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In this work, a new parallel dual-grid multiscale approach for CFD–DEM couplings is 
investigated. Dual-grid multiscale CFD–DEM couplings have been recently developed 
and successfully adopted in different applications still, an efficient parallelization for 
such a numerical method represents an open issue. Despite its ability to provide grid 
convergent solutions and more accurate results than standard CFD–DEM couplings, this 
young numerical method requires good parallel performances in order to be applied to 
large-scale problems and, therefore, extend its range of application. The parallelization 
strategy here proposed aims to take advantage of the enhanced complexity of a dual-grid 
coupling to gain more flexibility in the domain partitioning while keeping a low inter-
process communication cost. In particular, it allows avoiding inter-process communication 
between CFD and DEM software and still allows adopting complex partitioning strategies 
thanks to an optimized grid-based communication. It is shown how the parallelized 
multiscale coupling holds all its natural advantages over a mono-scale coupling and can 
also have better parallel performance. Three benchmark cases are presented to assess the 
accuracy and performance of the strategy. It is shown how the proposed method allows 
maintaining good parallel performance when operated over 1000 processes.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

CFD–DEM couplings are nowadays widely used for the numerical description of engineering and technical problems 
featuring the interaction between discrete entities and continuous fluid flows [1]. In recent years, several attempts have been 
made to extend their applicability to large-scale scenarios and more and more complex configurations [2–4]. The interaction 
between the discrete entities and the underlying fluid can be approached through direct numerical simulation [5,6], or 
via a so-called unresolved approach [7]. An unresolved or volume-averaged CFD–DEM coupling consists of the projection of 
Lagrangian fields into Eulerian ones by using volume-averaged variables [7]. In this kind of approaches, the coupling between 
CFD and DEM solution is performed using cell values or locally interpolated values for the solution of the fluid-particle 
interactions [8]. This significantly reduces the computational burden of the numerical scheme, and represents one of the 
main advantages of those approaches. For this reason, unresolved CFD–DEM couplings are the most used for the solution of 
large-scale scenarios.
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When coupling DEM with complex fluids, mono-scale volume averaged CFD–DEM couplings can have severe limita-
tions [4]. In particular, they can not always guarantee gird-convergent nor accurate solutions due to the fact that the CFD 
grids adopted for the averaging cannot ensure optimal properties for the fluid solutions.

A first attempt to introduce a two-grid formulation for CFD–DEM coupling was proposed in [9], where the authors 
addressed a problem featuring large particles by calculating the porosity field on a different grid, still without achieving 
grid-convergence of the solution finding that “A rigorous grid sensitivity analysis is difficult to perform in DEM–CFD frame-
work due to excessive computational time requirement”. In [8], we showed how dual-grid multiscale approach based on a 
Stoke number criterion was indeed able to overcome the problem of grid convergence even in cases featuring very complex 
three-phase flows. This approach consists of the identification of two length-scales within the particle-laden flow: a bulk 
scale at which the fluid-particle interaction is resolved, and a fluid fine-scale at which the equations governing the fluid 
phase are discretized. Two grids are used in order to perform the two operations: a coarse CFD grid for the bulk scale, 
and a fine CFD grid for the fluid fine-scale. Eulerian fields are interpolated between the two grids in order to exchange 
information between the fine and the bulk scale.

As from the detailed comparison proposed in [8], the dual-grid multiscale approach offers significant benefits over the 
mono-scale one in sequential execution. This approach has been shown to restore grid convergence of both local and aver-
aged properties of the flow where the mono-scale approach cannot. Additional works of [10], [11], [12,13] and [14] relied on 
this method to tackle very complex engineering problems. Nevertheless, in [8] we pointed out how the enhanced complexity 
of the multiscale scheme requires a thoughtful consideration for its parallel execution. In particular, it was underlined how 
the rise in complexity of the multiscale approach with respect to a standard CFD–DEM coupling could represent an issue 
for its parallelization, as the introduced layer of inter-scale communication could potentially negatively affect the parallel 
performance of the software.

The parallelization of CFD–DEM couplings is by itself a very difficult and open topic. First, the memory consumption 
of a coupled CFD–DEM simulation is normally important as, within a process, the information for both the CFD and DEM 
domain must be stored. Second, in addition to the intra-physic inter-process communication, that represents a major issue 
for the parallel optimization of the standalone CFD and DEM parts, a generic coupling features an additional inter-physics 
inter-process communication channel. This can lead to massive inter-process communication of the coupling, that can deeply 
penalize its performance.

In order to cope with the problem of memory consumption, in [15], the authors proposed an optimized parallelization 
strategy for the DEM part, and an independent parallelization for the CFD part, that allowed reducing memory consumption 
while keeping an intensive inter-physics communication. The resulting coupling was observed to scale better than what 
previously seen in the literature (∼35 for 64 processes) still performing significantly worse than the sole DEM part. This 
proved how the inter-physics communication between the Eulerian and the Lagrangian part can induce major performance 
issues.

In [16], the authors gave further proof of this problem, focusing on a simulation featuring millions of particles, where 
the efficiency of the DEM part was approximately 81% on 256 processes, while the efficiency of the coupled solution was 
below 35%, due to the almost 40% of the total time spent in inter-physics communication. In [17], the authors tried to cope 
with this problem by adopting a communication strategy based on non-distributed memory. The results proved how the 
reduced communication cost can indeed help the parallel performance of the coupling, yet its advantages are limited to the 
usage of ∼30 processes, and therefore, not suitable for very-large-scale simulations.

An attempt to tackle large-scale simulations with an Eulerian–Lagrangian coupling was proposed in [18]. In [18], the 
authors propose a coupling between the LAMMPS code, originally developed for molecular dynamics applications, and the 
OpenFOAM® libraries. In that work, the decomposition strategies for CFD and molecular dynamics code were completely 
independent from one another, and all the required data for the inter-physics exchange was provided through a complex 
communication layer. It was shown that the specific couple of codes can address large-scale problems and maintain good 
scalability properties when operated on one hundred of processes. On the other hand, when a larger number of processes 
is used, the inter-physics communication becomes very important, taking up to 30% of the computation time and creating 
a major bottleneck for the parallel execution.

In [19], we proposed a way to overcome such a bottleneck. This strategy consists of imposing a co-location constraint 
between the partitions of the CFD and DEM domains so to perform the inter-physics exchange locally. This strategy was 
proven to solve the bottleneck presented in [18]. Nevertheless, it reduces the flexibility in the partitioning of the domain, as 
configurations violating the co-location constraint are no longer possible. In [19], we pointed out how this limitation would 
be more severe in case of non-uniformly distributed loads.

In this contribution, we propose a parallelization strategy that takes advantage of a parallel implementation of the grid-
interpolation executed in the dual-grid multiscale approach, to overcome the shortcomings of the co-located partitioning 
strategy while keeping its advantages.

The paper is structured as follows: First, the main structure of a dual-grid multiscale CFD–DEM coupling are proposed 
with focus on the communication required between the DEM element and the CFD grids. Second, the partitioning strategy 
for the parallel execution of the coupling is proposed and the different communication layers are identified. Third, the 
grid-based parallel interpolator is proposed in its simpler version. The CFD and DEM equations resolved in section 3 are then 
briefly recalled. Finally, three benchmark cases are proposed to assess the consistency and performance of the parallelization 
strategy.
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Fig. 1. Diagram of the solution procedure of the two different length scales for the simulation. The two boxes represent the different models, while the 
arrows show schematically the communication between the scales. A coarse CFD grid (top) is used to map the Lagrangian field of the DEM into an Eulerian 
reference and to solve the fluid-particle interaction. Particle-related fields are mapped to the supporting domain (bottom) where a finer grid is used to 
solve the fluid equations.

We claim that the proposed strategy solves the parallelization issue underlined in [8], and at the same time overcomes 
the lack of flexibility that was affecting [19].

2. Method

2.1. Dual-grid multiscale CFD–DEM coupling

The concept of dual-grid multiscale approach for CFD–DEM couplings was introduced in [8]. In a dual-grid multiscale 
CFD–DEM coupling, two length-scales are identified within the particle-laden flow: a bulk scale at which the fluid-particle 
interaction is resolved, and a fluid fine-scale at which the equations governing the fluid phase are discretized. As shown 
in Fig. 1, a coarse and uniform CFD grid is adopted to resolve the fluid-particle interactions at the bulk scale, and a fine 
CFD grid is used to solve the fluid flow equations at the fine-scale. An interpolation strategy ensures the communication 
between the two grids i.e. the two lengthscales.

The dual-grid multiscale approach was originally introduced with reference to the coupling between DEM and VOF as the 
fine resolution required by the VOF scheme was found to induce a marked separation between the two scales. Nevertheless, 
this coupling strategy can be applied to a generic CFD–DEM coupling being most beneficial when such a scale separation is 
present.

From a software point of view, the implementation of the dual-grid multiscale approach requires the presence of two 
computational grids and a routine to interpolate between them, as depicted in Fig. 1. The first implementation of the 
dual-grid multiscale approach used the OpenFOAM-extend meshT oMesh library to perform this interpolation. In the present 
contribution, we adopt a modified version of the library as discussed in section 2.3 to perform the interpolation between 
grids in parallel.

In [8] it was pointed out how the coarse and fine CFD grids should be independent from one another in order to allow 
maximum flexibility of the approach. For instance, while an uniform grid is optimal when performing a Eulerian–Lagrangian 
coupling, a nonuniform, locally refined, computational grid provides several advantages for the solution of complex flows. 
For this reason, the two grids will not, in general be nested. When operated in parallel, the interpolation between the 
two grids will therefore require inter-process communication, as the coarse and fine domain partitions will not be, in 
general, perfectly aligned. This might represent a problem as the introduced layer of intra-physics communication (i.e. the 
interpolation between bulk and fluid fine scale) could potentially negatively affect the parallel performance of the software. 
As proposed in section 2.2, the main idea of the current work is to take advantage of this parallel communication so to 
avoid inter-physics inter-process communication completely.

2.2. Domain decomposition and multiscale parallel communication

In [19] was shown how using co-located partitions for the CFD and the DEM domains provides significant advantages in 
the parallel execution of the coupling in terms of both memory consumption and reduction of inter-process communication. 
In particular, it allows overcoming the inter-physics communication bottleneck that was identified in the literature [18].
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Fig. 2. CFD–DEM domain partitioning and communications.

This bottleneck was caused by the coupling operation that retrieves information from the CFD-grid to the particle 
position and averages the particle-related quantities to define equivalent Eulerian fields. Since the Lagrangian entities con-
tinuously change their position, the connectivity between the particles and the CFD grid needs to be updated at every 
coupling step. When CFD and DEM information is stored on different processes, this implies the creation of a new data 
structure that must be sent via MPI messages. When this is done for computationally expensive cases and a high number 
of processes, the coupling procedure can become the most expensive part of the simulation.

As shown in [19], this problem can be solved by partitioning CFD and DEM domain in such a way that all the information 
required for the inter-physics exchanges will always be local. This allows keeping the communication time negligible also 
when operating over hundreds of processes. Nevertheless, the approach proposed in [19] suffers from a lack of flexibility in 
the domain partitioning, that can represent a main issue for cases featuring a non-uniform distribution of the CFD and DEM 
parts.

As shown in Fig. 2, we propose to adopt a partitioning strategy based on perfectly aligned co-located partitions between 
the DEM domain and the coarse grid. In this way, we ensure that the exchange of information between Lagrangian and 
Eulerian fields will be performed within the same process using standard library calls as in [19].

On the other hand, we rely on a parallel communication for the interpolation between the coarse and the fine CFD grid. 
In this way, we allow a higher flexibility in the partitioning of the fine CFD grid, to which the computational load of the 
CFD is associated. This grid does not need to be aligned with the DEM one and will, therefore, allow more complex parti-
tioning strategies. This introduces a higher communication cost if compared to the perfect alignment proposed in [19], but 
differently from what was happening in [18], the grid-based communication is much simpler than the Eulerian–Lagrangian 
one, as it relies on a static data-structure that, for non-deforming grids, can be calculated once per simulation.

2.3. Grid-based parallel communication

During a parallel execution, the coarse and fine CFD grids are partitioned into sub-domains that are distributed in 
different processes. At runtime, every process stores a sub-domain of the coarse grid and a sub-domain of the fine grid. For 
the sake of simplicity, we now refer to a one-way interpolation where one grid holds the updated information and one grid 
should receive the interpolated values. We will refer to the first grid as the sender grid and to the latter as the receiver 
grid. When performing the interpolation between grids, the information can be local (stored in the same process), non local 
(present in another process) or a combination of the two. We will here refer to a point-to-point communication assuming 
all the interpolations to retrieve the values to send, and to distribute the received values, to happen locally.

In Fig. 3a, we propose a simple example of two identical grids of 4 elements distributed on two processes i and j. In 
this case, the interpolation will consist of a simple map of the values from one cell of the sender grid to its twin cell of the 
receiver. In order to map all the 4 values from the sender grid (Grid 1) to the receiver grid (Grid 2), four communications are 
needed. For the communication 1 and 4, the information is local, therefore the operation can be done with simple library 
calls. On the other hand, for communication 2 and 3, the sender and receiver elements are located on different processes. 
Therefore, those communications must be performed via MPI.

In Fig. 3b, we propose a representation of the data-structure required for the grid-communication in a more general 
case of two meshes distributed over n processes. An element (i,j) of the matrix represents a dataset that needs to be 
communicated from process j to process i. The diagonal terms represent the intra-process communication that are executed 
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Fig. 3. Grid-based parallel communication: two identical grids of 4 elements distributed on two different partitions 3a, and data structure of a generic 
grid-based communication 3b.

Fig. 4. Grid-based parallel communication: Example of a more complex grid partitioning 4a and the relative communication matrix 4b.

via library calls, while the non-diagonal terms require parallel communication. If the two meshes do not have relative 
movement over time (as is normally happening in CFD–DEM couplings), the same data-structure will hold during all the 
simulation, and must be calculated only once. An example of this data structure for a more realistic grid-partitioning is 
presented in Fig. 4 where it can be observed how, in general, not all the elements i,j will contain data that need to be 
communicated, and therefore the communication matrix will be sparse.

With the rise in the number of processes, the matrix generally becomes sparser and sparser and, therefore, not all the 
elements will, in general, contain a dataset. Furthermore, every process will only have to write the kth column and only 
have to read from the kth row, so that a global knowledge of the data contained in this object is not needed. In particular, 
the diagonal term (i,i) is never required by process j.

In this work, we compare two strategies for performing the parallel communication to which we will refer to as gather-
scatter and distributed. In a gather-scatter strategy, every process holds knowledge of the non-diagonal part of the matrix of 
Fig. 3b. During the mapping operation, every process k writes the kth columns, then all the information is gathered from the 
master node and scattered back to all the processes. Afterwards, the process k reads the kth row and stores the interpolated 
values on the local sub-domain of the receiver grid. This strategy was chosen for its simplicity and to provide a reference 
to study the importance of the grid interpolation on the parallel performances of the coupling. In a distributed strategy, a 
process k only holds knowledge of the k-th column and the k-th row of the matrix and directly communicates the element 
k,j (if existing) and receive the element j,k (if existing) from the process j. In this way, the dataset (k,j) will be sent from 
process k to process j without passing from the master. In section 3.3 we compare the performance of the two methods to 
underline when a more complex parallel communication is needed.
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Table 1
List of variables.

Symbol Variable Symbol Variable

u f fluid velocity α volume fraction of the liquid phase
μ f fluid viscosity uc compression velocity
ρ f fluid density � surface tension
Ffpi volumetric source of momentum due to inter-

action with particles
T� surface tension force

Fb body force ε porosity field: ∑i V pi/V cell with i = 1....npc

p pressure χ phase indicator

ρp particle density Fg gravitational force
dp particle diameter Mcoll torque acting on a particle due to collision 

events
m particle mass Mext external torque acting on a particle
I particle moment of inertia up particle velocity
Fc contact force acting on a particle Ap particle surface area
Fi j contact force acting on the particle i due to the 

collision with particle j
φ particle orientation

Fdrag force rising from the particle-fluid interaction ω particle angular velocity
n particle-fluid interface normal vector β drag factor

2.4. Equations solved in the DEM domain

In this work, we rely on the dynamic module of the XDEM Platform [8,20,10], to evolve a set of discrete entities moving 
in the presence of a multiphase flow. In this section, we briefly recall the equations resolved by this module and the 
structure of domain-partitioning adopted within XDEM (for a list of variables, see Table 1). The positions and orientations 
of the particles are updated at every time-step according to

mi
d2

dt2
xi = Fcoll + Fdrag + Fg, (1)

Ii
d2

dt2
φi = Mcoll + Mext , (2)

where xi are the positions, mi the masses, and φ the orientations of the entities. The term Fc indicates the force arising 
from collisions

Fcoll =
∑
i �= j

Fi j(x j,u j,φ j,ω j), (3)

with u j the velocity of particle j, and ω the angular velocity. The term Mcoll represents the torque acting on the particle 
due to collisions

Mcoll =
∑
i �= j

Mi j(x j,u j,φ j,ω j), (4)

with Mi j the torque acted from particle j to particle i. The term Fdrag takes into account the force rising from the interaction 
with the fluid, and Fg corresponds to the gravitational force. For what concerns Fdrag a semi empirical model in the form:

Fdrag = β(u f − up), (5)

β = β(u f − up,ρ f ,ρp,dp, Ap,μ f , ε), (6)

is here chosen, with u f , up the fluid and particle velocity respectively, ρ f , ρp the respective densities, dp, Ap the particle 
characteristic length and area, μ f the fluid viscosity, and ε the porosity, defined as the ratio between the volume occupied 
by the fluid and the total volume of the CFD cell. For the sake of generality, we took β as described in [21].

As described in [19], in the parallel execution of XDEM, the simulation domain is geometrically decomposed in regularly 
fixed-size cells that are used to distribute the workload between the processes. In this way, every process will be assigned a 
set of cells that will define its sub-domain. Every process only performs the calculation and holds knowledge of the particles 
that belong to its sub-domain.

Different load-partitioning algorithms are available within the platform XDEM [19], among which a dedicated partitioner 
that is able to force a co-location constraint between XDEM and OpenFoam partitions as proposed in [19].
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2.5. Equations solved in the CFD domain

For the solution of the fluid flow equations, we rely on the OpenFOAM-extend libraries. We rely on the solver pre-
sented in [8,22] for tackling the general case of an unsteady incompressible multiphase flow through porous media with 
forcing terms arising from the particle phase. We here briefly recall the sets of equations governing such a system. For an 
incompressible flow through porous media, the Navier–Stokes equations take the form

∂ερ f u f

∂t
+ ∇ · (ερ f u f u f ) = −ε∇p + ∇ ·

(
εμ f

(
∇u f + ∇T u f

))
+ T� + Fb + Ffpi, (7)

∇ · εu f = − ∂ε

∂τ
, (8)

with u f the fluid velocity, p the fluid pressure, Fb a generic body force, Ffpi the fluid-particle interaction force, that is the 
counterpart of Fdrag , which is here treated with the semi-implicit algorithm proposed in [23]. Local density and viscosity 
are dependent on the fluid phase and can be written in the form

ρ f (x) = ρ1α(x) + ρ2(1 − α(x)), (9)

μ f (x) = μ1α(x) + μ2(1 − α(x)), (10)

with α the volume fraction defined by

α = 1

V

∫
V

χ(x)dx, (11)

χ =
{

1 if first fluid,
0 if second fluid.

(12)

The volume fraction is considered a scalar transported by the fluid flow for which

∂εα

∂t
+ ∇ · (εαu f ) + ∇ · (εα(1 − α)uc) = 0, (13)

must hold, with uc the relative velocity between the two-phases referred to as compression velocity. The third term is 
introduced in order to avoid an excessive numerical dissipation.

This set of equations is solved with the OpenFOAM libraries [24], which parallelization is based on domain decomposi-
tion. The CFD domain is split into sub-domains assigned to each process available at run time, over each of them a separate 
copy of the code is run. The exchange of information between processes is performed at boundaries through a dedicated 
patch class as described in [24]. According to [19], the partitioning of the OpenFOAM domain is performed through a unique
XDEM-OF partitioner that aims to enforce the co-location constraint. In particular, as proposed in section 2.2, the coarse CFD 
grid is partitioned enforcing a perfect alignment with the XDEM sub-domains, while the fine CFD grid is partitioned inde-
pendently.

3. Test cases

We here propose three benchmarks to assess the validity and the scalability of our approach. The results refer to the 
coupling between OpenFoam-extend 3.2 and XDEM as in [19].

The first benchmark, One particle traveling across a processes boundary is presented in section 3.1. It tests the equivalence 
of the results between the sequential run, a parallel run as proposed in [19], and a parallel run with the current approach 
featuring an arbitrary discretization of the CFD grid. This is done to assess the validity of our approach and implementation 
by checking the continuity of the results when the particle travels across a process boundary even without partitions 
alignment.

The second benchmark, Three-phase dam-break proposed in section 3.2, re-proposes a famous benchmark featuring com-
plex multiphase interactions and a non-uniformly distributed computational load. This is done to assess how the present 
parallelization approach preserves the specific properties of the dual-grid multiscale DEM–VOF coupling in terms of accu-
racy and grid convergence. Also, it shows the benefit of the current strategy in case of non-uniform load distribution in the 
domain.

The third benchmark, Ten Million Particles in ten Million cells described in section 3.3, studies the parallel performance 
of a coupled solution in case of a heavy coupled case. This is done to show how our solution can handle highly costly 
simulations and at the same time allows resolving a main issue underlined in the literature linked to the inter-physics 
communication. Furthermore, the test-case aims to underline the importance of the parallel implementation of grid-based 
communication for large-scale computation.

The experiments were carried out using the Iris cluster of the University of Luxembourg [25] which provides 168 com-
puting nodes for a total of 4704 cores. The nodes used in this study feature a total a 128 GB of memory and have two 
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Fig. 5. One particle traveling across processes boundaries: Setup.

Fig. 6. One-Particle traveling across processes boundaries: comparison between the results obtained with sequential execution (SEQ), parallel execution with 
overlapping partitions (PAR-O), and parallel execution with non-overlapping partitions (PAR-N). Results for CFD (left) and DEM (right) variables. Continuity 
across processes boundary can be observed.

Intel Xeon E5-2680 v4 processors running at 2.4 GHz, that is to say a total of 28 cores per node. The nodes are connected 
through a fast low-latency EDR InfiniBand (100 Gb/s) network organized in a fat tree. We used OpenFOAM-Extend 3.2 and 
XDEM version b535f789736, both compiled with Intel Compiler 2016.1.150 and parallel executions were performed using 
Intel MPI 5.1.2.150 over the InfiniBand network. As proposed in [19] [26] the XDEM and OpenFoam libraries are here linked 
into one executable so that they share the local memory of the node, hence the local inter-physics data exchange can be 
performed by simple memory access.

To ensure the stability of the measurement, the nodes were reserved for an exclusive access. Additionally, each perfor-
mance value reported in this section is the average of at least hundred of measurements. The standard deviation showed 
no significant variation in the results.

3.1. One particle traveling across process boundaries

A first test is proposed, featuring a particle initially at rest traveling across a boundary between processes. This is done in 
order to show the ability of the proposed approach to deal with arbitrary domain partitions in which the information related 
to CFD and DEM parts can be stored in different processes. The particle is initially at rest within the domain assigned to 
process 0. The CFD fine-grid partition overlapping with the DEM partition assigned to process 0 is here assigned to process 
1 so to mimic a situation of complete non-overlap of the DEM and CFD local domains. The particle is accelerated by the 
fluid according to the law of equation 5. The resulting drag force pushes the particle across the boundary with process 1
causing it to be transferred from the sub-domain 0 to the sub-domain 1 of the DEM part. This represents the worse scenario 
for a coupling, in which none of the information required is local.

As shown in Fig. 5, the boundary conditions imposed on the fluid domain are an uniform Dirichlet at the inlet, no-slip 
at the wall, and reference pressure at the outlet. The CFD domain is a square channel of dimensions of 1m, 0.2m and 0.2m, 
and is discretized with 240 identical cubic cells.

In Fig. 6, the normalized particle velocity and acceleration, and the normalized solid volume and L1 norm of the fluid 
acceleration are proposed as a function of time. All the quantities are normalized by dividing them for their maximum 
value, so that they can be displayed on the same plot. The particle crosses the process boundary at 0.32s leaving the DEM 
domain assigned to process 0 and entering into the domain assigned to process 1, and subsequently leaving the CFD domain 
assigned to process 1 and entering into the domain assigned to process 0.

It can be observed how the particle velocity and acceleration are continuous across the processes boundary. This shows 
how the information on the fluid velocity at the particle position is correctly exchanged between CFD and DEM code in 
the whole domain, including the regions between boundaries. Similarly, the porosity and acceleration fields projected by 
the particle into the Eulerian grid remain constant along time without suffering discontinuities when the particle switches 
between processes.
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Fig. 7. Three-phase dam-break. Simulation domain setup.

In particular, the results are identical to the one obtained through a sequential execution and a parallel execution with 
co-located partitions [19]. This shows how the proposed method allows overcoming the limitation induced by the standard 
co-located partitions strategy extending its applicability to more complex scenarios where identical partitions for the two 
domains are not possible.

3.2. Three-phase dam-break

In this section, we propose the parallel execution of a benchmark for the multiscale DEM–VOF method. The aim is of 
showing how, with non geometrically uniform cases, the higher flexibility obtained by operating with two grid offers sig-
nificant advantages in terms of parallel performance. With this purpose, we compare the parallel execution of a mono-scale 
DEM–VOF coupling using a co-located partitions strategy, with the parallel execution of a multiscale DEM–VOF coupling 
based on the parallelization strategy presented in this work.

We here re-propose the multiscale simulation of the three-phase dam break as in [8]. As shown in Fig. 7, a config-
uration without intermediate obstacle is adopted, in a box of dimensions 0.2 m × 0.1 m × 0.3 m. A column of water of 
extension 0.05 m × 0.1 m × 0.1 m with a uniformly layered bed of approximately 10k spherical particles at the bottom, is 
left breaking and stabilizing. The spheres have a diameter of 2.7 mm. As already proposed in [8], we adopt a fine CFD grid 
discretized with 500k identical cubic cells while the coarse CFD grid discretized with 6k identical volumes. For the mono-
scale approach a domain discretization of 48k cells is chosen, and no coarse CFD grid is used. The simulation parameters 
are the standard ones as follows. The liquid (heavy phase) density and viscosity are taken as 1000 kg/m3 and 10−3 Pa s
respectively, while for the gas (light phase) 1 kg/m3 and 10−5 Pa s are chosen. The particle density is fixed at 2500 kg/m3. 
A linear dashpot impact model is used for both particle-particle and particle-container interactions with spring constant of 
1000 N/m, a restitution coefficient of 0.9 and a friction coefficient of 0.3.

As already observed in Fig. 6, Fig. 9 confirms that the parallel execution with the strategy presented in this article, 
produces the same results as the sequential run and it is validated against experimental data. A further confirmation is 
provided in Fig. 10 that shows how also in the parallel execution, the kinetic energy reaches proper convergence.

In Fig. 8, the partitioning for the two cases is showed. One can observe how, in the mono-scale case, both the CFD 
and the DEM domains are partitioned uniformly in order to ensure perfect alignment between the partitions, according to 
a standard co-located partitions strategy. In this case, due to the non-uniform distribution of the particles, this constraint 
results in all the particles to be assigned to a single process. On the other hand, in the multiscale approach, the perfect 
alignment between the two domains is ensured by choosing the coarse CFD grid to be equal to the DEM grid. Therefore, 
the fine CFD grid can be distributed in an arbitrary way, trying to optimize the ratio between the load balance and the 
communication.

In [8] was discussed how, despite the usage of a finer CFD grid makes the multiscale approach more computationally 
expensive, the overall computation time is comparable with the one involved in a mono-scale simulation for what concerns 
the sequential execution. This is confirmed in Fig. 11, where the computational time of the simulation time is depicted 
as a function of the number of processes for both the mono-scale and the multiscale approaches. One can observe how 
the sequential run of the multiscale simulation requires more time. Nevertheless, the enhanced flexibility offered for the 
parallel execution, allows it to perform better when operated over multiple processes. In particular, when using more than 
2 processes, the multiscale approach is indeed faster than the mono-scale. This can be explained by observing Fig. 12 where 
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Fig. 8. Three-phase dam-break. Simulation setup. Different possible partitioning of the domain with mono-scale and multiscale approach.

the speedup of the two approaches as a function of the number of processes is proposed. It is clearly shown how the 
multiscale approach performs significantly better than the mono-scale one.

In conclusion, for this non-uniform case, the grid-based parallelization strategy proposed for the multiscale approach 
allows adopting a more efficient load distribution, leading to the counter-intuitive result of allowing a simulation that uses 
an heavier CFD grid to run faster than one that uses a coarser one. Therefore, within a co-located partitioning strategy, the 
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Fig. 9. Three-phase dam-break. Liquid front position as a function of time. Comparison between Experimental data, sequential multiscale simulation and 
parallel multiscale simulation. Identical results can be observed betweer parallel and sequential run, and good agreement is shown with the experimental 
results.

Fig. 10. Three-phase dam-break. Non-dimensional kinetic energy as a function of non-dimensional time. Comparison between sequential run with different 
fine grids resolution and parallel run with 500k discretization.

Fig. 11. Three-phase dam-break. Execution time as a function of the number of processes. Better parallel performance is observed for the multiscale 
approach.

multiscale approach is shown to provide not only a better accuracy but also a reduced computational time when parallel 
execution is involved.

3.3. 10 Million Particles in 10 Million Cells

In this section, a case consisting of a layered bed of ten million particles moving in the presence of a carrier gas is 
proposed. This case originally suggested in [18], we here propose the results concerning the parallel execution of the bench-
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Fig. 12. Three-phase dam-break. Speedup as a function of the number of processes. Better parallel performance is observed for the multiscale approach.

Fig. 13. 10 Million Particles in 10 Million cells. Simulation Setup front view (left ) and top view (right).

Fig. 14. 10 Million Particles in 10 Million cells. Speedup as a function of time when using gather-scatter and distributed communication for the grid-based 
interpolator: Significant influence of the communication strategy can be observed while running on more than 100 processes.

mark with a dual-grid coupling in order to test the performance of the parallelization scheme when applied to a large scale 
problem.

As shown in Fig. 13, the test case features a domain with sizes of 480 mm × 40 mm × 480 mm, as originally presented 
in [18]. A layered bed of 10 million of particles is moving under the action of an incompressible flow. The boundary 
conditions for the fluid solution are of constant Dirichlet at the inlet (2 m/s), non-slip at the wall boundaries and reference 
atmospheric pressure at the outlet.

In Fig. 14, the scalability performance of the coupled XDEM-OpenFOAM run is presented. One can observe how, differ-
ently from what observed in [18], good scalability performance when operating over more than 500 processes is achieved. 
This represents a key improvement for the application of the method to large-scale problems. Furthermore, it can be clearly 
noticed how the communication strategy chosen for the grid-based interpolator plays an important role in the performance 
of the overall code when an high number of processes is involved. In particular, while when using less than 100 processes, 
the gather-scatter strategy seems not to penalize the execution excessively, when adopting 500 processes, the time spent in 
grid-communication becomes the main bottleneck of the simulation.

This is better shown in Fig. 15, where the time spent in the mapping operation during the first 50 times-steps of the 
simulation is depicted as a function of the number of processes. Fig. 15 shows how a gather-scatter interpolation is always 
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Fig. 15. 10 Million Particles in 10 Million cells. Time spent in the interpolation between grid as a function of the number of processes when using 
gather-scatter and distributed communication for the grid-based interpolator: significant difference can be observed for the two communication strategies.

Fig. 16. 10 Million Particles in 10 Million cells. Speedup as a function of time of the full simulation and the grid-to-grid interpolation using a distributed 
communication for the grid-based interpolator: Good scalability properties of both can be observed when running up to 1400 processes.

worse than a distributed one when operating on more than 28 processes. Furthermore, when using more than 100 processes, 
the global time required by the interpolation increases with the number of processes when using a gather-scatter approach, 
while decreases when adopting a distributed one. This shows how, for the current approach, a gather-scatter communication 
for the grid interpolation is only acceptable when a low number of processes are involved, while for approaching large-scale 
problems, a more sophisticated communication strategy must be chosen.

In Fig. 16, we report the parallel performance of the coupled XDEM-OpenFOAM run over 1400 processes. Differently 
from Fig. 14, we here omit the results obtained with the gather-scatter approach as, when using more than 500 processes, 
the cost of this operation becomes prohibitive. For similar cost reasons, the scalability of the interpolation is obtained with 
reference to the 28 process run. It can be observed how, when using a distributed approach for the interpolation, good 
scalability performance can be obtained for both the coupled run as well as the sole interpolation operation. This represents 
an important result since it allows obtaining a speedup of ∼ 830 that is approximately 3.5 times better than what obtained 
by the previous literature for this test case [19,18].

In Table 2, a weak scalability study is proposed in order to better investigate the parallel performance of the coupling. 
The study is performed by maintaining a constant number of particles and CFD cells per process and raising the number of 
processes until reaching the configuration proposed in Fig. 13. The time-step duration was obtained as an average over 100 
time-step; the overhead corresponds to the percentage of increase of the time-step duration compared to case A.

One can observe how the timestep duration does not significantly increase with the number of nodes and, more impor-
tantly, the cost of the inter-physics exchange remains stable. In particular, case B has double the dimension (and number 
of processes) of case A and only suffers an overhead of 1%. In case C, the overhead increases again still remaining within 
acceptable values (2.3%). In order to have a comparison with previous literature, in [16] a total overhead of ∼ 160% was 
observed on when running 10M particles on 256 processes and in [18] a total overhead of 28% was shown when running 
over 256 processes and of 100% over 500 processes. This shows that our approach can reduce by approximately two orders 
of magnitude the overhead when doubling [18] or quadrupling [16] the number of processes. It is important to notice that, 
in the selected configuration, the CFD part is run with fewer cells per process than what recommended for parallel execu-
tions, that is usually 20k cells per process [24]. This was also observed in Fig. 16 where the strong scalability was clearly 
penalized when less than 20k cells were present in the single process. Those results seem to suggest that in the present 
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Table 2
Weak scaling test with about 4464 particles and 4464 CFD cells per process. The overhead is calculated as the relative 
difference with the timestep duration of case A. A slight increase of the time-step duration is observed for bigger cases, 
while no significant difference in the inter-physics communication can be observed.

Case Nodes Total # 
processes

Total # 
particles

Total # 
CFD cells

Timestep 
duration 
[s]

Inter-
Physics 
[s]

Total 
overhead

OF over-
head

A 10 280 2.5M 2.5M 1.612 0.0007 0% 0%

B 20 560 5M 5M 1.618 0.0006 1% 0.06%

C 40 1120 10M 10M 1.65 0.0006 2.3% 15%

simulation the CFD is entering into a communication bottleneck that clearly becomes more important as the number of 
processes rises. For future contributions, it would be interesting to address this unbalance between CFD and DEM load with 
hybrid OpenMP+OpenMPI parallelizations based on the current scheme.

4. Conclusions

A parallel dual-grid multiscale approach to CFD–DEM couplings has been presented. It is based on the usage of two 
different CFD grids each associated with a different scale, and extends the multiscale DEM–VOF method to general couplings 
for large-scale scenarios. The innovative parallel implementation consists of adopting perfectly aligned co-located partitions 
between the DEM domain and the CFD domain associated with the bulk scale, while allowing independent discretization 
for the CFD domain associated with the fine scale. This allows avoiding inter-process communication between the CFD and 
the DEM part and, at the same time, keeping flexibility on the domain partitioning.

The communication between the grid associated with the bulk scale and the one associated with the fine scale is op-
erated through a parallel grid-based interpolator. The data structure that requires being communicated by this interpolator 
has been presented and two possible solutions for the parallel communication discussed.

Three benchmark cases have been discussed to assess consistency and performances of the proposed strategy. Results 
showed how the higher flexibility, obtained by the independent partition of the fine mesh, allows the dual-grid multiscale 
approach to achieve better parallel performance than a single-grid CFD–DEM coupling for inhomogeneous cases. Further-
more, it was shown how the implementation of the parallel grid communicator plays a fundamental role in case of high 
computational loads. In particular, a gather-scatter communication strategy for the interpolator starts significantly affecting 
the performance of the overall numerical scheme when operated on more than 100 processes.

One of the main benefits of the current strategy consists of the possibility of adopting more complex partitioning al-
gorithms for the DEM domain and the CFD fine grid, that can, in general, be completely independent from one another. 
Nevertheless, we want to point out how, using completely independent partitions for CFD and DEM increases the com-
munication costs of the interpolation between grids. Therefore, in order to obtain an optimal partitioning algorithm, this 
communication must be taken into account. Finally, the definition of optimal partitioning algorithms and interpolations will 
represent an important topic for future studies.
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