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A highly accurate and memory-efficient approach for the solution of polymer self-
consistent field theory (SCFT) is proposed. The central idea is to combine spectral 
integration in the polymer chain contour variable with a spectral deferred correction 
technique to solve the SCFT modified diffusion equations with arbitrarily high order of 
accuracy. The result is a robust method that achieves high accuracy with a minimal number 
of discrete contour nodes, which translates into vastly reduced memory requirements and 
increased computational efficiency. In particular, this spectral deferred correction method 
enables the computation of strongly segregated systems with unprecedented accuracy. 
Moreover, the framework of deferred corrections allows us to adaptively increase the order 
of accuracy during the outer saddle point iteration to drastically reduce the cost of a SCFT 
computation.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Self consistent field theory (SCFT) or mean field theory approximation has been a powerful tool to investigate and 
discover polymer phases (see for example [1]). Computationally, polymer SCFT amounts to three problems: 1) the solution 
of one or several Fokker-Planck or modified diffusion equations (MDE’s), 2) the computation of nonlocal, volume fraction 
operators, and 3) finding saddle points for the effective Hamiltonian. The third problem is solved through an iterative 
method, typically gradient descent-ascent or a combination of this and the conjugate gradient method [2], and each iteration 
requires the solution of problems 1) and 2). The latter are d + 1 dimensional problems (d being the spatial dimension) as 
conformational information along the polymer chains is needed in addition to the spatial variables. This makes polymer 
SCFT computationally expensive and memory demanding.

In this work, we propose a numerical approach that significantly reduces the cost of polymer SCFT computations and 
cuts down the memory requirements by an order of magnitude with respect to existing methods. The central idea is to use 
spectral integration along the contour polymer chain variable s both in the solution of the MDE’s and the computation of 
the volume fraction operators to drastically reduce the number of nodes in s for a given high accuracy. This is achieved 
with the use of Chebyshev (Gauss-Lobatto) nodes, Clenshaw-Curtis type quadratures and spectral deferred corrections.

While we focus here on problems 1) and 2), we also propose a strategy to further reduce the cost of the saddle point 
iterations, problem 3). By adaptively varying the order of accuracy in s to solve 1), without changing the resolution (i.e. 
without increasing memory), we produce a hierarchy of increasingly more accurate initial guesses for the saddle point 
iteration.
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The rest of the paper is organized as follows. The diblock copolymer model, which is used as a test bed problem for 
the proposed methodology is summarized in Section 2. This is followed by a brief Section 3 on the idea of spectral contour 
chain integration. Section 4 is devoted to the numerical solution of the MDE’s and in particular to high and arbitrary order 
methods in s. Important observations on the asymptotic behavior at small scales (high wave numbers) of some methods 
for the MDE’s, including some commonly used schemes, are also made. The contour spectral approach is integrated in the 
SCFT framework in Section 5 while Section 6 is devoted to the faster adaptive order SCFT iterations. Concluding remarks are 
made in Section 7 and a detailed derivation and formulas for the spectral integration is provided in Appendix A.

2. The diblock copolymer model

We take an incompressible melt of flexible AB diblock copolymers as our prototype SCFT model to discuss and test the 
proposed new numerical approach.

We assume for simplicity the same statistical segment length of the two blocks in the diblock chain, bA = bB = b, and 
employ a Flory parameter χ to describe the strength binary contacts between A and B . The free energy can be written 
as [1]

H[μA,μB ] =
∫

dr [− f μA − (1 − f )μB + (μA − μB)2/(4χ N)] − V ln Q c[μA,μB ], (1)

where V is the system volume, N is the copolymer degree of polymerization, f is the average volume fraction of type A 
blocks. Q c[μA, μB ] is the partition function for a single copolymer experiencing chemical potentials μA and μB that exert 
forces, respectively, on the A and B blocks. This single chain partition function is given by

Q c[μA,μB ] = 1

V

∫
dr q(r,1; [μA,μB ]), (2)

where the copolymer propagator q[r, s; μa, μB ] satisfies the Fokker-Planck or modified diffusion equation (MDE)

∂q

∂s
= ∇2q − ψq, q(r,0; [μA,μB ]) = 1. (3)

Here ψ is the potential acting on each block:

ψ(r, s) =
{
μA(r), 0 ≤ s ≤ f ,

μB(r), f < s ≤ 1.
(4)

The SCFT problem for this model is to find saddle points in which H[μA , μB ] is a minimum with respect to the exchange 
potential

μ−(r) ≡ 1

2
[μB(r) − μA(r)] (5)

and a maximum with respect to the pressure

μ+(r) ≡ 1

2
[μA(r) + μB(r)]. (6)

The first variation of H with respect to these fields can be written in terms of the local volume fractions φA and φB

δH[μ+,μ−]
δμ+(r)

= φA(r; [μ+,μ−]) + φB(r; [μ+,μ−]) − 1, (7)

δH[μ+,μ−]
δμ−(r)

= (2 f − 1) + 2

χ N
μ−(r) + φB(r; [μ+,μ−]) − φA(r; [μ+,μ−]). (8)

The local volume fraction operators φA and φB can be computed from the Feynman-Kac formulas

φA(r; [μ+,μ−]) = 1

Q c[μ+,μ−]

f∫
0

ds q(r, s; [μ+,μ−])q†(r,1 − s; [μ+,μ−]), (9)

φB(r; [μ+,μ−]) = 1

Q c[μ+,μ−]
1∫

f

ds q(r, s; [μ+,μ−])q†(r,1 − s; [μ+,μ−]). (10)

The new propagator q† expresses the lack of head-to-tail symmetry of a diblock copolymer, and satisfies the following MDE:
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∂q†

∂s
= ∇2q† − ψ†q†, q†(r,0; [μ+,μ−]) = 1, (11)

with

ψ†(r, s) =
{
μB(r), 0 ≤ s ≤ 1 − f ,

μA(r), 1 − f < s ≤ 1.
(12)

3. High order contour chain integration

At the core of the iteration to find a saddle point is the evaluation of the local volume fractions φA and φB , given by 
the integrals (9) and (10). To date, a popular quadrature to obtain approximations for these operators has been Simpson’s 
rule using equally-spaced points, �s apart, along the chain contour variable s. This yields a fourth order approximation 
in �s, assuming the propagators q and q† are computed with at least that accuracy. Note that the integrals (9) and (10)
have to be computed at every node r of the spatial grid. Thus, these operations are as costly as solving the MDE’s and 
require considerable memory because values of q and q† are needed at every point of d + 1 grid (d being here the spatial 
dimension).

A spectral quadrature, such as a Gaussian or a Chebychev-node interpolatory quadrature, gives a desired high accuracy 
with a largely reduced number of nodes, relative to a fixed order quadrature, when the integrand is smooth. This would 
immediately reduce the memory requirements substantially and could potentially lower also the computational cost of a 
SCFT simulation. This is the central idea of this work.

The link of the Chebychev-node based Clenshaw-Curtis quadrature to the discrete cosine transform (DCT) [3,4] makes this 
quadrature computationally very efficient and competitive with the Gaussian quadrature as pointed out in [5]. Moreover, the 
Chebychev nodes, unlike the Gaussian nodes, include the end points of the interval of integration and this is of relevance 
in SCFT because of the initial value problems (the MDE’s) that have to be solved to generate the integrands. But to take 
advantage of this quadrature’s spectral accuracy and consequently to achieve high accuracy with a minimal number of 
contour points, we need highly accurate and stable methods for the MDE’s. Furthermore, these methods have also to be 
stable to the outer saddle point iteration. This is a subtle but crucial point in the design of an effective SCFT method as we 
discuss in detail below.

We consider next the problem of solving the MDE’s with the goal of constructing robust and efficient high order methods 
for the SCFT saddle point iteration.

4. Solving the MDE’s

In this section we take a closer look at the problem of solving the MDE’s of SCFT. Due to potential discontinuities at the 
block junctions and at s = 0, the MDE’s should be solved block by block. Thus, it is sufficient to consider the problem

∂q

∂s
= ∇2q − wq, 0 < s ≤ f ,

q(r,0) = 1,

(13)

where w is a given field. For concreteness we take f = 1/2 and restrict ourselves to the one-dimensional problem (d = 1). 
Periodic boundary conditions are used as it is common in SCFT computations. The Laplacian is approximated spectrally with 
the discrete Fourier transform (DFT) using the FFT. We solve (13) on an interval of length L = 10.

4.1. Second order methods

Rasmussen and Kalosakas [6] proposed a Strang splitting [7] method that has become popular in polymer SCFT compu-
tations. This second order scheme, which we will denote as SS0, can be written as

q j+1(r) = exp

[
−�s

2
w(r)

]
exp

[
�s∇2

]
exp

[
−�s

2
w(r)

]
q j(r), (14)

for all nodes r of a spatial, uniform grid. This method requires only one pair of FFT’s per step and has apparent uncondi-
tional stability. As a one-step method, it also allows for variable step size although, to our knowledge, this feature has not 
been exploited. For smooth fields w , this method is hard to beat, cost and stability-wise, among second order schemes. It 
has however one significant drawback for SCFT computations, particularly for highly segregated systems and for stochastic 
(complex Langevin) simulations; it has poor high-modal damping. Indeed, to first order in �s

exp

[
−�s

2
w(r)

]
≈ 1 − �s

2
w(r) (15)
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Fig. 1. Spectrum of the numerical approximation to q(s = 1/2, r) obtained with SS0 scheme (14) when w is a random field and �s = 0.5/32 (circles) and 
�s = 0.5/256 (stars).

and consequently the Fourier modes of w , and hence of q, get decreased approximately by a factor of �s/2. Fig. 1 shows 
the spectrum of the approximation of q(s = 1/2, r) obtained with scheme (14) given a random, uniformly distributed w
field of amplitude 10−4, with a spatial resolution of Nr = 256 nodes, and uniform �s = 0.5/Ns for Ns = 32 and Ns = 256
(Ns is the number of contour nodes). This numerical experiment confirms that indeed the Fourier modes of q are decreased 
by approximately a factor of �s/2, for Ns � Nr . Moreover, we observe that as Ns increases (for fixed Nr ) the attenuation 
factor asymptotically approaches �s. This poor damping is independent of Nr , which is a particularly serious limitation in 
the stiff limit, Nr → ∞, relevant for highly segregated systems.

Implicit-Explicit (IMEX) Runge-Kutta (RK) methods [8] offer a wide class of schemes suitable for problem (13). While in 
general more expensive than their multistep counterparts [9], the IMEX RK methods have superior stability properties and 
allow for easy variable step size and step size control. Out of this wide class, we select a second order IMEX RK scheme 
with strongest high modal attenuation. This method corresponds to the (2, 2, 2) scheme derived by Ascher et al., which we 
will denote as RK222, and for the MDE (13) can be written as[

1 − γ �s∇2
]

q(1)(r) = [1 − γ �s w(r)] q j(r),[
1 − γ �s∇2

]
q j+1(r) = [1 − β�s w(r)] q j(r) + �s

[
(1 − γ )∇2 − (1 − β)w(r)

]
q(1)(r),

(16)

where γ = (2 − √
2)/2 and β = 1 − 1/(2γ ). This is a two-stage, diagonally implicit RK (DIRK) method which can be imple-

mented with 4 FFT’s per step. It is L stable (the amplification factor is zero at the stiffness limit [10]) and stiffly accurate (it 
gives the exact solution to y′ = λy as λ�s → ∞ [10]).

Fig. 2 compares the spectrum of q(s = 1/2, r) obtained with the RK222 (16) and with SS0 for the same previous test with 
�s = 0.5/32 and Nr = 1024. As remarked above, the attenuation of SS0 is flat (�s/2 across modes) and remains the same 
for Nr = 1024 as it was for Nr = 256. In marked contrast, high modal damping of the RK222 becomes even stronger as Nr

increases because the method is L-stable.
Before proceeding with the construction of high order schemes, we note that the forward-backward Euler[

1 − �s∇2
]

q j+1(r) = [1 − �s w(r)] q j(r), (17)

which is a first order IMEX RK method has, like RK222, strong high modal damping and despite its low accuracy it may be 
useful for non-smooth fields as is the case in Complex Langevin computations.

4.2. Fourth order and beyond

The need for higher than second order methods, particularly for large χ N , has been well documented [11–13]. In [11], 
a fourth order IMEX multistep method [9] was employed for large χ N SCFT computations. Another fourth order method, 
which results by applying Richardson’s extrapolation to SS0, has been more extensively used [14,13]. The IMEX multistep 
method is cost efficient per step, requiring only one FFT pair, but as pointed out in [15] it has limited stability properties.
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Fig. 2. Spectrum of the numerical approximation to q(s = 1/2, r), when w is a random field and �s = 0.5/32, obtained with SS0 (circles) with RK222 (stars). 
Nr = 1024.

The fourth order, extrapolated Strang splitting method, which we will denote as SS1, is given by

q j+1(r) = 4S0
�s/2[w]q j(r) − S0

�s[w]q j(r)

3
, (18)

where S0
�s[w]q j(r) stands for the right hand side of (14). This method requires 6 FFT’s per step. It is possible to save one 

w-exponentiation by combining adjacent half-steps in the computation of S0
�s/2[w]q j , though the main cost is really that 

of the FFT’s. In principle, one can obtain a method of order 2p by applying extrapolation p − 1 times to the original SS 
scheme. For example, applying extrapolation twice we get the 6th order scheme (SS2)

q j+1(r) = 16S1
�s/2[w]q j(r) − S1

�s[w]q j(r)

15
, (19)

where S1
�s[w]q j(r) stands for the right hand side of (18). However, this repeated extrapolation quickly becomes prohibitively 

expensive. The 6th order method (19) has a cost of 18 FFT’s per step.
Not surprisingly, the extrapolated methods (18) and (19) inherit the poor damping of the SS0 scheme. For example, SS1

has an flat attenuation factor of �s/6 and that of SS2 is (7/90)�s for Ns � Nr and both factors approach �s as Ns → ∞.

4.3. Spectral deferred corrections

An alternative approach we propose here to construct robust methods of arbitrarily high order in �s for the SCFT MDE’s 
is spectral deferred correction (SDC) [16]. In the classical deferred correction approach, one solves the differential equation 
system in question with a given method, then solves a differential equation system for the error (derived from the original 
system) with the same method, add the resulting approximation of the error to the original approximation, and repeat 
the process as desired. Unfortunately, due to repeated numerical differentiation and interpolation at equally-spaced nodes 
(assuming a uniform step size) this process is numerically unstable and in practice only a very small number of nodes can 
be used. Dutt, Greengard, and Rokhlin [16] proposed a way to overcome these difficulties and to achieve robust methods of 
arbitrarily high order. Their SDC methods are based on the integral form of the differential equation system as it is done 
in Picard’s iteration, and on the use of Legendre nodes for interpolation and the corresponding Gaussian quadrature for 
integration.

For concreteness, we describe now the SDC approach for the particular case of the MDE (13) and point out the variations 
we make to the original method of Dutt et al. [16]. We start by rewriting (13) as

q(s, r) = q(0, r) +
s∫

0

[
∇2q(τ , r) − w(r)q(τ , r)

]
dτ . (20)

Suppose we find an approximation q[0] to the solution of (20) with a given method. Define the residual of this approximation 
as
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ε[0](s, r) = q(0, r) +
s∫

0

[
∇2q[0](τ , r) − w(r)q[0](τ , r)

]
dτ − q[0](s, r) (21)

and the error

δ[0](s, r) = q(s, r) − q[0](s, r). (22)

Then, the error satisfies the integral equation

δ[0](s, r) =
s∫

0

[
∇2δ[0](τ , r) − w(r)δ[0](τ , r)

]
dτ + ε[0](s, r). (23)

The same method employed to solve (20) can now be used to solve (23) to find an approximation of the error, δ[0] . We 
then define a new, corrected approximation by

q[1](s, r) = q[0](s, r) + δ[0](s, r) (24)

and the process can be repeated to generate q[2], . . . , q[ J ] , for some pre-determined number of deferred corrections J . We 
will denote this SDC method with J corrections and Ns (Chebyshev) nodes as SDC J

Ns
.

If the method to solve (20) and (23) is order p and the quadrature to compute each residual is O (�s)m accurate then 
the order of accuracy obtained by doing J deferred corrections is [17]

O (�s)α, α = min{( J + 1)p,m}. (25)

Thus, the deferred correction process can only be repeated as long as the integral in the residual is evaluated with sufficient 
accuracy. To this effect, Dutt et al. [16] use the Gaussian (Legendre nodes) quadrature and hence the adjective spectral in 
their method. Here, we propose to employ the interpolatory quadrature based on the Chebyshev (Gauss-Lobatto) points 
because of its implementation efficiency via the DCT and to use the end points of integration, relevant for the SCFT MDE 
problem. This yields also a spectral quadrature with a convergence rate about half that of the optimal Gaussian quadrature. 
But for smooth integrands, this difference is irrelevant as both quadratures achieve machine precision with just a few 
nodes [5]. The standard Clenshaw-Curtis quadrature to evaluate the volume fraction operators (9) and (10) and a related 
Chebyshev-node based quadrature to evaluate the integral operator in (21) are derived in Appendix A.

We propose to use the second order RK222 (16) to solve (20) and (23). In principle, one can use any non-stiff method that 
allows for variable step-size, including the SS0 method (14), with a modification to solve the non-homogeneous equation 
(23), or the first order forward-backward Euler scheme (17). Dutt et al. [16] considered only first order schemes but for the 
SCFT MDE’s the forward-backward Euler method requires a much larger number of nodes than the second order scheme 
(16), and consequently increased memory and ultimately higher computational cost. We have already argued about the 
desirability of strong high modal damping when solving the SCFT MDE’s. We conducted a numerical study and found that 
L stability or at least very strong damping appears to be necessary for solving the error equation (23) during the deferred 
correction iteration.

The RK222 (16) can be applied directly to solve (20) using a variable step size:[
1 − γ �s j∇2

]
q(1)(r) = [

1 − γ �s j w(r)
]

q j(r),[
1 − γ �s j∇2

]
q j+1(r) = [

1 − β�s j w(r)
]

q j(r)

+ �s j

[
(1 − γ )∇2 − (1 − β)w(r)

]
q(1)(r),

(26)

for j = 0, 1, . . . Ns , where now �s j = s j+1 − s j and

s j = f

2
− f

2
cos

(
jπ

Ns

)
, j = 0,1, . . . Ns, (27)

are the Ns + 1 Chebyshev nodes in [0, f ]. For the error equation, the RK222 becomes[
1 − γ �s j∇2

]
δ(1)(r) = [

1 − γ �s j w(r)
]
δ j(r) + γ (ε j+1(r) − ε j(r)),[

1 − γ �s j∇2
]
δ j+1(r) = [

1 − β�s j w(r)
]
δ j(r) + �s j

[
(1 − γ )∇2 − (1 − β)w(r)

]
δ(1)(r)

+ ε j+1(r) − ε j(r)

(28)

for j = 0, 1, . . . , Ns − 1.
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Fig. 3. (a) q(1/2, r) and (b) spectrum of the approximation to q(1/2, r) obtained with S DC3
1024 (circles) and S S1

1024 (stars). Nr = 128.

Table 1
Comparison of the extrapolated SS (SS1) and the 
SDC for different levels of accuracy. The subscript 
in the methods is the number of nodes in s and 
the superscript in S DC is the number of deferred 
corrections. Nr = 256 and the error is computed 
using the maximum norm.

Method Error time/(SS1 time)

SS1
64 1.61 × 10−6 1.0

SDC4
10 5.67 × 10−7 0.65

SS1
128 1.032 × 10−7 1.0

SDC4
12 8.11 × 10−8 0.50

SS1
512 4.11 × 10−10 1.0

SDC5
16 2.46 × 10−10 0.18

SS1
1024 2.75 × 10−11 1.0

SDC6
20 2.63 × 10−12 0.13

The cost of SDC J using the RK222 is approximately 4( J + 1) FFT’s whereas that of the J -times extrapolated Strang 
splitting scheme (SS J ) is about 2 · 3 J FFT’s. SS1 is approximately 30% cheaper than SDC 1 but for J > 1 the cost of SDC J is 
a fraction of that of SS J .

We now compare S S1 and S DC for the MDE (13) for a fixed given field w , i.e. isolated from the SCFT saddle point 
iteration. For this test we take

w(r) = 9 cos(6πr/L), 0 ≤ r ≤ L (29)

with L = 10. This field is qualitatively similar to that in a SCFT computation for χ N ≈ 40. We fix the spatial resolution to 
Nr = 128. To estimate the error of the approximations produced by S S1 and S DC at s = f = 1/2, we compute a reference 
solution obtained with S DC3

1024 (a resolution study was performed to determine that the S DC3
1024 approximation converges 

within about 14 digits of accuracy. This reference solution was also compared with a high resolution S S2 approximation). 
Fig. 3 displays this reference solution (at s = f = 1/2) and its spectrum. The spectrum of the approximation produced with 
S S1

1024 is also included for comparison. Note that the S S1
1024 produces a significant amplification of the round-off error for 

low wave numbers which prevents this scheme from reaching more than about 11 digits of accuracy for this example. This 
problem becomes exacerbated in a SCFT computation for moderate to high χ N .

Using the reference solution we evaluate the error (in the maximum norm) of the approximations obtained by employing 
S S1 and S DC at difference accuracy levels. Table 1 presents these data along with a normalized execution time (relative 
to the corresponding S S1 execution time). The S DC method produces more accurate and faster approximations than S S1

with a fraction of the nodes required by S S1. For example, with only Ns = 12 the S DC can get to an O (10−7) error, second 
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Fig. 4. The saddle points fields, μ+ and μ− for χ N = 16 and L = 10.

row in Table 1, whereas the S S1 requires Ns = 128 for that accuracy and is about twice more expensive. The superior 
performance of S DC becomes even more striking at higher levels of accuracy.

5. Contour spectral SCFT

We now look at the SCFT problem for a diblock copolymer melt. The saddle point iteration we employ is the semi-
implicit Siedel (SIS) scheme [18]:

μ
j+1
+ − μ

j
+

�t
= −(g A A + 2g AB + gB B) ∗ μ

j+1
+ + δH[μ j

+,μ
j
−]

δμ+
+ (g A A + 2g AB + gB B) ∗ μ

j
+,

(30)

μ
j+1
− − μ

j
−

�t
= −(2/χ N)μ

j+1
− − δH[μ j+1

+ ,μ
j
−]

δμ−
+ (2/χ N)μ

j
−, (31)

where ∗ denotes convolution and the Fourier symbols of the kernels are

ĝ A A(k) = 2

k4
[ f k2 + exp(−k2 f ) − 1], (32)

ĝ AB(k) = 1

k4
[1 − exp(−k2 f )][1 − exp(−k2(1 − f ))], (33)

ĝB B(k) = 2

k4
[(1 − f )k2 + exp(−k2(1 − f )) − 1]. (34)

Each update fields is followed by a step in which the zeroth mode of μ j+1
+ and μ j+1

− is set to zero.
We consider next two illustrative cases corresponding to a low-moderate χ N = 16 and a high χ N = 80 for a symmetric 

diblock f = 1/2.
The size of the first variation of H , (7)-(8), in any norm might not be an accurate stopping criterium for the saddle point 

iteration [13]. In the numerical experiments to follow, a highly accurate reference solution is first computed with a high 
resolution, and many-level SDC to obtain, up to as many digits as possible, the free energy H corresponding to the saddle 
point. We call this value Href and set the stopping criterium to be

|Href − H j+1| < εH Href, (35)

where H j+1 is the free energy evaluated at μ j+1
+ and μ j+1

− and εH is the desired accuracy in the energy.
In our first example we take χ N = 16 and the size of the domain is L = 10. The step size for the SIS iteration is �t = 500

and the spatial resolution is fixed to Nr = 256. We use as initial guess for the SIS iteration the fields:

μ+(r) = −0.1 cos(2πr/L), μ−(r) = 0.1 cos(2πr/L). (36)

The saddle points fields, μ+ and μ− are plotted in Fig. 4. Table 2 compares SS1 and SDC for this χ N at different levels 
of accuracy in the relative error of the energy. The number of contour points per block was selected to be approximately 
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Table 2
Comparison of SS1 and SDC for χ N = 16 at different 
levels of accuracy for the energy. The subindex in each 
method indicates the number of contour points per 
block and the superindex in SDC is the number of de-
ferred corrections.

εH Method Iterations time/(SS1 time)

10−6 SS1
32 44 1.0

SDC5
8 43 0.84

10−8 SS1
80 47 1.0

SDC5
10 47 0.41

10−10 SS1
200 53 1.0

SDC5
20 70 0.40

10−12 SS1
600 78 1.0

SDC5
26 98 0.17

Fig. 5. The spectrum of μ+ for χ N = 16 and L = 10 obtained with SDC6
128 (circles) and SS1

600 (stars).

the minimal number required for each method to achieve the desired accuracy. However, in the case of the SDC scheme 
it is possible to use an even smaller number of contour points at the expense of increasing the number of iterations. At 
low accuracies (εH ≤ 10−6) both methods have a similar cost, except that SDC can use a fraction of the contour nodes that 
SS1 requires and hence a much smaller memory. At higher accuracies, SDC easily outperforms SS1 and with an order of 
magnitude fewer contour points.

It is important to note that the SCFT iteration is a method for inverting the smoothing operators φA and φB and con-
sequently the iteration produces amplification of high wave-number modes, including those of the round-off error. This is 
immediate to see from the asymptotic expansion of these operators at high k, which yields the following expansion for the 
first variation of H :

δH[μ+,μ−]
δμ+

= −(g A A + 2g AB + gB B) ∗ μ+ + (g A A − gB B) ∗ μ− + . . . . (37)

δH[μ+,μ−]
δμ−

= 2

χ N
μ− − (g A A − 2g AB + gB B) ∗ μ− + (g A A − gB B) ∗ μ+ + . . . (38)

The spectrum of μ+ , corresponding to high accuracy computations obtained with SDC6
128 and SS1

600 after 400 iterations is 
displayed in Fig. 5. There is a clear amplification of the round-off error, which is now is O (10−13). While it is practically flat 
across k for SS1

600, it is smaller and k-dependent for the more accurate SDC6
128, consistent with the inversion of the leading 

order term in (37), (ĝ A A(k) + 2ĝ AB(k) + ĝB B(k))−1 ≈ k2. The round-off error application becomes more pronounced as χ N
increases because the smoothing effect of the term − 2

χ N μ− diminishes. This phenomenon is inherent to the ill-posedness 
of the inverse problem of finding a saddle point for H and not of the particular numerical method employed to solve the 
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Fig. 6. The saddle points fields, μ+ and μ− for χ N = 80 and L = 5.

Table 3
Comparison of SS1 and SDC for χ N = 80, L = 5 at dif-
ferent levels of accuracy for the energy. The subindex 
in each method indicates the number of contour 
points per block and the superindex in SDC is the 
number of deferred corrections.

εH Method Iterations time/(SS1 time)

10−5 SS1
256 53 1.0

SDC6
32 53 0.42

10−6 SS1
400 85 1.0

SDC7
32 86 0.26

10−7 SS1
800 115 1.0

SDC6
64 108 0.19

10−8 SS1
1200 183 1.0

SDC6
64 159 0.12

MDE’s, as Fig. 5 demonstrates. If unattended, it could lead to a significant loss of accuracy and eventually cause instability 
of the iteration, particularly for large χ N .

One approach to control the growth of the round-off error in some ill-posed problems is to employ a Fourier filter [19,
20] consisting of setting to zero all Fourier modes below a threshold εF near machine precision. That is, to filter a periodic 
array we compute its DFT, set to zero all of the Fourier coefficients whose modulus is less than εF , compute the inverse 
DFT.

We now consider χ N = 80 and L = 5. Now the spatial resolution is set to Nr = 512 and the SIS step size is �t = 40. We 
also apply Fourier filtering to μ− and μ+ at every iteration with εF = 10−12. The initial guess for the SIS iteration is

μ+(r) = −0.1 cos(4πr/L), μ−(r) = 0.1 cos(4πr/L). (39)

We compute a reference energy Href using SDC5
512 and cross checked this with a computation using SDC10

128. Their relative 
difference is O (10−9). The saddle point fields are displayed in Fig. 6.

Table 3 offers a comparison of SDC and SS1 schemes at different accuracies in the energy as expressed in (35). Again, 
the number of contour points per block was selected to be approximately the minimal number required for each method to 
achieve the desired accuracy although no attempt was made to fine-tune the combination of contour points and levels of 
deferred corrections for the SDC scheme. The superiority of SDC over SS1 is even more marked for this large χ N case.

6. Adaptive order SCFT iterations

We propose now a strategy to accelerate a SCFT saddle point computation by adaptively varying the order of the MDE 
SDC scheme during the iteration. This strategy is inspired by the multilevel embedding [18], which uses initial guesses 
constructed through hierarchically finer resolutions, but it is more effective as the resolution, both in r and s, is keep fixed 
(avoiding interpolation) and only the order of the SDC changes.
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Fig. 7. Maximum norm of the first variation of H versus number of iterations to reach a relative energy level of 10−6 for χ N = 80 for the adaptive order 
SDC (continuous curve) and the fixed order SDC (dashed curve).

The strategy is the following: select the number of contour points for each block (e.g. based on χ N) and start the SCFT 
saddle point iteration with only one level of deferred correction (fourth order method), iterate until the relative change in 
the first variation of H in two consecutive iterations is less than a threshold value εT . Then, increase the number of deferred 
corrections by one and repeat until convergence to the desired level of accuracy or until the maximum number of allowed 
deferred corrections has been reached. In more detail, define∥∥∥∥∥δH j

δμ

∥∥∥∥∥ =
∥∥∥∥∥δH[μ j

+,μ
j
+]

δμ−

∥∥∥∥∥ +
∥∥∥∥∥δH[μ j

+,μ
j
−]

δμ−

∥∥∥∥∥ . (40)

Then, we increase the level of spectral deferred corrections by one during the SCFT iteration when∥∥∥∥∥δH j+1

δμ

∥∥∥∥∥ −
∥∥∥∥∥δH j

δμ

∥∥∥∥∥ <

∥∥∥∥∥δH j+1

δμ

∥∥∥∥∥εT . (41)

The threshold value εT depends on the accuracy sought. We use the ‖ · ‖∞ norm in our implementation.
To illustrate the efficacy of this strategy we reconsider the highly segregated case, χ N = 80. Fig. 7 shows a plot of the 

maximum norm of the first variation of H against the SIS iterations for both the adaptive order SDC strategy and the fixed 
SDC7

32 up to reaching a relative error in the energy εH = 10−6. For this particular case we took εT = 0.01. For most of the 
iterations the error is larger for the adaptive order SDC because it is using fewer than 7 levels of correction; only in the last 
4 iterations the method uses 7 levels to reach quickly the desired accuracy in about one third of time required by the fixed 
order SDC and about 12 times faster than SS1.

Low contour resolution (as few 8 or so points per block and zero levels of deferred correction) SCFT iterations can be 
useful for obtaining good initial fields for the higher resolution SCFT iterations in a negligible cpu time to further speed-up 
the convergence to the saddle point. This technique can also be employed when using random initial fields. After a few 
hundred iterations, the random noise level is low enough and can be Fourier filtered. The resulting fields, consisting of just 
the first modes provide a smooth, good initial guess for the highly accurate SDC SCFT iterations.

7. Conclusions

We propose a cost and memory efficient, highly accurate method for the solution of polymer SCFT. The method is 
built from spectral integration using Chebyshev (Gauss-Lobatto) nodes in the chain contour variable and an arbitrary order 
spectral deferred correction (SDC) method for the modified diffusion (Fokker-Planck) equations. Special attention is paid 
to the selection of the core implicit-explicit scheme and its behavior in the stiff limit. The resulting method is robust 
and achieves high accuracy with a minimal number of contour nodes. This translates into an order of magnitude savings 
in memory, relative to existing approaches, and superior computational efficiency. The savings in memory are particularly 
relevant for GPU implementations as GPU memory is notoriously limited.

We also propose an adaptive approach to significantly accelerate the computation of the saddle points by systematically 
adapting the order of the SDC scheme during the iteration, without the use of interpolation and/or memory increase. The 
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idea is to use initial guess produced with increasingly high order of accuracy. This approach can also be employed to obtain 
good initial fields for higher resolution SCFT iterations in a negligible cpu time.
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Appendix A. Spectral integration with Chebyshev nodes

We provide here the details of the spectral integration using the (second kind) Chebyshev or Gauss-Lobatto nodes to 
compute

b∫
a

f (s)ds and

s j∫
a

f (t)dt, (A.1)

where s j , j = 0, . . . , n are the Chebyshev nodes in [a, b]. The interpolatory quadrature using the Chebyshev nodes for the 
first integral is known as the Clenshaw-Curtis quadrature [21]. To obtain it we take the interval [−1, 1] and for a general 
interval [a, b] we use the change of variables

x = a + b

2
+ b − a

2
t, t ∈ [−1,1]. (A.2)

The Chebyshev nodes in [−1, 1] are

s j = − cos

(
jπ

n

)
, j = 0,1, . . . ,n (A.3)

The interpolating polynomial of f at these nodes can be written as

pn(s) = a0

2
+

n−1∑
k=1

ak Tk(s) + an

2
Tn(s), (A.4)

where Tk(s) stands for the Chebyshev polynomial of degree k. Setting s = − cos θ , for θ ∈ [0, π ] we get

pn(− cos θ) = a0

2
+

n−1∑
k=1

ak cos kθ + 1

2
an cosnθ. (A.5)

Then �n(θ) = pn(− cos θ) interpolates F (θ) = f (− cos θ) at the uniform nodes θ j = jπ/n. Therefore,

ak = 2

n

n∑′′

j=0

F (θ j) cos kθ j, k = 0,1, ..,n, (A.6)

where the double prime in the sum means that the first and last coefficient have to be multiplied by a factor of 1/2. That 
is, the coefficients a0, a1, . . . , an are the (Type I) Discrete Cosine Transform (DCT) coefficients of F [3,4] and we can compute 
them efficiently in O (n log2 n) operations with the FFT. With the change of variable s = − cos θ we get

1∫
−1

f (s)ds =
π∫

0

F (θ) sin θdθ,≈
π∫

0

�n(θ) sin θdθ. (A.7)

But
π∫

0

�n(θ) sin θdθ = a0

2

π∫
0

sin θdθ +
n−1∑
k=1

ak

π∫
0

cos kθ sin θdθ + an

2

π∫
0

cosnθ sin θdθ. (A.8)

Using cos kθ sin θ = 1
2 [sin(1 + k)θ + sin(1 − k)θ] and assuming n is even we get the Clenshaw-Curtis Quadrature

1∫
−1

f (s)ds ≈ a0 +
n−2∑
k=2

k even

2ak

1 − k2
+ an

1 − n2
. (A.9)
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For a general interval [a, b], we get an extra factor of (b − a)/2 from the change of variables (A.2)
We adapt the Clenshaw-Curtis idea to evaluate

s j∫
−1

f (t)dt =
θ j∫

0

F (θ) sin θdθ ≈
θ j∫

0

�n(θ) sin θdθ, (A.10)

at the Chebyshev points (A.3). Since

θ j∫
0

cos kθ sin θdθ =
⎧⎨
⎩

1
4 − 1

4 cos 2θ j for k = 1
1

1 − k2
− cos(k + 1)θ j

2(k + 1)
+ cos(k − 1)θ j

2(k − 1)
, for k 
= 1,

(A.11)

we get

s j∫
−1

f (t)dt ≈ A0

2
+

n−1∑
k=1

Ak cos kθ j + 1

2
An cosnθ j − an

4(n + 1)
cos(n + 1)θ j, (A.12)

where

A0 = a0 + 1

2
a1 +

n−1∑
k=2

2ak

1 − k2
+ an

1 − n2
, (A.13)

Ak = 1

2k
(ak+1 − ak−1), k = 1, . . . ,n − 2, (A.14)

An−1 = 1

2(n − 1)

(an

2
− an−2

)
, (A.15)

An = − 1

2n
an−1. (A.16)

The first three terms in the right hand size of (A.12) can be evaluated fast with the DCT so the overall cost is again 
O (n log2 n).
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