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Transport equations arise in many applications such as rarefied gas dynamics, neutron 
transport, and radiative transfer. In this work, we consider some linear kinetic transport 
equations in a diffusive scaling and design high order asymptotic preserving (AP) methods 
within the discontinuous Galerkin method framework, with the main objective to achieve 
unconditional stability in the diffusive regime when the Knudsen number ε � 1, and to 
achieve high order accuracy when ε = O (1) and when ε � 1. Initial layers are also taken 
into account. The ingredients to accomplish our goal include: model reformulations based 
on the micro-macro decomposition and the limiting diffusive equation, local discontinuous 
Galerkin (LDG) methods in space, globally stiffly accurate implicit-explicit (IMEX) Runge-
Kutta methods in time, and strategies to handle non-well prepared initial data. Formal 
asymptotic analysis is carried out for the continuous model within the micro-macro 
decomposed framework to derive the initial layer as well as the interior problem with an 
asymptotically consistent initial condition as ε → 0, and it is also conducted for numerical 
schemes to show the AP property and to understand the numerical initial treatments in 
the presence of initial layers. Fourier type stability analysis is performed, and it confirms 
the unconditional stability in the diffusive regime, and moreover it gives the stability 
condition in the kinetic regime when ε = O (1). In the reformulation step, a weighted 
diffusive term is added and subtracted to remove the parabolic stiffness and enhance 
the numerical stability in the diffusive regime. Such idea is not new, yet our numerical 
stability and asymptotic analysis provide new mathematical understanding towards the 
desired properties of the weight function. Finally, numerical examples are presented to 
demonstrate the accuracy, stability, and asymptotic preserving property of the proposed 
methods, as well as the effectiveness of the proposed strategies in the presence of the 
initial layer.
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1. Introduction

We consider a linear kinetic transport equation in a diffusive scaling,

Pε : ε ft + v∂x f = 1

ε
(〈 f 〉 − f ) (1.1)

with the initial condition and suitable boundary conditions. The function f = f (x, v, t) is the probability phase space den-
sity function of the particles, with x ∈ �x ⊂ R, v ∈ �v ⊂ R, and t ≥ 0 being the spatial, velocity, and temporal variables, 
respectively. The operator L( f ) = 〈 f 〉 − f defines a normalized scattering operator, where 〈 f 〉 := ∫

�v
f dν and ν is a mea-

sure of the velocity space. The parameter ε > 0 is the dimensionless Knudsen number that is the ratio of the mean free 
path of the particles over the characteristic length of the system. With the presence of ε in front of the time derivative of 
f , we focus on the long time behavior of the system under a diffusive scaling. As ε → 0, the solution to this singular per-
turbation problem Pε converges to that of a macroscopic linear diffusive model P0 in (2.4) (at least away from the initial 
and boundary of the space-time domain). When ε = O (1), the system balances the transport and the scattering processes. 
The linear kinetic transport equation (1.1) provides a prototype model for more realistic models in studying rarefied gas 
dynamics, neutron transport, radiative transfer, among many others.

In this work, we are concerned with the design and the mathematical understanding of high order numerical methods 
for (1.1), particularly under the discontinuous Galerkin (DG) framework and with the asymptotic preserving (AP) property. 
Numerical methods with the AP property are designed for the multi-scale model Pε , and they are consistent and stable 
for a wide range of values of ε. As ε → 0, the limiting schemes are consistent discretizations of the limiting equation P0

when the discretization parameters (such as mesh and time step sizes) are fixed and under-resolved. AP methods have 
gone through active development in past few decades for various problems, see e.g. the review papers [16] for kinetic 
and hyperbolic equations and [11] for fluid models. Unlike domain decomposition methods for multi-scale problems, AP 
methods provide a natural transition between models at different scales when ε varies in space and/or in time.

DG methods are finite element methods that use discontinuous functions as approximations. They are chosen here as 
spatial discretizations due to their many attractive properties, such as the ease to be designed with arbitrary accuracy, 
flexibility in adaptive implementation, compactness and high parallel efficiency, and more importantly, the methods suit 
for many different types of differential equations, hence are a natural candidate for the design of AP schemes that can 
simultaneously capture the solutions in various regimes. DG methods have a long history for simulating transport problems. 
Indeed the first upwind DG method by Reed and Hill in 1973 [28] was for the linear stationary neutron transport equation. 
For the stationary radiative transfer equation in diffusive regimes, it was shown in one dimension [20] that the P 0 upwind 
DG method is not AP yet the P 1 upwind DG method is. The AP property was also examined in [21] for the P 1 upwind DG 
method in the presence of the boundary layer. This property was further investigated numerically [1] and analyzed [12] in 
high dimensions and/or for more general discrete spaces. And the understanding to the issue also led to the development 
of a new AP-DG method in [18] that uses the reduced upwind stabilization in the numerical flux.

The methods reviewed above involve DG discretizations based on the original form of the kinetic models. The resulting 
algebraic systems can be solved by (accelerated) source iterations with transport sweep techniques [2,18]. We here will 
propose numerical methods that are based on a reformulated form of the underlying model. Particularly, our methods are 
based on the micro-macro reformulation (see (2.2), also [26]) of the model problem (1.1), and the implicit part to solve in 
our proposed methods is essentially a discrete Poisson equation. Within the micro-macro framework, in [23,25] a first order 
finite difference AP method was formulated and analyzed for stability. Later a family of high order AP methods, based on DG 
spatial discretization and globally stiffly accurate implicit-explicit (IMEX) Runge Kutta (RK) temporal discretizations of type 
ARS (after Asher, Ruuth, and Spiteri [3,5]), was proposed in [14] and analyzed in [15]. As ε → 0, the limiting schemes of the 
methods in [14] are intrinsically explicit discretizations for the limiting heat equation. Therefore for the schemes with ε � 1
in the diffusive regime, numerical stability requires the time step to satisfy �t = O (h2), where h denotes the characteristic 
spatial mesh size. Such parabolic time step condition is quite stringent for the computational efficiency. Similar issue also 
occurs to other AP schemes, including the finite difference methods based on the even-odd parity formulation [17,19] or 
based on the micro-macro decomposition in [23,25]. The primary objective of this work is to design new AP methods, 
improved from the methods in [14], that are unconditionally stable when the underlying problem is in its diffusive regime, 
and additionally we want to establish mathematical understanding of the proposed methods especially in the presence of 
the initial layers. One will see that our analysis also contributes to the understanding of some previous developments in the 
literature.

To enhance the stability, similar to [5,4], we add and subtract a weighted diffusion term to further reformulate the 
micro-macro decomposed equation, aiming to remove the parabolic stiffness. The added term is chosen according to the 
limiting equation and involves a weight function ω. For this newly reformulated system, we design local DG (LDG) methods 
[10] in space, and globally stiffly accurate IMEX-RK method of type ARS in time [3,5], equipped with a suitably chosen
implicit-explicit strategy.

Numerically the proposed methods (with a properly chosen weight function ω) are observed to be unconditionally 
stable in the diffusive regime when ε/h is relatively small. Fourier type numerical stability further confirms this when 
it is applied to a discrete velocity model. Our stability analysis also reveals a scaling structure of the model, and this 
provides useful guidance to the choice of the weight function ω in terms of the model and discretization parameters 
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ε, h, �t . Using weight functions preserving this scaling structure in return will result in some invariant property of the 
numerical stability condition (see the existence of the function Fp,ω in the stability condition in Section 4). Based on our 
analysis, the weight functions ω = exp(−ε/h) and ω = exp(−ε2/�t) will preserve the scaling structure of the model, while 
the choice ω = exp(−ε2/h) used in [5] will not. What we also look into is the stability property of the methods when they 
are applied to the kinetic regime with ε = O (1) where the transport effect dominates.

Another important aspect is to examine the proposed methods being AP, with the limiting schemes as ε → 0 not only 
being consistent to the limiting equations but also being high order accurate. This is investigated with the initial layers 
being taken into account. We first carry out formal asymptotic analysis for the continuous problem within the micro-macro 
framework when ε � 1 with the possible presence of the initial layer and when the boundary condition is periodic in x. 
On the numerical level, strategies are proposed to avoid order reduction or inaccuracy when the initial data is not well-
prepared. For the resulting methods, formal asymptotic analysis is carried out to confirm the AP property of the proposed 
schemes, regardless the initial data being well-prepared or not. Moreover, the limiting schemes are of formally high order 
accuracy. The asymptotic analysis identifies more property of the weight function ω, see (5.13), to ensure the AP property 
of the methods.

The remaining of this paper is organized as follows. In Section 2, we reformulate the model equation, and carry out 
a formal asymptotic analysis with respect to the parameter ε � 1 and when the initial data may or may not be well-
prepared. In Section 3, we present the proposed numerical methods, by first discretizing the problem in time then in space. 
Modification is proposed to the numerical methods during the first one or two time steps to address the accuracy reduction 
or loss in the presence of the initial layer. In Section 4, numerical stability is examined through Fourier analysis in both the 
diffusive and kinetic regimes. It also provides some guidance on choosing the weight function ω in the schemes. Formal 
asymptotic analysis is then performed for the proposed methods in Section 5, and it shows the methods are AP, with the 
limiting schemes as ε → 0 being formally high order accurate. The performance of the proposed methods is demonstrated
numerically in Section 6, which is followed by concluding remarks in Section 7.

2. Model equation

In this section, we will reformulate the model equation (1.1) and carry out a formal asymptotic analysis with respect to 
the parameter ε when it is small, i.e. ε � 1. It is assumed that the boundary condition is periodic in x. The readers can 
have two specific examples of (1.1) in mind. One is the one-group transport equation in slab geometry. Here �v = [−1, 1]
and

〈 f 〉 =
∫
�v

f dν = 1

2

∫
�v

f (x, v, t)dv,

with dv as the standard Lebesgue measure. The other is the telegraph equation, involving two discrete velocities with 
�v = {−1, 1}, and

〈 f 〉 =
∫
�v

f dν = 1

2
( f (x, v = 1, t) + f (x, v = −1, t)) .

In both cases, the scattering operator L( f ) = 〈 f 〉 − f in (1.1) only acts on the v variable and has one dimensional null space 
Null(L) = { f : f = 〈 f 〉} = Span{1}.

2.1. Reformulation

Our proposed numerical methods are based on a reformulated form of the model equation (1.1), obtained in two steps.
As the first step, we reformulate (1.1) into its micro-macro decomposition, originated in [26] for PDE analysis and later 

used in [23,15,14] for numerical method design. Consider the square-integrable space L2(�v ) in v , with an inner product 
〈 f , g〉 := 〈 f g〉. Let � be the L2 projection operator onto Null(L), and let ρ := � f = 〈 f 〉. Then f can be decomposed 
orthogonally into

f = 〈 f 〉 + εg = ρ + εg, (2.1)

where 〈g〉 = 0. We now apply � and its orthogonal complement I − � to (1.1), and this leads to the micro-macro reformu-
lation

∂tρ + ∂x〈vg〉 = 0, (2.2a)

∂t g + 1

ε
(I − �)(v∂x g) + 1

ε2
v∂xρ = − 1

ε2
g. (2.2b)

The operator I is the identity operator. As it will be shown in next subsection, as ε → 0, the system (2.2) (at least away 
from the initial layer) becomes
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∂tρ + ∂x〈vg〉 = 0, (2.3a)

g = −v∂xρ, (2.3b)

which implies that the macroscopic part ρ satisfies a diffusive (indeed a heat) equation,

∂tρ = 〈v2〉∂xxρ (2.4)

with an asymptotically consistent initial condition ρ(x, 0) = limε→0〈 f (x, ·, 0)〉. (The initial data of f for the model equation 
(1.1) may depend on ε.) The relation (2.3b) will be referred to as the local equilibrium, and it indicates g can be expressed in 
terms of ρ in the limiting model. Note that 〈v2〉 = 1 for the telegraph equation and 〈v2〉 = 1/3 for the one-group transport 
equation in slab geometry.

As the second step, we add a weighted diffusion term ω〈v2〉∂xxρ to the both sides of (2.2a), and get

∂tρ + ∂x〈v(g + ωv∂xρ)〉 = ω〈v2〉∂xxρ, (2.5a)

∂t g + 1

ε
(I − �)(v∂x g) + 1

ε2
v∂xρ = − 1

ε2
g. (2.5b)

The term 〈v2〉∂xxρ is closely related to the limiting equation (2.4), and a similar idea was used in [5]. The non-negative 
weight function ω depends on ε and it is bounded and independent of x, satisfying

ω → 1 as ε → 0. (2.6)

Other properties desired for the weight function ω will be identified as we analyze the proposed numerical methods.

2.2. Formal asymptotic analysis with initial layers: the continuous problem

In this section, we will carry out a formal asymptotic analysis for the micro-macro reformulation (2.2) (hence (2.5)), 
assuming the smallness of the parameter ε. Particularly, we will consider the case with initial layers when the initial data is 
not well-prepared. One can refer to [27] for an analysis based on the original form of a kinetic transport equation. Note that 
the analysis here does not essentially depend on the dimension of the spatial space �x and the velocity space �v . Within 
this section, functions will be written with their explicit dependence on ε, such as u(x, v, t; ε). Here and below, when the 
big-O notation z = O (ϒn) is used, it means that there exists a constant C > 0, ϒ0 > 0, such that |z| ≤ Cϒn, ∀ϒ < ϒ0. Here 
ϒ can be ε, h, or �t , while C is independent of ε, h and �t . Under the assumption that the boundary condition is periodic 
in x, boundary effects including boundary layers are not considered. The initial data f (x, v, 0; ε) = ρ(x, 0; ε) + εg(x, v, 0; ε)

is taken as

f (x, v,0;ε) = �(x, v) + ε�(x, v) + O (ε2), (2.7)

where � and � are integrable in v . This implies

ρ(x,0;ε) = 〈�〉 + ε〈�〉 + O (ε2), g(x, v,0;ε) = � − 〈�〉
ε

+ � − 〈�〉 + O (ε). (2.8)

The solution to (2.2) has the following decompositions

ρ = ρ I + ρ i, g = gI + gi . (2.9)

Here ρ I (x, t; ε) and gI (x, v, t; ε) correspond to the interior solution that is the entire solution away from the initial layer; 
while ρ i(x, t; ε), gi(x, v, t; ε) are from the initial layer solution, and they decay to zero when exiting from the initial layer. 
Next we will derive the leading terms in ρ and g for the interior problem and the initial layer up to O (1), and then 
summarize our main observations.

Interior problem: for the interior problem, we take the ansatz

ρ I = ρ I
0(x, t) + O (ε), gI = gI

0(x, v, t) + O (ε), (2.10)

and plug them into (2.2). (One can start with an O (ε−1) term in gI , and this term turns out to be zero.) After collecting 
the O (1) leading terms, we get

∂tρ
I
0 + ∂x〈vgI

0〉 = 0, (2.11a)

gI
0 + v∂xρ

I
0 = 0, (2.11b)

and this implies that the leading term ρ I
0 of the interior solution satisfies the heat equation

∂tρ
I = 〈v2〉∂xxρ

I . (2.12)
0 0
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And gI
0 itself is not an independent quantity, and it is determined by ρ I

0 via (2.11b).

Initial layer: for the initial layer problem, one can show the layer width is of O (ε2) following a standard dominant balance 
argument [13]. Let τ = t/ε2 be the scaled (or called stretched) time variable. The initial layer solution, still represented by 
ρ i(x, τ ; ε) and gi(x, v, τ ; ε), satisfies

∂τ ρ
i + ε2∂x〈vgi〉 = 0, (2.13a)

∂τ gi + ε(I − �)(v∂x gi) + v∂xρ
i = −gi . (2.13b)

We take the ansatz

ρ i = ρ i
0(x, τ ) + O (ε), gi = gi−1(x, v, τ )ε−1 + gi

0(x, v, τ ) + O (ε), (2.14)

and collect O (ε−1) and O (1) terms, respectively, and get

O (ε−1) : ∂τ gi−1 + gi−1 = 0, (2.15a)

O (1) : ∂τ ρ
i
0 = 0, (2.15b)

∂τ gi
0 + (I − �)(v∂x gi−1) + v∂xρ

i
0 + gi

0 = 0. (2.15c)

Now by matching the leading terms of ρ and g with the given initial data (2.8), we have

O (1) : ρ I
0(x,0) + ρ i

0(x,0) = 〈�〉, gi−1(x, v,0) = � − 〈�〉, (2.16a)

O (ε) : gI
0(x, v,0) + gi

0(x, v,0) = � − 〈�〉. (2.16b)

Based on (2.15b) and ρ i
0(x, ∞) = 0, we get

ρ i
0(x, τ ) = 0, ∀τ ≥ 0. (2.17)

This, together with (2.16a), gives the asymptotically consistent initial condition for the interior heat equation (2.12):

ρ I
0(x,0) = 〈�〉. (2.18)

Moreover, from (2.16b), (2.11b) and (2.18), we get the initial data for gi
0 in the initial layer solution,

gi
0(x, v,0) = � − 〈�〉 + v∂xρ

I
0(x,0) = � − 〈�〉 + v∂x〈�〉. (2.19)

We next solve for gi−1 from (2.15a) and (2.16a),

gi−1(x, v, τ ) = gi−1(x, v,0) e−τ = (� − 〈�〉) e−τ . (2.20)

Finally we can solve for gi
0 based on (2.15c), (2.17), (2.19), (2.20):

gi
0(x, v, τ ) =

(
gi

0(x, v,0) − τ (I − �){v∂x(� − 〈�〉)}
)

e−τ

=
(
� − 〈�〉 + v∂x〈�〉 − τ (I − �){v∂x(� − 〈�〉)}

)
e−τ . (2.21)

Summary and observations: In summary, when ε � 1, the solution to the micro-macro reformulated system (2.2) with the 
initial condition (2.7) has the following form

ρ(x, t;ε) = ρ I
0(x, t) + O (ε),

g(x, v, t;ε) = gI
0(x, v, t) + 1

ε
gi−1(x, v, t/ε2) + gi

0(x, v, t/ε2) + O (ε).

One can make the following observations:

• For the leading term (ρ I
0, g

I
0) in the interior solution, ρ I

0 satisfies the heat equation (2.12) with the initial condition 
(2.18), and gI

0 is determined by ρ I
0 via (2.11b);

• The leading term (up to O (1)) in ρ does not contain an initial layer;
• When 1

ε gi−1 + gi
0 = 0, with gi−1, g

i
0 given in (2.20)-(2.21), the leading term (up to O (1)) has no initial layer; otherwise 

the initial layer of O (ε2)-width is present.
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• Based on the explicit formula in (2.20)-(2.21), the leading term of g is free of the initial layer if and only if

� − 〈�〉
ε

+ � − 〈�〉 + v∂x〈�〉 − τ (I − �){v∂x(� − 〈�〉)} = 0. (2.22)

That is,

� = 〈�〉, � − 〈�〉 + v∂x〈�〉 = 0.

This, under the assumption (2.7) and (2.8) on the initial data, is equivalent to

g(x, v,0;ε) + v∂xρ(x,0;ε) = O (ε). (2.23)

Note that (2.23) indicates the initial data is within the O (ε)-width neighborhood of the local equilibrium (2.11b) (see 
also (2.3b)). In this case, we say the initial data is well-prepared. The analysis above shows that the initial data being 
well-prepared or not determines the presence of the initial layer in the leading term of the solution.

Definition 2.1. The initial data f (x, v, 0; ε) = ρ(x, 0; ε) + εg(x, v, 0; ε) is said to be well-prepared if it satisfies the relation 
(2.23).

3. Numerical methods

In this section, we will present the proposed numerical methods. We will start with the temporal discretization, then 
discretize in space. The boundary condition in space is assumed to be periodic. Some more general boundary conditions 
will be considered in Section 6.2.

3.1. Temporal discretization

In time, we will apply IMEX-RK methods. We will begin with the first order method and explain our proposed implicit-
explicit strategy, then discuss initial layer treatments to avoid accuracy loss or reduction, and finally we will present high 
order IMEX-RK methods.

First order temporal discretization. When the temporal accuracy is of first order, our scheme, denoted as IMEX1, is defined 
as follows. Given the numerical solution ρn, gn at t = tn , we look for ρn+1, gn+1 at tn+1 = tn + �t , satisfying

ρn+1 − ρn

�t
+ ∂x〈v(gn + ωv∂xρ

n)〉 = ω〈v2〉∂xxρ
n+1, (3.1a)

gn+1 − gn

�t
+ 1

ε
(I − �)(v∂x gn) + 1

ε2
v∂xρ

n+1 = − 1

ε2
gn+1. (3.1b)

The implicit-explicit strategy we adopt here (and later for high order temporal discretizations) is to treat all the terms that 
are dominating when ε � 1 implicitly. This includes the most stiff terms on the scale 1

ε2 in (3.1b), and the diffusion term 
on the right side of (3.1a). Note that in the diffusive regime with ε � 1, the solution (at least away from the initial layer) is 
expected to stay close to the local equilibrium g + v∂xρ = 0. Hence based on the property (2.6) of the weight function ω, 
namely, ω → 1 as ε → 0, the term

∂x〈v(g + w v∂xρ)〉 = ∂x〈v(g + v∂xρ)〉 + (ω − 1)〈v2〉∂xxρ

is less dominating, and it is treated explicitly together with the transport term (I − �)(v∂x g).

Treatment for initial layers. When the initial data is not well-prepared, the solution will contain an initial layer of O (ε2)-
width in its leading term. In this case g can be of O (ε−1) initially, yet after the first time step at t = �t 
 ε2, the solution 
exits from the initial layer, and both ρ and g should be of O (1). This feature, however, is not well respected at the discrete 
level by our implicit-explicit strategy above, mainly due to the explicit treatment of g in (3.1a). In fact in this case, the 
numerical scheme (3.1) may produce ρ1, g1 of size O (ε−1) following (3.1a), hence becomes very inaccurate. To overcome 
this, one would want to treat the g term (hence the g + ωv∂xρ term) in (3.1a) implicitly. With the consideration for an 
easy analysis, we propose to replace the scheme (3.1) at n = 0 by

ρ1 − ρ0

�t
+ ∂x〈vg1〉 = 0. (3.2a)

g1 − g0

�t
+ 1

ε
(I − �)(v∂x g0) + 1

ε2
v∂xρ

0 = − 1

ε2
g1. (3.2b)
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The resulting scheme with the modification, namely (3.1) for n ≥ 1 and (3.2) for n = 0, is still referred to as the IMEX1 
scheme. Using this slightly modified scheme, one will get ρ1, g1 = O (1) even with g0 = O (ε−1). This will be explained 
more systematically in Section 5.1. Alternatively, we can address the accuracy issue around the non well-prepared initial 
data by replacing the scheme at n = 0 by (3.2a) coupled with (3.1b). In [7], an initial fixing strategy based on Richardson 
extrapolation was used to guarantee the designed second order accuracy in the presence of an initial layer.

Remark 3.1. The first order temporal discretization (3.2) was previously used in [23] for the same kinetic equation to define 
a first order finite difference AP scheme regardless of the initial data, and this scheme also has the parabolic time step 
restriction �t = O (h2) as ε → 0 just like our method in [14,15]. Here, we use the discretization (3.2) only for the first 
time step to deal with the initial layer, and more specifically, to drive the numerical solution to be O (1) after the first step. 
Note that away from the initial layer, our implicit-explicit strategy in (3.1) drives the numerical solution to stay close to 
the local equilibrium, with gn + v∂xρ

n = O (ε), n ≥ 2, while a scheme with (3.2) for all n ≥ 0 drives the solution to satisfy 
gn+1 + v∂xρ

n = O (ε), that is gn + v∂xρ
n = O (ε) + O (�t) with an extra O (�t) error. This shows that our implicit-explicit 

strategy (3.1) better keeps the computed solution close to the local equilibrium when ε � 1.

Higher order temporal discretization. To improve the temporal accuracy, higher order globally stiffly accurate IMEX-RK time 
integrators of type ARS will be applied. An r-stage IMEX-RK scheme we consider here can be represented with a double 
Butcher tableau

c̃ Ã
b̃T

c A
bT , (3.3)

where both Ã= (ãi j) and A = (aij) are lower triangular r ×r matrices, with Ã having zero diagonal entries. For convenience, 
the index is taken as i, j = 0, 1, · · · , s, with s = r − 1. The components of c̃ = (c̃i) and c = (ci) are related to Ã and A in the 
usual way, namely, c̃i =∑i−1

j=0 ãi j , ci =∑i
j=0 aij , i = 0, · · · , s and vectors b̃ = (b̃i) and b = (bi) provide the quadrature weights 

to combine the numerical approximations from inner stages. The IMEX-RK scheme is said to be globally stiffly accurate [5] if

cs = c̃s = 1, and asj = b j, ãsj = b̃ j,∀ j = 0, · · · , s. (3.4)

Its being type ARS [5] refers to the following structure of the implicit part

A =
[

0 0
0 Â

]
, (3.5)

where Â is invertible. We want to particularly point out that the r-stage IMEX-RK method of type ARS effectively has 
s = r − 1 stages.

The first order time integrator in our scheme (3.1) is globally stiffly accurate and of type ARS. It is denoted as ARS(1, 1, 1) 
and represented by

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1
.

For second and third order accuracy, we use ARS(2, 2, 2) and ARS(4, 4, 3) proposed in [3] (also see the appendix in [5]
for the formulas). Here ARS(s, s, p) stands for an IMEX-RK method of type ARS, that is p-th order accurate with effective s
stages in both the explicit and implicit parts. In this work, the semi-discrete temporal schemes with ARS(1, 1, 1), ARS(2, 2, 2) 
and ARS(4, 4, 3) are referred to as the IMEXp scheme, with p = 1, 2, 3, respectively.

When the initial data is not well-prepared, the IMEXp scheme may suffer from order reduction or poor accuracy. Based 
on the formal asymptotic analysis in Section 5 (also see Remark 3.3 and Remark 5.2), the following strategy is proposed. At 
n = 0, we replace the IMEXp scheme by the first order scheme in (3.2). In addition, for the first two steps with n = 0, 1, we 
modify the time step size into �t1 = �t2 = �t p , where �t is the time step used for later steps and predicted by stability 
analysis. Here and below, whenever needed, we will use �tn to represent the time step size from the n-th time step.

Remark 3.2. It is important for us to use globally stiffly accurate IMEX-RK methods in order for the proposed methods to 
be AP (also see discussion in [5]). Moreover, with our proposed implicit-explicit strategy, such time integrators also ensure 
that the numerical solutions from both inner stages and full RK steps will stay close to the local equilibrium when ε � 1, 
particularly with gn + v∂xρ

n = O (ε), n ≥ 2 (see Section 5). The implicit part A being triangular will render a simple system 
to solve. We want to point out that the IMEX-RK methods being ARS is not essential for our analysis. Compared with the 
A-type IMEX-RK methods which are another viable type of globally stiffly accurate IMEX-RK for our objective, the ARS type 
has a relatively more manageable order conditions. For instance it was proved in [6] that there is no three stage A-type 
IMEX-RK method that is second order accurate and globally stiffly accurate.
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Remark 3.3. In the presence of the initial layer, high order versions of the scheme (3.2) will still result in first order temporal 
accuracy, hence it is sufficient to apply the first order scheme (3.2) directly at n = 0 in the modified scheme.

Remark 3.4. Our goal is to design AP methods with high order accuracy for ε ranging from 0 to O (1). To this end, it seems 
important that the numerical solutions stay sufficiently close to the local equilibrium in the diffusive regime, namely, gn +
v∂xρ

n = O (ε). This property is guaranteed by our proposed implicit-explicit strategy (at least for n ≥ 2, also see Section 5). 
To facilitate with the understanding, in Appendix A, we examine a family of AP methods, that are closely related to our 
proposed methods except using a different implicit-explicit strategy as in (3.2). Both our formal analysis and numerical 
tests show that an insufficient approximation of the local equilibrium at the numerical level can result in temporal accuracy 
reduction in g (at least) in the diffusive regime with ε � 1, and this reduction may further affect the accuracy in f . Surely 
a mathematically more rigorous analysis would be needed to fully understand how different implicit-explicit strategies may 
affect the accuracy of formally high order AP methods.

3.2. Spatial discretization

For the semi-discrete methods in Section 3.1, DG methods will be further applied in space. We will start with some 
notation. Let �x = [xL, xR ] be the computational domain in space, with a mesh defined by xL = x 1

2
< x 3

2
< · · · < xN+ 1

2
= xR . 

Let Ii = [xi− 1
2
, xi+ 1

2
] be an element with its length hi = xi+ 1

2
− xi− 1

2
and its midpoint xi . We set h = maxi hi . With k be any 

nonnegative integer, we define a finite dimensional discrete space

Uk
h =

{
u ∈ L2(�x) : u|Ii ∈ Pk(Ii),∀i = 1, · · · , N

}
, (3.6)

where the local space Pk(I) consists of polynomials of degree up to k on I . For any u ∈ U k
h , we further define its jump at 

xi+ 1
2

as [u]i+ 1
2

= u(x+
i+ 1

2
) − u(x−

i+ 1
2
). Here, u(x±) = lim�x→0± u(x +�x), and we also use ui+ 1

2
= u(xi+ 1

2
), u±

i+ 1
2

= u(x±
i+ 1

2
), ∀i.

The spatial discretization will follow a standard derivation of DG methods, with the diffusive term discretized via a local 
DG method, which is based on the first order form of ∂xxρ with q = ∂xρ as an auxiliary unknown. The fully discrete scheme 
with a first order temporal accuracy is given as follows. Given ρn

h , qn
h and gn

h(·, v) ∈ U k
h that approximate the solution ρ , 

q = ∂xρ and g at t = tn , we look for ρn+1
h , qn+1

h , gn+1
h (·, v) ∈ U k

h at tn+1 = tn + �t , satisfying

(qn+1
h ,ϕ) + dh(ρ

n+1
h ,ϕ) = 0, ∀ϕ ∈ Uk

h (3.7a)(ρn+1
h − ρn

h

�t
, φ
)+ lh(〈v(gn

h + ωvqn
h)〉, φ) = ω〈v2〉lh(qn+1

h , φ), ∀φ ∈ Uk
h (3.7b)

( gn+1
h − gn

h

�t
,ψ
)+ 1

ε
bh,v(gn

h,ψ) − v

ε2
dh(ρ

n+1
h ,ψ) = − 1

ε2
(gn+1

h ,ψ), ∀ψ ∈ Uk
h. (3.7c)

The bilinear forms in the scheme are

dh(ρh,ψ) =
∑

i

∫
Ii

ρh∂xψdx +
∑

i

ρ̆h,i− 1
2
[ψ]i− 1

2
, (3.8a)

lh(qh, φ) = −
∑

i

∫
Ii

qh∂xφdx −
∑

i

q̂h,i− 1
2
[φ]i− 1

2
, (3.8b)

bh,v(gh,ψ) = ((I − �)Dh(gh; v),ψ) = (Dh(gh; v) − 〈Dh(gh; v)〉,ψ). (3.8c)

Here (·, ·) is the standard inner product for the L2(�x) space. For any fixed v ∈ �v , the function Dh(gh; v) ∈ U k
h in (3.8c) is 

the upwind approximation of the transport term v∂x g within the DG framework, namely,

(Dh(gh; v),ψ) = −
∑

i

⎛⎜⎝∫
Ii

vgh∂xψdx

⎞⎟⎠−
∑

i

˜(vgh)i− 1
2
[ψ]i− 1

2
, ∀ψ ∈ Uk

h, (3.9)

with ṽ g being the upwind numerical flux consistent to vg ,

ṽ g :=
{

vg−, if v > 0,

vg+, if v < 0.
(3.10)

The terms ρ̆ and q̂ in (3.8) are also consistent numerical fluxes, related to the discretization of a diffusive operator. In this 
paper, either of the following alternating flux pairs is considered.
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right-left: ρ̆ = ρ+, q̂ = q−; left-right: ρ̆ = ρ−, q̂ = q+. (3.11)

These alternating fluxes are known to lead to stable and optimally accurate DG discretizations for the diffusive operator ∂xx , 
see [10].

We further introduce two linear operators, Dρ
h , Dq

h : U k
h → U k

h , satisfying

(Dρ
h φ,ψ) = −dh(φ,ψ), (Dq

hψ,φ) = lh(ψ,φ). (3.12)

Both approximates the spatial derivative ∂x . They are well-defined bounded operators following the Riesz representation, 
and are determined entirely by the discrete space U k

h and the involved numerical fluxes. With these, the scheme (3.7) can 
be rewritten into its strong form,

qn+1
h = Dρ

h (ρn+1
h ), (3.13a)

ρn+1
h − ρn

h

�t
+Dq

h(〈v(gn
h + ωvqn

h)〉) = ω〈v2〉Dq
h(qn+1

h ), (3.13b)

gn+1
h − gn

h

�t
+ 1

ε
(I − �)Dh(gn

h; v) + v

ε2
Dρ

h (ρn+1
h )︸ ︷︷ ︸

qn+1
h

= − 1

ε2
gn+1

h . (3.13c)

Once we realize the fully discrete scheme (3.13) is obtained by replacing the spatial derivative operator in (a first order 
form of) (3.1) by the discrete analogue, it is straightforward to write down the fully discrete schemes with the higher order 
globally stiffly accuracy IMEX-RK schemes of type ARS in time. These fully discrete schemes will be referred to as IMEX-LDG 
methods, or IMEXp-LDG if the p-th order accuracy in time is specified, or IMEXp-LDGk if U k−1

h is used in the LDG spatial 
discretization, with p = 1, 2, 3 and k = 1, 2, · · · .

The initialization will be done for ρ, g, q via the L2 projection onto U k
h . In actual implementation, for less smooth ρ(·, 0), 

such as in the Riemann problem in Section 6, we instead initialize q0
h ∈ U k

h as a discrete derivative of ρ0
h , namely, q0

h =Dρ
h ρ0

h .
The choice of the numerical fluxes is important for the discrete derivative operators Dρ

h and Dq
h (or equivalently, dh

and lh) to preserve some key relation of the differential operators. This is summarized in next lemma, which can be verified 
directly. The superscript � to an operator denotes its adjoint.

Lemma 3.5. With each pair of alternating fluxes (3.11), the following holds

dh(φ,ϕ) = lh(ϕ,φ), ∀ϕ,φ ∈ Uk
h, or equivalently Dρ

h = −(Dq
h)�. (3.14)

Proposition 3.6. The proposed IMEX-LDG method is uniquely solvable for any ε > 0.

The proof of this proposition boils down to the unique solvability of the problem examined in next lemma. And the 
boundedness established in next lemma will also be used in the formal asymptotic analysis of the numerical methods.

Lemma 3.7. Given S ∈ L2(�x) and γ > 0. Consider the following problem: look for ρh, qh ∈ U k
h, such that

(qh,ϕ) + dh(ρh,ϕ) = 0, ∀ϕ ∈ Uk
h, (ρh, φ) − γ lh(qh, φ) = (S, φ), ∀φ ∈ Uk

h, (3.15)

or equivalently,

qh = Dρ
h ρh, ρh = γDq

hqh + Sh. (3.16)

Here Sh denotes the L2 projection of S onto U k
h. Then ρh and qh are uniquely solvable. In addition, ||ρh|| ≤ ||S||.

Proof. Take ϕ = qh, φ = ρh in (3.15), and use the relation of lh and dh in Lemma 3.5, we get

||ρh||2 + γ ||qh||2 = (S,ρh) ≤ ||S|| ||ρh||. (3.17)

Particularly if S = 0, then ρh = qh = 0. This, in combination with the linearity of the problem and U k
h being finite di-

mensional, indicates the uniqueness hence the unique solvability of the solution ρh , qh ∈ U k
h . From (3.17), one also obtains 

||ρh|| ≤ ||S||. �
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4. Numerical stability by Fourier analysis

In this section, Fourier analysis, also referred to as von Neumann analysis, is presented to study the numerical stability of 
the proposed IMEXp-LDGk methods when they are applied to the telegraph equation with the discrete velocity in different 
regimes. Numerical experiments show that such analysis also informs about the methods when they are applied to more 
general models, such as the one group transport equation in slab geometry. Furthermore, the analysis in this section provides 
some guidance to the choice of the weight function ω, particularly see Theorem 4.1 and Theorem 4.3. Note that our schemes 
with or without the modification during the first few steps to address the non well-prepared initial data share the same 
numerical stability.

4.1. Setup of the analysis

To carry out the Fourier analysis, we assume the mesh is uniform and the boundary condition in x is periodic. Consider 
the IMEXp-LDGk methods with p = 1, 2, 3, k ≥ 1 and the left-right alternating flux pair in (3.11), applied to the telegraph 
equation where �v = {−1, 1}. Let the numerical solutions be

ρn
h (x) =

k−1∑
l=0

ρn
mlφ

l
m(x), qn

h(x) =
k−1∑
l=0

qn
mlφ

l
m(x), (4.1a)

gn
h(x,1) =

k−1∑
l=0

gn
+,mlφ

l
m(x), gn

h(x,−1) =
k−1∑
l=0

gn
−,mlφ

l
m(x) (4.1b)

for any x ∈ Im . Here φl
m(x) = φl(Xm), with Xm = x−xm

hm/2 and φl being the l-th Legendre polynomial on [−1, 1].
Recall 〈gn

h〉 = 0, this implies gn
+,ml = −gn

−,ml, ∀n, m, l. Moreover, qh can be locally eliminated. We now collect the in-

dependent unknowns into ρn
m = (ρn

m0, . . . , ρ
n
m k−1)

T , gn
m = (gn+,m0, . . . , g

n
+,m k−1)

T , take the ansatz ρn
m = ρ̂n exp(Iκxm) and 

gn
m = ĝn exp(Iκxm) with I2 = −1, then our IMEXp-LDGk scheme will render(

ρ̂n+1

ĝn+1

)
= Gω(ε,h,�t; ξ)

(
ρ̂n

ĝn

)
, (4.2)

where Gω(ε, h, �t; ξ) is a 2k × 2k amplification matrix dependent of the model parameter ε, mesh size h, time step size 
�t , the discrete wave number ξ = κh ∈ [0, 2π ], and also the weight function ω in the scheme (3.1). (More details about 
Gω(ε, h, �t; ξ) can be seen from the proof of Theorem 4.1.) The following principle will be used for us to study numerical 
stability.

Principle for Numerical Stability: For any given ε, h, �t, let the eigenvalues of Gω be λi(ξ), i = 1, . . . , 2k. Our scheme is 
“stable”, if for all ξ ∈ [0, 2π ], it satisfies either

(∗) max
i=1,...,2k

{|λi(ξ)|} < 1, or (4.3)

(∗) max
i=1,...,2k

{|λi(ξ)|} = 1 and Gω is diagonalizable. (4.4)

This principle is a necessary condition for the standard L2 energy to be non-increasing, and the resulting analysis pro-
vides mathematical insight regarding the stability of the proposed schemes. For the rest of this section, we will use this 
principle to study the stability conditions. On the other hand, what we have learned here about numerical stability through 
Fourier analysis seems to be quite consistent with what we have observed numerically for the schemes.

4.2. Main findings

The next theorem reveals a structure of the amplification matrix Gω in terms of its dependence on ε, h, �t when the 
weight function is taken to be ω = 1.

Theorem 4.1. For any given k ≥ 1 and p = 1, 2, 3, the amplification matrix Gω(ε, h, �t; ξ) of the IMEXp-LDGk method with the 
weight function ω = 1 is similar to some matrix ̂G( ε

h , �t
εh ; ξ). As a direct consequence, the eigenvalues of this Gω(ε, h, �t; ξ) depends 

on ε, h, �t only in terms of εh and �t
εh , or equivalently, only in terms of εh and ε

2

�t = ε/h
�t/(εh)

.

Proof. Throughout the proof, we write the amplification matrix Gω(ε, h, �t; ξ) with the weight function ω = 1 as 
G(ε, h, �t; ξ). We first consider the IMEX1-LDGk scheme defined in (3.7) with ω = 1. Let us start with examining how 
each term in (3.7) contributes to the amplification matrix. With the notation and expansion in (4.1), we have
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(
Dρ

h ρn+1
h , φl

m

)
Im

= −
k−1∑
s=0

ρn+1
ms

∫
Im

φs
m(x)∂xφ

l
m(x)dx

+
k−1∑
s=0

ρn+1
ms φs

m(xm+ 1
2
)φl

m(xm+ 1
2
) −

k−1∑
s=0

ρn+1
m−1 sφ

s
m−1(xm− 1

2
)φl

m(xm− 1
2
). (4.5)

Here (·, ·)Im is the standard L2 inner product on Im . Substitute into (4.5) the ansatz ρn+1
ms = ρ̂n

s exp(Iκxm), ∀m, ∀s, and use 
φs

m(x) = φs(Xm) with Xm = x−xm
hm/2 , we obtain

(
Dρ

h ρn+1
h , φl

m

)
Im

= exp(Iκxm)

k−1∑
s=0

Dls(ξ)ρ̂n+1
s , (4.6)

where Dls(ξ) = − 
∫ 1
−1 φs(x)∂xφ

l(x)dx + φs(1)φl(1) − exp(−Iξ)φs(1)φl(−1). We write D(ξ) =
(

Dls(ξ)
)

∈ Rk×k , and it only 
depends on ξ = κh (surely also on k).

Similarly, there exist S(ξ) = (Sls(ξ)), L(ξ) = (Lls(ξ)) ∈Rk×k , such that((
(I − �)Dh gn

h

)
(·, v = 1),φl

m

)
Im

= exp(Iκxm)

k−1∑
s=0

Sls(ξ )̂gn
s ,

(
Dq

hρ
n
h , φl

m

)
Im

= exp(Iκxm)

k−1∑
s=0

Lls(ξ)ρ̂n
s .

Indeed −L(ξ) = D� := D(ξ)
�

, that is, −L(ξ) is the conjugate transpose of D(ξ). We also define M = (Mls) ∈ Rk×k , with 
Mls = 1

2

∫ 1
−1 φs(x)φl(x)dx.

Based on the derivation above, the Fourier analysis for the IMEX1-LDGk method will lead to(
hM + 〈v2〉�t

h D�M−1 D 0
�t D (ε2 + �t)hM

)(
ρ̂n+1

ĝn+1

)
=
(

hM + 〈v2〉�t
h D�M−1 D �t D�

0 ε2hM − ε�t S

)(
ρ̂n

ĝn

)
. (4.7)

Here ρ̂n = [ρ̂n
0 , · · · , ̂ρn

k−1]� , and ĝn = [̂gn
0, · · · , ̂gn

k−1]� . We further left-multiply 
( 1

ε I 0
0 1

εh2 I

)
to both sides of (4.7), and get

⎛⎝ h
ε M + 〈v2〉�t

εh D�M−1 D 0

�t
εh2 D ( ε

h + �t
εh )M

⎞⎠
︸ ︷︷ ︸

G L

(
ρ̂n+1

ĝn+1

)

=
⎛⎝ h

ε M + 〈v2〉�t
εh D�M−1 D �t

ε D�

0 ε
h M − �t

εh · ε
h S

⎞⎠
︸ ︷︷ ︸

G R

(
ρ̂n

ĝn

)
, (4.8)

and hence the amplification matrix G(ε, h, �t; ξ) = G−1
L G R . One can verify that this matrix G is similar to Ĝ( ε

h , �t
εh ; ξ), more 

specifically,(
hI 0
0 I

)−1

G(ε,h,�t; ξ)

(
hI 0
0 I

)
= Ĝ(

ε

h
,
�t

εh
; ξ),

where Ĝ( ε
h , �t

εh ; ξ) =⎛⎝ h
ε M + 〈v2〉�t

εh D�M−1 D 0

�t
εh D ( ε

h + �t
εh )M

⎞⎠−1⎛⎝ h
ε M + 〈v2〉�t

εh D�M−1 D �t
εh D�

0 ε
h M − �t

εh · ε
h S

⎞⎠ .

For the general IMEXp-LDGk method with p = 2, 3, we can carry out a similar analysis as above. Particularly, for the l-th 
inner stage, we have(

ρ̂n,(l)

ĝn,(l)

)
= G l(ε,h,�t; ξ)

(
ρ̂n

ĝn

)
,
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Fig. 4.1. Stability regions of the IMEXp-LDGk methods with the weight function ω = 1. White: stable; black: unstable.

one can then show(
hI 0
0 I

)−1

G l(ε,h,�t; ξ)

(
hI 0
0 I

)
= Ĝ l(

ε

h
,
�t

εh
; ξ)

for some Ĝ l(
ε
h , �t

εh , ξ). With the identical similarity transformation for all inner stages, the theorem will hold for p = 2, 3. �
Remark 4.2. The structure of the amplification matrix Gω with ω = 1 shown in Theorem 4.1 is essentially due to the 
diffusive scaling of the model.

The result in Theorem 4.1 shows that numerical stability of the proposed schemes with the weight function ω = 1
depends on ε, h, �t only in terms of ε/h and ε2/�t . In order for this intrinsic structure not affected by the weight function 
ω, one should choose ω as a function of ε/h and ε2/�t only. By taking into account the property in (2.6), some suitable 
weight functions include ω = exp(−ε/h) and ω = exp(−ε2/�t). On the other hand, the weight exp(−ε2/h) used in [5]
does not keep such scaling structure of the amplification matrix, while the piecewise constant weight ω = χ{ε<h} in [4]
does (here χE is an indicator function associated with the set E). The discussion above leads to the next theorem, which 
can be established just as for Theorem 4.1.

Theorem 4.3. The result in Theorem 4.1 holds as long as the weight ω in the scheme is a function of εh and �t
εh , or equivalently, it is a 

function of εh and ε
2

�t .

4.3. Numerical results

We are now ready to present the results from the stability analysis. Motivated by Theorem 4.1 and Theorem 4.3, and 
based on the stability principle, we plot stability regions in terms of σ = log10(ε/h) and η = log10(�t/(εh)) in Fig. 4.1 for 
ω = 1, and in Fig. 4.2 for ω = exp(−ε/h) and ω = exp(−ε2/�t). What we also plot are the results for the methods with 
the weight function ω = 0 in Fig. 4.3, and in this case, our methods recover the DGp-IMEXp methods proposed in [15]. The 
white region in each plot represents the stable region. Both σ and η are sampled with a spacing 1/40, and the discrete 
wave number ξ is uniformly taken from [0, 2π ] with 100 samples. As the horizontal axis σ = log10(ε/h) goes from the 
left to right, the spatial mesh starts from being under-resolved to being resolved with respect to the ε-scale of the model, 
hence the model goes from its diffusive regime to its kinetic (or transport) regime. Our observations are summarized below.
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Fig. 4.2. Stability regions of the IMEXp-LDGk methods with the weight function ω = exp(−ε/h) and ω = exp(−ε2/�t). White: stable; black: unstable.

1. When the weight function is ω = 1, exp(−ε/h), or ω = exp(−ε2/�t), the IMEXp-LDGp scheme (with p = 1, 2, 3) is 
unconditionally stable with no restriction on the time step size �t when σ < σp,ω , or equivalently when ε/h < R p,ω . 
Here σp,ω and R p,ω are some constants. This confirms the proposed schemes are unconditionally stable in the diffusive 
regime, measured by sufficiently small ε/h. In this regime, exp(−ε/h) ≈ 1 and exp(−ε2/�t) ≈ 1, and the proposed 
method with all three weights are very “close” and hence with comparable σp,ω for a given p.

2. When the weight function is ω = 1, exp(−ε/h), or ω = exp(−ε2/�t), and under the condition σ ≥ σp,ω , the IMEXp-
LDGp scheme (with p = 1, 2, 3) is conditionally stable. And the boundary of the conditionally stable region is deter-
mined by a function Fp,ω , that is, the scheme is stable when η ≤Fp,ω(σ ).
2.a) With the scale- and mesh-dependent weight function ω = exp(−ε/h) and exp(−ε2/�t), it is observed that the 

function Fp,ω(σ ) ≈ C p,ω when σ 
 1 for p = 1, 2, 3. Here C p,ω is some constant. This implies that when the 
regime is relatively kinetic (or transport) with h � ε, the conditional stability requires approximately

log10(
�t

εh
) ≤ C p,ω,

corresponding to a hyperbolic type time step condition �t = O (εh). This is highly desirable numerically. With the 
constant weight function ω = 1, similar observation can be made when p = 1, 3, not when p = 2.

2.b) For the scheme with the constant weight function ω = 1 and p = 2, the boundary of the stability region becomes 
a straight line with a slope approximately −1 for large σ . That is, the function Fp,ω(σ ) ≈ −σ + C p,ω when σ 
 1, 
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Fig. 4.3. Stability regions of the IMEXp-LDGp methods with ω = 0 (the methods are also the DGp-IMEXp methods in [15]). White: stable; black: unstable.

with C p,ω being some constant. This implies in the kinetic regime with h � ε, the conditional stability of the 
method requires approximately

log10(
�t

εh
) ≤ − log10(

ε

h
) + C p,ω.

This corresponds to �t = O (h2), a parabolic time step restriction for stability in this regime. Such time step re-
striction, though not desirable, is also confirmed numerically.

With the same spatial discretization (namely the LDG2 method and ω = 1), if we apply a more costly temporal 
discretization, the third order ARS(4, 4, 3) scheme in time, the resulting IMEX3-LDG2 method will display the de-
sired stability property in both the diffusive and kinetic regimes, namely the unconditional stability in the diffusive 
regime and the hyperbolic time step condition in the kinetic regime, see the final plot in Fig. 4.1.

3. When the weight function is ω = 0, our proposed IMEXp-LDGp methods (p = 1, 2, 3) are exactly the DGp-IMEXp
methods previously designed and studied in [15]. Note that this zero weight does not satisfy the property in (2.6), and 
the unconditional stability is not expected in the diffusive regime. From Fig. 4.3, one can observe that in the kinetic 
regime, the methods require hyperbolic time step condition. This is expected as the IMEX-LDG methods with the weight 
ω = exp(−ε/h), exp(−ε2/�t) and ω = 0 are very “close” when ε 
 h. In the diffusive regime when ε � h, the DGp-
IMEXp methods requires a parabolic time step condition �t = O (h2). Recall this is one motivation for the present 
work.

5. Formal asymptotic analysis with initial layers: numerical methods

In this section, we assume ε � 1 and perform a formal asymptotic analysis for the proposed schemes with the small 
ε while the mesh parameters h and �t are fixed. The main objective is to show the schemes are asymptotic preserv-
ing (AP), namely, the limiting schemes as ε → 0 are consistent discretizations of the limiting equation. In the presence 
of the initial layer, the limiting equation is referred to as the interior heat equation (2.11) ((2.12)) with the asymptot-
ically consistent initial data (2.18). In addition, we will show the limiting schemes are of formally high order accuracy. 
The initial data f (x, v, 0; ε) = ρ(x, 0; ε) + εg(x, v, 0; ε) is taken as (2.7) (also see (2.8)). With this, ρ(x, 0; ε) = O (1), yet 
g(x, v, 0; ε) = O (ε−1) in general, unless other property is specified for the initial data (e.g. being well-prepared). The fol-
lowing assumptions are further made for the initial data.

Assumption. All spatial derivatives of ρ at t = 0, namely ||∂(m)
x ρ(·, 0; ε)|| with m = 1, 2, · · · , have comparable scales as 

||ρ(·, 0; ε)|| with respect to ε. Similarly all spatial derivatives of g at t = 0, namely ||∂(m)
x g(·, v, 0; ε)|| with m = 1, 2, · · · , 

have comparable scales as ||g(·, v, 0; ε)|| with respect to ε. For instance, they can all be O (1), or all be O (ε−1).

Under this assumption, it is reasonable to state that, at the discrete level, the discrete spatial derivatives of ρ (resp. q, 
g) of all orders, such as Dρ

h D
q
h , Dq

hD
ρ
h , Dρ

h D
ρ
h that are defined based on one or more from Dρ

h , Dq
h , Dh , have comparable 

scales as ρ (resp. q, g) respect to ε. As for the small parameters ε, h, and �t , it is assumed that ε2 � �t . That is, the exact 
solution exits from the initial layer (if it exists) by the time t = �t , and the temporal mesh is under-resolved with respect 
to the initial layer feature. In addition, we assume ε ≤ �t ≤ 1, �t/h = O (1) to avoid explicit dependence on �t, h of the 
hidden constant in the big-O notation. For instance, under this assumption, ε/(ε2 + �t) ≤ 1 holds.

This section is organized as follows. In Section 5.1, the formal asymptotic analysis is carried out for the first order 
semi-discrete temporal scheme, IMEX1, for both the well-prepared and non well-prepared initial data. In Section 5.2, the 
analysis will be done for the fully discrete IMEX1-LDG methods, to illustrate the role of the spatial discretization. Finally in 
Section 5.3, we analyze the method involving higher order IMEX-RK temporal discretizations, to see how the structures of 
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the adopted IMEX-RK methods, namely being globally stiffly accurate and being type ARS, work for the proposed methods 
to achieve the AP property. For the clarity of the presentation, we will focus on the analysis for the schemes with the weight 
function ω = 1. More general weight functions will be discussed in Section 5.2.

5.1. Semi-discrete temporal scheme: IMEX1

In this section, we consider the semi-discrete temporal IMEX1 scheme in Section 3.1 with the weight function ω = 1. Let 
Rn = gn + v∂xρ

n , then the IMEX1 scheme in (3.1) leads to the following updates for ρn+1, gn+1, and Rn+1,

ρn+1 = ρn + �t〈v2〉∂xxρ
n+1 − �t∂x〈v Rn〉, (5.1a)

gn+1 = ε2

ε2 + �t
gn − ε�t

ε2 + �t
(I − �)(v∂x gn) − �t

ε2 + �t
(v∂xρ

n+1), (5.1b)

Rn+1 = ε2

ε2 + �t
(gn + v∂xρ

n+1) − ε�t

ε2 + �t
(I − �)(v∂x gn). (5.1c)

Based on the classical PDE theory for the well-posedness of second order elliptic equations, one can get the unique solv-
ability of ρn+1 from (5.1a), and additionally ||ρn+1|| ≤ C(||ρn|| + ||∂x〈v Rn〉||) for some generic constant C .

When there is an initial layer, the proposed modification (3.2) to the first time step with n = 0 leads to a different set of 
updates,

g1 = ε2

ε2 + �t
g0 − ε�t

ε2 + �t
(I − �)

(
v∂x g0

)
− �t

ε2 + �t
v∂xρ

0, (5.2a)

ρ1 = ρ0 + �t〈v2〉∂xxρ
0 − �t

( ε2

ε2 + �t
〈v R0〉 − ε�t

ε2 + �t
〈v2∂xx g0〉

)
, (5.2b)

R1 = ε2

ε2 + �t
R0 − ε�t

ε2 + �t
(I − �)

(
v∂x g0

)
+ v�t〈v2〉∂xxxρ

n − v�t
( ε2

ε2 + �t
∂x〈v R0〉 − ε�t

ε2 + �t
〈v2∂xxx g0〉

)
. (5.2c)

The initial data being well-prepared corresponds to R0 = O (ε). Under the assumption of the initial data (2.7), the more 
general data would lead to R0 = O (ε−1). Accordingly, we examine two cases to understand the behavior of the schemes 
when ε � 1.

Case 1: the initial is well-prepared with R0 = O (ε). In this case, following mathematical induction in n, one can show that 
the updates in (5.1) with ε � 1 lead to

• ρn, gn = O (1), ∂xρ
n, ∂x gn = O (1), ∀n ≥ 0;

• Rn = gn + v∂xρ
n = O (ε), ∀n ≥ 0; that is, the numerical solution stays within the O (ε)-width neighborhood of the local 

equilibrium. In addition, ∂x〈v Rn〉 = O (ε), ∀n ≥ 0;
• ρn satisfies

ρn+1 − ρn

�t
= 〈v2〉∂xxρ

n+1 + O (ε), ∀n ≥ 0. (5.3)

Here the estimates for the spatial derivatives of ρn, gn, 〈v Rn〉 are obtained similarly as for ρn, gn, Rn after one differentiates 
each equation in (5.2) with respect to x and uses the assumption on the initial data and the spatial derivatives. In this case 
with the well-prepared initial, the limiting scheme as ε → 0 is a consistent scheme of the first order temporal accuracy for 
the limiting heat equation, and more specifically, the scheme involves a backward Euler method in time with the consistent 
initial data. And the computed ρ and g satisfies the local equilibrium property. This shows the IMEX1 scheme is AP.

Case 2: the initial is not well-prepared with R0 = O (ε−1). In this case and with ε � 1, the updates in (5.1) for n ≥ 1 and in 
(5.2) for n = 0 lead to

• ρn, gn = O (1), ∂xρ
n, ∂x gn = O (1), ∀n ≥ 1, even though ρ0, ∂xρ

0 = O (1) and g0, ∂x g0 = O (ε−1).
• Rn = gn + v∂xρ

n = O (ε), ∂x〈v Rn〉 = O (ε), ∀n ≥ 2, while R0, ∂x〈v R0〉 = O (ε−1) and R1, ∂x〈v R1〉 = O (1).
• ρn satisfies

ρn+1 − ρn

= 〈v2〉∂xxρ
n+1 + O (ε), ∀n ≥ 2, (5.4)
�t
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Table 5.1
The relation between the initial data and the accuracy of the semi-discrete 
temporal IMEXp scheme without any special modification during the initial 
steps to address the potential accuracy loss and reduction for ε � 1. The 
IMEXp scheme here refers to the scheme in (3.1) for p = 1 and scheme in 
(5.14)-(5.15) for general p, with n ≥ 0. Here R0 = g0 + v∂xρ

0.

Initial being well-prepared? R0 IMEXp

yes, with R0 = O (ε) R0 = O (ε) O (�t p)

no, with R0 = O (1) 〈v R0〉 = O (ε) O (�t p)

〈v R0〉 = O (1) O (�t1)

no, with R0 = O (ε−1) 〈v R0〉 = O (ε) O (�t1) + O (�t2)

〈v R0〉 = O (1) O (�t1) + O (�t2)

〈v R0〉 = O (ε−1) O (ε−1)

while at n = 0, 1, it satisfies

ρ1 = ρ0 + �t〈v2〉∂xxρ
0 + O (�t), ρ2 = ρ1 + �t〈v2〉∂xxρ

2 + O (�t). (5.5)

In Case 2, even though the local truncation errors at the first two steps are O (1), the local errors in ρ1 and ρ2 are of first 
order in �t , hence the limiting scheme as ε → 0 of the IMEX1 scheme is still a first order consistent discretization of the 
limiting interior heat equation with the asymptotically consistent initial condition. Particularly, the limiting scheme involves 
a perturbed forward Euler method of the first order accuracy during the first time step, a perturbed backward Euler method 
of the first order accuracy during the second time step, and a standard backward Euler method afterward. The solution of 
the limiting scheme satisfies the local equilibrium property when n ≥ 2 (after the first two steps and away from the initial 
layer). Hence the proposed IMEX1 scheme with the modified first step treatment is still AP.

Remark 5.1. The analysis above can be improved based on more refined classification of the initial data. For example, there 
is an intermediate case with R0 = O (1). Moreover, a close examination shows that the initial quantity R0 comes into play 
in (5.1a) via its first moment in v , namely 〈v R0〉, instead of R0 itself. And 〈v R0〉 could be much smaller than R0 with 
respect to ε. In Table 5.1, we summarize the accuracy of the semi-discrete temporal scheme IMEX1 (and indeed IMEXp, 
with p = 1, 2, 3) when it is applied to cases with various size of the initial data 〈v R0〉 with respect to ε and when the 
scheme is not modified during the initial steps to address the possible accuracy loss or reduction. From the table, one can 
see that with p = 1, only the worst case, namely 〈v R0〉 = O (ε−1), requires a modified version of the IMEX1 scheme to 
achieve the first order temporal accuracy. In practice, the initial data is often given as f |t=0 = f0, and R0 and 〈v R0〉 can be 
expressed in terms of f0 as follows

R0 = f0 − 〈 f0〉
ε

+ v∂x〈 f0〉, 〈v R0〉 = 〈v2〉∂x〈 f0〉 + 1

ε
〈v f0〉. (5.6)

5.2. Fully discrete scheme: IMEX1-LDG

In this section, we will consider the fully discrete scheme in Section 3.2, the IMEX1-LDG method with the first order 
accuracy in time. The focus will be on understanding the role of the spatial discretization. We start with the schemes with 
the weight function ω = 1, and then discuss the cases with more general weight functions.

The analysis can be based on the numerical scheme either of its integral form (3.7), or its equivalent strong form (3.13). 
We will follow the latter for a more clear presentation. Based on (3.13), one gets the following updates for ρn+1

h , qn+1
h , gn+1

h , 
as well as for Rn+1

h := gn+1
h + vqn+1

h ,

qn+1
h −Dρ

h (ρn+1
h ) = 0, (5.7a)

ρn+1
h − �t〈v2〉Dq

h(qn+1
h ) = ρn

h − �tDq
h(〈v Rn

h)〉), (5.7b)

gn+1
h = ε2

ε2 + �t
gn

h − ε�t

ε2 + �t
(I − �)(Dh(gn

h; v)) − �t

ε2 + �t
vqn+1

h , (5.7c)

Rn+1
h = ε2

ε2 + �t
(gn

h + vqn+1
h ) − ε�t

ε2 + �t
(I − �)(Dh(gn

h; v)). (5.7d)

The unique solvability of qn+1
h and ρn+1

h from (5.7a)-(5.7b) is guaranteed by Lemma 3.7, and additionally, ||ρn+1
h || =

C(||ρn
h || + �t||Dρ

h 〈v Rn
h〉||), with some generic constant C . From this, (5.7) and the assumption on the initial data (espe-

cially its discrete analogue), one can conclude that with the well-prepared initial data satisfying R0 = O (ε),
h
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• ρn
h , qn

h, g
n
h = O (1), Dh(gn

h; v) = O (1), ∀n ≥ 0;
• Rn

h = gn
h + vqn

h = O (ε), Dq
h(〈v Rn

h〉) = O (ε), ∀n ≥ 0;
• ρn

h and qn
h satisfy

qn+1
h = Dρ

h (ρn+1
h ),

ρn+1
h − ρn

h

�t
= 〈v2〉Dq

h(qn+1
h ) + O (ε), ∀n ≥ 0. (5.8)

Here the estimate for qn
h is obtained similarly as for the semi-discrete case, namely, by applying Dq

h to (5.7a) and Dρ
h to 

(5.7b) and utilizing that Lemma 3.7 holds if one switch Dq
h and Dρ

h in (3.16). Now with the fixed h and �t , the limiting 
scheme as ε → 0 is a consistent scheme for the limiting heat equation, and it involves the first order backward Euler 
method in time, and a local DG method in space with the discrete space U k

h , together with the consistent initial data. And 
the computed g, q satisfies the local equilibrium property. This shows the IMEX1-LDG scheme is AP. Note that the analysis 
shares great similarity as that for the semi-discrete IMEX1 scheme, due to the property of Lemma 3.5. When the initial 
condition is not well-prepared, the formal asymptotic analysis can be done similarly as for the IMEX1 scheme with the 
modification during the first time step, and similar conclusions can be obtained as in Table 5.1, except that the accuracy in 
Table 5.1 is only for temporal accuracy, and in space, the scheme has the designed formal (high order) spatial accuracy of 
the local DG method.

For the limiting scheme, one can also write down its integral form when the initial data is well-prepared: look for 
ρn+1

h , qn+1
h , gn+1

h (·, v) ∈ U k
h , such that

(qn+1
h ,ϕ) = −dh(ρ

n+1
h ,ϕ), ∀ϕ ∈ Uk

h, (5.9a)(ρn+1
h − ρn

h

�t
, φ
)= 〈v2〉lh(qn+1

h , φ), ∀φ ∈ Uk
h, (5.9b)

(gn+1
h ,ψ) = vdh(ρ

n+1
h ,ψ) = −(vqn+1

h ,ψ), ∀ψ ∈ Uk
h, (5.9c)

for n ≥ 0. In fact, (5.9c) implies gn+1
h = −vqn+1

h .
Finally in this section, we want to take a look at the schemes with a more general weight function ω, which satisfies 

(2.6). All the updates in (5.7) stay the same except for the second equation (5.7b) to be replaced by

ρn+1
h − ω�t〈v2〉Dq

h(qn+1
h ) = ρn

h − �tDq
h(〈v Rn

h〉) − (ω − 1)�t〈v2〉Dq
h(qn

h). (5.10)

Similar as for the case when ω = 1, with ε � 1 and the well-prepared initial data, one can get ρn
h , qn

h, g
n
h, Dh(gn

h; v) =
O (1), Rn

h = gn
h + vqn

h = O (ε), Dq
h(〈v Rn

h〉) = O (ε), ∀n ≥ 0. Moreover, Dq
h(qn+1

h − qn
h)/�t = O (1). Now the solution ρn

h and qn
h

satisfy, ∀n ≥ 0,

qn+1
h = Dρ

h (ρn+1
h )

and

ρn+1
h − ρn

h

�t
= 〈v2〉Dq

h(qn+1
h ) −Dq

h(〈v Rn
h〉)︸ ︷︷ ︸

O (ε)

+(ω − 1)〈v2〉Dq
h(qn+1

h − qn
h)︸ ︷︷ ︸

O (�t)

(5.11)

= 〈v2〉Dq
h(qn+1

h ) − O (ε) + (ω − 1)O (�t). (5.12)

One can see that as long as

(ω − 1)O (�t) = O (ε), (5.13)

the limiting scheme will be a consistent implicit discretization of the limiting heat equation, hence the proposed methods 
are AP. The two scale- and mesh-dependent choices, ω = exp(−ε/h) and ω = exp(−ε2/�t), suggested by the numerical 
stability analysis, satisfy the property (5.13) under our assumption �t/h = O (1).

5.3. Higher order temporal discretizations: IMEXp

What remained is to understand the semi- and fully-discrete schemes with higher order temporal discretizations. Since 
the spatial discretization does not essentially affect the analysis (just as for the first order case in Sections 5.1-5.2), we 
here only focus on the semi-discrete temporal IMEXp scheme in this section. Such analysis also informs us the asymptotic 
behavior of the fully-discrete IMEXp-LDGk scheme.

In our IMEXp scheme, globally stiffly accurate IMEX-RK methods of type ARS, denoted as ARS(s, s, p), are applied. These 
are one-step p-th order method with effective s stages (see Section 3.1 for the specific form of the schemes for p = 1, 2, 3). 
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Based on the definitions, the time integrators being globally stiffly accurate ensures that the numerical solution at tn+1 is 
the same as that from the last inner stage of the RK step; and with the type ARS structure, the solutions from the first inner 
stage are the same as that from the previous RK step. Using these features, and following the same implicit-explicit strategy 
used in the IMEX1 scheme, the IMEXp scheme is: given the numerical solution ρn, gn at t = tn , we look for ρn+1, gn+1 at 
tn+1 = tn + �t , such that

ρn+1 = ρn,(s), gn+1 = gn,(s), (5.14)

where ρn,(l), gn,(l) , l = 0, · · · , s, are from inner stages, satisfying

ρn,(0) = ρn, gn,(0) = gn, (5.15a)

ρn,(l) = ρn − �t
l−1∑
j=0

ãlj

(
∂x〈v(gn,( j) + v∂xρ

n,( j))〉
)

+ �t
l∑

j=1

alj

(
〈v2〉∂xxρ

n,( j)
)

, l = 1, · · · , s, (5.15b)

gn,(l) = gn − �t

ε

l−1∑
j=0

ãlj (I − �)
(

v∂x gn,( j)
)

− �t

ε2

l∑
j=1

alj

(
gn,( j) + v∂xρ

n,( j)
)

, l = 1, · · · , s. (5.15c)

Note that the summation in the implicit part is from j = 1 instead of j = 0. It implies that the update in the inner stages, 
related to the implicit part of the IMEX-RK methods, does not explicitly depend on the solution from the previous RK step. 
This is due to the ARS structure and plays an important role in the presence of the initial layer.

When the initial data is not well-prepared, a modification is proposed to the first two steps in Section 3.1. To examine 
the asymptotic behavior of the methods, two cases will be considered next. We will write Rn = gn + v∂xρ

n , and Rn,(l) =
gn,(l) + v∂xρ

n,(l).

Case 1: the initial is well-prepared with R0 = O (ε). The IMEXp scheme will lead to the updates of ρn+1, gn+1, Rn+1, together 
with ρn,(l), gn,(l), Rn,(l) as follows.

ρn+1 = ρn,(s), gn+1 = gn,(s), Rn+1 = Rn,(s), (5.16)

where the inner stages are updated according to

ρn,(0) =ρn, gn,(0) = gn, Rn,(0) = Rn, (5.17a)

ρn,(l) =ρn + �tall

(
〈v2〉∂xxρ

n,(l)
)

− �t
l−1∑
j=0

ãlj∂x〈v Rn,( j)〉 + �t
l−1∑
j=1

alj

(
〈v2〉∂xxρ

n,( j)
)

, l = 1, · · · , s, (5.17b)

gn,(l) =ε2 gn − �tall v∂xρ
n,(l)

ε2 + all�t
− ε�t

ε2 + all�t

l−1∑
j=0

ãlj (I − �)(v∂x gn,( j))

− �t

ε2 + all�t

l−1∑
j=1

alj Rn,( j), l = 1, · · · , s, (5.17c)

Rn,(l) = ε2

ε2 + all�t

(
gn + v∂xρ

n,(l)
)

− ε�t

ε2 + all�t

l−1∑
j=0

ãlj (I − �)(v∂x gn,( j))

− �t

ε2 + all�t

l−1∑
j=1

alj Rn,( j), l = 1, · · · , s. (5.17d)

With ε � 1, we have

• ρn,(l), gn,(l) = O (1), ∂xρ
n,(l), ∂xxρ

n,(l), ∂x gn,(l) = O (1), l = 0, · · · , s, ∀n ≥ 0.
• Rn = O (ε), Rn,(l) = O (ε), ∂x〈v Rn,(l)〉 = O (ε), ∀n ≥ 0, l = 0, · · · , s. That is, the numerical solutions from both inner stages 

and full RK steps stay within the O (ε)-width neighborhood of the local equilibrium.
• ρn satisfies

ρn+1 = ρn,(s), where ρn,(l) = ρn + �t
l∑

alj

(
〈v2〉∂xxρ

n,( j)
)

+ O (ε), l = 1, · · · , s, ∀n ≥ 0.
j=1
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Hence the limiting scheme for ρn as ε → 0 is a consistent scheme of p-th order temporal accuracy for the limiting heat 
equation, and more specifically, the scheme involves the implicit part of ARS(s, s, p) in time with the asymptotically consis-
tent initial data. Additionally, the computed solution satisfies the local equilibrium property at the full RK steps and at all 
inner stages. This shows the IMEXp scheme is AP.

Case 2: the initial is not well-prepared with R0 = O (ε−1). The IMEXp scheme will lead to the updates of ρn+1, gn+1, Rn+1

as well as ρn,(l), gn,(l), Rn,(l) , ∀n ≥ 2, just as in (5.16)-(5.17) except that in step 1 with n = 0, the update in (3.2) is used with 
the time step �t1 = �t p , and in step 2 with n = 1, the update (5.16)-(5.17) is used with the time step �t2 = �t p . Then 
with ε � 1, the modified scheme leads to

• ρn, gn, ρn,(l), gn,(l) = O (1), ∂xρ
n,(l), ∂xxρ

n,(l), ∂x gn,(l) = O (1), ∀n ≥ 1, l = 0, · · · , s, even though ρ0 = O (1), g0 = O (ε−1).
• Rn = O (ε), Rn,(l) = O (ε), ∂x〈v Rn,(l)〉 = O (ε), ∀n ≥ 2, l = 0, · · · , s, while R0 = O (ε−1), R1 = R1,(0) = O (1), ∂x〈v R1〉 =

O (1), and R1,(l) = O (ε), ∂x〈v R1,(l)〉 = O (ε), l = 1, · · · , s.
• ρn satisfies

ρn+1 = ρn,(s), where ρn,(l) = ρn + �t
l∑

j=1

alj

(
〈v2〉∂xxρ

n,( j)
)

+ O (ε), l = 1, · · · , s, ∀n ≥ 2,

while at n = 0,

ρ1 = ρ0 + �t1〈v2〉∂xxρ
0 + O (�t1), with �t1 = �t p . (5.18)

And at n = 1, ρ2 = ρ1,(s) where

ρ1,(l) = ρ1 + �t2

l∑
j=1

alj

(
〈v2〉∂xxρ

n,( j)
)

− �t2ãl0∂x〈v R1〉 + O (ε)

= ρ1 + �t2

l∑
j=1

alj

(
〈v2〉∂xxρ

n,( j)
)

+ O (�t2) + O (ε), l = 1, · · · , s, with �t2 = �t p . (5.19)

In the limit of ε → 0, the local error to ρ1 in Case 2 is of first order in �t1 = �t p hence of p-th order in �t . In the second 
step to computer ρ2, the scheme can be regarded as a perturbed method to an otherwise p-th order temporal discretization. 
Given that each inner stage solution ρ1,(l) is perturbed by an error proportional to �t2, ρ2 will be of first order in �t2, 
hence the choice of the step size �t2 = �t p ensures that ρ2 is a p-th order approximation. When n ≥ 2, the scheme has 
similar behavior as in Case 1. Therefore we can conclude when ε → 0, the limiting scheme is a consistent scheme with the 
p-th order accuracy. This shows the IMEXp scheme is AP even in the presence of the initial layer.

Remark 5.2. Consider the diffusive regime with ε � 1. When the initial data is not well-prepared with the presence of 
the initial layer, the modification for n = 0 based on (3.2) will drive the numerical solution to be bounded with respect to 
ε after the first step, yet the solution by then is only within the O (1)-width neighborhood of the local equilibrium. The 
second step based on (5.16)-(5.17) further drives the numerical solution to fall into the O (ε)-width neighborhood of the 
local equilibrium. Our scheme in each of the first two time steps will lead to a first order error to the solution at the full RK 
steps. Such first order error is with respect to the time step size, and it can be reduced to the desired accuracy by taking 
�t1 = �t2 = �t p , where �t is the time step size for later steps, predicted by stability analysis.

Remark 5.3. Similar to Remark 5.1, a more refined analysis can be carried out for the accuracy of the IMEXp scheme, which 
is summarized in Table 5.1. From this table, one can see that only for the worst scenario, namely when R0, 〈v R0〉 = O (ε−1), 
the proposed modification is needed to gain full accuracy. For other moderate cases, such as when R0 = O (ε−1) with 
〈v R0〉 = O (ε), O (1), or when R0 = O (1) with 〈v R0〉 = O (1), one can gain the full temporal accuracy by using the base 
IMEXp scheme with a modified step size in the initial one or two steps, without the need for the scheme (3.2).

Remark 5.4. In Case 2, the property that R1,(0) = O (1) while R1,(l) = O (ε), l = 1, · · · , s is due to that the update in (5.17d)
does not depend on Rn,(0) . This feature is due to the IMEX-RK method being of type ARS.

Remark 5.5. In actual simulation, it is possible that ε2 � �t , yet the modified step size �t1, �t2 (= �t p) is smaller than 
the initial layer width. In this case, more than one modified time step would be needed for the solution to exit the initial 
layer to ensure full accuracy.
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6. Numerical examples

In this section, we will present a set of numerical examples to illustrate the performance of the proposed schemes 
in terms of their accuracy and robustness, when the underlying models involve different values of ε in different regimes 
with smooth or non-smooth solutions. When the initial data is not well-prepared, we also demonstrate the effectiveness 
of the proposed strategies to avoid the order reduction and inaccuracy of the numerical solutions. Two weight functions 
will be considered, and they are ω = 1 and ω = exp(−ε/h). The schemes with ω = 1 are referred to as the IMEXp-LDGp
methods, while the schemes with ω = exp(−ε/h) are referred to as IMEXp-LDGp-M methods. Recall that in IMEXp-
LDGp and IMEXp-LDGp-M methods, the discrete space U p−1

h is used in space. The numerical results by the schemes with 
ω = exp(−ε2/�t) are qualitatively similar to those by the schemes with ω = exp(−ε/h), and they are not presented here.

Based on the stability analysis in Section 4, we observe that the methods, when applied to the model equation (1.1), are 
unconditionally stable when ε/h ≤ R p,ω for some constant R p,ω > 0; when ε/h > R p,ω , the methods are stable under the 
condition

�t

εh
≤ Gp,ω(

ε

h
) (6.1)

for some function Gp,ω . In an ongoing project, we also carry out an energy-type stability analysis for the IMEX1-LDG1
scheme, and the analysis suggests a specific form of Gp,ω(s), namely, Gp,ω(s) = αp s

βp s−1 . This form of Gp,ω(s) seems to also 
fit what we numerically observed through Fourier-type stability analysis for other IMEXp-LDGp(-M) methods. Motivated 
by this, for our numerical experiments in this section, we take Gp,ω(s) = αp s

βp s−1 , with the parameters αp and βp chosen 
based on the stability plots in Section 4. Particularly when the boundary conditions are periodic, the time step size is set as 
�t = �tC F Lp for IMEXp-LDGp and �t = �tC F LpM for IMEXp-LDGp-M, where

IMEX1-LDG1 : �tC F L1 =
{

0.25h, ε ≤ h/4,

min(0.25h, 4ε2h
4ε−h ), ε > h/4,

(6.2a)

IMEX2-LDG2 : �tC F L2 =
⎧⎨⎩

0.25h, ε ≤ h/251,

min(0.25h, 62.75ε2h
251ε−h ), h/251 < ε < 5h/2,

0.625h2, ε ≥ 5h/2,

(6.2b)

IMEX3-LDG3 : �tC F L3 =
{

0.25h, ε ≤ h/30,

min(0.25h, 4.5ε2h
30ε−h ), ε > h/30.

(6.2c)

IMEX1-LDG1-M : �tC F L1M =
{

0.25h, ε ≤ h/4,

min(0.25h, 3ε2h
6ε−h ), ε > h/4,

(6.2d)

IMEX2-LDG2-M : �tC F L2M =
{

0.25h, ε ≤ h/251,

min(0.25h, 62.75ε2h
251ε−h ), ε > h/251,

(6.2e)

IMEX3-LDG3-M : �tC F L3M =
{

0.25h, ε ≤ h/35,

min(0.25h, 4.375ε2h
35ε−h ), ε > h/35.

(6.2f)

Note that an O (h) upper bound is imposed to the time step size to ensure reasonable resolution of the numerical solutions. 
As implied by the stability analysis in Section 4, a parabolic time step condition is needed for the IMEX2-LDG2 method in 
the kinetic regime. When the boundary conditions are not periodic, time step sizes may need to be adjusted due to the 
numerical boundary treatments. This will be specified when we come to those examples. In all figures in this section, the 
reference solutions are always plotted in solid lines.

With the IMEX temporal discretization, linear systems need to be solved for each time step. Fortunately, the implicit 
part of our schemes with the global nature comes from the discretization of a Poisson operator, the corresponding linear 
system is hence symmetric and positive definite when the boundary conditions are periodic. For such examples, Conjugate 
Gradient method is used as the linear solver. In the case of Dirichlet boundary conditions (see Section 6.2 and Remark 6.1), 
symmetry will be broken, and Conjugate Gradient Squared method will be applied instead. Even though not explored in this 
work, one can apply standard fast solver techniques for elliptic equations, such as multigrid methods, to efficiently solve the 
linear systems resulting from the proposed methods.

6.1. Telegraph equation

Two examples will be presented for the telegraph equation which involves discrete velocity. The meshes are uniform. 
We use the left-right flux pair alternating flux (3.11).



Z. Peng et al. / Journal of Computational Physics 415 (2020) 109485 21
Table 6.2
L1 errors and orders for the example in Section 6.1.1, IMEX1-LDG1(-M).

ε N IMEX1-LDG1 IMEX1-LDG1-M
L1 error of ρ Order L1 error of j Order L1 error of ρ Order L1 error of j Order

0.5 10 3.781E-02 – 4.824E-02 – 3.629E-02 – 5.128E-02 –
20 1.763E-02 1.10 2.585E-02 0.90 1.623E-02 1.16 2.732E-02 0.91
40 7.956E-03 1.15 1.334E-02 0.95 7.507E-03 1.11 1.392E-02 0.97
80 3.699E-03 1.11 6.742E-03 0.98 3.617E-03 1.05 6.988E-03 0.99
160 1.773E-03 1.06 3.380E-03 1.00 1.778E-03 1.02 3.496E-03 1.00
320 8.664E-04 1.03 1.691E-03 1.00 8.817E-04 1.01 1.748E-03 1.00

10−2 10 7.001E-02 – 9.516E-02 – 4.472E-02 – 7.900E-02 –
20 3.875E-02 0.85 5.187E-02 0.88 2.169E-02 1.04 3.885E-02 1.02
40 2.011E-02 0.95 2.640E-02 0.97 1.057E-02 1.04 1.929E-02 1.01
80 1.036E-02 0.96 1.342E-02 0.98 5.113E-03 1.05 9.537E-03 1.02
160 3.588E-03 1.53 5.461E-03 1.30 2.196E-03 1.22 4.599E-03 1.05
320 1.108E-03 1.70 2.300E-03 1.25 1.094E-03 1.00 2.299E-03 1.04

10−6 10 4.460E-02 – 7.907E-02 – 4.460E-02 – 7.907E-02 –
20 2.180E-02 1.03 3.895E-02 1.02 2.180E-02 1.03 3.895E-02 1.02
40 1.078E-02 1.02 1.946E-02 1.00 1.078E-02 1.02 1.946E-02 1.00
80 5.356E-03 1.01 9.702E-03 1.00 5.356E-03 1.01 9.702E-03 1.00
160 2.668E-03 1.01 4.843E-03 1.00 2.668E-03 1.01 4.843E-03 1.00
320 1.331E-03 1.00 2.419E-03 1.00 1.331E-03 1.00 2.419E-03 1.00

Table 6.3
L1 errors and orders for the example in Section 6.1.1, IMEX2-LDG2(-M).

ε N IMEX2-LDG2 IMEX2-LDG2-M
L1 error of ρ Order L1 error of j Order L1 error of ρ Order L1 error of j Order

0.5 10 1.944E-03 – 9.887E-004 – 1.965E-003 – 9.223E-04 –
20 4.667E-04 2.06 2.185E-04 2.18 4.567E-04 2.11 1.850E-04 2.32
40 1.155E-04 2.01 4.831E-05 2.18 1.128E-04 2.02 4.162E-05 2.15
80 2.821E-05 2.03 1.046E-05 2.21 2.789E-05 2.02 9.751E-06 2.09
160 6.974E-06 2.02 2.451E-06 2.09 6.928E-06 2.01 2.396E-06 2.02
320 1.733E-06 2.01 5.941E-07 2.04 1.730E-06 2.00 5.984E-07 2.00

10−2 10 6.524E-03 – 1.861E-03 – 6.524E-03 – 1.861E-03 –
20 1.616E-03 2.01 4.376E-04 2.09 1.616E-03 2.01 4.376E-04 2.09
40 4.031E-04 2.03 1.047E-04 2.06 4.031E-04 2.00 1.047E-04 2.06
80 1.007E-04 2.00 2.561E-05 2.03 1.007E-04 2.00 2.561E-05 2.03
160 2.518E-05 2.00 6.336E-06 2.02 2.518E-05 2.00 6.336E-06 2.02
320 6.294E-06 2.00 1.576E-06 2.01 6.294E-06 2.00 1.576E-06 2.01

10−6 10 6.605E-03 – 1.860E-03 – 6.605E-03 – 1.860E-03 –
20 1.630E-03 2.02 4.417E-04 2.07 1.630E-03 2.02 4.417E-04 2.07
40 4.065E-04 2.00 1.069E-04 2.05 4.065E-04 2.00 1.069E-04 2.05
80 1.016E-04 2.00 2.642E-05 2.02 1.016E-04 2.00 2.642E-05 2.02
160 2.539E-05 2.00 6.582E-06 2.01 2.539E-05 2.00 6.582E-06 2.01
320 6.346E-06 2.00 1.644E-06 2.00 6.346E-06 2.00 1.644E-06 2.00

6.1.1. Smooth solution with periodic boundary conditions
First, we consider an example with the following exact solution{

ρ(x, t) = 1
γ exp(γ t) sin(x), γ = −2

1+
√

1−4ε2
,

g(x, v = ±1, t) = ±exp(γ t) cos(x)

on the domain �x = [−π, π ] with periodic boundary conditions. We carry out the convergence study for the IMEXp-
LDGp and IMEXp-LDGp-M methods (with p = 1, 2, 3) in different regimes with ε = 0.5, 10−2 and 10−6. The errors in 
the normalized L1 norm (namely, normalized with respect to the domain size) and convergence orders for ρ(x, t) and 
j(x, t) = 〈vg〉 = 1

2 (g(x, v = 1, t) − g(x, v = −1, t)) are shown in Tables 6.2-6.4 at time T = 1.0. For both ρ and j, we observe 
the optimal p-th order convergence for all three schemes in all regimes, implying an optimal accuracy with respect to 
the approximation property of the discrete space U p−1

h . As expected, the error obtained with two different weights differ 
in the kinetic regime and have the same leading digits in the diffusive regime. In the intermediate regime, the IMEX1-
LDG1 and IMEX1-LDG1-M methods give quite different errors, while for p = 2, 3, the errors obtained by IMEXp-LDGp and 
IMEXp-LDGp-M methods have the same leading digits.
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Table 6.4
L1 errors and orders for the example in Section 6.1.1, IMEX3-LDG3(-M).

ε N IMEX3-LDG3 IMEX3-LDG3-M
L1 error of ρ Order L1 error of j Order L1 error of ρ Order L1 error of j Order

0.5 10 6.780E-05 – 1.125E-04 – 6.223E-05 – 9.885E-05 –
20 9.617E-06 2.82 8.386E-06 3.75 8.831E-06 2.82 1.918E-05 2.37
40 1.183E-06 3.02 4.172E-06 1.01 8.901E-07 3.32 1.960E-06 3.29
80 1.177E-07 3.33 6.258E-07 2.74 1.552E-07 2.52 5.958E-07 1.72
160 1.413E-08 3.06 7.121E-08 3.14 2.339E-08 2.73 1.815E-08 5.04
320 1.929E-09 2.87 1.067E-08 2.74 1.844E-09 3.67 6.854E-09 1.41
640 2.258E-10 3.09 1.881E-09 2.50 2.998E-10 2.69 3.904E-10 4.13

10−2 10 2.491E-04 – 2.473E-04 – 2.491E-04 – 2.473E-04 –
20 3.139E-05 2.99 3.127E-05 2.98 3.139E-05 2.99 3.127E-05 2.98
40 3.901E-06 3.01 3.902E-06 3.00 3.901E-06 3.01 3.902E-06 3.00
80 4.873E-07 3.00 4.874E-07 3.00 4.873E-07 3.00 4.874E-07 3.00
160 6.090E-08 3.00 6.091E-08 3.00 6.090E-08 3.00 6.091E-08 3.00
320 7.613E-09 3.00 7.613E-09 3.00 7.613E-09 3.00 7.613E-09 3.00

10−6 10 2.485E-04 – 2.546E-04 – 2.485E-04 – 2.546E-04 –
20 3.139E-05 2.99 3.139E-05 3.02 3.139E-05 2.99 3.139E-05 3.02
40 3.910E-06 3.00 3.911E-06 3.01 3.910E-06 3.00 3.911E-06 3.01
80 4.892E-07 3.00 4.892E-07 3.00 4.892E-07 3.00 4.892E-07 3.00
160 6.114E-08 3.00 6.114E-08 3.00 6.114E-08 3.00 6.114E-08 3.00
320 7.641E-09 3.00 7.641E-09 3.00 7.641E-09 3.00 7.641E-09 3.00

6.1.2. Riemann problem
The second example for the telegraph equation is a Riemann problem, with the initial conditions{

ρ(x,0) = ρL = 2.0, g(x, v,0) = gL = 0, for x ≤ 0,

ρ(x,0) = ρR = 1.0, g(x, v,0) = gR = 0, for x > 0,
(6.3)

and ε = 0.7, 10−6. Without loss of generality, we use a mesh satisfying xk0+ 1
2

= 0, for some k0 ∈N .

When ε = 0.7, the computational domain is taken as �x = [−1, 1] with the final time T = 0.15. In Fig. 6.4, we present 
the numerical results by IMEXp-LDGp-M methods with h = 0.025 and p = 1, 2, 3. No nonlinear limiter is applied. The 
results by the lowest order IMEX1-LDG1-M method are most dissipative, while the results by IMEXp-LDGp-M methods 
with p = 2, 3 are much sharper. As no limiter is applied, some mild oscillations are observed around discontinuities in the 
results by the IMEXp-LDGp-M methods with p = 2, 3.

In Fig. 6.5, we present the numerical results of the IMEXp-LDGp methods with h = 0.025 and p = 1, 2, 3. In order to 
control numerical oscillations, the TVB-minmod limiter in [9] with M = 1 is applied to ρ , g and q for the IMEXp-LDGp
methods with p = 2, 3, and the time step size is also adjusted to be smaller. More specifically, we take 0.025�tC F L1 for 
the IMEX1-LDG1 method, 0.5�tC F L2 for the IMEX2-LDG2 method, and 0.125�tC F L3 for the IMEX3-LDG3 method. One can 
see the IMEXp-LDGp methods with p = 2, 3 outperform the IMEX1-LDG1 method. The results by the IMEX2-LDG2 method 
match the reference solutions the best (note that the time step size of this method is O (h2) for this example). The use of 
nonlinear limiter still leave visible oscillations to the results by the IMEXp-LDGp (p = 2, 3) methods.

Even though the IMEXp-LDGp-M methods use larger time step sizes without a nonlinear limiter, they overall perform 
better than the IMEXp-LDGp schemes for this Riemann problem when ε = 0.7. We attribute this to the auxiliary unknown, 
q = ∂xρ , that contains a Dirac-δ singularity in this Riemann problem. The singularity in q imposes challenge to the IMEX-
LDG methods with the weight function ω = 1 in the kinetic regime. For the IMEX-LDG-M methods, the weight function 
w = exp(−ε/h)|ε=0.7,h=0.025 ≈ 10−13, and it significantly reduces the impact of the singularity in q. Actually, in this regime, 
the IMEX-LDG-M schemes are very close to the DG-IMEX schemes in [15] (which are also the proposed methods here with 
the weight ω = 0).

When ε = 10−6, the computational domain is taken as �x = [−2, 2] with the final time T = 0.15. The solutions are 
smooth around this time, and no limiter is needed. Still with h = 0.025, the numerical solutions are shown in Fig. 6.6. The 
results obtained by the IMEXp-LDGp schemes and IMEXp-LDGp-M schemes have no visible difference. Hence, only the 
results of the IMEXp-LDGp-M schemes are presented with p = 1, 2, 3. All methods capture the solutions well, and higher 
order methods show better resolution.

6.2. One group transport equation in slab geometry

In this section, we will consider the one-group transport equation in slab geometry in a more general form [23], namely,

ε∂t f + v∂x f = σs
(〈 f 〉 − f ) − εσA f + εG (6.4)
ε



Z. Peng et al. / Journal of Computational Physics 415 (2020) 109485 23
Fig. 6.4. Numerical solutions by IMEXp-LDGp-M methods for the example in Section 6.1.2 with ε = 0.7 at T = 0.15. The reference solution is obtained by 
the first order forward Euler upwind finite difference scheme, with h = 10−3 and �t = 7 × 10−4. No limiter is applied.

on �x = [xL, xR ] and with a continuous velocity space �v = [−1, 1]. The parameter σs = σs(x) is the scattering coefficient, 
which is assumed to be positive, the non-negative σA = σA(x) is the absorption coefficient, and G = G(x) is the source term. 
Following the derivation in Section 2, one can get the micro-macro reformulation

∂tρ + ∂x〈vg〉 = −σAρ + G,

∂t g + 1

ε
(I − �)(v∂x g) + 1

ε2
v∂xρ = −σs

ε2
g − σA g.

(6.5)

When ε → 0, the limiting equation (at least away from the initial and boundary) is

g = −v∂xρ/σs, ∂tρ = 〈v2〉∂x(∂xρ/σs) − σAρ + G. (6.6)

The proposed IMEX-LDG methods can be extended directly to (6.4) based on the following reformulated form of the 
model:

∂tρ + ∂x〈v(g + ωvq/σs)〉 = ω〈v2〉∂x(q/σs) − σAρ + G, q = ∂xρ, (6.7a)

∂t g + 1

ε
(I − �)(v∂x g) + 1

ε2
v∂xρ = −σs

ε2
g − σA g. (6.7b)
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Fig. 6.5. Numerical solutions by IMEXp-LDGp methods for the example in Section 6.1.2 with ε = 0.7 at T = 0.15. The reference solution is obtained by the 
first order forward Euler upwind finite difference scheme, with h = 10−3 and �t = 7 × 10−4. The minmod limiter with M = 1 is used when p = 2, 3.

In addition to periodic boundary conditions, some numerical examples in this section involve Dirichlet boundary condi-
tions, that are given at the inflow boundaries of the domain �x = [xL, xR ], in the form of

f (xL, v, t) = f L(v, t), v ≥ 0, and f (xR , v, t) = f R(v, t), v ≤ 0.

They are insufficient to define ρ = 〈 f 〉 (resp. g and q) at the boundary within the micro-macro decomposition framework. In 
this case, numerical boundary treatments are needed to complete the proposed methods. Next we will present two strate-
gies, which will be described when σs = 1 and σA = 0, and can be easily given to the cases with more general σs and σA . 
We will first present assumptions for boundary conditions and then impose boundary conditions through numerical fluxes.

1.) Limiting boundary condition. The first boundary treatment is based on the limiting equation as ε → 0. Similar strategy 
was used in [5,17] within an even-odd decomposition framework. As ε → 0, the limiting equation gives

g = −v∂xρ = −vq, with q = ∂xρ. (6.8)

We assume this relation at the boundary, then the given boundary conditions become

ρL(t) − εvqL(t) = f L(v, t), v ≥ 0 and ρR(t) − εvqR(t) = f R(v, t), v ≤ 0.
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Fig. 6.6. Numerical solutions by IMEXp-LDGp-M methods for the example in Section 6.1.2 with ε = 10−6 at T = 0.15. The reference solution is obtained 
by solving the limiting diffusion equation using the forward Euler with second order central difference scheme, with h = 10−3 and �t = 2.5 × 10−7.

We further integrate the first equality in v from 0 to 1 at the left boundary, and integrate the second equality in v from 
−1 to 0 at the right boundary. This gives

ρL(t) − ε
1

2
qL(t) =

1∫
0

f L(v, t)dv, ρR(t) + ε
1

2
qR(t) =

0∫
−1

f R(v, t)dv. (6.9)

Motivated by this, the following numerical boundary treatment is proposed.

• We specify numerical fluxes ρ̆ and ṽ g at both boundaries:

ρ̆n
1
2

=
1∫

0

f L(v, tn)dv + 1

2
εqn(x+

1
2
) :� ρn

L ,
(

ṽ gn
)

1
2

= vgn(x+
1
2
),

ρ̆n
N+ 1

2
=

1∫
f R(v, tn)dv − 1

2
εqn(x−

N+ 1
2
) :� ρn

R ,
(

ṽ gn
)

N+ 1
2

= vgn(x−
N+ 1

2
). (6.10)
0
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• We modify the equation (3.7b) into the following(ρn+1
h − ρn

h

�t
, φ
)+ l†h(〈vgn

h〉, φ) + ω〈v2〉lh(qn
h, φ) = ω〈v2〉lh(qn+1

h , φ), ∀φ ∈ Uk
h (6.11)

where lh(·, ·) is just as before in (3.8b), with the numerical flux modified at the boundary, namely,

q̂n
1
2

= qn(x+
1
2
) + cL (ρn(x+

1
2
) − ρn

L ), q̂n
N+ 1

2
= qn(x−

N+ 1
2
) − cR (ρn

R − ρn(x−
N+ 1

2
));

while

l†h(〈vgn
h〉, φ) = −

∑
i

∫
Ii

〈vgn
h〉∂xφdx −

∑
i

̂

̂〈vgn
h〉i− 1

2
[φ]i− 1

2
, (6.12)

and 
̂

̂〈vgn
h〉i− 1

2
= ̂〈vgn

h〉i− 1
2
, ∀i = 2, 3, · · · , N − 1 for interior nodes, and

̂

̂〈vgn〉 1
2

= 〈vgn〉(x+
1
2
),

̂

̂〈vgn〉N+ 1
2

= 〈vgn〉(x−
N+ 1

2
)

at boundaries.

One can see that the numerical boundary treatments are essentially imposed through numerical fluxes. The two parameters 
cL and cR are non-negative, and they are used to facilitate the inclusion of some jump terms cL (ρn(x+

1
2
) −ρn

L ) and cR (ρn
R −

ρn(x−
N+ 1

2
)) at the domain boundary to ensure the full accuracy of the overall algorithm when alternating fluxes are used at 

the interior nodes. More specifically, when the right-left alternating flux in (3.11) is used in our scheme, we take cL = 1 and 
cR = 0, while with the left-right alternating flux, we take cL = 0 and cR = 1. One can refer to [8,24] to better understand 
the role of these jump terms in relation to the accuracy of the schemes.

2.) Inflow-outflow close-loop boundary condition. Using the solution inside the domain to provide the outflow boundary 
data, we get a close-loop strategy similar to that in [15]. For the left boundary, we require the following relations:

ρL(t) + εgL(v, t) = f L(v, t), v ≥ 0 (inflow), (6.13a)

ρL(t) + εgL(v, t) = ρh(x+
1
2
, t) + εgh(x+

1
2
, v, t), v ≤ 0 (outflow), (6.13b)

〈gL(v, t)〉 = 0. (6.13c)

We integrate (6.13a) in v from 0 to 1, and integrate (6.13b) in v from −1 to 0. Summing up the resulting equations and 
with (6.13c), one can express the boundary data ρL in terms of the known f L and the unknown interior solution, and 
further get gL from (6.13a)-(6.13b), hence 〈vgL(v, t)〉. This leads to, at t = tn ,

ρn
L :� ρL(t

n) = 1

2

( 1∫
0

f L(v, tn)dv + ρn
h (x+

1
2
) + ε

0∫
−1

gn
h(x+

1
2
, v)dv

)
, (6.14a)

gn
L(v) :� gL(v, tn) =

{
1
ε

(
f L(v, tn) − ρL(tn)

)
, v > 0,

1
ε

(
ρn

h (x+
1
2
) + εgn

h(x+
1
2
, v) − ρL(tn)

)
, v ≤ 0.

(6.14b)

Similarly, for the right boundary we can get

ρn
R :� ρR(tn) = 1

2

( 0∫
−1

f R(v, tn)dv + ρn
h (x−

N+ 1
2
) + ε

1∫
0

gn
h(x−

N+ 1
2
, v)dv

)
, (6.15a)

gn
R(v) :� gR(v, tn) =

{
1
ε

(
ρn

h (x−
N+ 1

2
) + εgn

h(x−
N+ 1

2
, v) − ρR(tn)

)
, v ≥ 0,

1
ε

(
f R(v, tn) − ρR(tn)

)
, v < 0.

(6.15b)

Based on the relations above, we propose a numerical treatment for boundary conditions, again by working with the 
modified equation (6.11) and l†h in (6.12) and specifying the numerical fluxes on the domain boundary as follows,

ρ̆n
1
2

= ρn
L , q̂n

1
2

= qn(x+
1
2
) + cL (ρn(x+

1
2
) − ρn

L ),
̂

̂〈vgn〉 1
2

= 〈vgn
L(v)

〉
, (6.16a)

ρ̆n
N+ 1

2
= ρn

R , q̂n
N+ 1

2
= qn(x−

N+ 1
2
) + cR (ρn

R − ρn(x−
N+ 1

2
),

̂

̂〈vgn〉N+ 1
2

= 〈vgn
R(v)

〉
, (6.16b)
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and

(
ṽ gn
)

1
2

=
{

vgn
L(v), if v > 0,

vgn
h(x+

1
2
, v), if v ≤ 0,

(
ṽ gn
)

N+ 1
2

=
{

vgn
h(x−

N+ 1
2
, v), if v ≥ 0,

vgn
R(v), if v < 0.

(6.17)

The jump terms for q in (6.16) are for the same accuracy consideration as in the limiting boundary condition strategy, 
with the constants cL and cR taken similarly as well.

Remark 6.1. In our numerical experiments, we use the limiting boundary conditions for the diffusive regime, and the inflow-
outflow close-loop boundary conditions for the kinetic regime. For the diffusive regime, it is observed that using the inflow-
outflow close-loop boundary conditions may require a stringent time step condition, namely, �t = O (h2), for numerical 
stability, while using the limiting boundary conditions will keep the unconditional stability of the proposed scheme. For 
the intermediate regime, the choice will be example-dependent. With either numerical boundary treatment above, the 
symmetry of the resulting linear system to update ρn+1

h will no longer hold.

Remark 6.2. For those examples in Section 6 with Dirichlet boundary conditions, we only consider the isotropic ones, that 
is, when f L and f R are independent of v . When f L and f R are anisotropic and depend on v , the solutions can develop 
boundary layers. Such cases however can not be handled effectively by our proposed boundary treatments. In [22], the 
boundary layer issue was addressed for a finite difference scheme, which is based on a different micro-macro decomposition 
of the governing equation, together with the use of some extra unknown variable near domain boundary.

In our simulations, the velocity space �v is discretized using 16-point Gaussian quadrature, and the operator 〈·〉 is 
replaced by its numerical analogue. The results are obtained with the left-right flux pair alternating flux (3.11). And the 
meshes are uniform unless otherwise specified.

6.2.1. Smooth example with periodic boundary conditions
With σA = G = 0, σs = 1, we consider a smooth example with the initial conditions

ρ(x,0) = sin(x), g(x, v,0) = −v cos(x)

on the domain �x = [−π, π ] with periodic boundary conditions. We carry out the numerical simulations for different 
regimes with ε = 0.5, 10−2 and 10−6. The final time is T = 1.0. The convergence order of the schemes is calculated by 
Richardson extrapolation:

order = R E N = log2
(||uh − uh/2||L1(�x)/||uh/2 − uh/4||L1(�x)

)
.

Here uh is the numerical solution computed with a mesh size h
2 = xR −xL

N . And the numerical error is computed as R N =
||uh − uh/2||L1(�x)/|�x|.

The numerical errors and convergence orders of ρ and j = 〈vg〉 are shown in Tables 6.5-6.7 for the IMEXp-LDGp and 
IMEXp-LDGp-M schemes with p = 1, 2, 3. The optimal p-th order of convergence is observed for all the schemes in all 
regimes. When p = 2, 3, the schemes with the two different weights do not lead to much difference in numerical errors in 
all regimes.

6.2.2. Diffusive and kinetic regimes with isotropic boundary conditions
We here consider an example from [5,23] with isotropic Dirichlet boundary conditions together with zero initial condi-

tion, namely

f L(v, t) = 1, f R(v, t) = 0; f (x, v,0) = 0, x ∈ �x;
σs = 1, σA = 0, G = 0.

The computational domain is �x = [0, 1], with ε = 10−4 for the diffusive regime and ε = 1 for the kinetic regime. For the 
numerical boundary treatments, we apply the inflow-outflow close-loop boundary conditions for ε = 1 and the limiting 
boundary conditions for ε = 10−4. The spatial meshsize is taken to be h = 1/40.

Note that the initial and boundary data on the left boundary are not compatible, and this will lead to a Dirac-δ type 
singularity in q = ∂xρ . In the kinetic regime with ε = 1, this example will impose similar numerical challenge to the methods 
with ω = 1 as the Riemann problem in Section 6.1.2. Related to this, when ε = 1, 0.25�tC F L1 is used for the IMEX1-LDG1 
scheme while 0.125�tC F L3 is used for the IMEX3-LDG3 scheme, in order to get reasonable numerical solutions.

In Fig. 6.7, we plot the computed density ρ . More specifically, the top two rows are for the kinetic regime with ε =
1 by the IMEXp-LDGp (in the first row) and IMEXp-LDGp-M (in the second row) methods, with p = 1, 2, 3. In each 
plot, the computed ρ at times T = 0.1, 0.4, 1.0, 1.6 and 4.0 are presented. It is observed that higher order methods 
capture more details, and additionally, the IMEXp-LDGp-M scheme outperforms the respective IMEXp-LDGp scheme when 
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Table 6.5
L1 errors and orders for the example in Section 6.2.1, IMEX1-LDG1(-M).

ε N IMEX1-LDG1 IMEX1-LDG1-M
RN for ρ Order RN for j Order RN for ρ Order RN for j Order

0.5 10 1.454E-01 – 9.771E-03 – 6.466E-02 – 1.036E-02 –
20 3.367E-02 1.09 5.434E-03 0.85 3.154E-02 1.04 5.613E-03 0.88
40 1.661E-02 1.02 2.809E-03 0.95 1.588E-02 0.99 2.859E-03 0.97
80 8.233E-03 1.01 1.423E-03 0.98 8.013E-03 0.99 1.439E-03 0.99
160 4.101E-03 1.01 7.159E-04 0.99 4.024E-03 0.99 7.212E-04 1.00

10−2 10 7.092E-02 – 1.053E-02 – 7.085E-02 – 1.053E-02 –
20 3.600E-02 0.98 5.340E-03 0.98 3.597E-02 0.98 5.341E-03 0.98
40 1.795E-02 1.00 2.677E-03 1.00 1.793E-02 1.00 2.677E-03 1.00
80 8.969E-03 1.00 1.339E-03 1.00 8.953E-03 1.00 1.339E-03 1.00
160 4.513E-03 0.99 6.703E-04 1.00 4.478E-03 1.00 6.689E-04 1.00

10−6 10 7.084E-02 – 1.055E-02 – 7.084E-02 – 1.055E-02 –
20 3.600E-02 0.98 5.344E-03 0.98 3.600E-02 0.98 5.344E-03 0.98
40 1.795E-02 1.00 2.678E-03 1.00 1.795E-02 1.00 2.678E-03 1.00
80 8.963E-03 1.00 1.339E-03 1.00 8.963E-03 1.00 1.339E-03 1.00
160 4.482E-03 1.00 6.692E-04 1.00 4.482E-03 1.00 6.692E-04 1.00

Table 6.6
L1 errors and orders for the example in Section 6.2.1, IMEX2-LDG2(-M).

ε N IMEX2-LDG2 IMEX2-LDG2-M
RN for ρ Order RN for j Order RN for ρ Order RN for j Order

0.5 10 2.270E-02 – 1.482E-02 – 2.269E-02 – 1.479E-02 –
20 5.677E-03 2.00 3.822E-03 1.96 5.676E-03 2.00 3.806E-03 1.96
40 1.403E-03 2.00 9.524E-04 2.00 1.404E-03 2.02 9.476E-04 2.01
80 3.484E-04 2.01 2.377E-04 2.00 3.483E-04 2.01 2.367E-04 2.00
160 8.678E-05 2.01 5.937E-05 2.00 8.677E-05 2.01 5.915E-05 2.00

10−2 10 2.265E-02 – 1.462E-02 – 2.265E-02 – 1.462E-02 –
20 5.637E-03 2.01 3.773E-03 1.95 5.637E-03 2.01 3.773E-03 1.95
40 1.408E-03 2.00 9.393E-04 2.01 1.408E-03 2.00 9.393E-04 2.01
80 3.518E-04 2.00 2.346E-04 2.00 3.518E-04 2.00 2.346E-04 2.00
160 8.794E-05 2.00 5.863E-05 2.00 8.794E-05 2.00 5.863E-05 2.00

10−6 10 2.262E-02 – 1.467E-02 – 2.262E-02 – 1.467E-02 –
20 5.624E-03 2.01 3.765E-03 1.95 5.624E-03 2.01 3.765E-03 1.95
40 1.404E-03 2.00 9.372E-04 2.01 1.404E-03 2.00 9.372E-04 2.01
80 3.510E-04 2.00 2.340E-04 2.00 3.510E-04 2.00 2.340E-04 2.00
160 8.774E-05 2.00 5.849E-05 2.00 8.774E-05 2.00 5.849E-05 2.00

Table 6.7
L1 errors and orders for the example in Section 6.2.1, IMEX3-LDG3(-M).

ε N IMEX3-LDG3 IMEX3-LDG3-M
RN for ρ Order RN for j Order RN for ρ Order RN for j Order

0.5 10 1.670E-03 – 1.449E-04 – 1.674E-03 – 1.448E-04 –
20 2.069E-04 3.01 1.805E-05 3.01 2.065E-04 3.02 1.797E-05 3.01
40 2.560E-05 3.01 2.258E-06 3.00 2.561E-05 3.01 2.250E-06 3.00
80 3.206E-06 3.00 2.845E-07 2.99 3.206E-06 3.00 2.834E-07 2.99
160 4.014E-07 3.00 3.580E-08 2.99 4.013E-07 3.00 3.566E-08 2.99

10−2 10 1.621E-03 – 1.253E-04 – 1.621E-03 – 1.253E-04 –
20 2.071E-04 2.97 1.558E-05 3.01 2.071E-04 2.97 1.558E-05 3.01
40 2.581E-05 3.00 1.958E-06 2.99 2.581E-05 3.00 1.958E-06 2.99
80 3.223E-06 3.00 2.487E-07 2.98 3.223E-06 3.00 2.487E-07 2.98
160 4.029E-07 3.00 3.183E-08 2.97 4.029E-07 3.00 3.183E-08 2.97

10−6 10 1.619E-03 – 1.248E-04 – 1.619E-03 – 1.248E-04 –
20 2.070E-04 2.97 1.545E-05 3.01 2.070E-04 2.97 1.545E-05 3.01
40 2.581E-05 3.00 1.927E-06 3.00 2.581E-05 3.00 1.927E-06 3.00
80 3.224E-06 3.00 2.407E-07 3.00 3.224E-06 3.00 2.407E-07 3.00
160 4.029E-07 3.00 3.009E-08 3.00 4.029E-07 3.00 3.009E-08 3.00
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Fig. 6.7. The numerical density ρ for the problem in Section 6.2.2. Top row: the results of IMEXp-LDGp schemes in the kinetic regime with ε = 1 at T = 0.1, 
0.4, 1.0, 1.6 and 4.0. Middle row: the results of IMEXp-LDGp-M schemes in the kinetic regime with ε = 1 at T = 0.1, 0.4, 1.0, 1.6 and 4.0. The reference 
solutions for the first two rows are obtained by the first order forward Euler upwind finite difference scheme, with h = 5 × 10−4 and �t = 2.5 × 10−5. 
Bottom row: the results of IMEXp-LDGp-M schemes in the diffusive regime with ε = 10−4 at T = 0.05, 0.15, and 2.0. The reference solution for the 
bottom row is computed by the DG1-IMEX1 scheme in [14], with h = 10−3 and �t = 10−6. From left to right: p = 1, 2, 3.

p = 1, 3. Even though q = ∂xρ contains singularity due to the incompatible initial and boundary data, with the weight 
ω = exp(−ε/h)|ε=1,h=1/40 ≈ 10−18, the ωq term has negligible contribution to the IMEXp-LDGp schemes. In this regime, 
the IMEX-LDG schemes are very closed to the DG-IMEX schemes in [15]. For p = 2, the methods with two weights produce 
comparable results. Again recall that the parabolic type time step condition �t = O (h2) is used for the IMEX2-LDG2 scheme.

When ε = 10−4, the problem is in its diffusive regime and numerical results by the methods with the two weights have 
no visible difference. In the third row of Fig. 6.7, we plot the computed ρ by the IMEXp-LDGp schemes (with p = 1, 2, 3) 
at T = 0.05, 0.15 and 2.0. It is observed that higher order methods have better resolution. We want to mention that if the 
inflow-outflow close-loop boundary condition is applied, the IMEXp-LDGp method is unconditionally stable with p = 1, 2, 
while the IMEX3-LDG3 requires �t = O (h2) for stability (see Remark 6.1).

6.2.3. Intermediate regime with isotropic boundary conditions, varying scattering frequency, and source term
Here we consider an example with isotropic Dirichlet boundary conditions and a constant source, and the scattering 

coefficient σs(x) is spatially varying [23]:

f L(v, t) = 0, f R(v, t) = 0, f (x, v,0) = 0, σs(x) = 1 + (10x)2, σA = 0, G = 1
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Fig. 6.8. The numerical density ρ for the problem in Section 6.2.3 at T = 0.4. The reference solution is obtained by the first order forward Euler upwind 
finite difference scheme, with h = 5 × 10−5 and �t = 1.25 × 10−7 for ε = 10−2.

on �x = [0, 1] and ε = 10−2. The effective Knudsen number is ε
σs(x) at the spatial location x. We want to use this example 

to demonstrate how our methods work in the presence of spatially varying scales.
For the IMEXp-LDGp-M schemes, the weight function is taken to be

ω = exp(− ε

hσ̄s
),

where σ̄s is the average of σs(x) over the spatial domain, namely, σ̄s = 1
|�x|

∫
�x

σs(x)dx. When the schemes are conditionally 
stable, the time step conditions are adjusted. Particularly, we use 0.7�tC F L3 for the IMEX3-LDG3 scheme and 0.75�tC F L3M
for the IMEX3-LDG3-M. No adjustment is needed for other schemes. To impose the boundary conditions numerically, we 
apply the limiting boundary conditions.

In Fig. 6.8, the numerical solutions for ρ are plotted at T = 0.4 with h = 0.025. Since the two weights do not lead to 
visible difference, we only present the results by the IMEXp-LDGp-M methods with p = 1, 2, 3. Due to the spatial variation 
of the scattering coefficient, there is a sharp feature near the right boundary in space. Overall high order schemes with 
p = 2, 3 have better resolution.

6.2.4. Two-material problem
The example we will consider here involve two different materials [23,15],

σs = 0, σA = 1, G = 0, for x ∈ �x,L = [0,1],
σs = 100, σA = 0, G = 0, for x ∈ �x,R = [1,11],
f L(v, t) = 5, f R(v, t) = 0; f (x, v,0) = 0, x ∈ �x,

with �x = �x,L ∪ �x,R . Following [21,23], the parameter ε is set to be 1, meaning that the dimensional variables are used 
here. And the system consists of a purely absorbing slab region �x,L of one mean-free path length, connected to a purely 
scattering slab region �x,R of a thousand mean-free path length that is more diffusive over long time observation. We want 
to use this example to demonstrate our proposed methods applied to such problems in the presence of multiple scales. An 
isotropic configuration of f is introduced to the purely absorbing region �x,L from the left boundary, and it will attenuate 
and become anisotropic (that is, v dependent) before entering the purely scattering region �x,R . An interior layer will arise 
between the absorbing and scattering regions. In our simulation, a non-uniform mesh is used, with the mesh size h = 0.05
in �x,L and h = 0.5 in �x,R . We apply the inflow-outflow close-loop numerical boundary conditions, and the left-right 
numerical fluxes in (3.11) are used for the interior points.
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Fig. 6.9. The computed steady-state density ρ for the problem in Section 6.2.4 at T = 20000. The reference solution is obtained by the first order forward 
Euler upwind finite difference scheme, with h = 5.5 × 10−3 and �t = 10−4.

For this example, even though there is a purely absorbing subregion �x,L , we choose to use the weight function ω =
exp(−ε/(100h)) for the IMEXp-LDGp-M schemes. This choice is based on the scattering coefficient σs = 100 in the purely 
scattering subregion �x,R . We examine the steady state solution by running the simulation over a long time, and the 
computed solutions for density ρ are presented in Fig. 6.9 at T = 20000. Visually, the results of IMEXp-LDGp and IMEXp-
LDGp-M coincide with each other. Only the results of IMEXp-LDGp-M are shown with p = 1, 2, 3. All the schemes match 
the reference solution well. The higher order the scheme is, the better resolution it has.

6.3. Examples with non well-prepared initial data

Finally we consider two examples with non well-prepared initial data in order to demonstrate the effectiveness of the 
proposed initial fixing strategies for accuracy in the presence of the initial layer. Example 1 starts with f (x, v, 0) = (1 +
(v − 0.5)2)(1 + 0.05 cos(x)), while Example 2 has f (x, v, 0) = (1 + ε(v − 0.5)2)(1 + 0.05 cos(x)). They both have ρ(x, 0) =
1 + 0.05 cos(x) and g(x, v, 0) = O (ε−1). The computational domain is �x = [0, 2π ] with periodic boundary conditions. The 
final time is T = 1.0 and ε = 10−6.

Note that 〈v f (x, v, 0)〉 = 0 for Example 1, implying 〈v R0〉 = O (1), and 〈v f (x, v, 0)〉 �= 0 for Example 2, implying 〈v R0〉 =
O (ε−1) according to (5.6). As predicted by the asymptotic analysis (also see Table 5.1), without any initial treatment, the 
IMEXp-LDGp(-M) scheme will be first order accurate for Example 1 and inaccurate for Example 2. And with the initial 
fixing strategies we have proposed, the full accuracy of order p will be achieved. This is confirmed by the results in Table 6.8
and Fig. 6.10 before the fix, and by the full order of accuracy in Table 6.9 after the fixing strategies are applied. Since the 
weight function ω = exp(−ε/h) is very close to 1, the leading digits of the errors obtained by IMEXp-LDGp and IMEXp-
LDGp-M are the same. Only the results of the IMEXp-LDGp-M methods (with p = 1, 2, 3) are shown in error tables. Given 
that the errors and orders are computed based on Richardson extrapolation, we also plot the numerical solutions with the 
fixing strategies and the reference solutions in Fig. 6.10 for Example 2 to make sure the correct solutions are captured 
numerically.

7. Conclusions

In this paper, we design and analyze high order methods based on discontinuous Galerkin spatial discretizations and 
implicit-explicit Runge-Kutta temporal discretizations for linear kinetic transport equations in a diffusive scaling. With 
Fourier type stability analysis, the methods are shown to be unconditionally stable in the diffusive regime ε � 1, and can 
have hyperbolic type stability condition �t = O (εh) in the kinetic regime ε = O (1). The design of the methods takes into 
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Table 6.8
L1 errors and orders by the IMEXp-LDGp-M schemes for Example 1 in 
Section 6.3, ε = 10−6, T = 1, without any initial fixing strategy.

Scheme N RN for ρ Order RN for j Order

p = 1 10 4.264E-03 – 5.049E-04 –
20 2.115E-03 1.01 2.519E-04 1.00
40 1.064E-04 0.99 1.245E-04 1.02
80 5.309E-04 1.00 6.199E-05 1.01
160 2.652E-04 1.00 3.091E-05 1.00

p = 2 10 8.290E-04 – 9.376E-04 –
20 4.768E-04 0.80 3.629E-04 1.37
40 2.641E-04 0.85 1.815E-05 1.00
80 1.402E-04 0.91 9.410E-05 0.95
160 7.232E-05 0.96 4.829E-05 0.96

p = 3 10 1.745E-04 – 1.883E-04 –
20 9.763E-05 0.84 7.476E-05 1.33
40 5.138E-05 0.93 3.546E-05 1.08
80 2.614E-05 0.97 1.758E-05 1.01
160 1.315E-05 0.99 8.783E-05 1.00

Table 6.9
L1 errors and orders by the IMEXp-LDGp-M schemes for Examples 1 and 2 in Section 6.3, ε = 10−6, T = 1.0 with initial fixing 
strategy.

Scheme N Example 1 Example 2

RN for ρ Order RN for j Order RN for ρ Order RN for j Order

p = 1 10 Full accuracy is achieved without fixing strategy 2.587E-03 – 5.760E-04 –
20 1.583E-03 0.71 2.789E-04 1.05
40 8.589E-04 0.88 1.374E-04 1.02
80 4.462E-04 0.94 6.807E-05 1.01
160 2.271E-04 0.97 3.387E-05 1.01

p = 2 10 1.144E-03 – 8.299E-04 – 1.049E-03 – 8.372E-04 –
20 2.815E-04 2.02 1.884E-04 2.14 2.474E-04 2.08 1.657E-04 2.34
40 7.024E-04 2.00 4.687E-05 2.01 6.154E-05 2.01 4.108E-05 2.01
80 1.755E-05 2.00 1.170E-05 2.00 1.536E-05 2.00 1.025E-05 2.00
160 4.387E-06 2.00 2.925E-06 2.00 3.840E-06 2.00 2.560E-06 2.00

p = 3 10 8.381E-05 – 5.375E-05 – 7.864E-05 – 5.367E-05 –
20 1.035E-05 3.02 6.896E-06 2.96 1.046E-05 2.92 6.965E-06 2.95
40 1.290E-06 3.00 8.601E-07 3.00 1.332E-06 2.97 8.877E-07 2.97
80 1.612E-07 3.00 1.074E-07 3.00 1.681E-07 2.99 1.121E-07 2.99
160 2.014E-08 3.00 1.343E-08 3.00 1.955E-08 3.10 1.522E-08 2.88

Fig. 6.10. The numerical density ρ computed by the IMEXp-LDGp-M methods with (left) and without (right) the initial fixing strategy for Example 2 
in Section 6.3. Here ε = 10−6, T = 1.0, N = 320. Reference solutions are computed by the forward Euler central difference scheme solving the limiting 
diffusion equation with N = 2000.
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account the initial layer which may be present in the solutions, and in particular when the initial data is not well-prepared, 
initial fixing strategies are proposed in the first one or two time steps to overcome the possible accuracy reduction or loss 
for ε � 1. The overall schemes are shown to be asymptotically preserving, namely the methods in the limit of the ε → 0
are consistent and high order discretizations for the limiting diffusive equation with the asymptotically consistent initial 
condition. In an ongoing project, an energy-based numerical stability will be performed, together with the error estimates 
as well as a rigorous asymptotic analysis.

The proposed methods are based on a reformulated form of the underlying model, by adding and subtracting a weighted 
diffusion term. Even though such idea is not new, our analysis provides mathematical understanding about the desired 
properties (not all known previously) of the weight function. One can refer to Theorem 4.1 and Theorem 4.3 that suggest 
how the weight function depends on the model and discretization parameters ε, h, �t , and one can also see equations (2.6)
and (5.13) for the desired properties on the magnitude of the weight function to ensure the AP property. On the algebraic 
level, the implicit part that needs to be solved globally comes from a discrete Poisson operator. The methods in this work 
can be combined with fast computation techniques for scattering operators to simulate physically more relevant kinetic 
transport models involving multiple scales. Some other issues that are not addressed here include positivity preserving 
technique and boundary layer treatments.
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Appendix A. AP methods with a different implicit-explicit strategy: accuracy reduction

In order for us to achieve AP methods with high order accuracy for a broad range of ε, it seems important that the 
numerical solutions stay sufficiently close to the local equilibrium in the diffusive regime, namely, gn + v∂xρ

n = O (ε). This 
property is guaranteed by our proposed implicit-explicit strategy (at least for n ≥ 2, also see Section 5). To help with the 
understanding, we here take a closer look at a family of AP methods, that is closely related to our proposed methods except 
using a different implicit-explicit strategy as in (3.2) [23]. Our study here show that with an insufficient approximation of 
the local equilibrium at the discrete level, formally high order AP methods can reduce to first order temporal accuracy in g
(at least) in the diffusive regime with ε � 1, and this reduction may further affect the accuracy in f = ρ + εg .

Since the root of the issue lies in the temporal discretization, particularly in the implicit-explicit strategy, we will start 
with a first order in time discretization based on an implicit-explicit strategy as in (3.2), and consider

ρn+1 − ρn

�t
+ ∂x〈vgn+1〉 + ω〈v2〉∂xxρ

n = ω〈v2〉∂xxρ
n+1, (A.1a)

gn+1 − gn

�t
+ 1

ε
(I − �)(v∂x gn) + 1

ε2
v∂xρ

n = − 1

ε2
gn+1. (A.1b)

By combining this new implicit-explicit strategy with the second order ARS(2, 2, 2) method and the third order ARS(4, 4, 3) 
method, we will have the formally second and third order in time method, referred to as the IMEX2-LM scheme and the 
IMEX3-LM scheme, respectively.

A.1. Formal analysis in the limit of ε → 0

Without loss of generality, we next will focus on the IMEX2-LM scheme in our analysis. We consider the diffusive regime 
with ε � 1, and assume ω = 1 (see the property in (2.6)). Given the numerical solution ρn, gn at tn , we update ρn+1, gn+1

at tn+1 by the IMEX2-LM scheme as follows.

ρn,(0) = ρn, gn,(0) = gn, (A.2a)

ρn,(1) = ρn − γ �t
(
〈v2〉∂xxρ

n,(0) + ∂x〈vgn,(1)〉 − 〈v2〉∂xxρ
n,(1)

)
, (A.2b)

gn,(1) = gn − γ �t

(
1

ε
(I − �)(v∂x gn,(0)) + 1

ε2
v∂xρ

n,(0) + 1

ε2
gn,(1)

)
, (A.2c)

ρn+1 = ρn − �t〈v2〉(δ∂xxρ
n,(0) + (1 − δ)∂xxρ

n,(1)) (A.2d)
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− (1 − γ )�t
(
∂x〈vgn,(1)〉 − 〈v2〉∂xxρ

n,(1)
)

− γ �t
(
∂x〈vgn+1〉 − 〈v2〉∂xxρ

n+1
)

,

gn+1 = gn − δ�t

(
1

ε
(I − �)(v∂x gn,(0)) + 1

ε2
v∂xρ

n,(0)

)
(A.2e)

− (1 − δ)�t

(
1

ε
(I − �)(v∂x gn,(1)) + 1

ε2
v∂xρ

n,(1)

)
− �t

ε2

(
(1 − γ )gn,(1) + γ gn+1

)
.

As ε → 0, we formally obtain

ρn,(0) = ρn, ρn,(1) = ρn + γ �t〈v2〉∂xxρ
n,(1), (A.3a)

ρn+1 = ρn + �t〈v2〉
(
(1 − γ )∂xxρ

n,(1) + γ ∂xxρ
n+1
)

, (A.3b)

an implicit discretization of the limiting diffusive equation (2.4) to solve ρ , with its second order accuracy directly inherited 
from the IMEX-RK ARS(2, 2, 2) method. This implies the AP property of the IMEX2-LM scheme. On the other hand, the 
variable g is approximated by

gn,(0) = gn, gn,(1) = −v∂xρ
n,(0), (A.4a)

(1 − γ )gn,(1) + γ gn+1 = −δv∂xρ
n,(0) − (1 − δ)v∂xρ

n,(1) (A.4b)

as ε → 0, and this further gives

gn+1 = 1 − δ − γ

γ
v∂xρ

n,(0) − 1 − δ

γ
v∂xρ

n,(1). (A.5)

Next we will argue that the scheme for g in (A.4) is only of first order accuracy. By taking a spatial derivative over 
the IMEX2-LM scheme (A.2), it is not hard to see that in the limit of ε → 0, ∂xρ is approximated by the same second 
order scheme as (A.3). Hence to show gn+1 being first order accurate boils down showing gn+1 + v∂xρ

n+1 being first order 
accurate. Based on the limiting scheme (A.4)-(A.5),

gn+1 + v∂xρ
n+1 = 1 − δ − γ

γ
v∂xρ

n − 1 − δ

γ
(v∂xρ

n + γ �t〈v2〉v∂xxxρ
n,(1))

+
(

v∂xρ
n + �t〈v2〉v

(
(1 − γ )∂xxxρ

n,(1) + γ ∂xxxρ
n+1
))

= �t〈v2〉v
(
(δ − γ )∂xxxρ

n,(1) + γ ∂xxxρ
n+1
)

= δ�t〈v2〉v∂xxxρ
n + O (�t2). (A.6)

Recall that in the limit of ε → 0, the exact solution satisfies g + v∂xρ = 0. This, combined with (A.6), indicates the local 
truncation error to preserve this local equilibrium is first order in �t , so is that for g in the limit of ε → 0. This reduced 
order of accuracy will be subsequently carried over to the IMEX2-LM scheme with ε � 1 in the diffusive regime (say, under 
some uniform boundedness assumptions for the continuous and discrete solutions as at the beginning of Section 5). With 
similar analysis, one can formally shown that the IMEX3-LM scheme is first order accurate when approximating g in the 
diffusive regime. Given that f = ρ + εg , the accuracy reduction in g can further affect the accuracy for f .

A.2. Numerical study

We here will report some numerical tests to support and complement our formal analysis. For the IMEXp-LM scheme 
(p = 2, 3), we combine it with the LDG spatial discretization in Section 3.2 with the discrete space U p−1

h , and the weight 
function is taken to be ω = exp(−ε/h). The resulting method is referred to as the IMEXp-LDGp-M-LM scheme, with the 
time step set as �t = �tC F LpM as defined in (6.2e) and (6.2f) for p = 2, 3, respectively. The choice of the time steps by no 
means is optimal.

We consider the example in Section 6.1.1 from the telegraph equation. In Table A.10, we report the L1 errors and orders 
for j = 〈vg〉 when ε = 10−6 on spatial meshes of N = 10, 20, · · · , 320 elements, and the first order accuracy in g is ob-
served. As a comparison, our proposed methods with the same weight function approximate j with the designed p-th order 
accuracy (p = 2, 3), see Tables 6.3-6.4. Note that with this ε, the errors in εg are rather small, hence the order reduction 
in g does not affect the accuracy order of f = ρ + εg on the meshes we used. We further test the IMEXp-LDGp-M-LM 
scheme (p = 2, 3) in relatively more kinetic regimes with ε = 10−2, 0.5, and the full p-th order accuracy is observed for j
as designed. The results are omitted.

Finally we consider a more interesting case with ε = 10−3 when the problem is in a relatively intermediate regime. In 
Table A.11, the L1 errors and orders of both ρ and j as well as the L1∗ errors and orders of f are reported for the IMEX3-
LDG3-M-LM and IMEX3-LDG3-M schemes on spatial meshes of N = 10, 20, · · · , 640. Here ||φ||L1∗ := 〈||φ||L1(�x)

〉. A few 
observations can be made.
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Table A.10
L1 errors and orders of j = 〈vg〉 for the example in Section 6.1.1 with ε = 10−6: 
IMEXp-LDGp-M-LM with p = 2, 3, and ω = exp(−ε/h).

ε N IMEX2-LDG2-M-LM IMEX3-LDG3-M-LM

L1 error of j Order L1 error of j Order

10−6 10 1.303E-02 – 2.952E-02 –
20 6.652E-03 0.97 1.518E-02 0.96
40 3.254E-03 1.03 7.629E-03 0.99
80 1.642E-03 0.99 3.658E-03 1.06
160 8.164E-04 1.01 1.826E-03 1.00
320 4.071E-04 1.00 9.029E-04 1.02

Table A.11
L1 errors of ρ , j = 〈vg〉 and L1∗ errors of f as well as the respective convergence orders, for the example in Section 6.1.1 with 
ε = 10−3: IMEX3-LDG3-M-LM and IMEX3-LDG3-M, and ω = exp(−ε/h). Here ||φ||L1∗ := 〈||φ||L1(�x)

〉.

N L1 error of ρ Order L1 error of j Order L1∗ error of f Order

IMEX3-LDG3-M-LM 10 1.867E-04 – 1.515E-02 – 1.868E-04 –
20 2.366E-05 2.98 7.642E-03 0.99 2.403E-05 2.96
40 2.951E-06 3.00 3.658E-03 1.06 4.254E-06 2.50
80 3.694E-07 3.00 1.825E-03 1.00 1.826E-06 1.22
160 4.627E-08 3.00 9.022E-04 1.02 9.022E-07 1.02
320 5.720E-09 3.02 1.630E-07 12.4 5.720E-09 7.30
640 7.157E-10 3.00 1.390E-08 3.55 7.156E-10 3.00

IMEX3-LDG3-M 10 1.867E-04 – 2.233E-04 – 1.867E-04 –
20 2.366E-05 2.98 2.749E-05 3.02 2.366E-05 2.98
40 2.951E-06 3.00 3.452E-06 2.99 2.951E-06 3.00
80 3.691E-07 3.00 4.284E-07 3.01 3.691E-07 3.00
160 4.611E-08 3.00 5.354E-08 3.00 4.611E-08 3.00
320 5.720E-09 3.01 6.668E-09 3.01 5.720E-09 3.01
640 7.155E-10 3.00 8.338E-10 3.00 7.155E-10 3.00

• First of all, the accuracy for ρ is third order as designed for both schemes, with errors of two methods being compara-
ble.

• Secondly, while the computed g by our proposed IMEX3-LDG3-M scheme is of full third order accuracy, that by the 
IMEX3-LDG3-M-LM scheme is only of first order accuracy on relatively coarser meshes with N = 10, · · · , 160. When 
N = 320, 640, the problem is now in a more kinetic regime with respect to the discretization parameter �t and h, and 
the convergence order for g by the IMEX3-LDG3-M-LM scheme improves. One should note that with the time step 
taken according to (6.2f), we have used �t = 0.982 × 10−2 for N = 160, and �t = 0.559 × 10−5 for N = 320. The drastic 
change in the time step size may also contribute to the significant error drop when N = 320, 640. On all meshes we 
examined, the errors in g by the IMEX3-LDG3-M-LM scheme are always larger.

• Finally if we examine the errors and orders in f = ρ + εg , the order reduction is most pronounced when N = 80, 160. 
Note that with a fixed ε, smaller N corresponds to a relatively more diffusive regime, and larger N corresponds to a 
relatively more kinetic regime.

Based on the tests above, one can see that the AP methods based on the implicit-explicit strategy as in (A.1) result in 
order reduction in g in relative diffusive regimes, and this reduction can further affect the accuracy in f . A mathematically 
more rigorous analysis would be needed to fully understand our observations.
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