
der Vegt et al. for computational fluid dynamics in [68–72] and has been subsequently analyzed e.g. in [73,74]. The first 
application of space–time DG schemes to elastodynamics on collocated grids has been reported in [75,76], but to the best 
of our knowledge there exists no space–time DG scheme for the linear elastic wave equations on staggered grids so far. It 
is the aim of this paper to design and analyze the properties of such methods.

More precisely, in this paper we extend the idea of staggered semi-implicit space–time discontinuous Galerkin methods 
for the Navier–Stokes equations [42,43,45,44] to linear elasticity. While the velocity field is discretized on the main grid, the 
stress tensor is defined on a face-based staggered dual mesh. The governing PDE system is linear and all terms are taken 
implicitly. Inserting the discrete evolution equations for the stress tensor into the discrete momentum equation leads to one 
single linear system for the velocity field via the application of the Schur complement. Once the velocity field at the new 
time is known, one can readily update the stress tensor using an explicit formula. The good properties of the main system 
already observed in [43,45] are achieved also in this case. The resulting numerical scheme is shown to be energy stable
for any polynomial degree in space and time. A remarkable particular case can be obtained by using arbitrary high order 
polynomials in space combined with a second order Crank–Nicolson time discretization. For this special case the method 
becomes exactly energy preserving and the main system becomes symmetric and positive definite. We also present a simple 
and efficient physics-based preconditioner that is useful in the presence of sliver elements.

The rest of this paper is organized as follows: in Section 2 we present the governing PDE system and in Section 3
we introduce the staggered grid that is used in our approach, as well as the chosen basis functions. In Section 4 we 
present the numerical scheme and analyze its properties in Section 5. In Section 6 we show numerical results for several 
test problems in two and three space dimensions. We compare all numerical results obtained with our new high order 
staggered space–time DG scheme with those obtained by a high order explicit ADER-DG scheme on unstructured meshes. 
The paper closes with some concluding remarks and an outlook to future work in Section 7.

2. Governing equations

Based on the theory of linear elasticity, see e.g. [77], the governing partial differential equations for the wave propagation 
in a linear elastic medium without attenuation can be written in compact first order velocity-stress formulation based on 
the Hooke law and the momentum conservation law. They read
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∂σ

∂t
− E · ∇v = Sσ , (1)

∂ρv

∂t
− ∇ · σ = ρ S v , (2)

where ρ is the mass density, σ = σ� is the symmetric stress tensor, v = (u, v, w) is the velocity field, S v and Sσ are 
volume sources and E denotes the usual rank 4 stiffness tensor representing the linear material behavior according to the 
Hooke law σi j = Eijklεkl , where εkl = εlk is the symmetric strain tensor. The connection between the strain rate tensor and 
the velocity gradient is ∂tεi j = ε̇i j = 1

2

(
∂ j vi + ∂i v j

)
. It is well-known that the stiffness tensor E has the following so-called 

minor symmetries Ei jkl = E jikl = Eijlk , due to the symmetries of the stress and the strain tensor, and the major symmetry
Eijkl = Ekli j , hence it can have at most 21 independent components, and not 81. From the minor symmetries of E follows 
that Eijkl∂tεkl = 1

2 Eijkl∂l vk + 1
2 Eijlk∂k vl = Eijkl∂l vk = E · ∇v. Throughout the paper we use the Einstein summation convention 

over repeated indices. The symmetric stress tensor σ is

σ =
⎛
⎝ σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎞
⎠ = σ T . (3)

The normal stress components along the x, y and z directions are given by σxx , σyy and σzz , while the shear stresses are 
represented by σxy , σxz and σyz . Due to its symmetry the stress tensor σ can be written as a vector in terms of its six 
independent components as σ̃ = (σxx, σyy, σzz, σyz, σxz, σxy), where we use the tilde symbol when we refer to the vector of 
the six independent components of the stress tensor σ . The same notation is also used for the 6 independent components 
of the strain tensor, i.e. ε̃ = (εxx, εyy, εzz, εyz, εxz, εxy), so that the stress-strain relationship can be also written as σ̃ = Ẽ ε̃ . 
In this paper we assume Ẽ to be invertible so that the strain can be computed from the stress as ε̃ = Ẽ−1 σ̃ . From Ẽ−1 we 
define a tensorial object E−1 = E−1

i jkl with the same symmetries as Eijkl and the property E−1
i jpq E pqkl = δi jkl . The object δi jkl

has again the same symmetries as E and furthermore it satisfies δi jklσkl = σi j and thus also δi jklσi j = σkl . The entries of E−1
i jkl

are given by those of Ẽ−1 or are scaled by one half, and the object δi jkl contains only zeros, ones and 1
2 . Their construction 

is immediate once the inverse Ẽ−1 has been computed. For isotropic material, equation (1) can be rewritten in terms of the 
two Lamé constants λ and μ simply as

∂tσ − λ(∇ · v) I − μ
(
∇v + ∇vT

)
= Sσ , (4)

with the identity matrix I, or in terms of the vector σ̃ and the independent components of the strain rate tensor as

∂t σ̃ − Ẽ · ∂t ε̃ = S σ̃ , (5)

with ∂t ε̃ = (
∂xu, ∂y v, ∂z w, 1

2 (∂z v + ∂y w), 1
2 (∂zu + ∂x w), 1

2 (∂yu + ∂x v)
)

and where for isotropic material

Ẽ =

⎛
⎜⎜⎜⎜⎜⎝

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 2μ 0 0
0 0 0 0 2μ 0
0 0 0 0 0 2μ

⎞
⎟⎟⎟⎟⎟⎠

, Ẽ−1 = 1

2μα

⎛
⎜⎜⎜⎜⎜⎝

2(λ + μ) −λ −λ 0 0 0
−λ 2(λ + μ) −λ 0 0 0
−λ −λ 2(λ + μ) 0 0 0
0 0 0 α 0 0
0 0 0 0 α 0
0 0 0 0 0 α

⎞
⎟⎟⎟⎟⎟⎠

,

(6)

with α = 3λ + 2μ. For a homogeneous material we can assume E to be a constant in space and time. For non-homogeneous 
media we have E = E(x), which, however, is still assumed to be a constant in time.

3. Staggered unstructured grid and basis functions

Throughout this paper we use the same unstructured spatially staggered mesh as the one used in [78,42,43] for the two 
and three-dimensional case, respectively. In the following section we briefly summarize the grid construction and the main 
notation for the two dimensional triangular grid. After that, the primary and dual spatial elements are extended to the three 
dimensional case and also to the case of space–time control volumes.

Two space dimensions. In the two-dimensional case the spatial computational domain 	 ⊂ R
2 is covered with a set of Ni

non-overlapping triangular elements T i with i = 1 . . . Ni . By denoting with N j the total number of edges, the j-th edge 
will be called 
 j . B(	) denotes the set of indices j corresponding to boundary edges. The three edges of each triangle 
T i constitute the set Si defined by Si = { j ∈ [1, N j] | 
 j is an edge of T i}. For every j ∈ [1 . . . N j] − B(	) there exist two 
triangles i1 and i2 that share 
 j . We assign arbitrarily a left and a right triangle called respectively �( j) and r( j) for any 
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Fig. 1. Example of a triangular mesh element with its three neighbors and the associated staggered edge-based dual control volumes, together with the 
notation used throughout the paper.

Fig. 2. An example of a tetrahedral element of the primary mesh with Si = { j1, j2, j3, j4} (left) a non-standard dual face-based hexahedral element 
associated to the face j3 (right).

j ∈ [1 . . . N j] −B(	). The standard positive direction is assumed to be from left to right. n j denotes the unit normal vector 
defined on the edge j and oriented with respect to the positive direction according to the previous definition. For every 
triangular element i and edge j ∈ Si , the index of the neighbor triangle of element T i that shares the edge 
 j is denoted 
by ℘(i, j).

For every j ∈ [1, N j] − B(	) the quadrilateral dual element associated to 
 j is called R j and it is defined, in general, 
by the two barycenter of T �( j) and T r( j) and the two nodes of 
 j , see also [79–82,41,61]. We denote by T i, j = R j ∩ T i
the intersection element for every i and j ∈ Si . Fig. 1 summarizes the used notation, the primal triangular mesh and the 
dual quadrilateral grid. According to [42], we will call the mesh of triangular elements {T i}i∈[1,Ni ] the main grid and the 
quadrilateral grid {R j} j∈[1,Nd] is termed the dual grid.

Three space dimensions. The definitions given above are then readily extended to three space dimensions with the domain 
	 ⊂ R

3. An example of the resulting main and dual grid in three space dimensions is reported in Fig. 2. The main grid 
consists of tetrahedral simplex elements, and the face-based dual elements contain the three vertices of the common tri-
angular face of two tetrahedra (a left and a right one), and the two barycenters of the two tetrahedra that share the same 
face. In three space dimensions the dual grid therefore consists of non-standard five-point hexahedral elements. The same 
face-based staggered dual mesh has also been used in [80,80–83].

Space–time extension. In the time direction we cover the time interval [0, T ] with a sequence of times 0 = t0 < t1 < t2 . . . <

tN < tN+1 = T . We denote the time step by 
tn+1 = tn+1 − tn and the corresponding time interval by T n+1 = [tn, tn+1] for 
n = 0 . . . N . In order to ease notation, sometimes we will use the abbreviation 
t = 
tn+1. The generic space–time element 
defined in the time interval [tn, tn+1] is given by T st

i = T i × T n+1 for the main grid, and R st
j = R j × T n+1 for the dual grid.

Space–time basis functions. According to [41–43] we proceed as follows: in the two dimensional case, we first construct the 
polynomial basis up to a generic polynomial degree p on some triangular and quadrilateral reference elements. In particular, 
we take Tstd = {(ξ, η) ∈ R

2 | 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 − ξ} as the reference triangle. Using the standard nodal approach of 



390 M. Tavelli, M. Dumbser / Journal of Computational Physics 366 (2018) 386–414
conforming continuous finite elements, we obtain Nφ = (p+1)(p+2)
2 basis functions {φk}k∈[1,Nφ ] on Tstd and Nψ = (p + 1)2

nodal basis functions on the unit square Rstd = [0, 1]2 that can be obtained using the tensor product of one dimensional 
basis functions defined of the unit interval [0, 1]. The connection between the reference coordinates ξ = (ξ, η) and the 
physical coordinates x = (x, y) is obtained using either sub-parametric or iso-parametric maps, see e.g. [41] for more details.

Regarding the basis functions in three space dimensions, we use the unit tetrahedron Tstd = {(ξ, η, ζ ) ∈ R
3 | 0 ≤ ξ ≤ 1,

0 ≤ η ≤ 1 − ξ, 0 ≤ ζ ≤ 1 − ξ − η} to construct the basis polynomials for the main grid. We use again the standard nodal 
basis functions of conforming finite elements based on the reference element Tstd and then using either a sub-parametric 
or an iso-parametric map to connect the reference space ξ = (ξ, η, ζ ) to the physical space x = (x, y, z) and vice-versa. For 
the non-standard five-point hexahedral elements of the dual mesh, we define the polynomial basis directly in the physical 
space via the rescaled monomials of a Taylor series, as defined in [43]. We thus obtain Nφ = Nψ = (p+1)(p+2)(p+3)

6 basis 
functions per element for both, the main grid and the dual mesh.

Finally, we construct the time basis functions on a reference interval Istd = [0, 1] for polynomials of degree pγ by taken 
the Lagrange interpolation polynomials passing through the Gauss–Legendre quadrature points for the unit interval Istd . In 
this case the resulting Nγ = pγ + 1 basis functions in time are called {γk}k∈[1,Nγ ] . In this manner, the nodal basis in time 
is an orthogonal basis. For every time interval [tn, tn+1], the map between the reference interval and the physical one is 
simply given by t = tn + τ
tn+1 ∀τ ∈ [0, 1]. Using the tensor product we can finally construct the basis functions on the 
space–time elements T st

i and R st
j as φ̃(ξ , τ ) = φ(ξ) · γ (τ ) and ψ̃(ξ , τ ) = ψξ) · γ (τ ). The total number of basis functions 

becomes Nst
φ = Nφ · Nγ and Nst

ψ = Nψ · Nγ .

4. Numerical scheme

The discrete velocity field vh is now defined on the main grid, while the discrete stress tensor σ h is defined on the 
face-based staggered dual grid, namely vi(x, t) = vh(x, t)|T st

i
and σ j(x, t) = σ h(x, t)|Rst

j
. For a heterogeneous material also 

the material parameters λ, μ and ρ have to be discretized using piecewise high order polynomials. The discrete material 
density ρh is defined on the main grid, while the discrete material tensor Eh is defined on the dual grid, namely ρi(x) =
ρh(x)|T st

i
and E j(x) = Eh(x)|Rst

j
. The numerical solution of (1)–(2), as well as the discrete material parameters are represented 

inside the space–time control volumes of the main and the dual grid and for a time slice T n+1 by piecewise space–time 
polynomials as follows:

vi(x, t) =
Nst

φ∑
l=1

φ̃
(i)
l (x, t)v̂n+1

l,i =: φ̃(i)
(x, t)v̂n+1

i ,

ρi(x, t) =
Nst

φ∑
l=1

φ̃
(i)
l (x, t)v̂n+1

l,i =: φ̃(i)
(x, t)ρ̂n+1

i ,

σ j(x, t) =
Nst

ψ∑
l=1

ψ̃
( j)
l (x, t)σ̂ n+1

l, j =: ψ̃ ( j)
(x, t)σ̂ n+1

j ,

E j(x) =
Nst

ψ∑
l=1

ψ̃
( j)
l (x)Êl, j =: ψ̃ ( j)

(x)Ê j. (7)

Note that the discrete velocity is allowed to jump at the element boundaries of the main grid, while the discrete stress 
tensor jumps only at the boundaries of the dual grid and is therefore continuous across the boundaries of the main grid. 
This property is essential for our staggered DG method, since it completely avoids the necessity of Riemann solvers or 
numerical flux functions at the element boundaries.

Multiplication of the momentum equation (2) by a test function φ̃k , for k = 1 . . . Nst
φ , and integration over a primary 

space–time control volume T st , leads to∫

T st
i

φ̃
(i)
k

∂ρv

∂t
dx dt −

∫

T st
i

φ̃
(i)
k ∇ · σdx dt =

∫

T st
i

φ̃
(i)
k ρ S vdx dt . (8)

Using integration by parts Eqn. (8) yields

∫

T st

φ̃
(i)
k

∂ρv

∂t
dx dt −

⎛
⎜⎝

∫

∂T st

φ̃
(i)
k σ · nidS dt −

∫

T st

∇φ̃
(i)
k · σdx dt

⎞
⎟⎠ =

∫

T st

φ̃
(i)
k ρ S vdx dt , (9)
i i i i
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where ni indicates the outward unit normal vector with respect to T i . Multiplication of equation (1) by a test function ψ̃k , 
for k = 1 . . . Nst

ψ and integration over a dual space–time control volume R st
j leads to

∫

Rst
j

ψ̃
( j)
k

∂σ

∂t
dx dt −

∫

Rst
j

ψ̃
( j)
k E · ∇vdx dt =

∫

Rst
j

ψ̃
( j)
k Sσ dx dt . (10)

Due to the discontinuous discretization of our numerical quantities we have to split equations (9) and (10) as follows:

∫

T st
i

φ̃
(i)
k

∂(ρv)i

∂t
dx dt −

∑
j∈Si

⎛
⎜⎜⎝

∫


st
j

φ̃
(i)
k σ j · ni, jdS dt −

∫

T st
i, j

∇φ̃
(i)
k · σ jdx dt

⎞
⎟⎟⎠ =

∫

T st
i

φ̃
(i)
k ρ S v dx dt , (11)

∫

Rst
j

ψ̃
( j)
k

∂σ j

∂t
dx dt −

∫

T st
�( j), j

ψ̃
( j)
k E j · ∇v�( j)dx dt −

∫

T st
r( j), j

ψ̃
( j)
k E j · ∇vr( j)dx dt −

∫


st
j

ψ̃
( j)
k E j · (vr( j) − v�( j)) ⊗ n jdS dt

=
∫

Rst
j

ψ̃
( j)
k Sσ dx dt . (12)

With ni, j we denote the outward pointing unit normal vector of element T st
i on its face 
st

j . Note that a jump contribution 
is necessary in Eq. (12), since the gradient of the velocity needs to be integrated in the sense of distributions. However, since 
the stress tensor σ j is defined on the staggered dual mesh and therefore is continuous across primary element interfaces, 
no Riemann solver (numerical flux function) is needed in our approach, which is a particular feature of the chosen staggered 
mesh. Following the ideas used in [43,42] we integrate the terms including the time derivatives in (11)–(12) by parts in 
time and hence obtain

∫

T st
i

φ̃
(i)
k

∂(ρv)i

∂t
dx dt =

∫
T i

φ̃
(i)
k (x, tn+1,−)ρvi(x, tn+1,−)dx −

∫
T i

φ̃
(i)
k (x, tn,+)ρvi(x, tn,−)dx −

∫

T st
i

∂φ̃
(i)
k

∂t
(ρv)idx dt ,

∫

Rst
j

ψ̃
( j)
k

∂σ j

∂t
dx dt =

∫
R j

ψ̃
( j)
k (x, tn+1,−)σ j(x, tn+1,−)dx −

∫
R j

ψ̃
( j)
k (x, tn,+)σ j(x, tn,−)dx −

∫

Rst
j

∂ψ̃
( j)
k

∂t
σ jdx dt , (13)

where tn,− indicates the boundary-extrapolated value from a lower time slice and thus corresponds to upwinding in time, 
due to the causality principle. Using the definitions (7) and rewriting the contribution of the time derivative as specified in 
(13) we obtain from the previous equations

⎛
⎜⎝

∫
T i

φ̃
(i)
k (x, tn+1,−)φ̃

(i)
m (x, tn+1,−)dx −

∫

T st
i

∂φ̃
(i)
k

∂t
φ̃

(i)
m dx dt

⎞
⎟⎠ ˆ(ρv)

n+1
m,i −

∫
T i

φ̃
(i)
k (x, tn,+)φ̃

(i)
m (x, tn,−)dx ˆ(ρv)

n
m,i

−
∑
j∈Si

⎛
⎜⎜⎝

∫


st
j

φ̃
(i)
k ψ̃

( j)
m ni, jdS dt −

∫

T st
i, j

∇φ̃
(i)
k ψ̃

( j)
m dx dt

⎞
⎟⎟⎠ · σ̂ n+1

m, j =
∫

T st
i

φ̃
(i)
k ρ S v dx dt (14)

and

⎛
⎜⎝

∫
R j

ψ̃
(i)
k (x, tn+1,−)ψ̃

(i)
m (x, tn+1,−)dx −

∫

Rst
j

∂ψ̃
(i)
k

∂t
ψ̃

(i)
m dx dt

⎞
⎟⎟⎠ σ̂ n+1

m, j −
∫
R i

ψ̃
(i)
k (x, tn,+)ψ̃

(i)
m (x, tn,−)dx σ̂ n

m, j

− Êq, j ·

⎛
⎜⎜⎝

∫

T st

ψ̃
( j)
k ∇φ̃

(�( j))
m ψ̃

( j)
q dx dt −

∫


st

ψ̃
( j)
k φ̃

(�( j))
m ψ̃

( j)
q n jdSdt

⎞
⎟⎟⎠ v̂n+1

m,�( j)
�( j), j j
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− Êq, j ·

⎛
⎜⎜⎝

∫

T st
r( j), j

ψ̃
( j)
k ∇φ̃

(r( j))
m ψ̃

( j)
q dx dt +

∫


st
j

ψ̃
( j)
k φ̃

(r( j))
m ψ̃

( j)
q n jdSdt

⎞
⎟⎟⎠ v̂n+1

m,r( j) =
∫

Rst
j

ψ̃
( j)
k Sσ dx dt , (15)

where the quantity ˆ(ρv)
n+1
m,i is simply defined using a pointwise evaluation, namely ˆ(ρv)

n+1
m,i = ρ̂n+1

m,i v̂n+1
m,i (here, no summa-

tion over repeated indices is used). In order to ease the notation we introduce the following matrix and tensor definitions, 
according to [43,42]:

M+
j =

∫
R j

ψ̃
( j)
k (x, tn+1,−)ψ̃

( j)
m (x, tn+1,−)dx, M̄

+
i =

∫
T i

φ̃
(i)
k (x, tn+1,−)φ̃

(i)
m (x, tn+1,−)dx, (16)

M−
j =

∫
R j

ψ̃
( j)
k (x, tn,+)ψ̃

( j)
m (x, tn,−)dx, M̄

−
i =

∫
T i

φ̃
(i)
k (x, tn,+)φ̃

(i)
m (x, tn,−)dx, (17)

M◦
j =

∫

Rst
j

∂ψ̃
( j)
k

∂t
ψ̃

( j)
m dxdt, M̄

◦
i =

∫

T st
i

∂φ̃
(i)
k

∂t
φ̃

(i)
m dxdt, (18)

M j = M+
j − M◦

j , M̄ i = M̄
+
i − M̄

◦
i , (19)

S j =
∫

Rst
j

ψ̃
( j)
k Sσ dxdt, (ρS)i =

∫

T st
i

φ̃
(i)
k ρSv dxdt (20)

Di, j =
∫


st
j

φ̃
(i)
k ψ̃

( j)
m ni, jdSdt −

∫

T st
i, j

∇φ̃
(i)
k ψ̃

( j)
m dxdt, (21)

Qi, j =
∫

T st
i, j

ψ̃
( j)
k ∇φ̃

(i)
m ψ̃

( j)
q dxdt −

∫


st
j

ψ̃
( j)
k φ̃

(i)
m ψ̃

( j)
q si, jn jdSdt, (22)

where si, j is a sign function defined by

si, j = r( j) − 2i + �( j)

r( j) − �( j)
. (23)

Equations (14) and (15) are then rewritten in a compact form as

M̄ i ˆ(ρv)
n+1
i = M̄

−
i

ˆ(ρv)
n
i +

∑
j∈Si

Di, j · σ̂ n+1
j + (ρS)i, (24)

M jσ̂
n+1
j = M−

j σ̂ n
j + Ê j ·Q�( j), j v̂

n+1
�( j) + Ê j ·Qr( j), j v̂

n+1
r( j) +S j. (25)

Formal substitution of the discrete PDE for the stress tensor (25) into the discrete momentum equation (24), i.e. application 
of the Schur complement, yields a linear system that corresponds to a discrete second order wave equation for all degrees of 
freedom of the velocity vector field vh and which reads

M̄ i ρ̂i v̂
n+1
i −

∑
j∈Si

Di, j · M−1
j

(
Ê j ·Q�( j), j v̂

n+1
�( j) + Ê j ·Qr( j), j v̂

n+1
r( j)

)

= M̄
−
i ρ̂i v̂

n
i +

∑
j∈Si

Di, j · M−1
j

(
M−

j σ̂ n
j +S j

)
+ (ρS)i . (26)

The shape of this system can be rather complex if explicitly expressed in terms of all components of vh and Eh . For 
anisotropic materials, the system has exactly the same formal structure as given in (26), just with a more complex tensor 
Ê j compared to simple isotropic material. In any case, the system involves only the velocity field of the direct neighbors of 
each element and thus becomes a 4-point block system in two space dimensions and a 5-point block system in three space 
dimensions. For the particular case of pγ = 0 (piecewise constant polynomials in time, i.e. M◦

j = M̄
◦
i = 0, M+

j = M−
j = M j , 

M̄
+
i = M̄

−
i = M̄ i ), second order of accuracy in time can be easily achieved with the Crank–Nicolson scheme. In this setting, 

equations (24) and (25) read
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M̄ i ˆ(ρv)
n+1
i = M̄ i ˆ(ρv)

n
i +

∑
j∈Si

Di, j · σ̂ n+ 1
2

j + (ρS)i, (27)

M jσ̂
n+1
j = M jσ̂

n
j + Ê j ·Q�( j), j v̂

n+ 1
2

�( j) + Ê j ·Qr( j), j v̂
n+ 1

2
r( j) +S j, (28)

with σ̂ n+ 1
2

j = 1
2

(
σ̂ n

j + σ̂ n+1
j

)
and v̂n+ 1

2
i = 1

2

(
v̂n

i + v̂n+1
i

)
. In this case the final velocity system reads

M̄ i ρ̂i v̂
n+1
i − 1

4

∑
j∈Si

Di, j · M−1
j

(
Ê j ·Qi, j v̂

n+1
i + Ê j ·Q℘(i, j), j v̂

n+1
℘(i, j)

)
=

M̄ iρ̂i v̂
n
i +

∑
j∈Si

Di, j ·
(
σ̂ n

j + 1

2
M−1

j S j

)
+ 1

4

∑
j∈Si

Di, j · M−1
j

(
Ê j ·Qi, j v̂

n
i + Ê j ·Q℘(i, j), j v̂

n
℘(i, j)

)
+ (ρS)i . (29)

It can be shown to be symmetric and positive definite for homogeneous materials. The proof of those properties is reported 
in Section 5 for the homogeneous case. Thanks to those properties we are able, for this special choice, to use a very fast 
linear solver such as the conjugate gradient (CG) method. For pγ > 0 the system is not symmetric anymore and since the 
time derivatives appear in both equations the symmetrization strategy adopted in [44] for the incompressible Navier–Stokes 
equations is not possible any more. In any case we can still solve the system using a matrix-free GMRES algorithm [84]
in order to obtain the degrees of freedom v̂n+1

i of the velocity field at the new time slice. Once the new velocity field is 
known, we can then readily update the stress tensor at the aid of (25) for pγ > 0 or via (28) for pγ = 0. This closes the 
description of the numerical method, which is analyzed in the subsequent section.

5. Properties of the staggered space–time DG schemes for linear elasticity

In this section we report some details about the main matrix for the velocity system that needs to be solved in each 
time step, as well as some theoretical results about the energy stability of the numerical method.

5.1. Symmetry and positive definiteness for the special case of a Crank–Nicolson scheme in time

For homogeneous material (ρ = const., E = const.) and for pγ = 0 combined with the Crank–Nicolson scheme in time, 
the linear system (29) reduces to

ρM̄ i v̂n+1
i − 1

4

∑
j∈Si

Di, j · M−1
j E ·

(
Q̃i, j · v̂n+1

i + Q̃℘(i, j), j · v̂n+1
℘(i, j)

)
= bn

i , (30)

with the known right hand side bn
i and the matrix

Q̃i, j =
(

Q̃ i, j

)κμ

l
=

∫

T st
i, j

ψ̃
( j)
κ ∂lφ̃

(i)
μ dxdt −

∫


st
j

ψ̃
( j)
κ φ̃

(i)
μ si, j(n j)ldSdt. (31)

Note that the rank 3 tensor Qi, j can be simplified to Q̃i, j in the case of constant material properties. In this section, we 
use Greek upper indices for the basis and test functions in the objects Q̃i, j and Di, j , and Latin lower indices for spatial 
vectors and tensors. The indices i and j are reserved for the numbers of the element and the face.

Theorem 1. In the homogeneous isotropic case and for pγ = 0, the matrix of system (30) is symmetric.

Proof. Since the material is assumed to be homogeneous, ρ and E are constant in space and time. Due to the symmetry 
of the stress tensor σi j = σ ji and the strain tensor εkl = εlk , we also have Eijkl = E jikl = E jilk , which are the so-called minor 
symmetries of E. The so-called major symmetries of E imply also that Ei jkl = Ekli j . All these symmetries of E are summarized 
in the shorthand notation E = E� . Furthermore, from the definitions (31) and (21) it is obvious to see that Q̃i, j = −D�

i, j , 

see also [43]. From (16)–(19) one obtains that M̄ i = M̄
�
i for pγ = 0. The diagonal block in (30) then reads

Di = ρM̄ i + 1

4

∑
j∈Si

Di, j M−1
j E ·D�

i, j, (32)

or, more conveniently in index notation (Greek upper indices refer to basis and test functions, Latin lower indices to spatial 
vectors and tensors)
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Di = (Di)
μν
kl = ρ

(
M̄i

)μν
δkl + 1

4

∑
j∈Si

(
Di, j

)μκ

p

(
M−1

j

)κα
Ekplm

(
Di, j

)να

m , (33)

and it is easy to see that its transpose verifies

D�
i = ρM̄

�
i + 1

4

∑
j∈Si

Di, j M−�
j E� ·D�

i, j = Di, (34)

or, more conveniently in index notation

D�
i = (Di)

νμ
lk = ρ

(
M̄i

)νμ
δlk + 1

4

∑
j∈Si

(
Di, j

)νκ

p

(
M−1

j

)κα
Elpkm

(
Di, j

)μα

m =

= ρ
(
M̄i

)μν
δkl + 1

4

∑
j∈Si

(
Di, j

)μα

m

(
M−1

j

)ακ
Ekmlp

(
Di, j

)νκ

p = (Di)
μν
kl = Di, (35)

where we have used the major symmetry of Eijkl , the symmetries of the mass matrix and of the Kronecker delta δkl and 
the simple renaming of contracted indices.

The off-diagonal blocks involving the neighbor elements ℘(i, j) of element i read

Ni,℘ (i, j) = −1

4
Di, j M−1

j E · Q̃℘(i, j), j = 1

4
Di, j M−1

j E ·D�
℘(i, j), j. (36)

We write now the previous contribution in terms of edges j ∈ [1, N j] so that N�( j),r( j) and Nr( j),�( j) are the off-diagonal 
blocks involving the contribution of r( j) to �( j) and vice-versa. So we have to show that N�( j),r( j) = N�

r( j),�( j) , but

N�
r( j),�( j) = 1

4

(
Dr( j), j M−1

j E ·D�
�( j), j

)� = 1

4
D�( j), j M−�

j E�D�
r( j), j = N�( j),r( j), (37)

or, using again the index notation,

N�
r( j),�( j) = (

Nr( j),�( j)
)νμ

lk = 1

4

(
Dr( j), j

)νκ

p

(
M−1

j

)κα
Elpkm

(
D�( j), j

)μα

m =

= 1

4

(
D�( j), j

)μα

m

(
M−1

j

)ακ
Ekmlp

(
Dr( j), j

)νκ

p = (
N�( j),r( j)

)μν

kl = N�( j),r( j) (38)

from the symmetries of E and M j . �
Theorem 2. In the homogeneous case and pγ = 0, the matrix of system (30) is positive definite.

Proof. We can follow the same reasoning as in [78], since M̄ i = M̄
�
i > 0 and E = E� > 0. With these properties and from 

the results of [78] we obtain that the system matrix of (30) without the term ρM i is at least positive semi-definite. If 
we add the contribution of the positive definite mass matrix ρM̄ i > 0, then the resulting system matrix in (30) is positive 
definite. �

Numerical evidence shows that also the non-homogeneous case seems to have the same properties, but unfortunately a 
rigorous mathematical proof is still missing for the general non-homogeneous case.

5.2. Stability analysis

In this section we prove some stability results for the proposed scheme in the energy norm. In particular we will 
demonstrate that the semi-discrete scheme is energy preserving and that the fully discrete staggered space–time DG scheme 
is energy stable. A particular case is given by pγ = 0 combined with the Crank–Nicolson time discretization, for which the 
fully discrete scheme is exactly energy preserving.

Theorem 3. For homogeneous material with ρ > 0, E = E� > 0 and in the absence of volume source terms the semi-discrete form of 
the proposed staggered DG scheme is energy preserving.

Proof. Since E = E� > 0 one also has E−1 = E−� > 0. The semi-discrete form of the scheme with no volume source terms 
is given by

∫
T

φ(i) ∂(ρv)i

∂t
dx =

∑
j∈Si

⎛
⎜⎝

∫



φ(i)σ j · ni, jdS −
∫

T

∇φ(i)σ jdx

⎞
⎟⎠ , (39)
i j i, j
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∫
R j

ψ( j) ∂σ j

∂t
dx =

∫
T �( j), j

ψ( j)E j · ∇v�( j)dx +
∫

T r( j), j

ψ( j)E j · ∇vr( j)dx +
∫

 j

ψ( j)E j · (vr( j) − v�( j)
) ⊗ n jdS. (40)

Since the material is assumed to be homogeneous, we can take ψ( j) = E−1
j · σ j and φ(i) = vi as test functions, sum 

up all contributions (we use the index contraction σ : B = σi j Bi j and the identity E−1 · σ : E · B = E−1
i jmnσmn Eijkl Bkl =

E−1
mnij Ei jklσmn Bkl = δmnklσmn Bkl = σkl Bkl = σ : B) and thus obtain the two scalar relations

∫
T i

vi · ∂(ρv)i

∂t
dx =

∑
j∈Si

⎛
⎜⎝

∫

 j

vi · (σ j · ni, j
)

dS −
∫

T i, j

∇vi : σ jdx

⎞
⎟⎠ , (41)

∫
R j

(
E−1

j · σ j

)
: ∂σ j

∂t
dx =

∫
T �( j), j

σ j : ∇v�( j)dx +
∫

T r( j), j

σ j : ∇vr( j)dx +
∫

 j

σ j : (vr( j) − v�( j)
) ⊗ n jdS. (42)

Summing over the entire domain yields

Ni∑
i=1

∫
T i

vi · ∂(ρv)i

∂t
dx =

Ni∑
i=1

∑
j∈Si

⎛
⎜⎝

∫

 j

vi · (σ j · ni, j
)

dS −
∫

T i, j

∇vi : σ jdx

⎞
⎟⎠ , (43)

N j∑
j=1

∫
R j

(
E−1

j · σ j

)
: ∂σ j

∂t
dx =

N j∑
j=1

⎛
⎜⎝

∫
T �( j), j

σ j : ∇v�( j)dx +
∫

T r( j), j

σ j : ∇vr( j)dx +
∫

 j

σ j : (vr( j) − v�( j)) ⊗ n jdS

⎞
⎟⎠ . (44)

With σ = σ� , E = E� and therefore E−1 = E−� we can rewrite the time derivative terms as

Ni∑
i=1

∫
T i

vi · ∂(ρv)i

∂t
dx = 1

2

∫
	

∂ρhv2
h

∂t
dx, (45)

N j∑
j=1

∫
R j

(
E−1

j · σ j

)
: ∂σ j

∂t
dx = 1

2

∫
	

∂

∂t

(
σ h : E−1

h · σ h

)
dx, (46)

and since σ j is continuous across 
 j the right hand side of (43) can be written in terms of the faces 
 j as

Ni∑
i=1

∑
j∈Si

⎛
⎜⎝

∫

 j

vi · (σ j · ni, j
)

dS −
∫

T i, j

∇vi : σ jdx

⎞
⎟⎠ =

N j∑
j=1

⎛
⎜⎝

∫

 j

σ j : (v�( j) − vr( j)
) ⊗ n jdS

−
∫

T r( j), j

∇vr( j) : σ jdx dt −
∫

T �( j), j

∇v�( j) : σ jdx

⎞
⎟⎠ . (47)

Summing Eqs. (43)–(44) and making use of Eqs. (45) and (46) and since the right hand sides of (43) and (44) add up to 
zero due to (47), one finally obtains

1

2

∫
	

∂

∂t

(
σ h : E−1

h · σ h + ρhv2
h

)
dx = 0. (48)

This means that the total energy, which is the sum of the kinetic energy and the mechanical energy, is conserved for the 
semi-discrete scheme. �

We show now similar results for the fully discrete forms. The first result can be seen as a simple extension of the 
previous theorem using the ideas presented in [85,42].

Theorem 4. For homogeneous material with ρ > 0, E = E� > 0 and in the absence of volume source terms, the staggered space–time 
DG scheme (11) and (12) with (13) is energy stable for pγ ≥ 0 for arbitrary meshes and for arbitrary time step size 
t.
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Proof. The fully-discrete staggered space–time DG method (11) and (12) with (13) in the absence of volume source terms 
reads ∫

T i

ρiφ̃
(i)(x, tn+1,−)vi(x, tn+1,−)dx −

∫
T i

ρi φ̃
(i)(x, tn,+)vi(x, tn,−)dx −

∫

T st
i

ρi
∂φ̃(i)

∂t
vidx dt =

∑
j∈Si

⎛
⎜⎜⎝

∫


st
j

φ̃(i)σ j · ni, jdS dt −
∫

T st
i, j

∇φ̃(i)σ jdx dt

⎞
⎟⎟⎠ , (49)

∫
R j

ψ̃(i)(x, tn+1,−)σ j(x, tn+1,−)dx −
∫
R j

ψ̃(i)(x, tn,+)σ j(x, tn,−)dx −
∫

Rst
j

∂ψ̃(i)

∂t
σ jdx dt =

∫

T st
�( j), j

ψ̃( j)E j · ∇v�( j)dx dt +
∫

T st
r( j), j

ψ̃( j)E j · ∇vr( j)dx dt +
∫


st
j

ψ̃( j)E j · (vr( j) − v�( j)) ⊗ n jdS dt. (50)

Taking ψ̃( j) = E−1
j · σ j and φ̃(i) = vi as test functions, summing up all contributions and proceeding in the same manner as 

in the proof of the previous theorem, we arrive at the following intermediate scalar expression (also here the right hand 
side terms add again up to zero, for the same reason as before):

∫
	

ρhvh(x, tn+1,−) · vh(x, tn+1,−)dx −
∫
	

ρhvh(x, tn,+) · vh(x, tn,−)dx − 1

2

tn+1∫
tn

∫
	

∂ρhv2
h

∂t
dx dt +

∫
	

σ h(x, tn+1,−) : E−1
h · σ h(x, tn+1,−)dx −

∫
	

σ h(x, tn,−) : E−1
h · σ h(x, tn,+)dx − 1

2

tn+1∫
tn

∫
	

∂

∂t

(
σ h : E−1

h · σ h

)
dx dt

= 0.

The terms containing the time derivatives can be integrated by parts in time and thus one obtains:

1

2

∫
	

ρhv2
h(x, tn+1,−)dx −

∫
	

ρhvh(x, tn,+) · vh(x, tn,−)dx + 1

2

∫
	

ρhv2
h(x, tn,+)dx +

1

2

∫
	

σ h(x, tn+1,−) : E−1
h · σ h(x, tn+1,−)dx −

∫
	

σ h(x, tn,−) : E−1
h · σ h(x, tn,+)dx

+ 1

2

∫
	

σ h(x, tn,+) : E−1
h · σ h(x, tn,+)dx = 0.

Adding and immediately subtracting again 1
2

∫
	

ρhv2
h(x, tn,−)dx and 1

2

∫
	

σ h(x, tn,−) : E−1
h · σ h(x, tn,−)dx yields

1

2

∫
	

(
ρhv2

h(x, tn+1,−) + σ h(x, tn+1,−) : E−1
h · σ h(x, tn+1,−)

)
dx

− 1

2

∫
	

(
ρhv2

h(x, tn,−) + σ h(x, tn,−) : E−1
h · σ h(x, tn,−)

)
dx

+ 1

2

∫
	

ρhv2
h(x, tn,−)dx −

∫
	

ρhvh(x, tn,+) · vh(x, tn,−)dx + 1

2

∫
	

ρhv2
h(x, tn,+)dx +

+ 1

2

∫
	

σ h(x, tn,−) : E−1
h · σ h(x, tn,−)dx −

∫
	

σ h(x, tn,−) : E−1
h · σ h(x, tn,+)dx

+ 1

2

∫
σ h(x, tn,+) : E−1

h · σ h(x, tn,+)dx = 0.
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The quadratic forms in the expressions above can be easily recognized, hence

1

2

∫
	

(
ρhv2

h(x, tn+1,−) + σ h(x, tn+1,−) : E−1
h · σ h(x, tn+1,−)

)
dx

− 1

2

∫
	

(
ρhv2

h(x, tn,−) + σ h(x, tn,−) : E−1
h · σ h(x, tn,−)

)
dx

+ 1

2

∫
	

ρh
(
vh(x, tn,+) − vh(x, tn,−)

)2
dx + 1

2
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) : E−1
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= 0. (51)

Since ρh > 0 and Eh > 0 and thus the jump terms at time tn are non-negative,

1

2

∫
	

ρh
(
vh(x, tn,+) − vh(x, tn,−)

)2
dx + 1

2

∫
	

(
σ h(x, tn,+) − σ h(x, tn,−)

) : E−1
h · (σ h(x, tn,+) − σ h(x, tn,−)

) ≥ 0,

(52)

we finally obtain from (51) and (52) the sought result which relates the total energy at the new time level with the total 
energy at the old time level as

1

2

∫
	

(
ρhv2

h(x, tn+1,−) + σ h(x, tn+1,−) : E−1
h · σ h(x, tn+1,−)

)
dx

≤ 1

2

∫
	

(
ρhv2

h(x, tn,−) + σ h(x, tn,−) : E−1
h · σ h(x, tn,−)

)
dx, (53)

from which we can conclude that our new staggered space–time DG scheme for the linear elasticity equations is energy 
stable for arbitrary polynomial approximation degree, general meshes and arbitrary time step size 
t . �

The previous theorem shows that the method is energy stable and that the rate of energy loss is proportional to the 
jump in the discrete solution at the interface between two time slices. This rises the almost natural question on what 
happens if we employ a second order time discretization using the classical Crank–Nicolson scheme. The following theorem 
gives us an interesting result:

Theorem 5. For homogeneous material with ρ > 0, E = E� > 0 and in the absence of volume source terms the fully-discrete staggered 
DG scheme with pγ = 0 and Crank–Nicolson time discretization is exactly energy preserving.

Proof. Starting from the semi-discrete form (39) and (40), inserting the standard Crank–Nicolson time discretization and 

using as test functions ψ( j) = E−1
j · σ n+ 1

2
j and φ(i) = v

n+ 1
2

j , one obtains
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The right hand sides add again up to zero from the proof of Theorem 3, while for the discrete time derivatives we get from 

the definition of σ n+ 1
2

j = 1
2

(
σ n

j + σ n+1
j

)
and vn+ 1

2
i = 1

2

(
vn
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Fig. 3. Plane wave scattering on a circular cavity. Comparison of the isocontours of the stress tensor component σxx between the reference solution given 
by an explicit ADER-DG scheme (left) and our new staggered space–time DG scheme (right). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

and a similar result for σ . Using the same reasoning of Theorem (3) we finally obtain

1

2

∫
	

(
ρh

(
vn+1

h

)2 + σ n+1
h : E−1

j · σ n+1
h

)
dx = 1

2

∫
	

(
ρh

(
vn

h

)2 + σ n
h : E−1

j · σ n
h

)
dx, (56)

and so the staggered DG scheme with the simple Crank–Nicolson time discretization is exactly energy preserving. �
6. Numerical tests

All test problems in this section assume isotropic material. For the definition of the initial conditions, we also make use 
of the state vector U = (

σxx, σyy, σxy, u, v
)

in 2D and U = (
σxx, σyy, σzz, σxy, σyz, σxz, u, v, w

)
in 3D.

6.1. Scattering of a plane wave on a circular cavity

In this test case we consider a simple p-wave traveling in the x-direction and hitting a circular cavity. The computational 
domain is 	 = [−2.5, 2.5]2 − C0.25, where Cr indicates the circle of radius r. The initial condition is

U(x,0) = 0.1 · (−2,0,4,2,0) sin(2πx), (57)

and the boundary conditions are set to be periodic on the external boundary and free surface boundary (σ · n = 0) on the 
circular cavity. The material parameters are homogeneous and are chosen as ρ = 1, λ = 2 and μ = 1. The computational 
domain is discretized using Ni = 5644 triangles of characteristic mesh size h = 0.11. We use a polynomial approximation 
degree of p = 5 in space and pγ = 1 in time. The time step size is chosen as 
t = 0.01. We compare our new staggered 
space–time DG scheme with a well established explicit high order ADER-DG method that is the basis of the SeisSol code 
published in [27–31,86,87] and its generalization under the framework of P N P M schemes achieved in [88]. For the reference 
solution, we use N = M = 2 and a very fine mesh of Ni = 563280 triangular elements. In both cases we run the simulation 
up to tend = 1.0. A comparison of the resulting stress component σxx , colored with σyy is shown in Fig. 3. Fig. 4 shows 
the time series of all variables in x1 = (0.5, 0.5) and x2 = (1.0, 0.0). A very good agreement can be observed in all cases. 
Furthermore, we emphasize that the use of high order isoparametric elements is important for properly representing the 
curvilinear geometry of this test case.

6.2. Numerical convergence test

In this test we verify the order of accuracy and the computational efficiency of our new staggered space–time DG 
schemes for linear elasticity. Following [27] we consider a combination of a p- and an s-wave in a square domain 	 =
[−1.5, 1.5]2 extended with periodic boundaries everywhere. As initial state we take

U(x,0) = αrp sin(k · x) + αrs sin(k · x), (58)
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Fig. 4. Comparison of the stress tensor components σxx , σyy , σxy (left) and velocity components u, v (right) in the receiver point x1 = (0.5, 0.5) (top) and 
x2 = (1.0, 0.0) (bottom).

where α = 0.1; k = 2π n; n = (nx, ny) = (1, 1); rp and rs are the eigenvectors associated with the p- and s-wave:

rs =
(
−2μnxny,2μnxny,μ(n2

x − n2
y),nycs,−nxcs

)
, rp =

(
λ + 2μn2

x , λ + 2μn2
y,2μnxny,−nxcp,−nycp

)
,

(59)

with the p-wave speed cp = √
(λ + 2μ)/ρ and the s-wave speed cs = √

μ/ρ . We set (λ, μ, ρ) = (2, 1, 1). The final 
time is tend = 3

√
2 so that the resulting exact solution has to be the same as the initial one i.e. U(x, tend) = U(x, 0). 

In Table 1 we report the resulting L2 error norms for the entire state vector U and the order of convergence for dif-
ferent polynomial approximation degrees p = pγ on a sequence of successively refined meshes of characteristic size 
h = (0.1264, 0.0842, 0.0842, 0.0505, 0.0421). The time step size has been chosen proportional to the mesh spacing h as 

t = Kh, with K = 0.112, independent of the polynomial degree p. We also report the wall clock times TC P U measured 
on 20 cores of an Intel Xeon E5 CPU with 2.5 GHz clock speed and 128 GB of RAM. From Table 1 the optimal order of 
convergence can be observed for all variables.

6.3. 2D tilted Lamb problem

In this test case we study the two dimensional tilted Lamb problem, as suggested in [15,27]. The computational domain 
	 = {(x, y) ∈ R

+ | 0 ≤ x ≤ 4000 , 0 ≤ y ≤ 2000 + x tan θ} consists in a free surface with a tilt angle of θ = 10◦ . The chosen 
p- and s-wave velocities are set to cp = 3200 and cs = 1847.5, respectively. The mass density is taken as ρ = 2200 so that 
the resulting Lamé constants are λ = 7.5096725 · 109 and μ = 7.50916375 · 109. The initial condition is U = 0 everywhere 
in 	. The waves are generated by a directional point source located in xs = (1720.0, 2303.18). We place a receiver in 
xp = (2694.96, 2475.08), at a distance of 900 length units from the source. As reference solution we use the well established 
ADER-DG method proposed in [27,28,88] with N = M = 4 and Ni = 844560. The numerical parameters of the new staggered 
space–time DG scheme are p = 4, pγ = 2, 
t = 10−3 and Ni = 33952. The point source

Sv(x, t) = 1
d δ(x − xs)S(t),
ρ
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Table 1
Numerical convergence test: L2 error norm, numerical convergence rates and CPU time TC P U for all variables for p = pγ = 1 . . .4.

p Ni u v σxx σyy σxy TC P U

1 1760 1.253E-01 2.675E-01 5.111E-01 3.003E-01 1.343E-01 4.4
1 3960 4.609E-02 2.5 1.284E-01 1.8 2.428E-01 1.8 1.248E-01 2.2 6.143E-02 1.9 11.7
1 7040 2.479E-02 2.2 7.356E-02 1.9 1.387E-01 1.9 6.938E-02 2.0 3.481E-02 2.0 24.3
1 11000 1.567E-02 2.1 4.741E-02 2.0 8.931E-02 2.0 4.430E-02 2.0 2.235E-02 2.0 42.7

p Ni u v σxx σyy σxy TC P U

2 1760 1.512E-03 3.249E-03 6.081E-03 3.156E-03 1.574E-03 27.6
2 3960 3.697E-04 3.5 6.568E-04 3.9 1.218E-03 4.0 6.411E-04 3.9 3.186E-04 3.9 90.1
2 7040 1.416E-04 3.3 2.118E-04 3.9 3.882E-04 4.0 2.086E-04 3.9 1.031E-04 3.9 198.1
2 11000 6.901E-05 3.2 8.872E-05 3.9 1.601E-04 4.0 8.835E-05 3.9 4.324E-05 3.9 364.4

p Ni u v σxx σyy σxy TC P U

3 1760 5.522E-05 3.323E-05 4.781E-05 3.835E-05 1.919E-05 153.3
3 3960 1.079E-05 4.0 5.544E-06 4.4 6.534E-06 4.9 6.313E-06 4.4 3.250E-06 4.4 450.5
3 7040 3.414E-06 4.0 1.677E-06 4.2 1.824E-06 4.4 1.906E-06 4.2 9.790E-07 4.2 998.0
3 11000 1.396E-06 4.0 6.827E-07 4.0 7.183E-07 4.2 7.668E-07 4.1 3.983E-07 4.0 1811.5

p Ni u v σxx σyy σxy TC P U

4 1760 2.480E-06 1.216E-06 1.400E-06 1.434E-06 6.596E-07 183.0
4 3960 3.270E-07 5.0 1.582E-07 5.0 1.820E-07 5.0 1.869E-07 5.0 8.319E-08 5.1 984.6
4 7040 7.724E-08 5.0 3.733E-08 5.0 4.292E-08 5.0 4.418E-08 5.0 1.933E-08 5.1 2476.2
4 11000 2.532E-08 5.0 1.218E-08 5.0 1.402E-08 5.0 1.442E-08 5.0 6.278E-09 5.0 9466.8

Fig. 5. Contours of the velocity component v at time t = 0.6 obtained with an explicit ADER-DG scheme (left) as reference and the new staggered space–
time DG scheme (right).

is characterized by a Dirac delta distribution in space located in xs and a temporal part, which is a Ricker wavelet defined 
as

S(t) = a1

(
0.5 + a2(t − tD)2

)
, (60)

where tD = 0.08s is the source delay time; a1 = −2000; a2 = −(π fc)
2; and fc = 14.5. Finally the vector d =

(− sin θ, cos θ, 0, 0, 0)� determines the direction of the source and depends on the tilt angle θ . A comparison of the ve-
locity component v at t = 0.6 is reported in Fig. 5. Fig. 6 shows the comparison of the recorded seismograms in the receiver 
location xp . An excellent agreement with the reference solution can be observed also in this case.

6.4. Wave propagation in complex geometry

This test case is very similar to the previous tilted Lamb problem, but in a non-trivial domain and using a heteroge-
neous medium. The computational domain is 	 = {(x, y) | x ∈ [0, 4000] y ∈ [0, f (x)]} where the location of the free surface 
boundary is defined by the function f (x) = 2000 + 100 

(
sin ( 3

200 x) + sin ( 2
200 x)

)
. The material is heterogeneous and consists 

in two layers with different material properties. The first layer is placed in {y > 1500 − x } with cp = 3200 and cs = 1847.5, 
2
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Fig. 6. Comparison of the numerical solution obtained with the new staggered space–time DG scheme and the reference solution for the velocity compo-
nents u and v in the receiver point x = xp up to t = 1.0.

Fig. 7. Wave propagation in complex geometry. Computational domain with the point source highlighted in red and the receivers in green.

while the second layer covers the rest of the domain with cp = 2262.74 and cs = 1306.38. We use free surface boundary 
conditions everywhere. The same point source as described in the previous Section 6.3 is used (with θ = 10◦ as before) and 
is located in xs = (3000, 1500.18). We place three seismogram recorders in x1 = (893.80, 1994.83), x2 = (1790.0, 880.0)

and x3 = (1000.0, 500.0). The computational domain, the position of the source point and the position of the receivers are 
depicted in Fig. 7. The computational domain is discretized using only Ni = 7352 triangles of characteristic mesh spacing 
h = 58.50 and the polynomial approximation degrees are chosen as p = 4 in space and pγ = 2 in time. We run the sim-
ulation up to t = 5 and we set 
t = 10−3. We compare our numerical solution again with the well established ADER-DG 
method proposed in [27,28,88] with N = M = 4 on the same spatial mesh. A comparison of the numerical solution with 
the reference solution is reported at several times in Fig. 8, while the time series of the velocity component v in the three 
receiver points is reported in Fig. 9. In all cases we can observe a very good agreement with the reference solution.
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Fig. 8. Wave propagation in complex geometry. Isocontours of the vertical velocity v at times t = 0.3, 0.7, 1.1 from top to bottom for the reference solution 
(left) and the new staggered space–time DG scheme (right).

6.5. Sliver element problem

Since in unstructured meshes for complex geometries or Cartesian cut cell approaches one can easily generate so-called 
sliver elements, we want to test our new approach in the case where we have sliver elements in the computational domain, 
see [31] for a similar study in the context of explicit ADER-DG schemes with time-accurate local time stepping (LTS). We will 
compare the number of iterations needed to solve the linear system in the case of a regular unstructured grid and the mesh 
containing the sliver elements. Since the resulting matrix for the velocity field becomes locally ill-conditioned, we will use 
here a couple of preconditioners in order to control the number of iterations. The simplest one (Pre1) consists in inverting 
only the diagonal block of the system matrix, while the second one (Pre2) requires to invert a local system composed of 
the element and its direct face neighbors. More details about the construction of those preconditioners are reported in 
Appendix A. We consider a computational domain 	 = [−1.5, 1.5]2 covered with an almost uniform grid (mesh 1) and 
the same grid with two strongly deformed sliver elements (mesh 2), see Fig. 10. The incircle radius corresponding to the 
sliver elements in mesh 2 is reduced by a factor of 70.53 with respect to mesh 1. We use the same setup as presented 
in Section 6.2 for a simple p-wave traveling in direction n = (1, 0) and we use (p, pγ ) = (4, 2) with a time step size of 

t = 0.014 for both meshes. This is possible since our staggered space–time DG scheme is unconditionally stable. Fig. 11
shows the numerical solutions obtained on the two different meshes. One can observe that the introduction of the sliver 
element in mesh 2 does not change the quality of the solution, but of course it changes the effort required to solve the 
linear system for the velocity. The mean number of iterations needed to solve the system is reported in Table 2. The trend 
of the iterations in the different cases is shown in Fig. 12. As we can easily see, if we do not use any kind of preconditioner, 
the average number of iterations increases a lot. The use of the fully local preconditioner 1 helps to reduce the number of 
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Fig. 9. Comparison between numerical and reference time series for the velocity component v in the three receivers 1 . . . 3 from top to bottom.

iterations, while the second preconditioner is sufficient to solve this ill-conditioning problem and to keep the number of 
iterations almost independent of the mesh.

6.6. 3D wave propagation

In this test case we want to check our numerical method in three space dimensions. We take a very simple material 
block of size 	 = [0, 10000] ×[−8000, 2000] ×[−5000, 5000]. We use a homogeneous material with cp = 3200, cs = 1847.5
and ρ = 2200. The resulting Lamé constants are λ = 7.51 · 109 and μ = 7.51 · 109. The domain is covered with Ni = 214893
tetrahedral elements of average size h = 388.55. For this test problem we use the particular case of the Crank–Nicolson 
time discretization (pγ = 0) and approximation degree p = 4 in space. The wave is generated by an initial Gaussian profile 
imposed in the velocity component w as

w(x,0) = ae−r2/R2
(61)
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Fig. 10. Almost uniform mesh 1 (left) and mesh 2 containing two sliver elements (right).

Fig. 11. Numerical results for the velocity component u using the regular unstructured mesh 1 (left) and the unstructured mesh 2 containing the sliver 
elements (right). It can be clearly noted that also on mesh 2 the solution is smooth and is not affected by the presence of the slivers.

Table 2
Number of average iterations needed for the GMRES algorithm with differ-
ent preconditioners on the uniform unstructured grid (mesh 1) and the one 
containing the sliver elements (mesh 2).

Preconditioning Iter. mesh 1 Iter. mesh 2 Factor

None 112.59 611.95 5.43
Pre 1 86.73 191.77 2.21
Pre 2 53.27 53.38 1.00

with a = −10−2, R = 100 and r = |x −x0| is the distance from the center point x0 = (5000, 1900, 0). All other state variables 
are initialized with zero. We place two receivers in 	, one close to the free surface at x1 = (6000, 1999, 500) and the second 
one 500 units below the free surface in x2 = (6000, 1500, 500). A comparison of the velocity component v obtained with 
the ADER-DG reference code SeisSol and the new staggered DG scheme proposed in this paper is shown in Fig. 13, 
where we also show the location of the two receivers. For the computation of the reference solution, we use the same 
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sing the preconditioner 1 (center) and the preconditioner 2 
Fig. 12. Required number of iterations for the solution of the linear system plotted over the time step index n in the case of no preconditioning (left), u
(right).
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Fig. 13. Simple 3D wave propagation problem. Numerical solution obtained for the velocity component w at time t = 1.0 using an explicit ADER-DG 
reference scheme (left) and the new implicit staggered DG approach presented in this paper (right).

computational mesh and the same order of accuracy, i.e. we use N = M = 4 and Ni = 214893. In Figs. 14 and 15 we present 
a comparison between of the time signal recorded in the two receivers with the two different schemes. We can observe a 
very good agreement between the ADER-DG reference solution and the numerical solution obtained with the new staggered 
DG scheme. We can also observe that the stress components corresponding to the y direction vanish at the free surface, as 
reported in Fig. 15.

6.7. Scattering of a planar wave on a sphere

We consider here the 3D extension of the test reported in Section 6.1, which consists of a planar p-wave traveling in 
the x-direction and hitting a sphere. The computational domain is 	 = [−3, 3]3 − B0.25, where Br is the ball of radius r. 
As numerical parameters we set Ni = 31732 elements of average size h = 0.42, (p, pγ ) = (4, 2), 
t = 0.01 and tend = 1.0s. 
We consider three receivers placed in x1 = (−1, 0, 0), x2 = (0, −1, 0) and x3 = (0.5, 0.5, 0.5). As a reference solution we 
use again the explicit ADER-DG scheme implemented in the SeisSol code using the same grid and piecewise polynomials 
of degree N = 4 in space and time. The time series in the three receivers are reported in Fig. 16. A very good agree-
ment between the explicit ADER-DG scheme and the novel staggered space–time DG method can be observed also in this 
case.

6.8. Wave propagation in a complex 3D geometry

We finally want to test the potential of our new numerical scheme for real applications. For this purpose we generate 
a tetrahedral mesh based on the real DTM data of the Mont Blanc region.1 The horizontal extent of the domain is 30 km 
in the x and y directions and ranges from 10 km below the sea level to the free surface given by the DTM data. We use a 
heterogeneous material distribution consisting in two different material layers. The first one is in the region {z > −1000} m, 
while the second one covers the region z ≤ −1000 m. The parameters for the material are reported in Table 3. An initial 
velocity perturbation is placed in x = (0, 0, 0) for the vertical component of the velocity

w(x,0) = ae−r2/R2
, (62)

with a = −10−2 and R = 300 m. All other variables are set to zero. The computational domain is covered with Ni = 288998
tetrahedra, whose characteristic size is 500 m close to the free surface and 3000 m far from it. For this test we use p = 4
and the Crank–Nicolson time discretization, for which we have the discrete energy preserving property. Furthermore, we set 

t = 10−3 s and tend = 4.0 s. As reference solution we use again the explicit ADER-DG scheme used in the SeisSol code 
with the same mesh and a polynomial approximation degree in space and time of N = 4. A comparison of the numerical 
solution obtained with the new implicit staggered DG scheme and the explicit ADER-DG method at t = 4.0 is shown in 

1 The DTM data have been taken from http://geodati .fmach .it /gfoss _geodata /libro _gfoss/. Our computational domain is centered with respect to the UTM 
coordinates (340000.0, 5075000.0).

http://geodati.fmach.it/gfoss_geodata/libro_gfoss/
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tom right: u, v, w, σxx, σyy, σzz, σxy , σyz, σxz .
Fig. 14. Simple 3D wave propagation problem. Comparison of the numerical and reference solution in the first receiver, from top left to bo
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Fig. 16. Scattering of a plane wave on a sphere. Comparison of the resulting signal in the three receivers. In the first row we report the time series of the 
stress tensor components σxx , σyy and σzz for the receivers 1, 2, 3, respectively, from left to right. In the second row the velocity signal is reported for the 
same receivers.

Table 3
Material parameters for the wave propagation test in a complex 3D geometry.

Position cp (m s−1) cs (m s−1) ρ (kg m−3) λ (GPa) μ (GPa)

Medium 1 z > −1000 m 4000 2000 2600 20.8 10.4
Medium 2 z ≤ −1000 m 6000 3464 2700 32.4 32.4

Fig. 17. We consider also the signal captured in four receivers, whose positions are reported in Table 4 and which are 
also graphically represented in the right panel of Fig. 17. The resulting time history of the velocity signals for the four 
receivers is reported in Fig. 18. A very good agreement between the new staggered DG scheme and the reference scheme 
can be observed also in this case with complex 3D geometry. It is important to note that the use of the energy preserving 
variant is crucial here to obtain the proper wave amplitude with the new staggered implicit DG method. Furthermore, we 
can use the simple matrix-free conjugate gradient method in this case, thanks to the good properties of the matrix for 
the discrete wave equation for the velocity (26), which is symmetric and positive definite for pγ = 0. The computation 
was performed in parallel on the HazelHen supercomputer at the HLRS in Stuttgart, Germany, using 144 Xeon E5-2680 
Cores. The parallelization of both schemes was achieved by using the pure MPI standard. It has to be stressed that the MPI 
parallelization of our new staggered space–time DG scheme is straightforward, since we use a matrix-free iterative Krylov 
subspace method for the solution of the linear system (26), and the parallelization of the matrix-vector product inside the 
iterative solver can be done exactly in the same way as for an explicit ADER-DG scheme, i.e. based on domain decomposition. 
As in [28,31] we employ the free Metis software package [89] for the domain decomposition onto the various MPI ranks.

7. Conclusions

In this paper we have introduced a novel family of staggered space–time discontinuous Galerkin finite element schemes 
for the simulation of wave propagation in linear elastic media. The governing PDE system is written in first order velocity-
stress formulation. The key idea is the use of a staggered mesh, where the velocity field is defined on a primary mesh 
composed of simplex elements, i.e. triangles in 2D and tetrahedra in 3D. The stress tensor is defined on a face-based stag-
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Fig. 17. Wave propagation test in a complex 3D geometry with real DTM data of the Mont Blanc region. Comparison of the explicit ADER-DG reference 
solution (left) with the numerical solution obtained with the new implicit staggered DG scheme (right) at time t = 4.0. In the right panel the receiver 
locations are indicated by the red boxes. We show the iso-surfaces ±5 · 10−5 for the velocity components u and v colored by w .

Table 4
Receiver positions for the wave propagation test in complex 3D geometry.

Receiver x y z

1 1000.000000 0.000000 1397.723250
2 1545.084972 −4755.282581 −3000.000000
3 0.000000 5000.000000 3231.607925
4 −5000.000000 −8660.254038 2494.481430

gered dual mesh, which consists in quadrilateral elements in the 2D case and non-standard 5-point hexahedra in the 3D 
case. Arbitrary high order of accuracy in space and time are achieved via the use of space–time basis and test functions. The 
space–time DG method is fully implicit and therefore requires the solution of a large sparse linear system. The number of 
unknowns can be easily reduced to the degrees of freedom of the velocity field by substituting the discrete Hooke law into 
the discrete momentum conservation law, which corresponds to the application of the Schur complement. The resulting lin-
ear system for the velocity is a discrete wave equation for the velocity and can be easily solved with modern iterative Krylov 
methods. For piecewise constant polynomials in time (pγ = 0) the final system can be proven to be symmetric and positive 
definite, hence it can be efficiently solved with a matrix-free conjugate gradient method. In the general case (pγ ≥ 1) the 
system is non-symmetric and is therefore solved with a matrix-free implementation of the GMRES algorithm. The use of 
matrix-free iterative solvers allows a straightforward MPI parallelization of the algorithm on modern supercomputers.

The main advantage of our new staggered space–time DG scheme is its unconditional stability and therefore its ro-
bustness with respect to the mesh quality. In particular in complex 3D geometries, it is very frequent that computational 
meshes generated even by modern mesh generation software produce so-called sliver elements, which are elements with 
a very high aspect ratio. Although our new method is unconditionally stable, for computational meshes that contain sliver 
elements, the linear system becomes ill-conditioned and therefore requires the use of a preconditioner. We have imple-
mented two simple preconditioners: the first one is element-local and is based on the exact inverse of each block on the 
diagonal of the system matrix; the second one is more sophisticated and requires the inverse of the local system involving 
the element and its direct face neighbors. In numerical experiments we have found that the second preconditioner is fully 
sufficient to deal with sliver elements. For the general case we can prove that the method is energy stable for arbitrary 
meshes and time step size. For the special case of a Crank–Nicolson time discretization, the method is proven to be exactly 
energy conserving. We have applied the method to a large set of test problems in two and three space dimensions and we 
have also studied the convergence of the scheme via numerical experiments on a smooth problem with exact solution. In 
all cases the new approach produces excellent results. The new numerical method presented in this paper is sufficiently 
general to allow varying material properties within each element and even anisotropic material behavior could be handled 
in principle.

Future work will concern the extension of the method to dynamic rupture processes following the ideas outlined in 
[90,91] for high order ADER-DG schemes. We furthermore plan to couple the present staggered space–time DG scheme with 
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Fig. 18. Wave propagation test in a complex 3D geometry. Comparison of the numerical solution obtained with the new staggered DG scheme presented in 
this paper with the reference solution for receivers 1–4, respectively, from top left to bottom right.

explicit ADER-DG methods on adaptive Cartesian meshes (AMR), see [92,46]. Further work will also concern the general-
ization of the present scheme from simple linear elasticity to the equations of fully nonlinear hyperelasticity of Godunov 
and Romenski [93] and their recent extension to a unified formulation of continuum mechanics achieved by Peshkov and 
Romenski and collaborators in [94–96]. Last but not least, we plan to extend our scheme to the Maxwell and MHD equations, 
where staggered meshes are necessary in order to enforce a divergence-free magnetic field. In particular, we plan to couple 
the present approach with some of the novel ideas recently outlined in [97–100] concerning the use of multi-dimensional 
Riemann solvers combined with appropriately staggered meshes for the solution of the Maxwell and MHD equations.
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Appendix A. Preconditioning

Here we give some more details on how to implement the two simple preconditioners used to solve the sliver element 
test problem. For the first preconditioner, we only take the diagonal block of system (26), which for the high order staggered 
space–time DG method reads
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Di = M̄ i ρ̂i −
∑
j∈Si

Di, j M−1
j Ê j ·Qi, j. (A.1)

We then exactly invert it for each element and use the block-diagonal matrix P1 = diag
(

D−1
1 , · · ·D−1

i , · · ·D−1
Ni

)
as precondi-

tioner number one.
The second preconditioner is more sophisticated and locally inverts a small linear system for each element involving also 

its neighbor elements. Let us locally renumber the elements around T st
i so that i → 0 and the adjacent face neighbors are 

numbered as ℘(i, j) = {1,2,3} in 2D and ℘(i, j) = {1,2,3,4} in 3D. Let us denote the contributions of the neighbors to the 
linear system by the off-diagonal blocks Nl,m , which represent the contribution of element m on element l. For the second 
preconditioner we now assemble a local system around T st

i which involves T st
i and its direct face neighbors and which 

constitute a local stencil Si . In the following we will denote by |Si | = d + 2 the number of elements contained in the local 
stencil, where d is the number of space dimensions. Using the renumbering of the elements, the auxiliary system matrix Ai

for the local system reads in 2D

Ai =

⎛
⎜⎜⎝

D0 N0,1 N0,2 N0,3
N1,0 D1 N1,2 N1,3
N2,0 N2,1 D2 N2,3
N3,0 N3,1 N3,2 D3

⎞
⎟⎟⎠ . (A.2)

The matrix Ai has dimension Nst
φ · d · |Si |, and so it is easily invertible in a preprocessing step using a direct solver. We can 

therefore compute its inverse A−1
i for each element and store its first row of blocks. With A−1

i (e1, e2) for e1, e2 = 0 . . . |Si | −1
we will denote the subblock in the inverse of Ai which corresponds to the interaction of element e1 with e2. The action of 
the preconditioner matrix P2 is then given for each element i by

P2v̂n+1
i =

|Si |−1∑
e=0

A−1
i (0, e)v̂n+1

g , (A.3)

where g = g(e) corresponds again to the global element number of the local index e. The computational cost of this 
preconditioner is Nst

φ · d · |Si | · Ni and so is of the same order of the matrix-vector product required in the iterative solver.
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