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Abstract

The recently developed quadrature by expansion (QBX) technique [24] accu-
rately evaluates the layer potentials with singular, weakly or nearly singular,
or even hyper singular kernels in the integral equation reformulations of par-
tial differential equations. The idea is to form a local complex polynomial or
partial wave expansion centered at a point away from the boundary to avoid
the singularity in the integrand, and then extrapolate the expansion at points
near or even exactly on the boundary. In this paper, in addition to the local
complex Taylor polynomial expansion, we derive new representations of the
Laplace layer potentials using both the local complex polynomial and plane
wave type expansions. Unlike in the QBX, the local complex polynomial
expansion in the new quadrature by two expansions (QB2X) method only
collects the far-field contributions and its number of expansion terms can be
analyzed using tools from the classical fast multipole method (FMM). The
plane wave type expansion in the QB2X method is derived by first applying
the Fourier extension technique to the density and polynomial approximation
of the boundary geometry, and then analytically evaluating the integral using
the Residue Theorem with properly chosen complex contour. The plane wave
type expansion accurately captures the high frequency properties of the layer
potential that are determined (up to a prescribed accuracy) only by the local
features of the density function and boundary geometry, and the nonlinear
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impact of the boundary on the layer potential becomes explicit. The QB2X
technique allows high order numerical discretizations and can be adopted
easily in existing FMM based fast integral equation solvers. We present
preliminary numerical results to validate our analysis and demonstrate the
accuracy and efficiency of the QB2X representations when compared with
the classical QBX method.

Keywords: Layer Potential, Quadrature by Expansion, Partial Wave
Expansion, Plane Wave Expansion, Fourier Extension, Residue Theorem,
Integral Equation
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1. Introduction

When the integral equation method is applied to solve a given partial
differential equation, one numerical challenge is the accurate and efficient
evaluation of the singular, weakly singular, or hyper singular integrals rep-
resenting different potentials in the integral equation reformulations. For
example, the solutions of a homogeneous elliptic equation (e.g., Laplace,
Helmholtz, or Yukawa equations) with different types of boundary condi-
tions are often re-expressed as combinations of the single layer and double
layer potentials with density functions ρ(z) and µ(z)

SLPρ(w) =

∫
Γ

G(w, z)ρ(z)dz,

DLPµ(w) =

∫
Γ

∂G

∂nz
(w, z)µ(z)dz,

(1)

where G is the free-space Green’s function for the underlying elliptic PDE, z
is the source point located on the boundary Γ, w is any target point located
in the computational domain, and nz is the outward normal vector at z ∈ Γ.
The Green’s function G(w, z) is usually a smooth function when w is away
from z on the boundary Γ, but becomes singular when w → z. Therefore,
different numerical strategies have to be designed for cases when w is far away
from the boundary, exactly on the boundary, and close to the boundary.

The research topics of developing different numerical integration schemes
for evaluating the layer potentials at a particular point w for different cases
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have been extensively studied. When w is far away from the boundary, clas-
sical Newton-Cotes or Gaussian quadratures for a general smooth integrand
can be applied; when w is located on the boundary, special quadrature rules
can be designed, for example, the trapezoidal rule with end-point corrections
in [1, 2, 23, 27, 31] or the generalized Gauss quadrature rules in [6, 7, 34];
and when w is close to the boundary, existing techniques include the change
of variables to remove the principal singularity and the regularized kernel
and corrections using asymptotic analysis [4, 9, 15, 20]. We particularly
mention the pioneering work in [21] which applies the Barycentric Lagrange
polynomial interpolation formula to derive a globally compensated spectrally
accurate quadrature rule for evaluation at points close to the boundary (also
see [3]); and the pioneering “quadrature by expansion” (QBX) scheme in
[24] which derives a partial wave (harmonics) expansion valid in a region
close to (or even containing points on) the boundary. The QBX scheme has
been combined with the fast multipole method (FMM) in [30] for solving the
integral equation reformulation of PDEs.

In this paper, we introduce new representations of the Laplace layer po-
tentials that are valid in the entire leaf (childless) box in the FMM hierar-
chical tree structure. As the representation can be evaluated at any point
in the box, the numerical scheme also belongs to the class of “quadrature
by expansion” (QBX) schemes to evaluate the layer potential integrals. In
Fig. 1, the leaf boxes in a uniform FMM tree with 4 levels are categorized into
three groups: The green boxes are well separated from the boundary source
points, from established fast multipole method (FMM) theory [17, 18], the
layer potential at each target point in the box can be represented by a com-
plex Taylor polynomial expansion which is referred to as the local expansion
of the green box in the FMM algorithm. Both the red and yellow boxes
are not well separated from the boundary, and each of the red boxes con-
tains target points located both inside and outside the boundary, hence two
separate solution representations become necessary, one for the interior and
one for the exterior. For the red and yellow boxes, contributions from the
well-separated curved boundary segments of the layer potential can still be
represented using the complex local Taylor polynomial expansion, which can
be efficiently computed using the FMM through the upward and downward
passes for the “far-field” contributions of the sources. The numerical diffi-
culty is the accurate representation and efficient evaluation of the near-field
source contributions.

Using both the complex local Taylor polynomials and plane wave (expo-
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Figure 1: Different expansions for the leaf boxes in a uniform FMM hierarchical tree
structure. Green: complex polynomial expansion; Yellow: one QB2X for the leaf node;
Red: two QB2X required, one for the interior and one for the exterior.

nential) functions in the basis, we propose a new representation of the 2D
layer potential in this paper for the red and yellow boxes due to the near-field
layer potential source contributions. Combining both the far-field and near-
field (local) density contributions, the main contribution of this paper is that
the Laplace layer potentials inside each 2D leaf box of the FMM hierarchical
tree structure can be represented as the sum of two expansions

K∑
k=0

ck(w−w0)k +

 ∑
=(w̃j)>0

P∑
p=0

ωp
eλpw̃j

1 + is′(w̃j)
+

∑
=(w̃j)<0

−1∑
p=−P

ωp
eλpw̃j

1 + is′(w̃j)

 .

(2)
Here, w = x+iy is a target point in the leaf box centered at w0, the boundary
is described by z = x̃ + is(x̃), {w̃j} is the set of the roots of the degree J
polynomial equation z+is(z)−w = 0 when w is inside either the red or yellow
boxes (assuming s(0) = s′(0) = 0 after proper translations and rotations), ck
and ωp are the complex coefficients of the polynomial and plane wave type
expansions, respectively, the complex number λp is referred to as the node
for the exponential (plane wave) expansion, =(w̃j) > 0 and =(w̃j) < 0 are
respectively the roots on the upper half and lower half complex plane, K
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and P are respectively the numbers of terms in the local Taylor polynomial
and plane wave expansions (no exponential expansion for a green box), and
when a root w̃j is a multiple root, the exponential type summations in the
formula are considered in the limit sense involving higher order derivatives
of the density function as in the classical Residue Theorem.

The local complex polynomial expansion only collects the far-field con-
tributions and its number of expansion terms K can be analyzed using the
established error analysis from the classical fast multipole method (K = 9,
18, 27, and 36 for 3, 6, 9, and 12 digits accuracy, respectively). The plane
wave type expansion is derived by first applying the Fourier extension tech-
nique to the density function and polynomial approximation of the boundary
geometry, then analytically utilizing the Residue Theorem for properly cho-
sen complex contour integrals for optimal numerical stability. The number
of terms P is the same as the number of terms required in the Fourier ex-
tensions. Note that two different types of basis functions are used in the
representation of the layer potential, hence we refer to our approach as the
quadrature by two expansions (QB2X). In harmonic analysis, the redundant
basis functions form a frame [10, 14]. Compared with classical QBX, the
QB2X representation of the layer potential is valid in a much larger region
and allows easier analysis of the error and its dependency on the numbers of
expansion terms. Another nice feature of the new representation is that the
nonlinear impact of the boundary on the layer potential becomes explicit in
Eq. (2), providing an analytical tool useful for other applications, e.g., Eq. (2)
demonstrates that up to a prescribed error tolerance, the high frequency fea-
tures of the layer potential is determined only by the local properties of the
density and boundary geometry functions, suggesting that the augmented or
deflated Krylov subspace methods may become applicable to accelerate the
convergence of the Krylov iterations.

We organize this paper as follows. In Sec. 2, we review the classical QBX
and the well-established Fourier extension technique which form the founda-
tion of the QB2X technique. In Sec. 3, we derive the new representations for
the single and double layer potentials in the red and yellow boxes using both
the complex Taylor polynomial and plane wave basis functions. In Sec. 4,
we present preliminary numerical experiments to validate our analysis and
demonstrate the accuracy and efficiency of the QB2X representations when
compared with the classical QBX method. Finally in Sec. 5, we summa-
rize our results and discuss our current work to generalize QB2X to layer
potentials for other types of equations in both two and three dimensions.

5



2. Preliminaries

The new quadrature by two expansions (QB2X) technique uses two dif-
ferent basis functions, the complex polynomial expansion (also referred to
as the local expansion in the fast multipole method) and the plane wave
type expansion using exponential functions. In this section, we present (a)
the original QBX [24] which introduces the complex polynomial expansion
(or partial waves for the Helmholtz and Yukawa equations) to evaluate layer
potentials and (b) the Fourier extension technique [5, 8, 22] which will pro-
vide explicit formulas for the plane wave type expansion in the new QB2X
technique.

2.1. Quadrature by Expansion: Evaluating Layer Potential Using Complex
Polynomial Expansion

Assuming both the density function and boundary curve are sufficiently
smooth, to evaluate the singular, near-singular, or hyper-singular layer poten-
tials, in [24], it was observed that the layer potentials are smooth functions on
either side of the boundary, and the integrand singularity is only associated
with the non-smoothness across the boundary. Therefore the polynomial
expansion of the Laplace layer potential centered at a point either in the
interior or exterior of the boundary is valid at least locally. In Fig. 2, we
consider a Laplace layer potential explicitly given by <

(
ei5z
)

= <
(
ei5(x+iy)

)
in a box 0 < x, y < 1 where z = x + iy is the complex variable. The box
contains part of the boundary given by the equation ỹ = s(x̃) = 1

3
(x̃ − 1

2
)2.

We assume the polynomial expansion is in the form <
(∑K

k=0 ck(w − w0)k
)

centered at w0 = 1/2 + 1/3i. We neglect the numerical errors when evalu-
ating the expansion coefficients, i.e., the coefficients are derived exactly. we
plot the errors of the local polynomial representation when K = 5, K = 15,
and K = 25, respectively. Clearly, when the number of expansion terms K
increases, the error decreases and the representation becomes valid in a much
larger region.

The classical local expansion in the FMM algorithm is indeed a QBX
scheme which allows standard FMM error analysis for the well separated
boxes, e.g., for the green boxes in Fig. 1. Assuming the coefficients are com-

puted accurately, then the local expansion in the form <
(∑K

k=0 ck(w − w0)k
)

can achieve 6-digits accuracy when K is approximately 18 and 12-digits accu-
racy when K = 36. However, the error control for evaluating the layer poten-
tial at points in the red or yellow boxes becomes more complicated, mostly
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Figure 2: An implementation of QBX: errors for K = 5, K = 15, and K = 25.

due to the extremely nonlinear contributions from the complex boundary
geometry. In [24], the choice of the local complex polynomial expansion cen-
ter, the degree of the polynomial, and the quadrature schemes for computing
the expansion coefficients are numerically studied to provide guidelines for
parameter selection. In [16], estimates for the rate of convergence of these
local expansions are derived, which can be used to analyze the approximation
error of the local Taylor expansions in a leaf box. In existing FMM+QBX
implementation [30], for evaluation points in one leaf node, several complex
polynomial expansions may have to be formed with different expansion cen-
ters and degrees, unless the FMM hierarchical tree oversamples the density
and boundary geometry. We also mention that the boundary description
(x, s(x)) does not explicitly appear in the QBX method, which will be ad-
dressed in the new QB2X method in Sec. 3.

2.2. Fourier Extension: Approximation Using Exponentials

Compared with a polynomial basis, the exponential expansions, if they
can be derived accurately and efficiently, may show better numerical prop-
erties in efficiency. One example is the translations in the FMM algorithms.
When the exponential (plane wave) expansions are used, the translations
become diagonal and the number of operations is reduced from the poly-
nomial expansion’s O(K2) to the plane wave expansion’s O(K) when K
terms are used in both expansions [11, 12, 19]. Unfortunately, deriving the
optimal exponential expansion for a general function requires nonlinear op-
timization, and the uniqueness of the solution is not guaranteed. However,
in some particular cases, a good exponential expansion approximation can
be derived. For example, when the function is smooth and periodic, then
the Fourier series can be computed efficiently and the expansion converges
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Figure 3: (a) and (c): Fourier extension g(x) =
∑P

p=−P cpe
ipx (solid line) of the given

function f (dashed line), P = 30, T = π. (b) and (d): approximation errors on [−1, 1].

rapidly. Another example is when the inverse integral transform of the func-
tion is available, then the exponential expansion problem becomes an inte-
gration problem, and the weights and nodes of the exponential expansions
can be computed using the generalized Gauss quadrature method [26, 34].
Using the Fourier series to approximate a non-periodic function is also a
well-studied topic. Consider a non-periodic function f on [−1, 1], applying
the Fourier extension technique, a suitable periodic function g on a larger
domain [−T, T ] (T > 1) is computed stably, so the Fourier series expansion
of g matches f on the interval [−1, 1], see [5, 8, 22] and references therein.
We have implemented the scheme in [22], which solves the least square op-
timization problem to compute an accurate Fourier series representation of
a smooth function defined on [−1, 1]. In Fig. 3, we present the computed
Fourier series with fundamental period 2π for the two Chebyshev basis poly-
nomials T1(x) = x and T2(x) = 2x2−1. The Fourier series approximation on
[−1, 1] achieves machine precision accuracy for both cases. Using the Fourier
extension technique, a translation matrix can be precomputed to map the
commonly used Chebyshev or other orthogonal polynomial basis functions
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to the Fourier basis functions that are periodic in a larger domain.

3. Quadrature by Two Expansions: Combining Complex Polyno-
mial and Plane Wave Expansions

3.1. Problem Setup

As all the far-field layer potential density contributions can be accurately
and efficiently computed using the fast multipole method, in this section, we
focus on the near-field (local) density contributions to the red and yellow
boxes in Fig. 1. Consider a target point w = x + iy in one of the red
or yellow boxes. We assume the boundary is parametrically described by
z = x̃ + is(x̃),−1 ≤ x̃ ≤ 1 and s(0) = 0, s′(0) = 0 after proper scaling,
translation, and rotation as in Fig. 4. One of the yellow leaf boxes is shown
and we assume the two end points (−1, s(−1)) and (1, s(1)) are well-separated
from this leaf box with center w0. We assume both the density function ρ(x̃)
and boundary s(x̃) are well approximated by some expansion representations
for −1 ≤ x̃ ≤ 1. In previous work in [30], polynomial expansions are used
and the degree of the polynomials to approximate s(x̃) is usually chosen to be
less than that of ρ(x̃). Next, we present the detailed representation formulas

x

y
(−1, 0) (1, 0)

(0,−1)

Leaf Box

Figure 4: A leaf box close to the boundary.

for the single and double layer potentials

SLPρ(w) =

∫ 1

−1

G(w, z)ρ(x̃)|z′(x̃)|dx̃,

DLPρ(w) =

∫ 1

−1

∂G

∂nz
(w, z)ρ(x̃)|z′(x̃)|dx̃

(3)
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where w = x+iy is the target point in the yellow or red leaf box, z = x̃+is(x̃)
is the source point on the boundary, and |z′(x̃)| =

√
1 + s′(x̃)2.

3.2. Laplace Layer Potentials as Complex Contour Integrals

We start from the double layer potential to avoid the branch cut analysis
of the log function in the kernel. To evaluate the double layer potential at the
target point w = x+ iy in a yellow or red leaf box, the contribution from the
source density function ρ(x̃) defined on the boundary segment z = x̃+ is(x̃),
−1 ≤ x̃ ≤ 1, becomes

DLP (w) =

1∫
−1

∂G(w, z)

∂nz
ρ(x̃) |z′(x̃)| dx̃

=
1

2π

1∫
−1

〈x− x̃, y − s(x̃)〉
(x− x̃)2 + (y − s(x̃))2

· 〈s
′(x̃),−1〉√
1 + s′(x̃)2

ρ(x̃)
√

1 + s′(x̃)2dx̃

=
1

2π

1∫
−1

(x− x̃)s′(x̃)− (y − s(x̃))

(x− x̃)2 + (y − s(x̃))2
ρ(x̃)dx̃

(4)

where ∂G
∂nz

= 1
2π

w−z
‖w−z‖ ·nz(x̃), nz(x̃) = 〈s′(x̃),−1〉√

1+s′(x̃)2
. In order to apply the complex

contour integral theory and Residue Theorem, using

1

w − z
=

w − z
(w − z)(w − z)

=
(x− x̃)− i(y − s(x̃))

(x− x̃)2 + (y − s(x̃))2
,

we get

<
(

1

w − z
s′(x̃)

)
=

(x− x̃)s′(x̃)

(x− x̃)2 + (y − s(x̃))2
,

=
(

1

w − z

)
=

−(y − s(x̃))

(x− x̃)2 + (y − s(x̃))2
.
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The double layer potential becomes the sum of the complex contour integrals

DLP (w) =
1

2π

1∫
−1

<
(

1

w − z

)
s′(x̃)ρ(x̃)dx̃+

1

2π

1∫
−1

=
(

1

w − z

)
ρ(x̃)dx̃

=
1

2π
<

1∫
−1

s′(x̃)ρ(x̃)

w − (x̃+ is(x̃))
dx̃+

1

2π
=

1∫
−1

ρ(x̃)

w − (x̃+ is(x̃))
dx̃.

(5)

Next we consider the single layer potential

SLP (w) =
1

2π

1∫
−1

log |w − z|ρ(z)dz

=
1

2π

1∫
−1

1

2
log
(
(x− x̃)2 + (y − s(x̃))2

)
ρ(x̃) |1 + is′(x̃)| dx̃

=
1

4π

1∫
−1

log
(
(x− x̃)2 + (y − s(x̃))2

)
ρ̃(x̃)dx̃

(6)

where ρ̃(x̃) = ρ(x̃) |1 + is′(x̃)| . We apply the integration by parts to avoid
the discussions of the branch cut in the kernel function as follows: We first
use the Fourier extension technique to represent the real function ρ̃(x̃) as

ρ̃(x̃) =
P∑

p=−P
ωpe

ipx̃, and define

f(x̃) =
P∑

p=−P,p6=0

ωp
ip
eipx̃ + ω0x̃,

11



which is a particular anti-derivative of ρ̃(x̃) as f ′(x̃) = ρ̃(x̃). Using f we have

SLP (w) =
1

2π

1∫
−1

1

2
log((x− x̃)2 + (y − s(x̃))2)df(x̃)

=
1

4π
log((x− x̃)2 + (y − s(x̃))2)f(x̃)|1−1

+
1

2π

1∫
−1

(x− x̃) + (y − s(x̃))s′(x̃)

(x− x̃)2 + (y − s(x̃))2
f(x̃)dx̃

=I1 + I2.

(7)

The I1 term can be evaluated directly or translated into a local expansion as
both end points are well-separated from the leaf box containing w = x+ iy.
For I2, simple algebra shows that

I2 =
1

2π

1∫
−1

(x− x̃)f(x̃)

(x− x̃)2 + (y − s(x̃))2
dx̃+

1

2π

1∫
−1

(y − s(x̃))s′(x̃)f(x̃)

(x− x̃)2 + (y − s(x̃))2
dx̃

=
1

2π
<

1∫
−1

f(x̃)

w − (x̃+ is(x̃))
dx̃− 1

2π
=

1∫
−1

s′(x̃)f(x̃)

w − (x̃+ is(x̃))
dx̃.

(8)

In summary, the Laplace layer potentials can be represented as combi-
nations of different complex contour integrals. We therefore focus on the
complex integral

1∫
−1

f(x̃)

(x̃+ is(x̃))− w
dx̃. (9)

3.3. Explaining QB2X using Straight Line Boundary (s(x̃) = 0)

We present the ideas of the QB2X method using the case when s(x̃) = 0
to simplify the discussions and formulas, i.e., z is on the straight line segment
connecting (−1, 0) and (1, 0). In this case, Eq. (9) becomes

1∫
−1

f(z)

z − w
dz.
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As f(z) is a function defined on the real line segment, the Fourier exten-
sion technique can be applied directly or using the precomputed translation
operator from the polynomial basis to the Fourier series to derive

f(z) ≈
P∑

p=−P

ωpe
ipz

and Eq. (9) becomes

1∫
−1

f(z)

z − w
dz ≈

1∫
−1

1

z − w

P∑
p=−P

ωpe
ipzdz

=

1∫
−1

P∑
p=0

1

z − w
ωpe

ipzdz +

1∫
−1

−1∑
p=−P

1

z − w
ωpe

ipzdz

= I1 + I2,

(10)

where I1 only contains the non-negative p frequencies and I2 contains the
negative ones.

1−1 x

y

O

I1 contour

××w

S+

−1 1

L

x

y

O

S−

I2 contour

×w

Figure 5: The upper (left) and lower (right) contours for I1 and I2, respectively.

We first study I1 as a portion of the contour integral

P∑
p=0

∫
C

1

z − w
ωpe

ipzdz

where a sample contour C is shown in the left plot of Fig. 5. It consists of
the line segment from −1 to 1 and the semi-circle (denoted by S+) on the

13



upper half plane. As the integrand is analytic inside the contour and the
pole is located at w outside the contour, by the Residue Theorem, we have

P∑
p=0

∫
C

1

z − w
ωpe

ipzdz = 0.

Consequently,

I1 =

1∫
−1

P∑
p=0

1

z − w
ωpe

ipzdz = −
P∑
p=0

∫
S+

1

z − w
ωpe

ipzdz. (11)

Unlike the line segment from −1 to 1, the semi-circle S+ is better-separated
from the leaf box containing w and the contribution from the density defined
on the semi-circle can be collected into a local expansion as in

I1 =−
P∑
p=0

∫
S+

ωpe
ipz

(z − w0)− (w − w0)
dz = −

P∑
p=0

∫
S+

ωpe
ipz

(z − w0)(1− w−w0

z−w0
)
dz

≈−
P∑
p=0

∫
S+

ωpe
ipz

z − w0

K∑
k=0

(
w − w0

z − w0

)k
dz = −

K∑
k=0

ck(w − w0)k

(12)

where w0 is the center of the leaf box, ck =

(
P∑
p=0

ωp
∫
S+

eipz

(z−w0)k+1 dz

)
are the

local expansion coefficients and the number of terms K is controlled by the

decay rate of

∣∣∣∣(w−w0

z−w0

)k∣∣∣∣ which can be easily estimated for the given contour

and target leaf box following the standard fast multipole method analysis.
Introducing rmax = max{z∈S+,w∈leaf box}|w−w0

z−w0
| and noting that when p is non-

negative, |eipz| decreases when z on the contour moves away from the real
axis, a very loose estimate of the truncation error is given by

Truncation Error ≤ C · rK+1
max

P∑
p=0

|ωp|

for some constant C. Also, the numerical stability issues associated with
exponentially growing |eipz| values can be avoided and the local expansion
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coefficients can be computed accurately using standard quadrature rules.
Therefore, the non-negative modes can be represented as a local complex
Taylor polynomial expansion. Unfortunately, the negative p frequencies can-
not be computed using this contour, as the function eipz grows exponentially
when z on the contour moves away from the real axis for p < 0.

To compute I2, a different contour C on the lower half complex plane
has to be chosen, a sample contour is shown on the right plot of Fig. 5. It
consists of a rectangle with one side being the line segment from −1 to 1,
and a sufficiently large (can be∞) constant L is introduced to determine the
length of the other side. We denote the part of the contour consisting of the
three other sides of the rectangle by S−. Note that eipz decays exponentially
when z on S moves away from the real axis for p < 0. As w is inside the
contour, applying the Residue Theorem, for each negative frequency p, we
have

1∫
−1

1

z − w
ωpe

ipzdz +

∫
S−

1

z − w
ωpe

ipzdz = −2πiRes[
1

z − w
ωpe

ipz, w].

Therefore, we can compute I2 using

I2 =

1∫
−1

−1∑
p=−P

1

z − w
ωpe

ipzdz

=− 2πiRes[
−1∑

p=−P

1

z − w
ωpe

ipz, w]−
∫
S−

−1∑
p=−P

1

z − w
ωpe

ipzdz

=− 2πi
−1∑

p=−P

ωpe
ipw −

∫
S−

−1∑
p=−P

1

z − w
ωpe

ipzdz

≈− 2πi
−1∑

p=−P

ωpe
ipw −

K∑
k=0

ck(w − w0)k

(13)

where the local expansion (second summation in the formula) coefficients are
given by

ck =
−1∑

p=−P

ωp

∫
S−

eipz

(z − w0)k+1
dz
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which are derived using the same separation of variables as in I1. As the leaf
box is better-separated from S− than the line segment, the number K in the
local polynomial expansion can be determined using the same FMM error
analysis as in I1 and we skip the details.

Combining I1, I2, and the far-field density contributions for this special
case, we conclude that the Laplace layer potential in the leaf box can be rep-
resented as a combination of the local complex Taylor polynomial expansion
and plane wave type expansion as in Eq. (2). The number of terms in the
local polynomial expansion is determined by standard FMM error analysis
as all the involved contributions are better-separated from the leaf box. The
number of terms in the plane wave type expansion is the same as that in the
Fourier extension of the density and boundary functions for −1 < x̃ < 1.

Comment on rmax: Smaller rmax values are possible by including a larger
portion of the boundary when computing I1 and I2, e.g., by also including
contributions from the second nearest neighbors [28], at the cost of more
terms in the Fourier extension. The balance of the numbers of terms P in
the exponential expansion and K in the polynomial expansion is related with
the optimal discretization strategies when generating the FMM adaptive tree,
which is currently being investigated.

Comment on the contours: We mention that the choice of the contour
is not unique. Other contours can also be used. However changing the
contours will not change the values of the expansion coefficients. It will only
change the accuracy and efficiency of the numerical integration scheme for
computing these values and the estimated number K for truncating the local
Taylor expansion. Our numerical experiments in Sec. 4 show that the current
choice for straight line boundary allows accurate and efficient computations of
these coefficients and provides acceptable bounds for K. In the next section,
we discuss a practical contour selection for general geometric settings.

3.4. Numerically Stable QB2X for general geometry

Next we add the role of the boundary geometry in the frame repre-

sentation of
1∫
−1

f(x̃)
(x̃+is(x̃))−wdx̃. We assume s(x̃) 6= 0 is a polynomial of x̃,

s(x̃) = s′(x̃) = 0 at x̃ = 0, and s(x̃) sufficiently resolves the boundary to
a prescribed accuracy. Similar to the s(x̃) = 0 case, we replace f(z) by its
Fourier series expansion which can be computed using the Fourier extension
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technique, and separate the integral in Eq. (9) into two parts

1∫
−1

f(z)

(z + is(z))− w
dz =

1∫
−1

1

z + is(z)− w

(
P∑

p=−P

ωpe
ipz

)
dz

=

1∫
−1

P∑
p=0

1

z + is(z)− w
ωpe

ipzdz +

1∫
−1

−1∑
p=−P

1

z + is(z)− w
ωpe

ipzdz

= I1 + I2

(14)

The numerical stability of the Fourier extension methods were discussed in
[5, 8, 22]. Next we present all the required building blocks to stably evaluate
I1 and I2.

3.4.1. Roots of z + is(z)− w = 0

Finding all the roots {w̃j}, j = 1, · · · , J of the degree J polynomial equa-
tion z + is(z) − w = 0 is a well studied topic. When J is less than 5, an-
alytical formulas are available for the roots. For larger J values, eigenvalue
algorithms can be applied to compute the roots. The accuracy of these roots
is controlled by the condition number of the polynomial equation. However,
the accuracy of the QB2X method doesn’t depend on the accuracy of the
roots, it only depends on how accurate the polynomial z + is(z)− w can be
approximated by its factorization c(z − w̃1)(z − w̃2) · · · (z − w̃J) where c is
the coefficient for the highest degree term. Luckily, most polynomial root
finding algorithms are backward stable [13] when the error is measured by
| (z + is(z)− w)− c(z − w̃1)(z − w̃2) · · · (z − w̃J)| instead of the accuracy of
each root.

3.4.2. Choice of Complex Contour

To avoid the exponential growth of the Fourier terms, similar to the
s(x̃) = 0 case, we use a contour in the upper half plane to stably evaluate
I1 which only contains the non-negative Fourier modes, and a contour in the
lower half plane for I2 containing all the negative Fourier modes. Consider a
closed complex contour consisting of the line segment [−1, 1] and S (either
S+ or S−) representing the rest of the integration contour. Note that in order
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to be able to represent the contributions on S as a local expansion∫
S

ωpe
ipz

(z + is(z)− w0)− (w − w0)
dz =

∫
S

ωpe
ipz

(z + is(z)− w0)(1− w−w0

z+is(z)−w0
)
dz

≈
∫
S

ωpe
ipz

(z + is(z)− w0)

K∑
k=0

(
w − w0

z + is(z)− w0

)k
dz =

K∑
k=0

ck(w − w0)k

(15)

where w0 is the center of the leaf box and ck = ωp
∫
S

eipz

(z+is(z)−w0)k+1 dz are
the local expansion coefficients, classical FMM error analysis requires that
the ratio | w−w0

z+is(z)−w0
| ≤

√
2

3
. This inequality is valid at the points z = ±1.

However if S is close to any of the roots of z + is(z)− w = 0, then the max
value of the ratio | w−w0

z+is(z)−w0
| for z ∈ S becomes closer to 1 and huge error

is expected if the expansion is truncated using standard FMM error control
strategy.

As we prefer a fixed S for all w values in a leaf box, a practical choice
is to use the S consisting of the line segments (−R,−1) ∪ (1, R) and either
the upper (S+) or lower (S−) half plane semi-circle of radius R centered
at the origin. See Fig. 6. We then let R → ∞ so the integral on the semi-
circle approaches 0. There are several interesting properties of this particular

R−R x

y

-1 1

I1 contour

× w

S+

R−R
x

y
-1 1

I2 contour

×w

S−

Figure 6: The upper (left) and lower (right) contours for curved boundaries, respectively.

choice, including (a) the values |x + is(x) − w| → ∞ when x → ±∞; (b)
when the geometry is sufficiently resolved so that s(x) becomes closer to a
straight line, the inequality∣∣∣∣ w − w0

x+ is(x)− w0

∣∣∣∣ ≤ √2

3
(16)
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holds for all points x on the two (rescaled) line segments; (c) when the geome-
try data in the second nearest neighbors (or further well-separated) leaf boxes
are used when constructing the approximation polynomial of the boundary
geometry, it becomes more likely to satisfy the inequality in Eq. (16) as the
added interpolation data points automatically satisfy the inequality; and (d)
the contours for I1 and I2 uses the same line segments and the integrals for
each Fourier mode on the line segments are identical except for the different
coefficients, therefore they only need to be computed once. This will improve
the overall algorithm efficiency.

Comment on boundary discretization: Using the special semi-circle
contours, the task of satisfying Eq. (16) can be embedded in the adaptive
numerical discretization step for the boundary geometry and density function
defined on the boundary. We first perform the standard adaptive FMM
tree generation step by recursively dividing a box into child boxes if either
the boundary curve or density function cannot be approximated by a fixed
degree polynomial (boundary geometry) or Fourier series (density function)
to a prescribed accuracy. Once both the boundary geometry and density
function in a box are resolved, we invoke the additional geometry condition
in Eq. (16) to decide if further tree division is necessary. Due to the properties
(a) and (b), we expect Eq. (16)’s impact on the tree structure is minimal.
Note that Eq. (16) only depends on the local properties of the geometry, not
the smoothness of the density function or the layer potential. The optimal
boundary discretization strategies are currently being studied in a solver
implementation project.

3.4.3. Quadrature by Two Expansions for General Geometry

Applying the Residue Theorem to the special contour, we can write

I1 =

1∫
−1

P∑
p=0

ωpe
ipz

z + is(z)− w
dz

=−
P∑
p=0

∫
S

ωpe
ipz

z + is(z)− w
dz − 2πi

JU∑
j=1

Res[
P∑
p=0

ωpe
ipz

z + is(z)− w
, w̃j]

≈−
K∑
k=0

ck(w − w0)k − 2πi

JU∑
j=1

P∑
p=0

ωp
eipw̃j

1 + is′(w̃j)

(17)
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where JU is the number of roots of the polynomial equation z+is(z)−w = 0
on the upper half plane, and

I2 =

1∫
−1

−1∑
p=−P

ωpe
ipz

z + is(z)− w
dz

=−
∫
S

−1∑
p=−P

ωpe
ipz

z + is(z)− w
dz − 2πi

JL∑
j=1

Res[
−1∑

p=−P

ωpe
ipz

z + is(z)− w
, w̃j]

≈−
K∑
k=0

ck(w − w0)k − 2πi

JL∑
j=1

−1∑
p=−P

ωp
eipw̃j

1 + is′(w̃j)

(18)

where JL is the number of roots on the lower half plane. Combining I1 and
I2, we derive the QB2X representation in Eq. (2) which shows that the layer
potential depends non-linearly on the geometry in three different ways: the
additional s′(w̃) term in the denominator of the plane wave expansion, the
nonlinear dependency when finding the root w̃ using the polynomial equation
z+is(z)−w = 0, and the adaptive discretization strategy using the constraint
condition in Eq. (16) which depends on the boundary geometry function s(z).
As all the far-field density contributions are collected in the local expansion,
up to the prescribed accuracy requirement, the high frequency components
of the solution are therefore determined only by the local density function
and geometry.

Comment on computing ck: The local expansion coefficients in both I1

and I2 are computed using the same set of values of
∫∞

1
eipz

(z+is(z)−w0)k+1 dz and∫ −1

−∞
eipz

(z+is(z)−w0)k+1 dz. These values are currently computed using numerical

quadrature rules. However, as the roots (and hence the factorization) are
already available, one can find analytical formulas for evaluating these inte-
grals utilizing the special exponential integral function En(z) [25, 29] defined
as En(z) = zn−1

∫∞
z
e−tt−ndt.

3.4.4. Stably Evaluating Plane Wave Sums

The plane wave type expansion in the QB2X method comes from the
Residue Theorem applied to the contour integral of the form∮

g(z)

c0(z − w̃1)(z − w̃2) · · · (z − w̃J)
dz = 2πi

J∑
j=1

g(w̃j)

1 + is′(w̃j)
(19)
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where c0 is the coefficient of the highest degree term of the polynomial z +
is(z)−w. When the integration contour is well-separated from the roots {w̃j},
classical numerical integration quadrature rules can be applied to directly
evaluate the integral on the left of Eq. (19). When the roots become closer to
the integration path, the integral becomes more singular and the summation
on the right side of Eq. (19) becomes a better numerical tool if it can be
evaluated accurately.

When all the roots in the set {w̃j} are simple and well-separated, then

computing the summation
∑J

j=1
g(w̃j)

1+is′(w̃j)
has no numerical stability issues.

However, when some of the roots are closely clustered, then the formula
becomes ill-conditioned numerically. This can be explained by considering
the case when two roots w̃1 ≈ w̃2 are close to each other, and then the contour
integral becomes

1

2πi

∮
g(z)

(z − w̃1)(z − w̃2)
=

g(w̃1)

w̃1 − w̃2

+
g(w̃2)

w̃2 − w̃1

=
g(w̃2)− g(w̃1)

w̃2 − w̃1

.

Clearly, the summation formula suffers from the same type of numerical
instability as the difference approximation of the derivatives.

However, as the function g(z) is in the form of a Fourier series, its deriva-
tive and higher order derivatives can be computed analytically. We therefore
apply the following strategy to stably and accurately compute the summa-
tion on the right side of Eq. (19) for clustered roots. We first find a center
w̃0 of the clustered roots {w̃j}, j = 1, 2, · · · , J and assume all the other roots
are well-separated from the cluster, then we Taylor expand all the z − w̃j
terms as in the following formula.∮

f(z)
J∏
j=1

(z − w̃j)
dz =

∮
f(z)

(z − w̃0)J
J∏
j=1

(1− δj
z−w̃0

)

dz

=

∮
f(z)

(z − w̃0)J
(1 +

c1

z − w̃0

+
c2

(z − w̃0)2
+ · · · )dz =

∞∑
m=J

wmf
(m)(w̃0),

(20)

where δj = w̃j− w̃0, f (m)(x) is the m-th derivative of f(x), and the mappings
from the values δj to the coefficients wm can be precomputed and stored for
different degree cases. We have developed Mathematica files for generating
these precomputed tables.

To recap, numerical stability issues arise whenever a subset of roots are
very close to each other. To rectify the situation, higher order derivatives
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become necessary in the Residue Theorem, and the exponential sum becomes
a finite difference approximation of the derivatives. So, we have to factor the
polynomial approximation in the denominator into the product of two parts:
(1) a product of those clustered roots and (2) everything else as a polynomial
factor. We demonstrate in the numerical section how the new representation
in Eq. (20) improves the accuracy of the original QB2X representation in
Eq. (2) when a subset of roots are clustered.

4. Numerical Experiments

We present preliminary numerical results to validate the analytical formu-
las and demonstrate the achieved accuracy for different K (for the polynomial
expansion) and P (for the plane wave expansion) values and geometry setting
for the double and single layer potentials. We compare the new QB2X with
the classical QBX representations and address some of the resolved numerical
stability issues in this section.

We first consider the straight line segment connecting (−1, 0) and (1, 0)
when s(x̃) = 0. The double layer potential of interest is then given by

DLP (w) =
1

2π
=

 1∫
−1

−ρ(x̃)

x̃− w
dx̃

 . (21)

In existing implementations which combine QBX with FMM, the density
function ρ(x̃) is often approximated by an orthogonal polynomial expansion,

e.g., the Chebyshev polynomial expansion ρ(x̃) =
N∑
n=0

cnTn(x̃) where Tn(x̃)

is the n-th Chebyshev basis polynomial given by Tn(cos θ) = cos(nθ). The
first three basis polynomials in terms of x̃ = cos(θ) are explicitly given by
T0(x̃) = 1, T1(x̃) = x̃, and T2(x̃) = 2x̃2 − 1. In the first numerical test,
we choose 4 different density ρ functions: (a) ρ(x̃) = cos(x̃); (b) ρ(x̃) =
ecos(x̃); (c) ρ(x̃) = T0(x̃) + T1(x̃)/2 + T2(x̃)/4 = (2x̃2 + 2x̃+ 3) /4; and (d)
ρ(x̃) = (4x̃3 + 4x̃2 + x̃+ 6) /8. For (a), as it is already in the form of an
exponential expansion, so P = 1. We use P = 20 in the Fourier expansion
for (b) to guarantee machine precision accuracy. For (c) and (d), we apply
the precomputed mapping from the polynomial basis to the Fourier basis to
compute the Fourier extensions with P = 30. The approximation errors are
also around machine precision. We assume the region is {w = x+iy|−1/3 <
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Figure 7: Approximation errors of QB2X representations for double layer potentials with
K = 40 for different density functions.

x < 1/3,−2/3 < y < 0} and the center of the leaf box is given by w0 = −i/3.
For the I1 and I2 terms given explicitly in Eq. (10), we choose the contours
in Fig. 5, where L → ∞ is used. The rmax values are rmax = 0.354 for
the upper contour and rmax = 0.471 for the lower contour, respectively. We
choose K = 40 which guarantees at least 13-digits accuracy in the complex
local Taylor polynomial expansion using standard FMM error analysis. The
approximation errors are shown in the Fig. 7. For all cases, the QB2X method
achieves approximately 14-digits accuracy.

In classical FMM error analysis, when K = 9, the complex local Tay-
lor polynomial expansion is guaranteed to achieve 3-digits accuracy, and the
accuracies increase to 6, 9, and 12 digits when K = 18, 27, and 36, respec-
tively. The same error estimates can be derived using the rmax values in this
example. In Fig. 8, we show the approximation error for different number
of expansion terms K for case (c) when ρ(x̃) = (2x̃2 + 2x̃+ 3) /4. In the
experiment, we fix P = 30 so the error from the Fourier extension is within
machine precision. For all tested K values, the errors are less than the error
bound estimates derived using rmax. We want to mention that the origi-
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Figure 8: Approximation errors of the QB2X double layer potential representations with
ρ(x̃) =

(
2x̃2 + 2x̃+ 3

)
/4 for different K values. P = 30.
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Figure 9: N value (y-axis) for different wave number p (x-axis).

nal QBX method can also produce satisfactory results for the straight line
boundary setting but may require (slightly) more expansion terms for certain
problems. This can be explained by studying the truncation error when a
plane wave term eipw is re-expanded as a local Taylor polynomial expansion

eip(w−w0) =
∞∑
k=0

(ip)k

k!
(w − w0)k (22)

where w0 is the expansion center. We assume |w − w0| ≤ 1, and study how
many terms are required in the polynomial expansion in order to achieve
machine precision accuracy, i.e., we need to find the minimum N such that

|
∑∞

k=N
(ip)k

k!
(w−w0)k| ≤ 10−16.Using the incomplete gamma function Γ(N, p) =∫∞

p
e−xxN−1dx and gamma function Γ(N) = Γ(N, 0), we have

|
∞∑
k=N

(ip)k

k!
(w − w0)k| ≤

∞∑
k=N

pk

k!
=
ep(Γ(N)− Γ(N, p))

Γ(N)
. (23)

In Fig. 9, we numerically solve the inequality ep Γ(N)−Γ(N,p)
Γ(N)

≤ 10−16 to get
the N value. When p = 30 is used in the plane wave expansion, to achieve
machine precision the estimated N is about 111. Instead of presenting the de-
tailed QBX results for the straight line case in this paper, we refer interested
readers to the original QBX paper in [24].

For the curved geometry, we found that due to the extremely nonlinear
relationship implicitly shown in the s′(w̃j) terms in the plane wave type
expansions, more terms become necessary in the classical QBX scheme in
order to achieve a prescribed accuracy requirement. In Fig. 10, we consider
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Figure 10: Approximation errors of the classical QBX double layer potential representation
for curve s(x̃) = x̃2/2− x̃3/3− x̃4/3 for different K values.

the double layer potential with density function ρ(x̃) = 2 cos(2πx̃), −1 <
x̃ < 1, where the geometry is given by s(x̃) = x̃2/2 − x̃3/3 − x̃4/3. As the
density function is already in the form of a Fourier series, no Fourier extension
computation is needed. We use this low-frequency mode in order to focus on
the impacts of the boundary geometry to QBX and QB2X representations.
Accuracy and efficiency results from the QB2X methods are very similar for
high frequency modes. We first plot the QBX errors for different numbers of
polynomial terms K for the region {w = x+iy|−1/3 < x < 1/3,−2/3 < y <
s(x)}. When K = 40, the classical QBX method only obtains results with
6 digits accuracy. In order to achieve 10−14 error, K = 100 has to be used.
In some existing QBX implementations [24, 30, 32, 33], one strategy is to
further refine the computational domain, or equivalently, introduce several
QBX expansions at different centers for the same leaf box. As a comparison,
in Fig. 11, we present the results using the QB2X method. The numerical
results show that when K = 20, 30, and 40, the QB2X method achieves
the accuracy of approximately 2.42 × 10−8, 1.64 × 10−11, and 1.35 × 10−14,
respectively.

26



Figure 11: Approximation errors of the new QB2X double layer potential representations
for curve s(x̃) = x̃2/2− x̃3/3− x̃4/3 for different K values.

Figure 12: Approximation errors of the classical QBX double layer potential representa-
tions for curves 2 (a,b,c), 3 (d,e,f), and 4 (g,h,i) for different K values.
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We also tested both QBX and QB2X for other boundary geometry set-
tings. We use

s(x̃) = − x̃
2

3
+ x̃4

for the second boundary curve,

s(x̃) =
x̃2

3
+
x̃3

10
− x̃4

2

for curve 3, and

s(x̃) = x̃2 +
x̃3

10
− 2x̃4

for curve 4. In Fig. 12, we present the errors from the original QBX method
for differentK values. It is clear that in order to achieve a prescribed accuracy
requirement in the region Ω = {w = x + iy| − 1/3 < x < 1/3,−2/3 < y <
s(x)}, more terms (than from classical FMM analysis) are required if only one
single polynomial expansion is used. In particular, for curve 4, even though
the errors decay rapidly in the regions close to the expansion center, because
of the extreme nonlinear dependency on the geometry, the ||err||∞ values are
6.0× 10−2, 2.5× 10−2, and 1.9× 10−2 when K = 40, K = 60, and K = 100,
respectively. This very slow convergence means that several expansions with
different expansion centers have to be used for the interested region Ω. In
some existing QBX+FMM implementations [24, 30, 32, 33], this is achieved
by either requesting more refinement levels in the FMM hierarchical adaptive
tree structures, or using several expansions with different centers in the same
leaf box, or both. As a comparison, in Fig. 13, we present the results for
the QB2X method for different K values. For all the curves, the errors from
the new QB2X method are bounded by the theoretical results from standard
FMM analysis.

When some of the roots of the polynomial equation z+ is(z)−w = 0 are
close to each other, the standard exponential sum suffers from the same type
of numerical instability as in difference approximation of the derivatives,
and one has to apply Eq. (20) to accurately compute the potential. We
demonstrate this phenomenon using the geometry setting

s(x̃) = − x̃
2

5
− x̃3

3
− x̃4

3
.

For the evaluation point w = 47/150 − 1/3i, the polynomial equation z +
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Figure 13: Approximation errors of the new QB2X double layer potential representations
for curves 2 (a,b,c), 3 (d,e,f), and 4 (g,h,i) for different K values.
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is(z)− w = 0 has the roots

w̃1 = −1.615679579247955− 0.692156051488856i,

w̃2 = 0.525640932633123− 0.464669127597158i,

w̃3 = −0.403752027667708 + 1.610266304338427i, and

w̃4 = 0.493790674282540− 0.453441125252414i.

Note that both w̃2 and w̃4 are located in the lower half complex plane and
are close to each other, w̃2− w̃4 ≈ 0.032 + 0.011i, therefore direct application
of Eq. (18) to compute I2 will lose about 2 digits accuracy. Using the den-
sity function ρ(x̃) = e−2πix̃, we compared the numerically computed I2 value
using Eq. (18) with a reference solution with 20 correct digits derived using
Mathematica, and found the numerical error is 4.52× 10−13 + 1.86× 10−13i,

which is approximately of the magnitude |machine precision
w̃2−w̃4

|. However,

when Eq. (20) is applied, the error becomes 6.21 × 10−15 + 2.44 × 10−15i
which is about machine precision.

We also present the QB2X results for the single layer potentials. We firstly
consider the straight line case for different density functions defined on the
line segment connecting (−1, 0) and (1, 0). We use the same density functions
and leaf box setup as those in the double layer case, and the approximation
errors are shown in Fig. 14 when K = 40. For all cases, we achieve 14-
digits accuracy. To demonstrate the error dependency on the number of
local Taylor polynomial expansion terms K, in Fig. 15, we plot the errors
for different K values when ρ(x̃) = (2x̃2 + 2x̃+ 3) /4. Similar to the double
layer case, for all tested K values, the errors are smaller than the estimated
bounds.

Finally we consider the single layer potential on a curved boundary

s(x̃) = − 1

10
x̃2

with ρ(x̃) = (2x̃2 + 2x̃+ 3) /4 for different K values. The single layer poten-
tial is given by

SLP (w) =
1

4π

1∫
−1

log

(
(x− x̃)2 +

(
y +

1

10
x̃2

)2
)
ρ̃(x̃)dx̃ (24)

where ρ̃(x̃) = ρ(x̃)
√

1 + x̃2/25. In the left plot of Fig. 16, we show the error
distribution when K = 18 terms are used in the polynomial expansion. The
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Figure 14: QB2X approximation errors of single layer potential for K = 40 and different
density functions. The boundary is a line segment connecting (−1, 0) and (1, 0).
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Figure 15: QB2X approximation errors of single layer potential for P = 30 and density
function ρ(x̃) =

(
2x̃2 + 2x̃+ 3

)
/4. The boundary is a line segment connecting (−1, 0) and

(1, 0).
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computed numerical results achieve at least 6-digits accuracy. In the right
plot, we show the error when K = 36, and the results have approximately
14-digits accuracy.

Figure 16: QB2X approximation errors of single layer potential for different K, P = 30
and density functions ρ(x̃) =

(
2x̃2 + 2x̃+ 3

)
/4. The boundary curve is s(x̃) = −x̃2/10.

5. Summary

In this paper, we present a new quadrature by two expansions (QB2X)
method for the Laplace layer potentials in two dimensions. Both the lo-
cal complex Taylor polynomial expansion and plane wave type expansions
are used in the new representation. Compared with the classical QBX, the
new QB2X representations allow easier error analysis. For a prescribed ac-
curacy requirement, the QB2X representations are valid in a much larger
region when compared with classical QBX representations. The impact of
the boundary geometry also becomes explicit in the QB2X representations,
providing a useful tool for PDE analysis.

The QB2X technique can be generalized to other types of equations (e.g.,
the Stokes, Helmholtz, and Yukawa equations) in both two and three dimen-
sions using the Green’s Identities. In these cases, the local complex Taylor
polynomial expansions become the well-know partial wave expansions. The
partial wave and plane wave basis functions form a frame, and the com-
bined QB2X representations should have improved accuracy, stability and
efficiency properties and can be easily combined with existing fast multipole
methods when solving boundary value elliptic PDE problems. Results along
these directions will be presented in subsequent papers.
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nomial root-finding using fiedler companion matrices. IMA Journal of
Numerical Analysis, 36(1):133–173, 2016.

[14] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic fourier se-
ries. Transactions of the American Mathematical Society, 72(2):341–366,
1952.

[15] M. G. Duffy. Quadrature over a pyramid or cube of integrands with a sin-
gularity at a vertex. SIAM journal on Numerical Analysis, 19(6):1260–
1262, 1982.

[16] C. L. Epstein, L. Greengard, and A. Klockner. On the convergence
of local expansions of layer potentials. SIAM Journal on Numerical
Analysis, 51(5):2660–2679, 2013.

[17] L. Greengard. The rapid evaluation of potential fields in particle systems.
MIT press, 1988.

35



[18] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.
Journal of computational physics, 73(2):325–348, 1987.

[19] L. Greengard and V. Rokhlin. A new version of the fast multipole
method for the laplace equation in three dimensions. Acta numerica,
6:229–269, 1997.

[20] W. Hackbusch and S. A. Sauter. On numerical cubatures of nearly sin-
gular surface integrals arising in bem collocation. Computing, 52(2):139–
159, 1994.

[21] J. Helsing and R. Ojala. On the evaluation of layer potentials close
to their sources. Journal of Computational Physics, 227(5):2899–2921,
2008.

[22] D. Huybrechs. On the fourier extension of nonperiodic functions. SIAM
Journal on Numerical Analysis, 47(6):4326–4355, 2010.

[23] S. Kapur and V. Rokhlin. High-order corrected trapezoidal quadra-
ture rules for singular functions. SIAM Journal on Numerical Analysis,
34(4):1331–1356, 1997.
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