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We present a numerical framework for approximating unknown governing equations using 
observation data and deep neural networks (DNN). In particular, we propose to use 
residual network (ResNet) as the basic building block for equation approximation. We 
demonstrate that the ResNet block can be considered as a one-step method that is exact 
in temporal integration. We then present two multi-step methods, recurrent ResNet (RT-
ResNet) method and recursive ReNet (RS-ResNet) method. The RT-ResNet is a multi-step 
method on uniform time steps, whereas the RS-ResNet is an adaptive multi-step method 
using variable time steps. All three methods presented here are based on integral form of 
the underlying dynamical system. As a result, they do not require time derivative data for 
equation recovery and can cope with relatively coarsely distributed trajectory data. Several 
numerical examples are presented to demonstrate the performance of the methods.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Recently there has been a growing interest in discovering governing equations numerically using observational data. 
Earlier efforts include methods using symbolic regression ([5,43]), equation-free modeling [24], heterogeneous multi-scale 
method (HMM) ([15]), artificial neural networks ([19]), nonlinear regression ([50]), empirical dynamic modeling ([46,53]), 
nonlinear Laplacian spectral analysis ([18]), automated inference of dynamics ([44,12,13]), etc. More recent efforts start to 
cast the problem into a function approximation problem, where the unknown governing equations are treated as target 
functions relating the data for the state variables and their time derivatives. The majority of the methods employ certain 
sparsity-promoting algorithms to create parsimonious models from a large set of dictionary for all possible models, so that 
the true dynamics could be recovered exactly ([47]). Many studies have been conducted to effectively deal with noises in 
data ([7,41]), corruptions in data ([48]), partial differential equations [38,40], etc. Methods have also been developed in 
conjunction with model selection approach ([28]), Koopman theory ([6]), and Gaussian process regression ([35]), to name a 
few. A more recent work resorts to the more traditional means of approximation by using orthogonal polynomials ([52]). The 
approach seeks accurate numerical approximation to the underlying governing equations, instead of their exact recovery. By 
doing so, many existing results in polynomial approximation theory can be applied, particularly those on sampling strategies. 
It was shown in [52] that data from a large number of short bursts of trajectories are more effective for equation recovery 
than those from a single long trajectory.
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On the other hand, artificial neural network (ANN), and particularly deep neural network (DNN), has seen tremendous 
successes in many different disciplines. The number of publications is too large to mention. Here we cite only a few rela-
tively more recent review/summary type publications ([30,4,16,32,14,20,42]). Efforts have been devoted to the use of ANN 
for various aspects of scientific computing, including construction of reduced order model ([22]), aiding solution of con-
servation laws ([37]), multiscale problems ([8,51]), solving and learning systems involving ODEs and PDEs ([29,11,27,25]), 
uncertainty quantification ([49,54]), etc.

The focus of this paper is on the approximation/learning of dynamical systems using deep neural networks (DNN). The 
topic has been explored in a series of recent articles, in the context of ODEs ([36,39]) and PDEs ([34,33,27]). The new contri-
butions of this paper include the following. First, we introduce new constructions of deep neural network (DNN), specifically 
suited for learning dynamical systems. In particular, our new network structures employ residual network (ResNet), which 
was first proposed in [21] for image analysis and has become very popular due to its effectiveness. In our construction, 
we employ a ResNet block, which consists of multiple fully connected hidden layers, as the fundamental building block of 
our DNN structures. We show that the ResNet block can be considered as a one-step numerical integrator in time. This 
integrator is “exact” in time, i.e., no temporal error, in the sense that the only error stems from the neural network ap-
proximation of the evolution operators defining the governing equation. This is different from a few existing work where 
ResNet is viewed as the Euler forward scheme ([9]). Secondly, we introduce two variations of the ResNet structure to serve 
as multi-step learning of the underlying governing equations. The first one employs recurrent use of the ResNet block. 
This is inspired by the well known recurrent neural network (RNN), whose connection with dynamical systems has long 
been recognized, cf. [20]. Our recurrent network, termed RT-ResNet hereafter, is different in the sense that the recurrence 
is enforced blockwise on the ResNet block, which by itself is a DNN. (Note that in the traditional RNN, the recurrence is 
enforced on the hidden layers.) We show that the RT-ResNet is a multi-step integrator that is exact in time, with the only 
error stemming from the ResNet approximation of the evolution operator of the underlying equation. The other variation 
of the ResNet approximator employs recursive use of the ResNet block, termed RS-ResNet. Again, the recursion is enforced 
blockwise on the ResNet block (which is a DNN). We show that the RS-ResNet is also an exact multi-step integrator. The dif-
ference between RT-ResNet and RS-ResNet is that the former is equivalent to a multi-step integrator using an uniform time 
step, whereas the latter is an “adaptive” method with variable time steps depending on the particular problem and data. 
Thirdly, the derivations in this paper utilize integral form of the underlying dynamical system. By doing so, the proposed 
methods do not require knowledge or data of the time derivatives of the equation states. This is different from most of the 
existing studies (cf. [5,7,41,52]), which deal with the equations directly and thus require time derivative data. Acquiring time 
derivatives introduces an additional source for noises and errors, particularly when one has to conduct numerical differen-
tiation of noisy trajectory data. Consequently, the proposed three new DNN structures, the one-step ResNet and multi-step 
RT-ResNet and RS-ResNet, are capable of approximating unknown dynamical systems using only state variable data, which 
could be relatively coarsely distributed in time. In this case, most of the existing methods become less effective, as accurate 
extraction of time derivatives is difficult.

This paper is organized as follows. After the basic problem setup in Section 2, we present the main methods in Section 3
and some theoretical properties in Section 4. We then present, in Section 5, a set of numerical examples, covering both 
linear and nonlinear differential equations, to demonstrate the effectiveness of the proposed algorithms.

2. Setup

Let us consider an autonomous system

dx

dt
= f(x), x(t0) = x0, (2.1)

where x ∈ Rn are the state variables. Let �s : Rn → Rn be the flow map, which maps the state from t = 0 to the state at 
t = s. Note that for autonomous systems the time variable t can be arbitrarily shifted and only the time difference, or time 
lag, t − t0 is relevant. The solution can be written as

x(t;x0, t0) = �t−t0(x0). (2.2)

Hereafter we will omit t in the exposition, unless confusion arises.
In this paper, we assume the form of the governing equations f :Rn →Rn is unknown. Our goal is to create an accurate 

model for the governing equation using data of the solution trajectories. In particular, we assume data are collected in the 
form of pairs, each of which corresponds to the solution states along one trajectory at two different time instances. That is, 
we consider the set

S = {(z(1)
j , z(2)

j ) : j = 1, . . . , J }, (2.3)

where J is the total number of data pairs, and for each pair j = 1, . . . , J ,

z(1) = x j + ε
(1)

, z(2) = �� (x j) + ε
(2)

. (2.4)
j j j j j
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Here the terms ε(1)
j and ε(2)

j stand for the potential noises in the data, and � j is the time lag between the two states. 
For notational convenience, we assume � j = � to be a constant for all j throughout this paper. Consequently, the data set 
becomes input-output measurements of the �-lag flow map,

x → ��(x). (2.5)

3. Deep neural network approximation

The core building block of our methods is a standard fully connected feedforward neural network (FNN) with M ≥ 3
layers, of which (M − 2) are hidden layers. It has been established that fully connected FNN can approximate arbitrarily 
well a large class of input-output maps, i.e., they are universal approximators, cf. [31,2,23]. Since the right-hand-side f of 
(2.1) is our approximation goal, we will consider Rn → Rn map. Let n j , j = 1, . . . , M , be the number of neurons in each 
layer, we then have n1 = nM = n.

Let N :Rn →Rn be the operator of this network. For any input yin ∈Rn , the output of the network is

yout = N(yin;�), (3.1)

where � is the parameter set including all the parameters in the network. The operator N is a composition of the following 
operators

N(·;�) = (σM ◦ WM−1) ◦ · · · ◦ (σ2 ◦ W1), (3.2)

where ◦ stands for operator composition, W j is the weight matrix containing the weight parameters connecting the neurons 
from j-th layer to ( j + 1)-th layer, after using the standard approach of augmenting the biases into the weights, and 
σ j : R → R is the activation function, which is applied component-wise to the j-th layer. There exist many choices for 
the activation functions, e.g., sigmoid functions, ReLU (rectified linear unit), etc. In this paper we use a sigmoid function, 
in particular, the σi(x) = tanh(x) function, in all layers, except at the output layer σM(x) = x. This is one of the common 
choices for DNN.

Using the data set (2.3), we can directly train (3.1) to approximate the �-lag flow map (2.5). This can be done by applying 
(3.1) with yin

j = z(1)
j to obtain yout

j for each j = 1, . . . , J , and then minimizing following mean squared loss function

L(�) = 1

J

J∑
j=1

∥∥∥yout
j − z(2)

j

∥∥∥2
, (3.3)

where ‖ · ‖ denotes vector 2-norm hereafter. With a slight abuse of notation, hereafter we will write yin = z(1) to stand for 
yin

j = z(1)
j for all sample data j = 1, . . . , J , unless confusion arises otherwise.

3.1. One-step ResNet approximation

We now present the idea of using residual neural network (ResNet) as a one-step approximation method. The idea of 
ResNet is to explicitly introduce the identity operator in the network and force the network to effectively approximate the 
“residue” of the input-output map. Although mathematically equivalent, this simple transformation has been shown to be 
highly advantageous in practice and become increasingly popular, after its formal introduction in [21].

The structure of the ResNet is illustrated in Fig. 3.1. The ResNet block consists of N fully connected hidden layers and an 
identity operator to re-introduce the input yin back into the output of the hidden layers. The introduction of the identity 
operator effectively produces the following mapping

yout = yin + N(yin;�), yin = z(1), (3.4)

where � are the weight and bias parameters in the network. The parameters are determined by minimizing the same loss 
function (3.3). This effectively accomplishes the training of the operator N(·; �).

The connection between dynamical systems and ResNet has been recognized. In fact, ResNet has been viewed as the 
Euler forward time integrator ([9]). To further examine its property, let us consider the exact �-lag flow map,

x(�) = ��(x(0))

= x(0) +
�∫

0

f(x(t))dt

= x(0) + � · f(x(τ ))

= x(0) + � · f(�τ (x(0))), 0 ≤ τ ≤ �.

(3.5)

This is a trivial derivation using the mean value theorem. For notational convenience, we now define “effective increment”.
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Fig. 3.1. Schematic of the ResNet structure for one-step approximation.

Definition 3.1. For a given autonomous system (2.1), given an initial state x and an increment � ≥ 0, then its effective 
increment of size � is defined as

φ�(x; f) = � · f(�τ (x)), (3.6)

for some 0 ≤ τ ≤ � such that

x(�) = x + φ�(x; f). (3.7)

Note that the effective increment φ� depends only on its initial state x, once the governing equation f and the increment 
� are fixed.

Upon comparing the exact state (3.7) and the one-step ResNet method (3.4), it is thus easy to see that a successfully 
trained network operator N is an approximation to the effective increment φ� , i.e.,

N(x;�) ≈ φ�(x; f). (3.8)

Since the effective increment completely determines the true solution states on a � interval, we can then use the ResNet 
operator to approximate the solution trajectory. That is, starting with a given initial state y(0) = x, we can time march the 
state

y(k+1) = y(k) + N(y(k);�), k = 0, . . . . (3.9)

This discrete dynamical system serves as our approximation to the true dynamical system (2.1). It gives us an approximation 
to the true states on a uniform time grids with stepsize �.

Remark 3.1. Even though the approximate system (3.9) resembles the well known Euler forward time stepping scheme, it is 
not a first-order method in time. In fact, upon comparing (3.9) and the true state (3.7), it is easy to see that (3.9) is “exact” 
in term of temporal integration. The only source of error in the system (3.9) is the approximation error of the effective 
increment in (3.8). The size of this error is determined by the quality of the data and the network training algorithm.

Remark 3.2. The derivation here is based on (3.7), which is from the integral form of the governing equation. As a result, 
training of the ResNet method does not require data on the time derivatives of the true states. Moreover, � does not need 
to be exceedingly small (to enable accurate numerical differentiation in time). This makes the ResNet method suitable for 
problems with relatively coarsely distributed data.

3.2. Multi-step recurrent ResNet (RT-ResNet) approximation

We now combine the idea of recurrent neural network (RNN) and the ResNet method from the previous section. The 
distinct feature of our construction is that the recurrence is applied to the entire ResNet block, rather than to the individual 
hidden layers, as is done for the standard RNNs. (For an overview of RNN, interested readers are referred to [20], Ch. 10.)

The structure of the resulting Recurrent ResNet (RT-ResNet) is shown in Fig. 3.2. The ResNet block, as presented in 
Fig. 3.1, is “repeated” (K − 1) times, for an integer K ≥ 1, before producing the output yout . This makes the occurrence of 
the ResNet block a total of K times. The unfolded structure is shown on the right of Fig. 3.2. The RT-ResNet then produces 
the following scheme, for K ≥ 1,



624 T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635
Fig. 3.2. Schematic of the recurrent ResNet (RT-ResNet) structure for multi-step approximation (K ≥ 1).⎧⎪⎪⎨⎪⎪⎩
y0 = z(1),

yk+1 = yk + N(yk;�), k = 0, . . . , K − 1,

yout = yK .

(3.10)

The network is then trained by using the data set (2.3) and minimizing the same loss function (3.3). For K = 1, this reduces 
to the one-step ResNet method (3.4).

To examine the properties of the RT-ResNet, let us consider a unform discretization of the time lag �. That is, let 
δ = �/K , and consider, tk = kδ, k = 0, . . . , K . The exact solution state x satisfies the following relation⎧⎪⎨⎪⎩

x(t0) = x(0),

x(tk+1) = x(tk) + φδ(x(tk); f), k = 0, . . . , K − 1,

x(�) = x(tK ),

(3.11)

where φδ(x; f) is the effective increment defined of size δ, as defined in Definition 3.1.
Upon comparing this with the RT-ResNet scheme (3.10), it is easy to see that training the RT-ResNet is equivalent to 

finding the operator N to approximate the δ-effective increment,

N(x;�) ≈ φδ(x; f). (3.12)

Similar to the one-step ResNet method, the multi-step RT-ResNet is also exact in time, as it contains no temporal discretiza-
tion error. The only error stems from the approximation of the δ-effective increment.

Once the RT-ResNet is successfully trained, it gives us a discrete dynamical system (3.10) that can be further marched in 
time using any initial state. This is an approximation to the true dynamical system on uniformly distributed time instances 
with an interval δ = �/K . Therefore, even though the training data are given over � time interval, the RT-ResNet system 
can produce solution states on finer time grids with a step size δ ≤ � (K ≥ 1).

3.3. Multi-step recursive ResNet approximation

We now present another multi-step approximation method based on the ResNet block in Fig. 3.1. The structure of the 
network is shown in Fig. 3.3. From the input yin , ResNet blocks are recursively used a total of K ≥ 1 times, before producing 
the output yout . The network, referred to as recursive ResNet (RS-ResNet) hereafter, thus produces the following scheme, for 
any K ≥ 1,⎧⎪⎪⎨⎪⎪⎩

y0 = z(1),

yk+1 = yk + N(yk;�k), k = 0, . . . , K − 1,

yout = yK .

(3.13)

Compared to the recurrent RT-ResNet method (3.10) from the previous section, the major difference in RS-ResNet is that 
each ResNet block inside the network has its own parameter sets �k and thus are different from each other. Since each 
ResNet is a DNN by itself, the RS-ResNet can be a very deep network when K > 1. When K = 1, it also reduces back to the 
one-step ResNet network.

Let 0 = t0 < t1 < · · · < tK = � be an arbitrarily distributed time instances in [0, �] and δk = tk+1 − tk , k = 0, . . . , K − 1, 
be the (non-uniform) increments. It is then straightforward to see that the exact state satisfies⎧⎪⎨⎪⎩

x(t0) = x(0),

x(tk+1) = x(tk) + φδk
(x(tk); f), k = 0, . . . , K − 1,

x(�) = x(t ),

(3.14)
K
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Fig. 3.3. Schematic of the recursive ResNet (RS-ResNet) structure for multi-step approximation (K ≥ 1).

where φδk
(x; f) is the δk effective increment defined in Definition 3.1.

Upon comparing with the RS-ResNet scheme (3.13), one can see that the training of the RS-ResNet produces the following 
approximation

N(x;�k) ≈ φδk
(x; f), k = 0, . . . , K − 1. (3.15)

That is, each ResNet operator N(x; �k) is an approximation of an effective increment of size δk , for k = 0, . . . , K − 1, under 
the condition 

∑K−1
k=0 δk = �. Training the network using the data (2.3) and loss function (3.3) will determine the parameter 

sets �k , and subsequently the effective increments with size δk , for k = 0, . . . , K − 1, From this perspective, one may view 
RS-ResNet as an “adaptive” method, as it adjusts its parameter sets to approximate K smaller effective increments whose 
increments are determined by the data. Since RS-ResNet is a very deep network with a large number of parameters, it is, in 
principle, capable of producing more accurate results than ResNet and RT-ResNet, assuming cautions have been exercised to 
prevent overfitting.

A successfully trained RS-ResNet also gives us a discrete dynamical system that approximates the true governing equation 
(2.1). Due to its “adaptive” nature, the intermediate time intervals δk are variables and not known explicitly. Therefore, the 
discrete RS-ResNet needs to be applied K times to produce the solution states over the time interval �, which is the same 
interval given by the training data. This is different from the RT-ResNet, which can produce solutions over a smaller and 
uniform time interval δ = �/K .

4. Theoretical properties

In this section we present a few straightforward analysis to demonstrate certain theoretical aspects of the proposed DNN 
for equation approximation.

4.1. Continuity of flow map

Under certain conditions on f, one can show that the flow map of the dynamical system (2.1) is locally Lipschitz contin-
uous.

Lemma 4.1. Assume f is Lipschitz continuous with Lipschitz constant L on a set D ⊆Rn. For any τ > 0, define

Dτ :=
{

x0 ∈ D : �t(x0) ∈ D, ∀t ∈ [0, τ ]
}
.

Then, for any t ∈ [0, τ ], the flow map �t is Lipschitz continuous on Dτ . Specifically, for any x0, ̃x0 ∈ Dτ ,

‖�t(x0) − �t (̃x0)‖ ≤ eLt‖x0 − x̃0‖, ∀t ∈ [0, τ ]. (4.1)

Proof. The proof directly follows from the classical result on the continuity of the dynamical system (2.1) with respect to 
initial data; see [45, p. 109]. �

The above continuity ensures that the flow map can be approximated by neural networks to any desired degree of 
accuracy by increasing the number of hidden layers and neurons; see, for example, [26,31]. The Lipschitz continuity will 
also play an important role in the error analysis in Theorem 4.3.

4.2. Compositions of flow maps

It was shown in [3] that any smooth bi-Lipschitz function can be represented as compositions of functions, each of which 
is near-identity in Lipschitz semi-norm. For the flow map of the autonomous system (2.1), we can prove a stronger result 
by using the following property

�t1 ◦ �t2 = �t1+t2 , ∀t1, t2. (4.2)
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Theorem 4.2. For any positive integer K ≥ 1, the flow map �� can be expressed as a K -fold composition of �δ , namely,

�� = �δ ◦ · · · ◦ �δ︸ ︷︷ ︸
K−fold

, (4.3)

where δ = �/K , and �δ satisfies

‖�δ(x0) − x0‖ ≤ �

K
sup

t∈[0,δ]
‖f(�t(x0))‖, ∀x0. (4.4)

Suppose that f is bounded on D ⊆Rn, then

‖�δ − I‖L∞(Dδ) ≤ �

K
‖f‖L∞(D) = O

(
�

K

)
, (4.5)

where I :Rn →Rn is the identity map, and ‖ · ‖L∞ := ess sup‖ · ‖.

Proof. The representation (4.3) is a direct consequence of the property (4.2). For any x0, we have

‖�δ(x0) − x0‖ =
∥∥∥∥∥∥

δ∫
0

f(�t(x0))dt

∥∥∥∥∥∥ = δη

(
1

δ

δ∫
0

f(�t(x0))dt

)
,

where η(x) = ‖x‖. Since η is a convex function, it satisfies the Jensen’s inequality

η

(
1

δ

δ∫
0

f(�t(x0))dt

)
≤ 1

δ

δ∫
0

η
(
f(�t(x0))

)
dt.

Thus we obtain

‖�δ(x0) − x0‖ ≤
δ∫

0

‖f(�t(x0))‖dt ≤ δ sup
t∈[0,δ]

‖f(�t(x0))‖,

which implies (4.4). For any x0 ∈ Dδ , we have �t(x0) ∈ D for 0 ≤ t ≤ δ. Hence

‖�δ(x0) − x0‖ ≤ �

K
‖f‖L∞(D), ∀x0 ∈ Dδ.

This yields (4.5), and the proof is complete. �
This estimate can serve as a theoretical justification of the ResNet method (K = 1) and RT-ResNet method (K ≥ 1). As 

long as � is reasonably small, the flow map of the underlying dynamical system is close to identity. Therefore, it is natural 
to use ResNet, which explicitly introduces the identity operator, to approximate the “residue” of the flow map. The norm of 
the DNN operator N, which approximates the residual flow map, �δ − I, becomes small at O (�). For RT-ResNet with K > 1, 
its norm becomes even smaller at O (�/K ). We remark that it was pointed out empirically in [9] that using multiple ResNet 
blocks can result in networks with smaller norm.

4.3. Error bound

Let N denote the neural network approximation operator to the �-lag flow map �� . For the proposed ResNet (3.4), 
RT-ResNet (3.10), and RS-ResNet (3.13), the operators can be written as

N = I + N(•;�), ResNet;
N = (

I + N(•;�)
) ◦ · · · ◦ (

I + N(•;�)
)︸ ︷︷ ︸

K−fold

, RT-ResNet;

N = (
I + N(•;�K−1)

) ◦ · · · ◦ (
I + N(•;�0)

)
, RS-ResNet.

(4.6)

We now derive a general error bound for the solution approximation using the DNN operator N . This bound serves a 
general guideline for the error growth. More specific error bounds for each different network structure are more involved 
and will be pursued in a future work.

Let y(m) denote the solution of the approximate model at time t(m) := t0 + m�. Let E (m) := ‖y(m) − x(t(m))‖ denote the 
error, j = 0, 1, . . . , m.
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Theorem 4.3. Assume that the same assumptions in Lemma 4.1 hold, and let us further assume

1.
∥∥N − ��

∥∥
L∞(D�)

< +∞,

2. y(i), x(t(i)) ∈ D� for 0 ≤ i ≤ m − 1,

then we have

E(m) ≤ (
1 + eL�

)mE(0) + ∥∥N − ��

∥∥
L∞(D�)

(
1 + eL�

)m − 1

eL�
. (4.7)

Proof. The triangle inequality implies that

E(m) = ∥∥y(m−1) +N (y(m−1)) − x(t(m−1)) − ��(x(t(m−1)))
∥∥

≤ ∥∥y(m−1) − x(t(m−1))
∥∥ + ∥∥N (y(m−1)) − ��(x(t(m−1)))

∥∥
≤ ∥∥y(m−1) − x(t(m−1))

∥∥ + ∥∥N (y(m−1)) − ��(y(m−1))
∥∥

+ ∥∥��(y(m−1)) − ��(x(t(m−1)))
∥∥

≤ ∥∥y(m−1) − x(t(m−1))
∥∥ + ∥∥N − ��

∥∥
L∞(D�)

+ eL�
∥∥y(m−1) − x(t(m−1))

∥∥
= (

1 + eL�
)
E(m−1) + ∥∥N − ��

∥∥
L∞(D�)

,

where the Lipschitz continuity of the flow map, shown in (4.1), has been used in the last inequality. Recursively using the 
above estimate gives

E(m) ≤ (
1 + eL�

)
E(m−1) + ∥∥N − ��

∥∥
L∞(D�)

≤ (
1 + eL�

)2E(m−2) + ∥∥N − ��

∥∥
L∞(D�)

(
1 + (

1 + eL�
))

≤ · · ·

≤ (
1 + eL�

)mE(0) + ∥∥N − ��

∥∥
L∞(D�)

m−1∑
i=0

(
1 + eL�

)i
.

The proof is complete. �
5. Numerical examples

In this section we present numerical examples to verify the properties of the proposed methods. In all the examples, we 
generate the training data pairs {(z(1)

j , z(2)
j } J

j=1 in the following way:

• Generate J points {z(1)
j } J

j=1 from uniform distribution over a computational domain D . The domain D is a region in 
which we are interested in the solution behavior. It is typically chosen to be a hypercube prior to the computation.

• For each j, starting from z(1)
j , we march forward for a time lag � the underlying governing equation, using a highly 

accurate standard ODE solver, to generate z(2)
j . In our examples we set � = 0.1.

In each example, we take 20 times as many data pairs as the number of model parameters. We remark that the time 
lag � = 0.1 is relatively coarse and prevents accurate estimate of time derivatives via numerical differentiation. Since our 
proposed methods employ the integral form of the underlying equation, this difficulty is circumvented. The random sampling 
of the solution trajectories of length � follows from the work of [52], where it was established that such kind of dense 
sampling of short trajectories is highly effective for equation recovery.

All of our network models, ResNet, RT-ResNet, and RS-ResNet, are trained via the loss function (3.3) and by using the 
open-source Tensorflow library [1]. The training data set is divided into mini-batches of size 10. And we typically train the 
model for 500 epochs and reshuffle the training data in each epoch. All the weights are initialized randomly from Gaussian 
distributions and all the biases are initialized to be zeros.

After training the network models satisfactorily, using the data of � = 0.1 time lag, we march the trained network 
models further forward in time and compare the results against the reference states, which are produced by high-order nu-
merical solvers of the true underlying governing equations. We march the trained network systems up to t 
 � to examine 
their (relatively) long-term behaviors. For the two linear examples, we set t = 2; and for the two nonlinear examples, we 
set t = 20.
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Fig. 5.1. Trajectory and phase plots for the Example 1 with x0 = (1.5, 0) for t ∈ [0, 2]. Top row: one-step ResNet model; Middle row: Multi-step RT-ResNet 
model; Bottom row: Multi-step RS-ResNet model.

5.1. Linear ODEs

We first study two linear ODE systems, as textbook examples. In both examples, our one-step ResNet method has 3 
hidden layers, each of which has 30 neurons. For the multi-step RT-ResNet and RS-ResNet methods, they both have 3
ResNet blocks (K = 3), each of which contains 3 hidden layers with 20 neurons in each layer.

Example 1
We first consider the following two-dimensional linear ODE with x = (x1, x2){

ẋ1 = x1 + x2 − 2,

ẋ2 = x1 − x2,
(5.1)

where ẋ represents the time derivative d
dt x. The computational domain D is taken to be D = [0, 2]2.

Upon training the three network models satisfactorily, using the � = 0.1 data pairs, we march the trained models further 
in time up to t = 2. In Fig. 5.1, we show the plots for the trajectories of both x1 and x2 as well as the portrait on the (x1, x2)

phase plane. We observe that all three network models produce accurate prediction results for time up to t = 2.
As discussed in Section 3.2, the multi-step RT-ResNet method is able to produce an approximation over a smaller time 

step δ = �/K , which in this case is δ = 1/30 (with K = 3). The trained RT-ResNet model then allows us to produce predic-
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Fig. 5.2. Trajectory and phase plots for Example 1 with x0 = (1.5, 0) using RT-ResNet model with K = 3. The solutions are marched into over time step 
δ = �/K = 1/30.

Fig. 5.3. Phase plots for Example 1 with x0 = (1.5,0). One-step ResNets. The training data contains 2% (left) and 5% (right) noise, respectively.

tions over the finer time step δ. In Fig. 5.2, we show the time marching of the trained RT-ResNet model for up to t = 2 using 
the smaller time step δ. The results again agree very well with the reference solution. This demonstrates the capability of 
RT-ResNet – it allows us to produce accurate predictions with a resolution higher than that of the given data, i.e., δ < �. 
On the other hand, our numerical tests also reveal that the training of RT-ResNet with K > 1 becomes more involving – 
more training data are typically required and convergence can be slower, compared to the training of the one-step ResNet 
method. Similar behavior is also observed in multi-step RS-ResNet method with K > 1. The development of efficient training 
procedures for multi-step RT-ResNet and RS-ResNet methods is necessary and will be pursued in a future work.

We then consider the case of noisy data. The data pairs are set as {z(1)
j (1 + ε

(1)
j ), z(2)

j (1 + ε
(2)
j )} J

j=1, where the relatively 
noise levels ε(1)

j and ε(2)
j are drawn from uniform distribution over [0, η]. In the following experiments we set η = 0.02

and 0.05 for demonstrative purpose. In Fig. 5.3, we show the phase plots generated by the one-step ResNet. Since our NN 
models are based on the integral form of the ODE, they tolerate the training noise quite well. As the noise level increases, 
the NN prediction deviates more from the exact dynamics, while the main structure of the solution is still well captured. 
On the other hand, since the time lag is � = 0.1, this noisy data case is certainly not amenable to the standard equation 
recovery approaches requiring time derivative computations.

Example 2
We now consider another linear ODE system:{

ẋ1 = x1 − 4x2,

ẋ2 = 4x1 − 7x2.
(5.2)

The numerical results for the three trained network models are presented in Fig. 5.4. Again, we show the prediction results 
of the trained models for up to t = 2. While all predictions agree well with the reference solution, one can visually see that 
the RS-ResNet model is more accurate than the RT-ResNet model, which in turn is more accurate than the one-step ResNet 
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Fig. 5.4. Trajectory and phase plots for the Example 2 with x0 = (0, −1). Top row: one-step ResNet model; Middle row: Multi-step RT-ResNet model; Bottom 
row: Multi-step RS-ResNet model.

model. This is expected, as the multi-step methods should be more accurate than the one-step method (ResNet), and the 
RS-ResNet should be even more accurate due to its adaptive nature. On the other hand, RS-ResNet introduces larger number 
of parameters and induces more training cost. For a given problem, the balance between accuracy and training cost should 
be considered by the user.

In Fig. 5.5, we present the results for noisy data case. The noisy data are generated in the same manner as in Exam-
ple 1, and the simulation results are obtained by the one-step ResNet method. Again, we observe that the proposed model 
performs robustly in the presence of data noise.

5.2. Nonlinear ODEs

We now consider two nonlinear problems. The first one is the well known damped pendulum problem, and the second 
one is an nonlinear differential-algebraic equation (DAE) for modelling a generic toggle ([17]). In both examples, our one-
step ResNet model has 2 hidden layers, each of which has 40 neurons. Our multi-step RT-ResNet and RS-ResNet models 
both have 3 of the same ResNet blocks (K = 3). Again, our training data are collected over � = 0.1 time lag. We produce 
predictions of the trained model over time for up to t = 20 and compare the results against the reference solutions.
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Fig. 5.5. Phase plots for Example 2 with x0 = (0,−1). One-step ResNets. The training data contains 2% (left) and 5% (right) relative noise, respectively.

Example 3: Damped pendulum
The first nonlinear example we are considering is the following damped pendulum problem,{

ẋ1 = x2,

ẋ2 = −αx2 − β sin x1,

where α = 8.91 and β = 0.2. The computational domain is D = [−π, π ] × [−2π, 2π ]. In Fig. 5.6, we present the prediction 
results by the three network models, starting from the initial condition x0 = (−1.193, −3.876) and for time up to t = 20. 
We observe excellent agreements between the network models and the reference solution.

Example 4: Genetic toggle switch
We now consider a system of nonlinear differential-algebraic equations (DAE), which are used to model a genetic toggle 

switch in Escherichia coli ([17]). It is composed of two repressors and two constitutive promoters, where each promoter is 
inhibited by the represssor that is transcribed by the opposing promoter. Details of experimental measurement can be found 
in [10]. This system of equations are as follows,⎧⎪⎪⎨⎪⎪⎩

ẋ1 = α1

1+xβ
2

− x1,

ẋ2 = α2
1+zγ − x2,

z = x1
(1+[IPTG]/K )η

.

In this system, the components x1 and x2 denote the concentration of the two repressors. The parameters α1 and α2 are 
the effective rates of the synthesis of the repressors; β and γ represent cooperativity of repression of the two promoters, 
respectively; [IPTG] is the concentration of IPTG, the chemical compound that induces the switch; and K is the dissociation 
constant of IPTG.

In the following numerical experiment, we take α1 = 156.25, α2 = 15.6, γ = 1, β = 2.5, K = 2.9618 ×10−5 and [IPDG] =
10−5. We consider the computational domain D = [0, 20]2.

In Fig. 5.7 we present the prediction results generated by the ResNet, the RT-ResNet and the RS-ResNet, for time up to 
t = 20. The initial condition is x0 = (19, 17). Again, all these three models produce accurate approximations, even for such 
a long-time simulation.

6. Conclusion

We presented several deep neural network (DNN) structures for approximating unknown dynamical systems using tra-
jectory data. The DNN structures are based on residual network (ResNet), which is a one-step method exact time integrator. 
Two multi-step variations were presented. One is recurrent ResNet (RT-ResNet) and the other one is recursive ResNet 
(RS-ResNet). Upon successful training, the methods produce discrete dynamical systems that approximate the underlying 
unknown governing equations. All methods are based on integral form of the underlying system. Consequently, their con-
structions do not require time derivatives of the trajectory data and can work with coarsely distributed data as well. We 
presented the construction details of the methods, their theoretical justifications, and used several examples to demonstrate 
the effectiveness of the methods.
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Fig. 5.6. Trajectory and phase plots for the Example 3 with x0 = (−1.193, −3.876). Top row: one-step ResNet model; Middle row: Multi-step RT-ResNet 
model; Bottom row: Multi-step RS-ResNet model. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 5.7. Trajectory and the phase plots for the Example 4 with x0 = (19, 17). Top row: one-step ResNet model; Middle row: Multi-step RT-ResNet model; 
Bottom row: Multi-step RS-ResNet model.
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