
Journal of Computational Physics 395 (2019) 620–635
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Data driven governing equations approximation using deep

neural networks ✩

Tong Qin, Kailiang Wu, Dongbin Xiu ∗

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 November 2018
Received in revised form 22 February 2019
Accepted 15 June 2019
Available online 19 June 2019

Keywords:
Deep neural network
Residual network
Recurrent neural network
Governing equation discovery

We present a numerical framework for approximating unknown governing equations using
observation data and deep neural networks (DNN). In particular, we propose to use
residual network (ResNet) as the basic building block for equation approximation. We
demonstrate that the ResNet block can be considered as a one-step method that is exact
in temporal integration. We then present two multi-step methods, recurrent ResNet (RT-
ResNet) method and recursive ReNet (RS-ResNet) method. The RT-ResNet is a multi-step
method on uniform time steps, whereas the RS-ResNet is an adaptive multi-step method
using variable time steps. All three methods presented here are based on integral form of
the underlying dynamical system. As a result, they do not require time derivative data for
equation recovery and can cope with relatively coarsely distributed trajectory data. Several
numerical examples are presented to demonstrate the performance of the methods.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Recently there has been a growing interest in discovering governing equations numerically using observational data.
Earlier efforts include methods using symbolic regression ([5,43]), equation-free modeling [24], heterogeneous multi-scale
method (HMM) ([15]), artificial neural networks ([19]), nonlinear regression ([50]), empirical dynamic modeling ([46,53]),
nonlinear Laplacian spectral analysis ([18]), automated inference of dynamics ([44,12,13]), etc. More recent efforts start to
cast the problem into a function approximation problem, where the unknown governing equations are treated as target
functions relating the data for the state variables and their time derivatives. The majority of the methods employ certain
sparsity-promoting algorithms to create parsimonious models from a large set of dictionary for all possible models, so that
the true dynamics could be recovered exactly ([47]). Many studies have been conducted to effectively deal with noises in
data ([7,41]), corruptions in data ([48]), partial differential equations [38,40], etc. Methods have also been developed in
conjunction with model selection approach ([28]), Koopman theory ([6]), and Gaussian process regression ([35]), to name a
few. A more recent work resorts to the more traditional means of approximation by using orthogonal polynomials ([52]). The
approach seeks accurate numerical approximation to the underlying governing equations, instead of their exact recovery. By
doing so, many existing results in polynomial approximation theory can be applied, particularly those on sampling strategies.
It was shown in [52] that data from a large number of short bursts of trajectories are more effective for equation recovery
than those from a single long trajectory.

✩ This work was partially supported by AFOSR FA9550-18-1-0102.

* Corresponding author.
E-mail addresses: qin.428@osu.edu (T. Qin), wu.3423@osu.edu (K. Wu), xiu.16@osu.edu (D. Xiu).
https://doi.org/10.1016/j.jcp.2019.06.042
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.06.042
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:qin.428@osu.edu
mailto:wu.3423@osu.edu
mailto:xiu.16@osu.edu
https://doi.org/10.1016/j.jcp.2019.06.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.06.042&domain=pdf

T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635 621
On the other hand, artificial neural network (ANN), and particularly deep neural network (DNN), has seen tremendous
successes in many different disciplines. The number of publications is too large to mention. Here we cite only a few rela-
tively more recent review/summary type publications ([30,4,16,32,14,20,42]). Efforts have been devoted to the use of ANN
for various aspects of scientific computing, including construction of reduced order model ([22]), aiding solution of con-
servation laws ([37]), multiscale problems ([8,51]), solving and learning systems involving ODEs and PDEs ([29,11,27,25]),
uncertainty quantification ([49,54]), etc.

The focus of this paper is on the approximation/learning of dynamical systems using deep neural networks (DNN). The
topic has been explored in a series of recent articles, in the context of ODEs ([36,39]) and PDEs ([34,33,27]). The new contri-
butions of this paper include the following. First, we introduce new constructions of deep neural network (DNN), specifically
suited for learning dynamical systems. In particular, our new network structures employ residual network (ResNet), which
was first proposed in [21] for image analysis and has become very popular due to its effectiveness. In our construction,
we employ a ResNet block, which consists of multiple fully connected hidden layers, as the fundamental building block of
our DNN structures. We show that the ResNet block can be considered as a one-step numerical integrator in time. This
integrator is “exact” in time, i.e., no temporal error, in the sense that the only error stems from the neural network ap-
proximation of the evolution operators defining the governing equation. This is different from a few existing work where
ResNet is viewed as the Euler forward scheme ([9]). Secondly, we introduce two variations of the ResNet structure to serve
as multi-step learning of the underlying governing equations. The first one employs recurrent use of the ResNet block.
This is inspired by the well known recurrent neural network (RNN), whose connection with dynamical systems has long
been recognized, cf. [20]. Our recurrent network, termed RT-ResNet hereafter, is different in the sense that the recurrence
is enforced blockwise on the ResNet block, which by itself is a DNN. (Note that in the traditional RNN, the recurrence is
enforced on the hidden layers.) We show that the RT-ResNet is a multi-step integrator that is exact in time, with the only
error stemming from the ResNet approximation of the evolution operator of the underlying equation. The other variation
of the ResNet approximator employs recursive use of the ResNet block, termed RS-ResNet. Again, the recursion is enforced
blockwise on the ResNet block (which is a DNN). We show that the RS-ResNet is also an exact multi-step integrator. The dif-
ference between RT-ResNet and RS-ResNet is that the former is equivalent to a multi-step integrator using an uniform time
step, whereas the latter is an “adaptive” method with variable time steps depending on the particular problem and data.
Thirdly, the derivations in this paper utilize integral form of the underlying dynamical system. By doing so, the proposed
methods do not require knowledge or data of the time derivatives of the equation states. This is different from most of the
existing studies (cf. [5,7,41,52]), which deal with the equations directly and thus require time derivative data. Acquiring time
derivatives introduces an additional source for noises and errors, particularly when one has to conduct numerical differen-
tiation of noisy trajectory data. Consequently, the proposed three new DNN structures, the one-step ResNet and multi-step
RT-ResNet and RS-ResNet, are capable of approximating unknown dynamical systems using only state variable data, which
could be relatively coarsely distributed in time. In this case, most of the existing methods become less effective, as accurate
extraction of time derivatives is difficult.

This paper is organized as follows. After the basic problem setup in Section 2, we present the main methods in Section 3
and some theoretical properties in Section 4. We then present, in Section 5, a set of numerical examples, covering both
linear and nonlinear differential equations, to demonstrate the effectiveness of the proposed algorithms.

2. Setup

Let us consider an autonomous system

dx

dt
= f(x), x(t0) = x0, (2.1)

where x ∈ Rn are the state variables. Let �s : Rn → Rn be the flow map, which maps the state from t = 0 to the state at
t = s. Note that for autonomous systems the time variable t can be arbitrarily shifted and only the time difference, or time
lag, t − t0 is relevant. The solution can be written as

x(t;x0, t0) = �t−t0(x0). (2.2)

Hereafter we will omit t in the exposition, unless confusion arises.
In this paper, we assume the form of the governing equations f :Rn →Rn is unknown. Our goal is to create an accurate

model for the governing equation using data of the solution trajectories. In particular, we assume data are collected in the
form of pairs, each of which corresponds to the solution states along one trajectory at two different time instances. That is,
we consider the set

S = {(z(1)
j , z(2)

j) : j = 1, . . . , J }, (2.3)

where J is the total number of data pairs, and for each pair j = 1, . . . , J ,

z(1) = x j + ε
(1)

, z(2) = �� (x j) + ε
(2)

. (2.4)
j j j j j

622 T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635
Here the terms ε(1)
j and ε(2)

j stand for the potential noises in the data, and � j is the time lag between the two states.
For notational convenience, we assume � j = � to be a constant for all j throughout this paper. Consequently, the data set
becomes input-output measurements of the �-lag flow map,

x → ��(x). (2.5)

3. Deep neural network approximation

The core building block of our methods is a standard fully connected feedforward neural network (FNN) with M ≥ 3
layers, of which (M − 2) are hidden layers. It has been established that fully connected FNN can approximate arbitrarily
well a large class of input-output maps, i.e., they are universal approximators, cf. [31,2,23]. Since the right-hand-side f of
(2.1) is our approximation goal, we will consider Rn → Rn map. Let n j , j = 1, . . . , M , be the number of neurons in each
layer, we then have n1 = nM = n.

Let N :Rn →Rn be the operator of this network. For any input yin ∈Rn , the output of the network is

yout = N(yin;�), (3.1)

where � is the parameter set including all the parameters in the network. The operator N is a composition of the following
operators

N(·;�) = (σM ◦ WM−1) ◦ · · · ◦ (σ2 ◦ W1), (3.2)

where ◦ stands for operator composition, W j is the weight matrix containing the weight parameters connecting the neurons
from j-th layer to (j + 1)-th layer, after using the standard approach of augmenting the biases into the weights, and
σ j : R → R is the activation function, which is applied component-wise to the j-th layer. There exist many choices for
the activation functions, e.g., sigmoid functions, ReLU (rectified linear unit), etc. In this paper we use a sigmoid function,
in particular, the σi(x) = tanh(x) function, in all layers, except at the output layer σM(x) = x. This is one of the common
choices for DNN.

Using the data set (2.3), we can directly train (3.1) to approximate the �-lag flow map (2.5). This can be done by applying
(3.1) with yin

j = z(1)
j to obtain yout

j for each j = 1, . . . , J , and then minimizing following mean squared loss function

L(�) = 1

J

J∑
j=1

∥∥∥yout
j − z(2)

j

∥∥∥2
, (3.3)

where ‖ · ‖ denotes vector 2-norm hereafter. With a slight abuse of notation, hereafter we will write yin = z(1) to stand for
yin

j = z(1)
j for all sample data j = 1, . . . , J , unless confusion arises otherwise.

3.1. One-step ResNet approximation

We now present the idea of using residual neural network (ResNet) as a one-step approximation method. The idea of
ResNet is to explicitly introduce the identity operator in the network and force the network to effectively approximate the
“residue” of the input-output map. Although mathematically equivalent, this simple transformation has been shown to be
highly advantageous in practice and become increasingly popular, after its formal introduction in [21].

The structure of the ResNet is illustrated in Fig. 3.1. The ResNet block consists of N fully connected hidden layers and an
identity operator to re-introduce the input yin back into the output of the hidden layers. The introduction of the identity
operator effectively produces the following mapping

yout = yin + N(yin;�), yin = z(1), (3.4)

where � are the weight and bias parameters in the network. The parameters are determined by minimizing the same loss
function (3.3). This effectively accomplishes the training of the operator N(·; �).

The connection between dynamical systems and ResNet has been recognized. In fact, ResNet has been viewed as the
Euler forward time integrator ([9]). To further examine its property, let us consider the exact �-lag flow map,

x(�) = ��(x(0))

= x(0) +
�∫

0

f(x(t))dt

= x(0) + � · f(x(τ))

= x(0) + � · f(�τ (x(0))), 0 ≤ τ ≤ �.

(3.5)

This is a trivial derivation using the mean value theorem. For notational convenience, we now define “effective increment”.

T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635 623
Fig. 3.1. Schematic of the ResNet structure for one-step approximation.

Definition 3.1. For a given autonomous system (2.1), given an initial state x and an increment � ≥ 0, then its effective
increment of size � is defined as

φ�(x; f) = � · f(�τ (x)), (3.6)

for some 0 ≤ τ ≤ � such that

x(�) = x + φ�(x; f). (3.7)

Note that the effective increment φ� depends only on its initial state x, once the governing equation f and the increment
� are fixed.

Upon comparing the exact state (3.7) and the one-step ResNet method (3.4), it is thus easy to see that a successfully
trained network operator N is an approximation to the effective increment φ� , i.e.,

N(x;�) ≈ φ�(x; f). (3.8)

Since the effective increment completely determines the true solution states on a � interval, we can then use the ResNet
operator to approximate the solution trajectory. That is, starting with a given initial state y(0) = x, we can time march the
state

y(k+1) = y(k) + N(y(k);�), k = 0, (3.9)

This discrete dynamical system serves as our approximation to the true dynamical system (2.1). It gives us an approximation
to the true states on a uniform time grids with stepsize �.

Remark 3.1. Even though the approximate system (3.9) resembles the well known Euler forward time stepping scheme, it is
not a first-order method in time. In fact, upon comparing (3.9) and the true state (3.7), it is easy to see that (3.9) is “exact”
in term of temporal integration. The only source of error in the system (3.9) is the approximation error of the effective
increment in (3.8). The size of this error is determined by the quality of the data and the network training algorithm.

Remark 3.2. The derivation here is based on (3.7), which is from the integral form of the governing equation. As a result,
training of the ResNet method does not require data on the time derivatives of the true states. Moreover, � does not need
to be exceedingly small (to enable accurate numerical differentiation in time). This makes the ResNet method suitable for
problems with relatively coarsely distributed data.

3.2. Multi-step recurrent ResNet (RT-ResNet) approximation

We now combine the idea of recurrent neural network (RNN) and the ResNet method from the previous section. The
distinct feature of our construction is that the recurrence is applied to the entire ResNet block, rather than to the individual
hidden layers, as is done for the standard RNNs. (For an overview of RNN, interested readers are referred to [20], Ch. 10.)

The structure of the resulting Recurrent ResNet (RT-ResNet) is shown in Fig. 3.2. The ResNet block, as presented in
Fig. 3.1, is “repeated” (K − 1) times, for an integer K ≥ 1, before producing the output yout . This makes the occurrence of
the ResNet block a total of K times. The unfolded structure is shown on the right of Fig. 3.2. The RT-ResNet then produces
the following scheme, for K ≥ 1,

624 T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635
Fig. 3.2. Schematic of the recurrent ResNet (RT-ResNet) structure for multi-step approximation (K ≥ 1).⎧⎪⎪⎨⎪⎪⎩
y0 = z(1),

yk+1 = yk + N(yk;�), k = 0, . . . , K − 1,

yout = yK .

(3.10)

The network is then trained by using the data set (2.3) and minimizing the same loss function (3.3). For K = 1, this reduces
to the one-step ResNet method (3.4).

To examine the properties of the RT-ResNet, let us consider a unform discretization of the time lag �. That is, let
δ = �/K , and consider, tk = kδ, k = 0, . . . , K . The exact solution state x satisfies the following relation⎧⎪⎨⎪⎩

x(t0) = x(0),

x(tk+1) = x(tk) + φδ(x(tk); f), k = 0, . . . , K − 1,

x(�) = x(tK),

(3.11)

where φδ(x; f) is the effective increment defined of size δ, as defined in Definition 3.1.
Upon comparing this with the RT-ResNet scheme (3.10), it is easy to see that training the RT-ResNet is equivalent to

finding the operator N to approximate the δ-effective increment,

N(x;�) ≈ φδ(x; f). (3.12)

Similar to the one-step ResNet method, the multi-step RT-ResNet is also exact in time, as it contains no temporal discretiza-
tion error. The only error stems from the approximation of the δ-effective increment.

Once the RT-ResNet is successfully trained, it gives us a discrete dynamical system (3.10) that can be further marched in
time using any initial state. This is an approximation to the true dynamical system on uniformly distributed time instances
with an interval δ = �/K . Therefore, even though the training data are given over � time interval, the RT-ResNet system
can produce solution states on finer time grids with a step size δ ≤ � (K ≥ 1).

3.3. Multi-step recursive ResNet approximation

We now present another multi-step approximation method based on the ResNet block in Fig. 3.1. The structure of the
network is shown in Fig. 3.3. From the input yin , ResNet blocks are recursively used a total of K ≥ 1 times, before producing
the output yout . The network, referred to as recursive ResNet (RS-ResNet) hereafter, thus produces the following scheme, for
any K ≥ 1,⎧⎪⎪⎨⎪⎪⎩

y0 = z(1),

yk+1 = yk + N(yk;�k), k = 0, . . . , K − 1,

yout = yK .

(3.13)

Compared to the recurrent RT-ResNet method (3.10) from the previous section, the major difference in RS-ResNet is that
each ResNet block inside the network has its own parameter sets �k and thus are different from each other. Since each
ResNet is a DNN by itself, the RS-ResNet can be a very deep network when K > 1. When K = 1, it also reduces back to the
one-step ResNet network.

Let 0 = t0 < t1 < · · · < tK = � be an arbitrarily distributed time instances in [0, �] and δk = tk+1 − tk , k = 0, . . . , K − 1,
be the (non-uniform) increments. It is then straightforward to see that the exact state satisfies⎧⎪⎨⎪⎩

x(t0) = x(0),

x(tk+1) = x(tk) + φδk
(x(tk); f), k = 0, . . . , K − 1,

x(�) = x(t),

(3.14)
K

T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635 625
Fig. 3.3. Schematic of the recursive ResNet (RS-ResNet) structure for multi-step approximation (K ≥ 1).

where φδk
(x; f) is the δk effective increment defined in Definition 3.1.

Upon comparing with the RS-ResNet scheme (3.13), one can see that the training of the RS-ResNet produces the following
approximation

N(x;�k) ≈ φδk
(x; f), k = 0, . . . , K − 1. (3.15)

That is, each ResNet operator N(x; �k) is an approximation of an effective increment of size δk , for k = 0, . . . , K − 1, under
the condition

∑K−1
k=0 δk = �. Training the network using the data (2.3) and loss function (3.3) will determine the parameter

sets �k , and subsequently the effective increments with size δk , for k = 0, . . . , K − 1, From this perspective, one may view
RS-ResNet as an “adaptive” method, as it adjusts its parameter sets to approximate K smaller effective increments whose
increments are determined by the data. Since RS-ResNet is a very deep network with a large number of parameters, it is, in
principle, capable of producing more accurate results than ResNet and RT-ResNet, assuming cautions have been exercised to
prevent overfitting.

A successfully trained RS-ResNet also gives us a discrete dynamical system that approximates the true governing equation
(2.1). Due to its “adaptive” nature, the intermediate time intervals δk are variables and not known explicitly. Therefore, the
discrete RS-ResNet needs to be applied K times to produce the solution states over the time interval �, which is the same
interval given by the training data. This is different from the RT-ResNet, which can produce solutions over a smaller and
uniform time interval δ = �/K .

4. Theoretical properties

In this section we present a few straightforward analysis to demonstrate certain theoretical aspects of the proposed DNN
for equation approximation.

4.1. Continuity of flow map

Under certain conditions on f, one can show that the flow map of the dynamical system (2.1) is locally Lipschitz contin-
uous.

Lemma 4.1. Assume f is Lipschitz continuous with Lipschitz constant L on a set D ⊆Rn. For any τ > 0, define

Dτ :=
{

x0 ∈ D : �t(x0) ∈ D, ∀t ∈ [0, τ]
}
.

Then, for any t ∈ [0, τ], the flow map �t is Lipschitz continuous on Dτ . Specifically, for any x0, ̃x0 ∈ Dτ ,

‖�t(x0) − �t (̃x0)‖ ≤ eLt‖x0 − x̃0‖, ∀t ∈ [0, τ]. (4.1)

Proof. The proof directly follows from the classical result on the continuity of the dynamical system (2.1) with respect to
initial data; see [45, p. 109]. �

The above continuity ensures that the flow map can be approximated by neural networks to any desired degree of
accuracy by increasing the number of hidden layers and neurons; see, for example, [26,31]. The Lipschitz continuity will
also play an important role in the error analysis in Theorem 4.3.

4.2. Compositions of flow maps

It was shown in [3] that any smooth bi-Lipschitz function can be represented as compositions of functions, each of which
is near-identity in Lipschitz semi-norm. For the flow map of the autonomous system (2.1), we can prove a stronger result
by using the following property

�t1 ◦ �t2 = �t1+t2 , ∀t1, t2. (4.2)

626 T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635
Theorem 4.2. For any positive integer K ≥ 1, the flow map �� can be expressed as a K -fold composition of �δ , namely,

�� = �δ ◦ · · · ◦ �δ︸ ︷︷ ︸
K−fold

, (4.3)

where δ = �/K , and �δ satisfies

‖�δ(x0) − x0‖ ≤ �

K
sup

t∈[0,δ]
‖f(�t(x0))‖, ∀x0. (4.4)

Suppose that f is bounded on D ⊆Rn, then

‖�δ − I‖L∞(Dδ) ≤ �

K
‖f‖L∞(D) = O

(
�

K

)
, (4.5)

where I :Rn →Rn is the identity map, and ‖ · ‖L∞ := ess sup‖ · ‖.

Proof. The representation (4.3) is a direct consequence of the property (4.2). For any x0, we have

‖�δ(x0) − x0‖ =
∥∥∥∥∥∥

δ∫
0

f(�t(x0))dt

∥∥∥∥∥∥ = δη

(
1

δ

δ∫
0

f(�t(x0))dt

)
,

where η(x) = ‖x‖. Since η is a convex function, it satisfies the Jensen’s inequality

η

(
1

δ

δ∫
0

f(�t(x0))dt

)
≤ 1

δ

δ∫
0

η
(
f(�t(x0))

)
dt.

Thus we obtain

‖�δ(x0) − x0‖ ≤
δ∫

0

‖f(�t(x0))‖dt ≤ δ sup
t∈[0,δ]

‖f(�t(x0))‖,

which implies (4.4). For any x0 ∈ Dδ , we have �t(x0) ∈ D for 0 ≤ t ≤ δ. Hence

‖�δ(x0) − x0‖ ≤ �

K
‖f‖L∞(D), ∀x0 ∈ Dδ.

This yields (4.5), and the proof is complete. �
This estimate can serve as a theoretical justification of the ResNet method (K = 1) and RT-ResNet method (K ≥ 1). As

long as � is reasonably small, the flow map of the underlying dynamical system is close to identity. Therefore, it is natural
to use ResNet, which explicitly introduces the identity operator, to approximate the “residue” of the flow map. The norm of
the DNN operator N, which approximates the residual flow map, �δ − I, becomes small at O (�). For RT-ResNet with K > 1,
its norm becomes even smaller at O (�/K). We remark that it was pointed out empirically in [9] that using multiple ResNet
blocks can result in networks with smaller norm.

4.3. Error bound

Let N denote the neural network approximation operator to the �-lag flow map �� . For the proposed ResNet (3.4),
RT-ResNet (3.10), and RS-ResNet (3.13), the operators can be written as

N = I + N(•;�), ResNet;
N = (

I + N(•;�)
) ◦ · · · ◦ (

I + N(•;�)
)︸ ︷︷ ︸

K−fold

, RT-ResNet;

N = (
I + N(•;�K−1)

) ◦ · · · ◦ (
I + N(•;�0)

)
, RS-ResNet.

(4.6)

We now derive a general error bound for the solution approximation using the DNN operator N . This bound serves a
general guideline for the error growth. More specific error bounds for each different network structure are more involved
and will be pursued in a future work.

Let y(m) denote the solution of the approximate model at time t(m) := t0 + m�. Let E (m) := ‖y(m) − x(t(m))‖ denote the
error, j = 0, 1, . . . , m.

T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635 627
Theorem 4.3. Assume that the same assumptions in Lemma 4.1 hold, and let us further assume

1.
∥∥N − ��

∥∥
L∞(D�)

< +∞,

2. y(i), x(t(i)) ∈ D� for 0 ≤ i ≤ m − 1,

then we have

E(m) ≤ (
1 + eL�

)mE(0) + ∥∥N − ��

∥∥
L∞(D�)

(
1 + eL�

)m − 1

eL�
. (4.7)

Proof. The triangle inequality implies that

E(m) = ∥∥y(m−1) +N (y(m−1)) − x(t(m−1)) − ��(x(t(m−1)))
∥∥

≤ ∥∥y(m−1) − x(t(m−1))
∥∥ + ∥∥N (y(m−1)) − ��(x(t(m−1)))

∥∥
≤ ∥∥y(m−1) − x(t(m−1))

∥∥ + ∥∥N (y(m−1)) − ��(y(m−1))
∥∥

+ ∥∥��(y(m−1)) − ��(x(t(m−1)))
∥∥

≤ ∥∥y(m−1) − x(t(m−1))
∥∥ + ∥∥N − ��

∥∥
L∞(D�)

+ eL�
∥∥y(m−1) − x(t(m−1))

∥∥
= (

1 + eL�
)
E(m−1) + ∥∥N − ��

∥∥
L∞(D�)

,

where the Lipschitz continuity of the flow map, shown in (4.1), has been used in the last inequality. Recursively using the
above estimate gives

E(m) ≤ (
1 + eL�

)
E(m−1) + ∥∥N − ��

∥∥
L∞(D�)

≤ (
1 + eL�

)2E(m−2) + ∥∥N − ��

∥∥
L∞(D�)

(
1 + (

1 + eL�
))

≤ · · ·

≤ (
1 + eL�

)mE(0) + ∥∥N − ��

∥∥
L∞(D�)

m−1∑
i=0

(
1 + eL�

)i
.

The proof is complete. �
5. Numerical examples

In this section we present numerical examples to verify the properties of the proposed methods. In all the examples, we
generate the training data pairs {(z(1)

j , z(2)
j } J

j=1 in the following way:

• Generate J points {z(1)
j } J

j=1 from uniform distribution over a computational domain D . The domain D is a region in
which we are interested in the solution behavior. It is typically chosen to be a hypercube prior to the computation.

• For each j, starting from z(1)
j , we march forward for a time lag � the underlying governing equation, using a highly

accurate standard ODE solver, to generate z(2)
j . In our examples we set � = 0.1.

In each example, we take 20 times as many data pairs as the number of model parameters. We remark that the time
lag � = 0.1 is relatively coarse and prevents accurate estimate of time derivatives via numerical differentiation. Since our
proposed methods employ the integral form of the underlying equation, this difficulty is circumvented. The random sampling
of the solution trajectories of length � follows from the work of [52], where it was established that such kind of dense
sampling of short trajectories is highly effective for equation recovery.

All of our network models, ResNet, RT-ResNet, and RS-ResNet, are trained via the loss function (3.3) and by using the
open-source Tensorflow library [1]. The training data set is divided into mini-batches of size 10. And we typically train the
model for 500 epochs and reshuffle the training data in each epoch. All the weights are initialized randomly from Gaussian
distributions and all the biases are initialized to be zeros.

After training the network models satisfactorily, using the data of � = 0.1 time lag, we march the trained network
models further forward in time and compare the results against the reference states, which are produced by high-order nu-
merical solvers of the true underlying governing equations. We march the trained network systems up to t
 � to examine
their (relatively) long-term behaviors. For the two linear examples, we set t = 2; and for the two nonlinear examples, we
set t = 20.

628 T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635
Fig. 5.1. Trajectory and phase plots for the Example 1 with x0 = (1.5, 0) for t ∈ [0, 2]. Top row: one-step ResNet model; Middle row: Multi-step RT-ResNet
model; Bottom row: Multi-step RS-ResNet model.

5.1. Linear ODEs

We first study two linear ODE systems, as textbook examples. In both examples, our one-step ResNet method has 3
hidden layers, each of which has 30 neurons. For the multi-step RT-ResNet and RS-ResNet methods, they both have 3
ResNet blocks (K = 3), each of which contains 3 hidden layers with 20 neurons in each layer.

Example 1
We first consider the following two-dimensional linear ODE with x = (x1, x2){

ẋ1 = x1 + x2 − 2,

ẋ2 = x1 − x2,
(5.1)

where ẋ represents the time derivative d
dt x. The computational domain D is taken to be D = [0, 2]2.

Upon training the three network models satisfactorily, using the � = 0.1 data pairs, we march the trained models further
in time up to t = 2. In Fig. 5.1, we show the plots for the trajectories of both x1 and x2 as well as the portrait on the (x1, x2)

phase plane. We observe that all three network models produce accurate prediction results for time up to t = 2.
As discussed in Section 3.2, the multi-step RT-ResNet method is able to produce an approximation over a smaller time

step δ = �/K , which in this case is δ = 1/30 (with K = 3). The trained RT-ResNet model then allows us to produce predic-

T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635 629
Fig. 5.2. Trajectory and phase plots for Example 1 with x0 = (1.5, 0) using RT-ResNet model with K = 3. The solutions are marched into over time step
δ = �/K = 1/30.

Fig. 5.3. Phase plots for Example 1 with x0 = (1.5,0). One-step ResNets. The training data contains 2% (left) and 5% (right) noise, respectively.

tions over the finer time step δ. In Fig. 5.2, we show the time marching of the trained RT-ResNet model for up to t = 2 using
the smaller time step δ. The results again agree very well with the reference solution. This demonstrates the capability of
RT-ResNet – it allows us to produce accurate predictions with a resolution higher than that of the given data, i.e., δ < �.
On the other hand, our numerical tests also reveal that the training of RT-ResNet with K > 1 becomes more involving –
more training data are typically required and convergence can be slower, compared to the training of the one-step ResNet
method. Similar behavior is also observed in multi-step RS-ResNet method with K > 1. The development of efficient training
procedures for multi-step RT-ResNet and RS-ResNet methods is necessary and will be pursued in a future work.

We then consider the case of noisy data. The data pairs are set as {z(1)
j (1 + ε

(1)
j), z(2)

j (1 + ε
(2)
j)} J

j=1, where the relatively
noise levels ε(1)

j and ε(2)
j are drawn from uniform distribution over [0, η]. In the following experiments we set η = 0.02

and 0.05 for demonstrative purpose. In Fig. 5.3, we show the phase plots generated by the one-step ResNet. Since our NN
models are based on the integral form of the ODE, they tolerate the training noise quite well. As the noise level increases,
the NN prediction deviates more from the exact dynamics, while the main structure of the solution is still well captured.
On the other hand, since the time lag is � = 0.1, this noisy data case is certainly not amenable to the standard equation
recovery approaches requiring time derivative computations.

Example 2
We now consider another linear ODE system:{

ẋ1 = x1 − 4x2,

ẋ2 = 4x1 − 7x2.
(5.2)

The numerical results for the three trained network models are presented in Fig. 5.4. Again, we show the prediction results
of the trained models for up to t = 2. While all predictions agree well with the reference solution, one can visually see that
the RS-ResNet model is more accurate than the RT-ResNet model, which in turn is more accurate than the one-step ResNet

630 T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635
Fig. 5.4. Trajectory and phase plots for the Example 2 with x0 = (0, −1). Top row: one-step ResNet model; Middle row: Multi-step RT-ResNet model; Bottom
row: Multi-step RS-ResNet model.

model. This is expected, as the multi-step methods should be more accurate than the one-step method (ResNet), and the
RS-ResNet should be even more accurate due to its adaptive nature. On the other hand, RS-ResNet introduces larger number
of parameters and induces more training cost. For a given problem, the balance between accuracy and training cost should
be considered by the user.

In Fig. 5.5, we present the results for noisy data case. The noisy data are generated in the same manner as in Exam-
ple 1, and the simulation results are obtained by the one-step ResNet method. Again, we observe that the proposed model
performs robustly in the presence of data noise.

5.2. Nonlinear ODEs

We now consider two nonlinear problems. The first one is the well known damped pendulum problem, and the second
one is an nonlinear differential-algebraic equation (DAE) for modelling a generic toggle ([17]). In both examples, our one-
step ResNet model has 2 hidden layers, each of which has 40 neurons. Our multi-step RT-ResNet and RS-ResNet models
both have 3 of the same ResNet blocks (K = 3). Again, our training data are collected over � = 0.1 time lag. We produce
predictions of the trained model over time for up to t = 20 and compare the results against the reference solutions.

T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635 631
Fig. 5.5. Phase plots for Example 2 with x0 = (0,−1). One-step ResNets. The training data contains 2% (left) and 5% (right) relative noise, respectively.

Example 3: Damped pendulum
The first nonlinear example we are considering is the following damped pendulum problem,{

ẋ1 = x2,

ẋ2 = −αx2 − β sin x1,

where α = 8.91 and β = 0.2. The computational domain is D = [−π, π] × [−2π, 2π]. In Fig. 5.6, we present the prediction
results by the three network models, starting from the initial condition x0 = (−1.193, −3.876) and for time up to t = 20.
We observe excellent agreements between the network models and the reference solution.

Example 4: Genetic toggle switch
We now consider a system of nonlinear differential-algebraic equations (DAE), which are used to model a genetic toggle

switch in Escherichia coli ([17]). It is composed of two repressors and two constitutive promoters, where each promoter is
inhibited by the represssor that is transcribed by the opposing promoter. Details of experimental measurement can be found
in [10]. This system of equations are as follows,⎧⎪⎪⎨⎪⎪⎩

ẋ1 = α1

1+xβ
2

− x1,

ẋ2 = α2
1+zγ − x2,

z = x1
(1+[IPTG]/K)η

.

In this system, the components x1 and x2 denote the concentration of the two repressors. The parameters α1 and α2 are
the effective rates of the synthesis of the repressors; β and γ represent cooperativity of repression of the two promoters,
respectively; [IPTG] is the concentration of IPTG, the chemical compound that induces the switch; and K is the dissociation
constant of IPTG.

In the following numerical experiment, we take α1 = 156.25, α2 = 15.6, γ = 1, β = 2.5, K = 2.9618 ×10−5 and [IPDG] =
10−5. We consider the computational domain D = [0, 20]2.

In Fig. 5.7 we present the prediction results generated by the ResNet, the RT-ResNet and the RS-ResNet, for time up to
t = 20. The initial condition is x0 = (19, 17). Again, all these three models produce accurate approximations, even for such
a long-time simulation.

6. Conclusion

We presented several deep neural network (DNN) structures for approximating unknown dynamical systems using tra-
jectory data. The DNN structures are based on residual network (ResNet), which is a one-step method exact time integrator.
Two multi-step variations were presented. One is recurrent ResNet (RT-ResNet) and the other one is recursive ResNet
(RS-ResNet). Upon successful training, the methods produce discrete dynamical systems that approximate the underlying
unknown governing equations. All methods are based on integral form of the underlying system. Consequently, their con-
structions do not require time derivatives of the trajectory data and can work with coarsely distributed data as well. We
presented the construction details of the methods, their theoretical justifications, and used several examples to demonstrate
the effectiveness of the methods.

632 T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635
Fig. 5.6. Trajectory and phase plots for the Example 3 with x0 = (−1.193, −3.876). Top row: one-step ResNet model; Middle row: Multi-step RT-ResNet
model; Bottom row: Multi-step RS-ResNet model. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635 633
Fig. 5.7. Trajectory and the phase plots for the Example 4 with x0 = (19, 17). Top row: one-step ResNet model; Middle row: Multi-step RT-ResNet model;
Bottom row: Multi-step RS-ResNet model.

634 T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635
References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
large-scale machine learning on heterogeneous systems, https://www.tensorflow.org/, 2015. Software available from tensorflow.org.

[2] A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Theory 39 (1993) 930–945.
[3] P.L. Bartlett, S.N. Evans, P.M. Long, Representing smooth functions as compositions of near-identity functions with implications for deep network

optimization, preprint, arXiv:1804 .05012, 2018.
[4] M. Bianchini, F. Scarselli, On the complexity of neural network classifiers: a comparison between shallow and deep architectures, IEEE Trans. Neural

Netw. Learn. Syst. 25 (2014) 1553–1565.
[5] J. Bongard, H. Lipson, Automated reverse engineering of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA 104 (2007) 9943–9948.
[6] S.L. Brunton, B.W. Brunton, J.L. Proctor, E. Kaiser, J.N. Kutz, Chaos as an intermittently forced linear system, Nat. Commun. 8 (2017).
[7] S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad.

Sci. USA 113 (2016) 3932–3937.
[8] S. Chan, A. Elsheikh, A machine learning approach for efficient uncertainty quantification using multiscale methods, J. Comput. Phys. 354 (2018)

494–511.
[9] B. Chang, L. Meng, E. Haber, F. Tung, D. Begert, Multi-level residual networks from dynamical systems view, in: International Conference on Learning

Representations, 2018.
[10] R. Chartrand, Numerical differentiation of noisy, nonsmooth data, ISRN Appl. Math. 2011 (2011).
[11] R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, preprint, arXiv:1806 .07366, 2018.
[12] B.C. Daniels, I. Nemenman, Automated adaptive inference of phenomenological dynamical models, Nat. Commun. 6 (2015).
[13] B.C. Daniels, I. Nemenman, Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regres-

sion, PLoS ONE 10 (2015) e0119821.
[14] K.-L. Du, M. Swamy, Neural Networks and Statistical Learning, Springer-Verlag, 2014.
[15] W. E, B. Engquist, Z. Huang, Heterogeneous multiscale method: a general methodology for multiscale modeling, Phys. Rev. B 67 (2003) 092101.
[16] R. Eldan, O. Shamir, The power of depth for feedforward neural networks, in: Conference on Learning Theory, 2016, pp. 907–940.
[17] T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in escherichia coli, Nature 403 (2000) 339.
[18] D. Giannakis, A.J. Majda, Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability, Proc. Natl. Acad. Sci.

USA 109 (2012) 2222–2227.
[19] R. Gonzalez-Garcia, R. Rico-Martinez, I.G. Kevrekidis, Identification of distributed parameter systems: a neural net based approach, Comput. Chem. Eng.

22 (1998) S965–S968.
[20] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[21] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 770–778.
[22] J. Hesthaven, S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys. 363 (2018) 55–78.
[23] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4 (1991) 251–257.
[24] I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidid, O. Runborg, C. Theodoropoulos, et al., Equation-free, coarse-grained multiscale computation:

enabling mocroscopic simulators to perform system-level analysis, Commun. Math. Sci. 1 (2003) 715–762.
[25] Y. Khoo, J. Lu, L. Ying, Solving parametric pde problems with artificial neural networks, preprint, arXiv:1707.03351, 2018.
[26] M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function,

Neural Netw. 6 (1993) 861–867.
[27] Z. Long, Y. Lu, X. Ma, B. Dong, PDE-Net: learning PDEs from data, preprint, arXiv:1710 .09668, 2017.
[28] N.M. Mangan, J.N. Kutz, S.L. Brunton, J.L. Proctor, Model selection for dynamical systems via sparse regression and information criteria, Proc. R. Soc.

Lond., Ser. A, Math. Phys. Eng. Sci. 473 (2017).
[29] A. Mardt, L. Pasquali, H. Wu, F. Noe, VAMPnets for deep learning of molecular kinetics, Nat. Commun. 9 (2018) 5.
[30] G.F. Montufar, R. Pascanu, K. Cho, Y. Bengio, On the number of linear regions of deep neural networks, in: Advances in Neural Information Processing

Systems, 2014, pp. 2924–2932.
[31] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer. 8 (1999) 143–195.
[32] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review,

Int. J. Autom. Comput. 14 (2017) 503–519.
[33] M. Raissi, Deep hidden physics models: deep learning of nonlinear partial differential equations, preprint, arXiv:1801.06637, 2018.
[34] M. Raissi, G.E. Karniadakis, Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys. 357 (2018) 125–141.
[35] M. Raissi, P. Perdikaris, G.E. Karniadakis, Machine learning of linear differential equations using gaussian processes, J. Comput. Phys. 348 (2017)

683–693.
[36] M. Raissi, P. Perdikaris, G.E. Karniadakis, Multistep neural networks for data-driven discovery of nonlinear dynamical systems, preprint, arXiv:1801.

01236, 2018.
[37] D. Ray, J. Hesthaven, An artificial neural network as a troubled-cell indicator, J. Comput. Phys. 367 (2018) 166–191.
[38] S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Data-driven discovery of partial differential equations, Sci. Adv. 3 (2017) e1602614.
[39] S.H. Rudy, J.N. Kutz, S.L. Brunton, Deep learning of dynamics and signal-noise decomposition with time-stepping constraints, preprint, arXiv:1808 .

02578, 2018.
[40] H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 473

(2017).
[41] H. Schaeffer, S.G. McCalla, Sparse model selection via integral terms, Phys. Rev. E 96 (2017) 023302.
[42] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85–117.
[43] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data, Science 324 (2009) 81–85.
[44] M.D. Schmidt, R.R. Vallabhajosyula, J.W. Jenkins, J.E. Hood, A.S. Soni, J.P. Wikswo, H. Lipson, Automated refinement and inference of analytical models

for metabolic networks, Phys. Biol. 8 (2011) 055011.
[45] A. Stuart, A.R. Humphries, Dynamical Systems and Numerical Analysis, vol. 2, Cambridge University Press, 1998.
[46] G. Sugihara, R. May, H. Ye, C. Hsieh, E. Deyle, M. Fogarty, S. Munch, Detecting causality in complex ecosystems, Science 338 (2012) 496–500.
[47] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc., Ser. B, Methodol. (1996) 267–288.
[48] G. Tran, R. Ward, Exact recovery of chaotic systems from highly corrupted data, Multiscale Model. Simul. 15 (2017) 1108–1129.
[49] R. Tripathy, I. Bilionis, Deep UQ: learning deep neural network surrogate model for high dimensional uncertainty quantification, J. Comput. Phys. 375

(2018) 565–588.

https://www.tensorflow.org/
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib626172726F6E31393933756E6976657273616Cs1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib626172746C65747432303138726570726573656E74696E67s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib626172746C65747432303138726570726573656E74696E67s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6269616E6368696E6932303134636F6D706C6578697479s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6269616E6368696E6932303134636F6D706C6578697479s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib626F6E67617264323030376175746F6D61746564s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6272756E746F6E323031376368616F73s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6272756E746F6E32303136646973636F766572696E67s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6272756E746F6E32303136646973636F766572696E67s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib4368616E455F4A43503138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib4368616E455F4A43503138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib4368616E674574416C32303138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib4368616E674574416C32303138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib636861727472616E64323031316E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib4368656E5F32303138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib64616E69656C73323031356175746F6D61746564s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib64616E69656C7332303135656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib64616E69656C7332303135656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib44755377616D7932303134s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib455F484D4D3033s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib656C64616E32303136706F776572s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib676172646E657232303030636F6E737472756374696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6769616E6E616B6973323031326E6F6E6C696E656172s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6769616E6E616B6973323031326E6F6E6C696E656172s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib676F6E7A616C657A313939386964656E74696669636174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib676F6E7A616C657A313939386964656E74696669636174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib476F6F6466656C6C6F7742432D32303136s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib68653230313664656570s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib68653230313664656570s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib48657374686176656E555F4A43503138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib686F726E696B31393931617070726F78696D6174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6B657672656B69646973323030336571756174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6B657672656B69646973323030336571756174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib4B686F6F4C7559696E675F32303138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6C6573686E6F313939336D756C74696C61796572s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6C6573686E6F313939336D756C74696C61796572s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6C6F6E6732303137706465s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib4D616E67616E3230313730303039s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib4D616E67616E3230313730303039s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib4D6172647450574E5F4E61747572653138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6D6F6E7475666172323031346E756D626572s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib6D6F6E7475666172323031346E756D626572s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib70696E6B757331393939s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib706F6767696F32303137s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib706F6767696F32303137s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib7261697373693230313864656570s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib7261697373693230313868696464656Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib726169737369323031376D616368696E65s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib726169737369323031376D616368696E65s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib726169737369323031386D756C746973746570s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib726169737369323031386D756C746973746570s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib5261794865617374686176656E5F4A43503138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib727564793230313764617461s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib727564793230313864656570s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib727564793230313864656570s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib736368616566666572323031376C6561726E696E67s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib736368616566666572323031376C6561726E696E67s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib73636861656666657232303137737061727365s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib5363686D6964687562657232303135s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib7363686D6964743230303964697374696C6C696E67s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib7363686D696474323031316175746F6D61746564s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib7363686D696474323031316175746F6D61746564s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib7374756172743139393864796E616D6963616Cs1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib737567696861726132303132646574656374696E67s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib74696273686972616E693139393672656772657373696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib7472616E323031376578616374s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib5472697061746879425F4A43503138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib5472697061746879425F4A43503138s1

T. Qin et al. / Journal of Computational Physics 395 (2019) 620–635 635
[50] H.U. Voss, P. Kolodner, M. Abel, J. Kurths, Amplitude equations from spatiotemporal binary-fluid convection data, Phys. Rev. Lett. 83 (1999) 3422.
[51] Y. Wang, S.W. Cheung, E.T. Chung, Y. Efendiev, M. Wang, Deep multiscale model learning, preprint, arXiv:1806 .04830, 2018.
[52] K. Wu, D. Xiu, Numerical aspects for approximating governing equations using data, J. Comput. Phys. (2019), in press.
[53] H. Ye, R.J. Beamish, S.M. Glaser, S.C.H. Grant, C. Hsieh, L.J. Richards, J.T. Schnute, G. Sugihara, Equation-free mechanistic ecosystem forecasting using

empirical dynamic modeling, Proc. Natl. Acad. Sci. USA 112 (2015) E1569–E1576.
[54] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification, J. Comput. Phys. 366

(2018) 415–447.

http://refhub.elsevier.com/S0021-9991(19)30450-4/bib766F737331393939616D706C6974756465s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib57616E675F32303138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib57755869755F4A435045513138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib7965323031356571756174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib7965323031356571756174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib5A6162617261735F32303138s1
http://refhub.elsevier.com/S0021-9991(19)30450-4/bib5A6162617261735F32303138s1

	Data driven governing equations approximation using deep neural networks
	1 Introduction
	2 Setup
	3 Deep neural network approximation
	3.1 One-step ResNet approximation
	3.2 Multi-step recurrent ResNet (RT-ResNet) approximation
	3.3 Multi-step recursive ResNet approximation

	4 Theoretical properties
	4.1 Continuity of ﬂow map
	4.2 Compositions of ﬂow maps
	4.3 Error bound

	5 Numerical examples
	5.1 Linear ODEs
	Example 1
	Example 2

	5.2 Nonlinear ODEs
	Example 3: Damped pendulum
	Example 4: Genetic toggle switch

	6 Conclusion
	References

