
Journal of Computational Physics 408 (2020) 109307
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Data-driven deep learning of partial differential equations in

modal space ✩

Kailiang Wu, Dongbin Xiu ∗

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2019
Received in revised form 27 January 2020
Accepted 31 January 2020
Available online 6 February 2020

Keywords:
Deep neural network
Residual network
Governing equation discovery
Modal space

We present a framework for recovering/approximating unknown time-dependent partial
differential equation (PDE) using its solution data. Instead of identifying the terms in the
underlying PDE, we seek to approximate the evolution operator of the underlying PDE
numerically. The evolution operator of the PDE, defined in infinite-dimensional space, maps
the solution from a current time to a future time and completely characterizes the solution
evolution of the underlying unknown PDE. Our recovery strategy relies on approximation of
the evolution operator in a properly defined modal space, i.e., generalized Fourier space, in
order to reduce the problem to finite dimensions. The finite dimensional approximation
is then accomplished by training a deep neural network structure, which is based on
residual network (ResNet), using the given data. Error analysis is provided to illustrate
the predictive accuracy of the proposed method. A set of examples of different types of
PDEs, including inviscid Burgers’ equation that develops discontinuity in its solution, are
presented to demonstrate the effectiveness of the proposed method.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Recently there has been an ongoing research effort to develop data-driven methods for discovering unknown physical
laws. Earlier attempts such as [2,31] used symbolic regression to select the proper physical laws and determine the under-
lying dynamical systems. More recent efforts tend to cast the problem as an approximation problem. In this approach, the
sought-after governing equation is treated as an unknown target function relating the data of the state variables to their
temporal derivatives. Methods along this line of approach usually seek exact recovery of the equations by using certain
sparse approximation techniques (e.g., [33]) from a large set of dictionaries; see, for example, [4]. Studies have been con-
ducted to deal with noises in data [4,29,10], corruptions in data [34], limited data [30], partial differential equations [26,28],
etc. Variations of the approaches have been developed in conjunction with other methods such as model selection approach
[15], Koopman theory [3], Gaussian process regression [21,20], and expectation-maximization approach [16], to name a few.
Methods using standard basis functions and without requiring exact recovery were also developed for dynamical systems
[39] and Hamiltonian systems [38].

There is a recent surge of interest in developing methods using modern machine learning techniques, particularly deep
neural networks. The studies include recovery of ordinary differential equations (ODEs) [24,18,27] and partial differential
equations (PDEs) [14,22,23,19,13,32]. It was shown that residual network (ResNet) is particularly suitable for equation re-

✩ Funding: This work was partially supported by AFOSR FA9550-18-1-0102.

* Corresponding author.
E-mail addresses: wu.3423@osu.edu (K. Wu), xiu.16@osu.edu (D. Xiu).
https://doi.org/10.1016/j.jcp.2020.109307
0021-9991/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2020.109307
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:wu.3423@osu.edu
mailto:xiu.16@osu.edu
https://doi.org/10.1016/j.jcp.2020.109307
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2020.109307&domain=pdf

2 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
covery, in the sense that it can be an exact integrator [18]. Neural networks have also been explored for other aspects
of scientific computing, including reduced order modeling [9,17], solution of conservation laws [25,37], multiphase flow
simulation [36], high-dimensional PDEs [6,12], uncertainty quantification [5,35,40,11], etc.

The focus of this paper is on the development of a general numerical framework for approximating/learning unknown
time-dependent PDE. Even though the topic has been explored in several recent articles, cf., [14,22,23,19,13,32], the existing
studies are relatively limited, as they mostly focus on learning certain types of PDE or identifying the exact terms in the
PDE from a (large) dictionary of possible terms. The specific novelty of this paper is that the proposed method seeks to
recover/approximate the evolution operator of the underlying unknown PDE and is applicable for general class of PDEs.
The evolution operator completely characterizes the time evolution of the solution. Its recovery allows one to conduct
prediction of the underlying PDE and is effectively equivalent to the recovery of the equation. This is an extension of
the equation recovery work from [18], where the flow map of the underlying unknown dynamical system is the goal
of recovery. Unlike the ODE systems considered in [18], PDE systems, which is the focus of this paper, are of infinite
dimension. In order to cope with infinite dimension, our method first reduces the problem into finite dimensions by utilizing
a properly chosen modal space, i.e., generalized Fourier space. The equation recovery task is then transformed into recovery
of the generalized Fourier coefficients, which follow a finite dimensional dynamical system. The approximation of the finite
dimensional evolution operator of the reduced system is then carried out by using deep neural network, particularly the
residual network (ResNet) which has been shown to be particularly suitable for this task [18]. One of the advantages of
the proposed method is that, by focusing on evolution operator, it eliminates the need for time derivatives data of the
state variables. Time derivative data, often required by many existing methods, are difficult to acquire in practice and
susceptible to (additional) errors when computed numerically. Moreover, the proposed method can cope with solution
data that are more sparsely or unevenly distributed in time. Since the proposed framework is rather general, we present
several examples of recovering different types of PDEs. These include linear advection, linear diffusion, viscous and inviscid
nonlinear Burgers’ equations. The inviscid Burgers’ equation represents a relatively challenging problem, as it develops shock
over time. Our results show that the proposed method is able to accurately capture the evolution operator using only smooth
data during training. The reconstructed evolution operator is then able to produce shock structure developed over time
during prediction. Most of our examples are in one dimensional physical space, as this allows us to easily and thoroughly
examine the solutions and their numerical errors. Our last example is the recovery of a two-dimensional advection-diffusion
equation. It demonstrates the applicability of the method to multiple dimensional PDEs.

This paper is organized as follows. After the problem setup in Section 2, we discuss evolution operator and its finite
dimensional representation in Section 3. The numerical approach for learning the evolution operator is then presented in
Section 4, along with an error analysis for the predictive accuracy. Numerical examples are then presented in Section 5 to
demonstrate the properties of the proposed approach.

2. Problem setup

Let us consider a state variable u(x, t), which is governed by an unknown autonomous time-dependent PDE system⎧⎪⎨⎪⎩
ut = L(u), (x, t) ∈ � ×R+,

B(u) = 0, (x, t) ∈ ∂� ×R+,

u(x,0) = u0(x), x ∈ �̄,

(2.1)

where t denotes the time, x is the spatial variable, � is the physical domain, and L and B stand for the operators in the
equations and boundary conditions, respectively. Our basic assumption is that the operator L is unknown. In this paper, we
assume the boundary conditions are known and focus on learning the PDE in the interior of the domain.

We assume data about the solution u(x, t) are available at certain time instances, loosely called “snapshots” hereafter.
That is, we have data

w(x, t j) = u(x, t j) + ε(x, t j), j = 1, . . . , S, (2.2)

where S ≥ 1 is the total number of snapshots of the solution field and ε(x, t j) stands for the noises/errors when the data
are acquired. (Certain reconstruction procedure may be involved in order to have the snapshot data in the form of (2.2).
This, however, is not the focus of this paper.)

Our goal is to accurately reconstruct the evolution/dynamics of the unknown governing equation (2.1) via the snapshot
data (2.2). Once an accurate reconstruction is achieved, it can be used to provide predictions of the solution.

3. Finite dimensional approximation

While many of the existing equation learning methods seek to directly approximate or learn the specific form of the
governing equations, we adopt a different framework, which seeks to approximate evolution operator of the underlying
equations. Such an approach was presented and analyzed in [18] for recovery of ODEs. For the PDE recovery problem
considered in this paper, our first task is to reduce the problem from infinite dimension to finite dimension.

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 3
3.1. Evolution operator

Without specifying the form of the governing equation, we loosely assume that for any fixed t ≥ 0, the solution u(x, t)
belongs to a Hilbert space V , with the space norm denoted by ‖ · ‖V . Moreover, we assume the known boundary conditions
are linear, i.e., the boundary operator B in (2.1) is linear. For many commonly-used boundary conditions, e.g., Dirichlet,
Neumann, or periodic boundary conditions, etc., this assumption holds true.

We restrict our attention to autonomous PDEs. Consequently, there exists an evolution operator

E� : V → V , E�u(·, t) = u(·, t + �). (3.1)

Note that only the time difference, or time lag, � is relevant, as the time variable t can be arbitrarily shifted. The evolution
operator completely determines the solution over time. Once it is accurately approximated, one can iteratively apply the
approximate evolution operator to conduct prediction of the system.

3.2. Finite dimensional evolution operator

To make the PDE learning problem tractable, we consider a finite dimensional space Vn ⊂V . Let

�(x) = (φ1(x), . . . , φn(x))† , n ≥ 1, (3.2)

be a basis of Vn and satisfy B(φ j) = 0, 1 ≤ j ≤ n, i.e.,

Vn = span{φ j : B(φ j) = 0, j = 1, . . . ,n}. (3.3)

An approximation of u(x, t) from Vn can be written as

un(x, t) =
n∑

j=1

v j(t)φ j(x) = 〈v(t),�(x)〉, (3.4)

where the last equality is written in vector notation after defining v = (v1, . . . , vn)†. Let Pn : V → Vn be a projection
operator. For any t , we define the projection of the exact solution as

ûn(x, t) := Pnu(x, t) = 〈̂v(t),�(x)〉. (3.5)

To approximate the (unknown) infinite dimensional evolution operator E� in the finite dimensional space Vn , we con-
sider a finite dimensional evolution operator E�,n , which evolves an approximate solution un ∈Vn , i.e.

E�,n : Vn → Vn, E�,nun(·, t) = un(·, t + �). (3.6)

In practice, one may choose any suitable finite dimensional operator E�,n , as long as it provides a good approximation to
E� , i.e., E�,n ≈ E� . Note that this effectively assumes an autonomous PDE can be approximated by an autonomous discrete
system via a proper spatial discretization. This is a very mild assumption used in virtually any numerical methods. In this
paper, we mostly employ the following finite dimensional evolution operator

Ẽ�,n := PnE�, (3.7)

such that

Ẽ�,n v = PnE�v, ∀v ∈ Vn. (3.8)

(Note that if one chooses v = Pnu, then this operator closely resembles the evolution operator of spectral Galerkin method
for solving an known PDE.) For this specific choice of E�,n , we have the following error bound.

Proposition 3.1. Assume the evolution operator E� (3.1) of the underlying PDE is bounded. Let tk = k�, k = 0, 1, . . . , and let
εproj(tk) := ‖u(·, tk) − Pnu(·, tk)‖V be the projection error of the exact solution at tk. Consider the approximate evolution oper-
ator Ẽ�,n defined in (3.7) and its corresponding approximate solution:

un(·, tk) = Ẽ�,n(·, tk−1), k = 1,2, . . . , un(·,0) = ûn(·,0).

Then, the error in the approximate solution satisfies

‖un(·, tk) − u(·, tk)‖V ≤
k∑

j=0

‖PnE�‖k− jεproj(t j). (3.9)

4 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
Proof. Let e(tk) := ‖un(·, tk) − û(·, tk)‖V . For any k ≥ 1, we have

e(tk) = ‖E�,nun(·, tk−1) −Pnu(·, tk)‖V
= ‖PnE�un(·, tk−1) −PnE�u(·, tk−1)‖V
≤ ‖PnE�un(·, tk−1) −PnE�ûn(·, tk−1)‖V

+ ‖PnE�ûn(·, tk−1) −PnE�u(·, tk−1)‖V
≤ ‖PnE�‖e(tk−1) + ‖PnE�‖εproj(tk−1).

By recursively applying the above inequality and using e(t0) = 0, we obtain

‖un(·, tk) − û(·, tk)‖V ≤
k−1∑
j=0

‖PnE�‖k− jεproj(t j).

The estimate (3.9) is further obtained by using

‖un(·, tk) − u(·, tk)‖V ≤ ‖un(·, tk) − û(·, tk)‖V + ‖̂u(·, tk) − u(·, tk)‖V = e(tk) + εproj(tk). �
We now define a linear mapping

� : Rn → Vn, �v = 〈v,�(x)〉, v ∈Rn, (3.10)

which is a bijective mapping whose inverse exists. Subsequently, � : Rn → Vn is an isomorphism. This mapping defines a
unique correspondence between a solution in Vn and its modal expansion coefficients in Rn .

Proposition 3.2. Let E�,n be a finite dimensional evolution operator for un ∈ Vn, as defined in (3.6), and v ∈ Rn be its coefficient
vector as in (3.4), then v follows an evolution operator

M�,n : Rn →Rn, M�,nv(t) = v(t + �), (3.11)

and

M�,n = �−1E�,n�, (3.12)

where � is the linear mapping defined in (3.10). Furthermore, if E�,n is defined as in (3.7), then

M�,n = �−1PnE�� =: M̃�,n. (3.13)

The proof is a trivial exercise of substituting (3.10) into (3.6).
Therefore, we have transformed the learning of the infinite dimensional evolution operator E� (3.1) for the true solution

u ∈ V to the learning of its finite dimensional approximation E�,n (3.6) for the approximate solution un ∈ Vn , which is
equivalent to the learning of the evolution operator M�,n (3.11) for its expansion coefficient v ∈Rn .

4. Numerical approach

In this section, we discuss the detail of our PDE learning algorithm. The general procedure consists of the following
steps:

• Choose a basis for the finite dimensional space Vn (3.3) and a corresponding projection operator (3.5).
• Apply the projection operation and project the snapshot data (2.2) to Vn (3.3) to obtain training data in modal space.
• Choose an appropriate deep neural network structure to approximate the finite dimensional evolution operator M�,n

(3.11) and conduct the network training.
• Conduct numerical prediction of the system by advancing the learned neural network model for the evolution operator.

We remark that this is a fairly general procedure. One is certainly not confined to using neural network. Other approximation
methods can also be applied to model the evolution operator. However, modern neural networks, along with their advanced
training algorithms, are able to handle relatively high dimensional inputs. This feature makes them more suitable to PDE
learning.

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 5
4.1. Basis selection and data set construction

The choice of basis functions is fairly straightforward – any basis suitable for spatial approximation of the solution
data can be used. These include piecewise polynomials, typically used in finite difference or finite elements methods, or
orthogonal polynomials used in spectral methods, etc. The basis should also be sufficiently fine to resolve the structure of
the true solution.

Once the basis functions are selected, one proceeds to employ a suitable projection operator Pn : V → Vn to represent
the solution in the finite dimensional form (3.5). This can be accomplished via piecewise interpolation, as commonly used
in finite elements and finite difference methods, or orthogonal projection, which is often used in spectral methods.

One of the key ingredients for learning the finite dimensional evolution operator M�,n (3.11) is to acquire modal vector
data in pairs, whose components are separated by a time lag. That is, let J ≥ 1 be the total number of solution data pairs.
Then, we define the j-th data pair as

(v j(0),v j(� j)), j = 1, . . . , J , (4.1)

where � j > 0 is the time lag. Note again that for the autonomous systems considered in this paper, the time difference � j
is the only relevant variable. Hereafter, we will assume, without loss of generality, � j = � is a constant.

4.1.1. Data pairing via snapshot data projection
When solution snapshots are available in the form of (2.2), we first identify and create pairs of snapshots that are

separated by the time lag �. That is, we seek to have the data arranged in the following form

(u(j)(·, tk j), u(j)(·, tk j + �)), j = 1, . . . , J , (4.2)

where J ≥ 1 is the total number of pairs. Note that some (or, even all) of the pairs may be originated from the same
“trajectory”. That is, they are obtained from the original data snapshots (2.2) with the same initial condition. For more
effective equation recovery, it is strongly preferred that the data pairs are originated from different trajectories with a large
number of different initial conditions [39].

Once the snapshot data pairs are constructed, we proceed to project them onto the finite dimensional space Vn by
applying the projection operator (3.5). This then produces data pairs for the modal expansion coefficients (4.1), where

v j(0) = �−1Pnu(j)(·, tk j), v j(�) = �−1Pnu(j)(·, tk j + �).

Learning the finite dimensional evolution operator is then conducted in the modal space in search for M�,n (3.11). This
is accomplished by formally solving the following minimization problem:

M�,n = argmin
N�:Rn→Rn

1

J

J∑
j=1

‖N�v j(0) − v j(�)‖2
2. (4.3)

This corresponds to finding the operator E�,n (3.6) by formally solving

E�,n := argmin
E�:Vn→Vn

1

J

J∑
j=1

‖E�û(j)(·, tk j) − û(j)(·, tk j + �)‖2
V , (4.4)

where ̂u(j) =Pnu(j) .

4.1.2. Data pairing via sampling in modal space
When data collection procedure is in a controlled environment, it is then possible to directly sample in the modal space

to generate the training data pairs. One example of such a case is when the unknown PDE is controlled by a black-box
simulation software or a device. This would allow one to possibly generate arbitrary “initial” conditions and then collect
their states at a later time. In this case, the training data pairs (4.1) can be generated as follows.

• Sample J points {v j(0)} J
j=1 over a domain D ⊂ Rn , where D is a region in which one is interested in the solution

behavior. The sampling can be conducted randomly or by using other proper sampling techniques.
• For each j = 1, . . . , J , construct initial solution

u(j)(x,0) = �v j(0) = 〈v j(0),�(x)〉. (4.5)

Then, march forward in time for the time lag �, by using the underlying black-box simulation code or device, and
obtain the solution snapshots u(j)(x, �). Conduct the projection operation (3.5) to obtain

v j(�) = �−1Pnu(j)(x,�). (4.6)

6 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
The modal expansion coefficients data generated in this manner then satisfy, for each j = 1, . . . , J ,

v j(�) = �−1PnE�u(j)(x,0) = �−1PnE��v j(0) = M̃�,nv j(0),

where M̃�,n is defined in (3.13) and corresponds to the finite dimensional evolution operator defined in (3.7).
We remark that this procedure also generates solution pairs along the way, i.e,

(u(j)(·,0), u(j)(·,�)), u(j)(·,0) ∈ Vn, j = 1, . . . , J .

Note that here u(j)(·, 0) ∈ Vn due to (4.5) via the direct sampling in the modal space. These pairs are then different from
those in (4.2), whose components are not necessarily in Vn .

4.2. Neural network modeling of evolution operator

Once the training data set (4.1) becomes available, one can proceed to learn the unknown governing equation. This
is achieved by learning the finite dimensional evolution operator relating the solution coefficients in the data pairs. As
shown in Proposition 3.2, finding the finite dimensional evolution operator of the unknown PDE (3.6) is equivalent to find
the evolution operator (3.12) for the modal expansion coefficient vectors. Suppose the solution coefficient vectors formally
follow an unknown autonomous system, dv/dt = f(v), we then have, by using mean-value theorem,

v(�) = M�,n(v(0)) = v(0) +
�∫

0

f(v(t))dt

= v(0) + � · f(Mτ ,nv(0)), 0 ≤ τ ≤ �,

(4.7)

where M�,n is the evolution operator defined in (3.12) and τ depends on � and the form of the operator L in (2.1).
Furthermore, if M�,n takes the form of (3.13), we then have

v(�) = M̃�,n(v(0)) = �−1PnE��v(0)

= �−1PnE�〈v(0),�(x)〉

= �−1Pn

⎛⎝〈v(0),�(x)〉 +
�∫

0

L(Et�v(0))dt

⎞⎠
= �−1Pn〈v(0),�(x)〉 + � · �−1PnL(Eτ �v(0))

= v(0) + � · �−1PnL(Eτ�v(0)), 0 ≤ τ ≤ �.

(4.8)

These relations suggest that, when the time lag � is small, it is natural to adopt the residue network (ResNet) [8] to
model the evolution operator. This approach was presented and systematically studied in [18], for learning of unknown
dynamical systems from data. The block ResNet structure for equation learning from [18] takes the following form

v(�) = N (v(0);
), (4.9)

where N denotes the nonlinear operator defined by the underlying neural network with parameter set
. For block ResNet
with K ≥ 1 ResNet blocks, the operator

N = (
I + N(•;
K−1)

) ◦ · · · ◦ (
I + N(•;
0)

)
,

with N is standard fully connected feedforward neural network, and
 = {
i}0≤i≤K−1 are the parameters (weights and
biases) in each ResNet block. (See [18] for more details.) The parameters are determined by minimizing the loss function
(4.3), i.e.,

L(
) = 1

J

J∑
j=1

∥∥N (v j(0);
) − v j(�)
∥∥2

2 , (4.10)

where ‖ · ‖2 denotes vector 2-norm. Let
∗ be the trained parameters, after satisfactory minimization of the loss function.
A learned model is then constructed in the form of N (·;
∗), which provides an approximation to the evolution operator
(3.11),

N (·,
∗) ≈ M�,n. (4.11)

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 7
The trained network model can then be used to provide prediction of the system (2.1). For an arbitrary initial condition
u(x, 0) ∈V , we first conduct its projection (3.5) and obtain

v̂(0) = �−1Pnu(·,0), (4.12)

where � is the bijective mapping defined in (3.10). We then iteratively apply the neural network model (4.11) to obtain
approximate solutions for the modal expansion coefficients at time instances tk = k�,{

ṽ(0) = v̂(0),

ṽ(tk+1) =N (̃v(tk);
∗), k = 0,
(4.13)

The predicted solution fields ̃un(x, tk) are then obtained by

ũn(x, tk) = �̃v(tk) = 〈̃v(tk),�(x)〉, k = 1, (4.14)

4.3. Error analysis

We now derive an error bound for the predicted solution (4.14) of our neural network model, when the finite dimen-
sional evolution operator (3.13) is the case, i.e., M�,n = M̃�,n = �−1PnE��. For notational convenience, we assume that
the basis functions {φ j(x)}n

j=1 of Vn are orthonormal. (Note that non-orthogonal basis can always be orthogonalized via
Gram-Schmidt procedure.) Then, the bijective mapping � : Rn → Vn defined in (3.10) is an isometric isomorphism and
satisfies

‖�v‖V = ‖v‖2, v ∈Rn.

Also, since it is well known that neural networks are universal approximator for a general class of functions, we assume
that the training error in (4.11) is bounded. We then state the following result.

Theorem 4.1. Assume the evolution operator E� (3.1) of the underlying PDE is bounded. Also, assume the trained neural network
model N = N (·,
∗) is bounded, and its approximation error (4.11) is bounded and denote εDNN := ‖N − �−1PnE��‖ < +∞.
Let tk = k�, k = 0, 1, . . . , and let εproj(tk) := ‖u(x, tk) − Pnu(x, tk)‖V be the projection error of the exact solution at tk. Then the
following error bounds hold:

‖̃v(tk) − v̂(tk)‖2 ≤
k−1∑
j=0

‖N ‖k−1− j
(
εDNN‖̂v(t j)‖2 + εproj(t j)‖PnE�‖

)
, (4.15)

where ̂v = �−1û is the modal expansion coefficient vector of the projected exact solution (3.5) and ̃v is the coefficient vector predicted
by the neural network model (4.13), and

‖̃un(·, tk) − u(·, tk)‖V ≤ εproj(tk) +
k−1∑
j=0

‖N ‖k−1− j
(
εDNN‖̂v(t j)‖2 + εproj(t j)‖PnE�‖

)
, (4.16)

where ̃u is the solution state predicted by the trained neural network model (4.14).

Proof. Let e(tk) := ‖̃v(tk) − v̂(tk)‖2. Note that, for k = 1, . . . ,

v̂(tk) = �−1ûn(·, tk) = �−1Pnu(·, tk) = �−1PnE�u(·, tk−1).

We then have

e(tk) = ‖̃v(tk) − �−1PnE�u(·, tk−1)‖2

≤ ‖̃v(tk) − �−1PnE�ûn(·, tk−1)‖2

+ ‖�−1PnE�ûn(·, tk−1) − �−1PnE�u(·, tk−1)‖2

= ‖N (̃v(tk−1);
∗) − �−1PnE��v(tk−1)‖2

+ ‖PnE�ûn(·, tk−1) −PnE�u(·, tk−1)‖V
≤ ‖N (̃v(tk−1);
∗) −N (̂v(tk−1);
∗)‖2

+ ‖N (̂v(tk−1);
∗) − �−1PnE��̂v(tk−1)‖2

+ ‖PnE�‖‖̂un(·, tk−1) − u(·, tk−1)‖V
≤ ‖N ‖e(tk−1) + εDNN‖̂v(tk−1)‖2 + ‖PnE�‖εproj(tk−1).

8 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
By recursively applying the above inequality and using e(t0) = 0, we obtain (4.15). The proof is then complete by using

‖̃un(·, tk) − u(·, tk)‖V
≤ ‖̃un(·, tk) −Pnu(·, tk)‖V + ‖Pnu(·, tk) − u(·, tk)‖V
= ‖̃v(tk) − v̂(tk)‖2 + εproj(tk) = e(tk) + εproj(tk). �

Theorem 4.1 indicates that the prediction error of the network model is affected by the approximation error of the neural
network and the projection error, which is determined by the approximation space Vn and the regularity of the solution.

5. Numerical examples

In this section, we present numerical examples to verify the properties of the proposed method. For benchmarking
purpose, the true governing PDEs are known in all of them examples. However, we use the true governing equations only
to generate training data, particularly by following the procedure in Section 4.1.2. Our proposed learning method is then
applied to these synthetic data and produces a trained neural network model for the underlying PDE. We will then use the
neural network model to conduct numerical predictions of the solution and compare them against the reference solution
produced by the governing equations. Numerical errors will be reported, in term of relative errors between the neural
network prediction solutions and the reference solutions.

The governing equations considered in this section include: linear advection equation, linear diffusion equation, nonlinear
viscous Burgers’ equation, nonlinear inviscid Burgers’ equation, the last of which produces shocks. We primarily focus on
one dimension in physical space with noiseless data, in order to conduct detailed and thorough examination of the solution
behavior. Data noises are introduced in one example to demonstrate the applicability of the method. A two-dimensional
advection-diffusion problem is also presented to demonstrate the applicability of the method to multiple dimensions.

In all examples, we employ global orthogonal polynomials as the basis functions to define the finite dimensional space
for training. For benchmarking purpose, all training data are generated in modal space, as described in Section 4.1.2. We
also rather arbitrarily impose a decay condition in certain examples to ensure the higher modes are smaller, compared to
the lower modes. This effectively poses a smoothness condition on the training data.

All of our network models are trained via minimizing the loss function (4.3) and by using the open-source Tensorflow
library [1]. The training data set is divided into mini-batches of size 10, and the learning rate is taken as 0.001. The network
weights are initialized randomly from Gaussian distributions and biases are initialized to zeros. Upon successful training,
the neural network models are then marched forward in time with the � time step, as in (4.13). The results, labeled as
“prediction”, are compared against the reference solutions, labeled as “exact”, of the true underlying governing equations.

5.1. Example 1: advection equation

We first consider a one-dimensional advection equation with periodic boundary condition:{
ut + ux = 0, (x, t) ∈ (0,2π) ∈R+,

u(0, t) = u(2π, t), t ∈R+.
(5.1)

The finite dimensional approximation space is set as Vn = span{eikx, k ≤ 3}, which implies n = 7. The time lag � is taken
as 0.1. The domain D in the modal space is fixed as [−0.8, 0.8] for k ≤ 1 and [−0.2, 0.2] for k = 2, and [−0.03, 0.03] for
k = 3. By using uniform distribution, we generate 80, 000 training data in the modal space. For neural network modeling,
we employ the block ResNet structure with two blocks (K = 2), each of which contains 3 hidden layers of equal width of 30

Fig. 5.1. Example 1: Training loss history.

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 9
Fig. 5.2. Example 1: Comparison of the true solution and the learned model solution at different time. Top-left: t = 1; top-right: t = 2; middle-left: t = 3;
middle-right: t = 4; bottom-left: t = 10; bottom-right: t = 20.

Fig. 5.3. Example 1: The evolution of the relative error in the prediction in l2-norm.

neurons. The loss function training history is shown in Fig. 5.1, where the network is trained for up to 2, 000 epochs. Conver-
gence can be achieved after about 200 epochs. To validate the model, we employ an initial condition u0(x) = 1

2 exp(sin(x))
and conduct simulations using the trained model, in the form of (4.12)–(4.14), for up to t = 20. Note that this particular
initial condition, albeit smooth, is fairly representative, as it is not in the approximation space Vn . In Fig. 5.2, the solution
prediction of the trained model is plotted at different time instances, along with the true solution for comparison. The rel-
ative error in the predicted solution is shown in Fig. 5.3. We observe that the network model produces accurate prediction
results for time up to t = 20. The error grows over time. This is consistent with the error estimate from Theorem 4.1 and is
expected from any numerical time integrator. To further examine the solution property, we also plot in Fig. 5.4 the evolution
of the learned expansion coefficients v̂ j , 1 ≤ j ≤ 7. For reference purpose, the optimal coefficients obtained by the L2

B(�)

orthogonal projection of the true solution onto Vn are also plotted. We observe good agreement between the two solutions.

10 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
Fig. 5.4. Example 1: Evolution of the expansion coefficients for the learned model solution and the projection of the true solution.

5.2. Example 2: diffusion equation

We now consider the following diffusion equation with Dirichlet boundary condition:{
ut = σuxx, (x, t) ∈ (0,π) ×R+,

u(0, t) = u(π, t) = 0, t ∈R+.
(5.2)

The finite dimensional approximation space is chosen as Vn = span{sin(jx), 1 ≤ j ≤ 5}, where n = 5. (The symmetry of
the problem allows this simplified choice to facilitate the computation and comparison.) The time lag � is taken as 0.1. The
domain D in the modal space is taken as [−1, 1] × [−0.5, 0.5] × [−0.2, 0.2] × [−0.05, 0.05] × [−0.01, 0.01], from which we
sample 30, 000 training data. In this example, we employ a single-block ResNet method (K = 1) containing 3 hidden layers
of equal width of 30 neurons. The training of the network model is conducted for up to 500 epochs, where satisfactory
convergence is established, as shown in Fig. 5.5. For validation and accuracy test, we conduct numerical predictions of the
trained network model using initial condition

u0(x) = x
[

5 − 4x − 7
(x)2 + 6

(x)3
]

,

π π π π

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 11
Fig. 5.5. Example 2: Training loss history.

Fig. 5.6. Example 2: Comparison of the true solution and the learned model solution at different time. Top-left: t = 0; top-right: t = 1; bottom-left: t = 2;
bottom-right: t = 3.

Fig. 5.7. Example 2: The evolution of the relative error in the prediction in l2-norm.

for up to time t = 3. Fig. 5.6 shows the solution predicted by the trained network model, along with the exact solution of
the true equation (5.2). It can be seen that the predicted solution agrees well with the exact solution. The relative error
in the numerical prediction is shown in Fig. 5.7, in term of l2-norm. Finally, the evolution of the expansion coefficients is
also shown given in Fig. 5.8. We observe that they agree well with the optimal coefficients obtained by projecting the exact
solution onto the linear space Vn .

12 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
Fig. 5.8. Example 2: Evolution of the expansion coefficients for the learn model and the projection of the true solution.

Fig. 5.9. Example 2: The solution at different time predicted by the neural network model trained with noisy data. Left: 2% noise; right: 5% noise. From top
to bottom: solutions at t = 1, t = 2 and t = 3, respectively.

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 13
Fig. 5.10. Example 3: Training loss history.

Fig. 5.11. Example 3: Comparison of the true solution and the learned model solution at different time. Top-left: t = 0.5; top-right: t = 1; bottom-left:
t = 1.5; bottom-right: t = 2.

Fig. 5.12. Example 3: The evolution of the relative errors in the prediction in l2-norm.

We now consider the case of noisy data. All training data are then perturbed by a multiplicative factor (1 + ε), where
ε ∼ [−η, η] follows uniform distribution. We consider two cases of η = 0.02 and η = 0.05, which respectively correspond
to ±2% and ±5% relative noises in all data. In Fig. 5.9, the numerical solutions produced by the neural network models
are presented, after network training of 500 epochs, along with the exact solution. We observe that the predictions of the
network model are fairly robust against data noise. At higher level noises in data, the predictive results contain relatively
larger numerical errors, as expected.

14 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
Fig. 5.13. Example 3: Evolution of the expansion coefficients for the learned model and the projection of the true solution.

Fig. 5.14. Example 3: Training loss history.

Fig. 5.15. Example 3: Comparison of the true solution and the learned model solution at different time. Top-left: t = 0.5; top-right: t = 1; bottom-left:
t = 1.5; bottom-right: t = 2.

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 15
Fig. 5.16. Example 3: The evolution of the relative error in prediction in l2-norm.

Fig. 5.17. Example 3: Evolution of the expansion coefficients for the learned model solution and the projection of the true solution.

Fig. 5.18. Example 4: Training loss history.

16 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
Fig. 5.19. Example 4: Comparison of the true solution, the learned model solution and the solution by Galerkin method at different time. Top-left: t = 0.5;
top-right: t = 1; bottom-left: t = 1.5; bottom-right: t = 2.

Fig. 5.20. Example 4: The evolution of the relative error in the prediction in l2-norm.

5.3. Example 3: viscous Burgers’ equation

We now consider the viscous Burgers’ equation with Dirichlet boundary condition:{
ut +

(
u2

2

)
x
= σuxx, (x, t) ∈ (−π,π) ×R+,

u(−π, t) = u(π, t) = 0, t ∈R+.
(5.3)

We first consider a modestly large viscosity σ = 0.5. The approximation space is chosen as Vn = span{sin(jx), 1 ≤ j ≤ 5}
with n = 5. The time lag � is fixed at � = 0.05. The domain D in the modal space is chosen as [−1.5, 1.5] × [−0.2, 0.2] ×
[−0.05, 0.05] × [−0.01, 0.01] × [−0.002, 0.002], from which 100, 000 training data are generated. The block ResNet method
with two blocks (K = 2) is used, where each block contains 3 hidden layers of equal width of 30 neurons. Upon training
the network model satisfactorily (see Fig. 5.10 for the training loss history), we validate the trained model for the initial
condition

u0(x) = − sin(x),

for time up to t = 2. In Fig. 5.11, we compare the predicted solution against the exact solution at different time. The error
of the prediction is computed and displayed in Fig. 5.12. We observe that the network model produces accurate prediction
results. The learned expansion coefficients are shown in Fig. 5.13 and agree well with the optimal coefficients given by
orthogonal projection of the exact solution.

We then consider a smaller viscosity σ = 0.1. The approximation space is chosen to be relatively larger as Vn =
span{sin(jx), 1 ≤ j ≤ 9} with n = 9. The time lag � is taken as 0.05. The domain D in the modal space is taken as

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 17
Fig. 5.21. Example 4: Evolution of the expansion coefficients for the learned model solution and the projection of the true solution.

Fig. 5.22. Example 5: Training loss history.

[−1.5, 1.5] ×[−0.5, 0.5] ×[−0.2, 0.2]2 ×[−0.1, 0.1]2 ×[−0.05, 0.05]2 ×[−0.02, 0.02], from which we sample 500, 000 train-
ing data. In this example, we use the four-block ResNet method (K = 4) with each block containing 3 hidden layers of equal
width of 30 neurons. The network model is trained for up to 2,000 epochs, and training loss history is shown in Fig. 5.14.
Then we validate the trained model for the initial condition

u0(x) = − sin(x).

In Fig. 5.15, we present the prediction results generated by the trained network, for time up to t = 2. One can see that
the predicted solutions are very close to the exact ones, This can also be seen in the relative error of the prediction from
Fig. 5.16. We note that at time t = 2 the exact solution develops a relatively sharp (albeit still smooth) transition layer at
this relatively low viscosity. The numerical solution starts to exhibit Gibbs’ type small oscillations. This is a rather common
feature for global type approximation and is not unexpected. Comparison between the learned and optimal expansion
coefficients is also shown in Fig. 5.17.

18 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
Fig. 5.23. Example 5: Contour plots of the solutions at different time. From top to bottom t = 0, t = 1.5 and t = 3. Left: learned model solution; right: true
solution. 15 equally spaced contour lines are shown at the same levels for the learned model solution and true solution. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

5.4. Example 4: inviscid Burgers’ equation

We now consider the inviscid Burgers’ equation with Dirichlet boundary condition:{
ut +

(
u2

2

)
x
= 0, (x, t) ∈ (−π,π) ×R+,

u(−π, t) = u(π, t) = 0, t ∈R+.
(5.4)

This represents a challenging problem, as the nonlinear hyperbolic nature of this equation can produce shocks over time
even if the initial solution is smooth.

The approximation space is chosen as Vn = span{sin(jx), 1 ≤ j ≤ 9} with n = 9. The time lag � is taken as 0.05. The
domain D in the modal space is taken as [−1.1, 1.1] ×[−0.5, 0.5] ×[−0.3 ×0.3]7, from which we sample 1, 000, 000 training
data. We remark that by sampling in this manner, all of our training data are smooth. In this example, we use the block
ResNet method with K = 4 blocks, each of which contains 3 hidden layers of equal width of 30. The network training is
conducted for up to 2, 000 epochs, when it was deemed satisfactory, as shown in the loss history in Fig. 5.18. For validation,
we conduct system prediction using initial condition

u0(x) = − sin(x),

for time up to t = 2. Although the initial condition is smooth, the exact solution will start to develop shock at t = 1.
The prediction results generated by our network model are shown in Fig. 5.19, along with the exact solution, and the

Galerkin solution of the Burgers’ equation using the same linear space Vn . The evolution of numerical errors in the pre-
dictions by our network model are shown in Fig. 5.20. Due to the discontinuity in the solution, Gibbs type oscillations
appear in the predicted solutions. This is not unexpected, as the best representation of a discontinuous function using the

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 19
Fig. 5.24. Example 5: Comparison of the true solution and the learned model solution at different time along the line x = 0. Top-left: t = 0; top-right: t = 1;
bottom-left: t = 2; bottom-right: t = 3.

Fig. 5.25. Example 5: The evolution of the relative error in the prediction in l2-norm.

linear subspace Vn will naturally produce oscillations, unless special treatment such as filtering is utilized (which is not
pursued in this work). The Galerkin solution of the equation (5.4) exhibits the similar Gibbs’ oscillations for precisely the
same reason. We remark that it can be seen that our neural network prediction is visibly better than the Galerkin solution.
While the network prediction is entirely data driven and does not require knowledge of the equation, the Galerkin solution
is attainable only after knowing the precise form of the governing equation. In Fig. 5.21, we plot the evolution of the ex-
pansion coefficients in the modal space obtained by the neural network model prediction, Galerkin solution of the Burgers’
equation, and orthogonal projection of the exact solution (denoted as “optimal”), the last of which serves as the reference
solution. It is clearly seen that the neural network model produces more accurate results than the Galerkin solver. The
accuracy improvement is especially visible at higher modes such as v̂7, v̂8, and v̂9. The cause of the accuracy improvement
over Galerkin method will be pursued in a separate work.

5.5. Example 5: two-dimensional convection-diffusion equation

In our last example, we consider a two-dimensional convection-diffusion equation to demonstrate the applicability of
the proposed algorithm for multiple dimensions. The equation set up is as follows.⎧⎪⎨⎪⎩

ut + α1ux + α2u y = σ1uxx + σ2u yy, (x, y, t) ∈ (−π,π)2 ∈R+,

u(−π, y, t) = u(π, y, t), ux(−π, y, t) = ux(π, y, t), (y, t) ∈ (−π,π) ×R+,

u(x,−π, t) = u(x,π, t), u y(x,−π, t) = u y(x,π, t), (x, t) ∈ (−π,π) ×R+,

(5.5)

where the parameters are set as α1 = 1, α2 = 0.7, σ1 = 0.1, and σ2 = 0.16 in the test.

20 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
Fig. 5.26. Example 5: Evolution of the expansion coefficients for the learned model solution and the projection of the true solution.

We chose the finite dimensional approximation space Vn as a span by n = 25 basis functions:

φ1(x, y) = 1, φ2(x, y) = cos(x), φ3(x, y) = sin(x),

φ4(x, y) = cos(2x), φ5(x, y) = sin(2x), φ6(x, y) = cos(3x), φ7(x, y) = sin(3x),

φ8(x, y) = cos(y), φ9(x, y) = sin(y), φ10(x, y) = cos(2y), φ11(x, y) = sin(2y),

φ12(x, y) = cos(3y), φ13(x, y) = sin(3y), φ14(x, y) = cos(x) cos(y),

φ15(x, y) = cos(x) sin(y), φ16(x, y) = sin(x) cos(y), φ17(x, y) = sin(x) sin(y),

K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307 21
φ18(x, y) = cos(x) cos(2y), φ19(x, y) = cos(x) sin(2y), φ20(x, y) = sin(x) cos(2y),

φ21(x, y) = sin(x) sin(2y), φ22(x, y) = cos(2x) cos(y), φ23(x, y) = cos(2x) sin(y),

φ24(x, y) = sin(2x) cos(y), φ25(x, y) = sin(2x) sin(y).

The time lag � is taken as 0.1 and 1, 000, 000 training data are generated. The neural network model is a five-block ResNet
method (K = 5) with each block containing 3 hidden layers of equal width of 40 neurons. Upon training the network model
satisfactorily for 400 epochs (see Fig. 5.22 for the training loss history), we validate the trained models by using the initial
condition

u0(x) = 2

5
exp

(
sin(x) − cos(y)

2

)
,

for time up to t = 3.
The comparison between the network model prediction and the exact solution is shown in Figs. 5.23 as solution contours,

and in Fig. 5.24 as solution slice profiles at certain locations. The relative error in the network prediction is shown in
Fig. 5.25. The time evolution of the modal expansion coefficients is shown in Fig. 5.26, along with the evolution of the
orthogonal projection coefficients of the exact solution. Again, we observe good accuracy in the network prediction.

6. Conclusion

In this paper, we presented a data-driven framework for learning unknown time-dependent autonomous PDEs, based
on training of deep neural networks, particularly, those based on residual networks. Instead of identifying the exact terms
in the underlying PDEs forms of the unknown PDEs, we proposed to approximately recover the evolution operator of the
underlying PDEs. Since the evolution operator completely characterizes the solution evolution, its recovery allows us to
conduct accurate system prediction by recursive use of the operator. The key to the successful learning of the operator
is to reduce the problem into finite dimension. To this end, we proposed an approach in modal space, i.e., generalized
Fourier space. Error analysis was conducted to quantify the prediction accuracy of the proposed data-driven approach. We
presented a variety of test problems to demonstrate the applicability and potential of the method. More detailed study of
its properties, especially to more complex problems in high dimensions such as electronic structure problem [7], will be
pursued in future study.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
large-scale machine learning on heterogeneous systems, https://www.tensorflow.org/, 2015. Software available from tensorflow.org.

[2] J. Bongard, H. Lipson, Automated reverse engineering of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA 104 (2007) 9943–9948.
[3] S.L. Brunton, B.W. Brunton, J.L. Proctor, E. Kaiser, J.N. Kutz, Chaos as an intermittently forced linear system, Nat. Commun. 8 (2017).
[4] S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad.

Sci. USA 113 (2016) 3932–3937.
[5] S. Chan, A. Elsheikh, A machine learning approach for efficient uncertainty quantification using multiscale methods, J. Comput. Phys. 354 (2018)

494–511.
[6] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (2018) 8505–8510.
[7] J. Han, L. Zhang, W. E, Solving many-electron Schrödinger equation using deep neural networks, J. Comput. Phys. 399 (2019) 108929.
[8] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 770–778.
[9] J. Hesthaven, S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys. 363 (2018) 55–78.

[10] S.H. Kang, W. Liao, Y. Liu, IDENT: identifying differential equations with numerical time evolution, arXiv preprint arXiv:1904 .03538, 2019.
[11] S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep

neural networks, arXiv preprint arXiv:1902 .05200, 2019.
[12] Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks, arXiv preprint arXiv:1707.03351, 2018.
[13] Z. Long, Y. Lu, B. Dong, PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network, arXiv preprint arXiv:1812 .04426, 2018.
[14] Z. Long, Y. Lu, X. Ma, B. Dong, PDE-net: learning PDEs from data, in: J. Dy, , A. Krause (Eds.), Proceedings of the 35th International Conference on

Machine Learning, Stockholmsmässan, Stockholm Sweden, 10–15 Jul, in: Proceedings of Machine Learning Research, vol. 80, 2018, pp. 3208–3216.
[15] N.M. Mangan, J.N. Kutz, S.L. Brunton, J.L. Proctor, Model selection for dynamical systems via sparse regression and information criteria, Proc. R. Soc.,

Math. Phys. Eng. Sci. 473 (2017).
[16] D. Nguyen, S. Ouala, L. Drumetz, R. Fablet, EM-like learning chaotic dynamics from noisy and partial observations, arXiv preprint arXiv:1903 .10335,

2019.
[17] S. Pawar, S.M. Rahman, H. Vaddireddy, O. San, A. Rasheed, P. Vedula, A deep learning enabler for nonintrusive reduced order modeling of fluid flows,

Phys. Fluids 31 (2019) 085101.

https://www.tensorflow.org/
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib626F6E67617264323030376175746F6D61746564s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6272756E746F6E323031376368616F73s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6272756E746F6E32303136646973636F766572696E67s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6272756E746F6E32303136646973636F766572696E67s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib4368616E455F4A43503138s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib4368616E455F4A43503138s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib68616E32303138736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib48414E32303139313038393239s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib68653230313664656570s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib68653230313664656570s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib48657374686176656E555F4A43503138s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6B616E67323031396964656E74s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6B6172756D7572693230313973696D756C61746F72s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6B6172756D7572693230313973696D756C61746F72s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib4B686F6F4C7559696E675F32303138s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6C6F6E6732303138706465s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6C6F6E6732303137706465s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6C6F6E6732303137706465s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib4D616E67616E3230313730303039s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib4D616E67616E3230313730303039s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6E677579656E323031396C696B65s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib6E677579656E323031396C696B65s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib646F693A31302E313036332F312E35313133343934s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib646F693A31302E313036332F312E35313133343934s1

22 K. Wu, D. Xiu / Journal of Computational Physics 408 (2020) 109307
[18] T. Qin, K. Wu, D. Xiu, Data driven governing equations approximation using deep neural networks, J. Comput. Phys. 395 (2019) 620–635.
[19] M. Raissi, Deep hidden physics models: deep learning of nonlinear partial differential equations, J. Mach. Learn. Res. 19 (2018) 1–24.
[20] M. Raissi, G.E. Karniadakis, Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys. 357 (2018) 125–141.
[21] M. Raissi, P. Perdikaris, G.E. Karniadakis, Machine learning of linear differential equations using gaussian processes, J. Comput. Phys. 348 (2017)

683–693.
[22] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations, arXiv

preprint arXiv:1711.10561, 2017.
[23] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part ii): data-driven discovery of nonlinear partial differential equations, arXiv

preprint arXiv:1711.10566, 2017.
[24] M. Raissi, P. Perdikaris, G.E. Karniadakis, Multistep neural networks for data-driven discovery of nonlinear dynamical systems, arXiv preprint arXiv:

1801.01236, 2018.
[25] D. Ray, J. Hesthaven, An artificial neural network as a troubled-cell indicator, J. Comput. Phys. 367 (2018) 166–191.
[26] S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Data-driven discovery of partial differential equations, Sci. Adv. 3 (2017) e1602614.
[27] S.H. Rudy, J.N. Kutz, S.L. Brunton, Deep learning of dynamics and signal-noise decomposition with time-stepping constraints, J. Comput. Phys. 396

(2019) 483–506.
[28] H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proc. R. Soc., Math. Phys. Eng. Sci. 473 (2017).
[29] H. Schaeffer, S.G. McCalla, Sparse model selection via integral terms, Phys. Rev. E 96 (2017) 023302.
[30] H. Schaeffer, G. Tran, R. Ward, Extracting sparse high-dimensional dynamics from limited data, SIAM J. Appl. Math. 78 (2018) 3279–3295.
[31] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data, Science 324 (2009) 81–85.
[32] Y. Sun, L. Zhang, H. Schaeffer, NeuPDE: neural network based ordinary and partial differential equations for modeling time-dependent data, arXiv

preprint arXiv:1908 .03190, 2019.
[33] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B (1996) 267–288.
[34] G. Tran, R. Ward, Exact recovery of chaotic systems from highly corrupted data, Multiscale Model. Simul. 15 (2017) 1108–1129.
[35] R. Tripathy, I. Bilionis, Deep UQ: learning deep neural network surrogate model for high dimensional uncertainty quantification, J. Comput. Phys. 375

(2018) 565–588.
[36] Y. Wang, G. Lin, Efficient deep learning techniques for multiphase flow simulation in heterogeneous porous media, arXiv preprint arXiv:1907.09571,

2019.
[37] Y. Wang, Z. Shen, Z. Long, B. Dong, Learning to discretize: solving 1D scalar conservation laws via deep reinforcement learning, arXiv preprint arXiv:

1905 .11079, 2019.
[38] K. Wu, T. Qin, D. Xiu, Structure-preserving method for reconstructing unknown hamiltonian systems from trajectory data, arXiv preprint arXiv:1905 .

10396, 2019.
[39] K. Wu, D. Xiu, Numerical aspects for approximating governing equations using data, J. Comput. Phys. 384 (2019) 200–221.
[40] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification, J. Comput. Phys. 366

(2018) 415–447.

http://refhub.elsevier.com/S0021-9991(20)30081-4/bib71696E3230313864617461s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib7261697373693230313864656570s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib52414953534932303138313235s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib726169737369323031376D616368696E65s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib726169737369323031376D616368696E65s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib726169737369323031377068797369637331s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib726169737369323031377068797369637331s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib726169737369323031377068797369637332s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib726169737369323031377068797369637332s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib726169737369323031386D756C746973746570s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib726169737369323031386D756C746973746570s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib5261794865617374686176656E5F4A43503138s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib727564793230313764617461s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib727564793230313864656570s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib727564793230313864656570s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib736368616566666572323031376C6561726E696E67s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib73636861656666657232303137737061727365s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib7363686165666665723230313765787472616374696E67s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib7363686D6964743230303964697374696C6C696E67s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib73756E323031396E6575706465s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib73756E323031396E6575706465s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib74696273686972616E693139393672656772657373696F6Es1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib7472616E323031376578616374s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib5472697061746879425F4A43503138s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib5472697061746879425F4A43503138s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib77616E6732303139656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib77616E6732303139656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib77616E67323031396C6561726E696E67s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib77616E67323031396C6561726E696E67s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib577551696E58697532303139s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib577551696E58697532303139s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib57755869755F4A435045513138s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib5A6162617261735F32303138s1
http://refhub.elsevier.com/S0021-9991(20)30081-4/bib5A6162617261735F32303138s1

	Data-driven deep learning of partial differential equations in modal space
	1 Introduction
	2 Problem setup
	3 Finite dimensional approximation
	3.1 Evolution operator
	3.2 Finite dimensional evolution operator

	4 Numerical approach
	4.1 Basis selection and data set construction
	4.1.1 Data pairing via snapshot data projection
	4.1.2 Data pairing via sampling in modal space

	4.2 Neural network modeling of evolution operator
	4.3 Error analysis

	5 Numerical examples
	5.1 Example 1: advection equation
	5.2 Example 2: diffusion equation
	5.3 Example 3: viscous Burgers' equation
	5.4 Example 4: inviscid Burgers' equation
	5.5 Example 5: two-dimensional convection-diffusion equation

	6 Conclusion
	References

