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a b s t r a c t

Kohn–Sham density functional theory is one of the most widely used electronic structure
theories. In the pseudopotential framework, uniform discretization of the Kohn–Sham
Hamiltonian generally results in a large number of basis functions per atom in order to
resolve the rapid oscillations of the Kohn–Sham orbitals around the nuclei. Previous
attempts to reduce the number of basis functions per atom include the usage of atomic
orbitals and similar objects, but the atomic orbitals generally require fine tuning in order
to reach high accuracy. We present a novel discretization scheme that adaptively and sys-
tematically builds the rapid oscillations of the Kohn–Sham orbitals around the nuclei as
well as environmental effects into the basis functions. The resulting basis functions are
localized in the real space, and are discontinuous in the global domain. The continuous
Kohn–Sham orbitals and the electron density are evaluated from the discontinuous basis
functions using the discontinuous Galerkin (DG) framework. Our method is implemented
in parallel and the current implementation is able to handle systems with at least thou-
sands of atoms. Numerical examples indicate that our method can reach very high accuracy
(less than 1 meV) with a very small number (4–40) of basis functions per atom.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Electronic structure theory describes the energies and distributions of electrons, and is essential in characterizing the
microscopic structures of molecules and materials in condensed phases. Among all the different formalisms of electronic
structure theory, Kohn–Sham density functional theory (KSDFT) [1,2] achieves so far the best compromise between accuracy
and efficiency, and has become the most widely used electronic structure model for condensed matter systems. Kohn–Sham
density functional theory gives rise to a nonlinear eigenvalue problem, which is commonly solved using the self-consistent
field iteration method [3]. In each iteration, the Kohn–Sham Hamiltonian is constructed from a trial electron density and is
discretized into a finite dimensional matrix. The electron density is then obtained from the low-lying eigenfunctions, called
Kohn–Sham orbitals, of the discretized Hamiltonian. The resulting electron density and the trial electron density are then
mixed and form a new trial electron density. The loop continues until self-consistency of the electron density is reached.
An efficient algorithm therefore contains three phases: discretization of the Hamiltonian; evaluation of the electron density
. All rights reserved.
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from the discretized Hamiltonian; and self-consistent iteration. In this paper, we focus on the discretization of the Hamilto-
nian and the evaluation of the electron density in the pseudopotential framework [3].

If space is uniformly discretized, the Kohn–Sham Hamiltonian generally requires a basis set with a large number of de-
grees of freedom per atom. For most chemical systems, the kinetic energy cutoff typically ranges from 15 Ry to 90 Ry for
standard planewave discretization in the norm-conserving pseudopotential framework [4], which amounts to about 500–
5000 basis functions per atom. The required number of basis functions per atom is even larger for uniform discretization
methods other than planewaves, such as finite difference method [5,6] and finite element method [7–9].

The large number of basis functions per atom originates from the rapid oscillation of the Kohn–Sham orbitals. The Kohn–
Sham orbitals oscillate rapidly around the nuclei and become smooth in the interstitial region of the nuclei. Physical intuition
suggests that the rapid oscillations around the nuclei are inert to changes in the environment. A significant part of the rapid
oscillations can already be captured by the orbitals associated with isolated atoms. These orbitals are called atomic orbitals.
Numerical methods based on atomic orbitals or similar ideas have been designed based on this observation [10–17]. Envi-
ronmental effect is not built into the atomic orbitals directly, but can only be approximated by fine tuning the adjustable
parameters in these atomic orbitals. The values of the adjustable parameters therefore vary among different chemical ele-
ments and exchange–correlation potentials, and sometimes vary among the different ambient environment of atoms. The
quality of the atomic orbitals are difficult to be improved systematically, but relies heavily on the experience of the under-
lying chemical system.

Atomic orbitals and uniform discretization methods can be combined, as in the mixed basis methods [18–21]. The quality
of the basis functions can therefore be systematically improved by incorporating the uniform discretization methods. How-
ever, fine tuning the adjustable parameters is still necessary due to the absence of the environmental effect in the basis func-
tions, and in certain circumstances the number of basis functions per atom is still large.

In this paper we propose a novel discretization method to build the environmental effects into the basis set to achieve
further dimension reduction of the basis set. The basis functions are constructed adaptively and seamlessly from the atomic
configuration in local domains, called elements. The basis functions are discontinuous at the boundary of the elements, and
they form the basis set used in the discontinuous Galerkin (DG) framework. The flexibility of the DG framework allows us to
employ these discontinuous basis functions to approximate the continuous Kohn–Sham orbitals, and allows us to achieve
high accuracy (less than 1 meV) in the total energy calculation with a very small number (4–40) of basis functions per atom.
Our method is implemented in parallel with a rather general data communication framework, and the current implemen-
tation is able to calculate the total energy for systems consisting of thousands of atoms.

The discontinuous Galerkin framework has been widely used in numerical solutions of partial differential equations (PDE)
for more than four decades, see for example [22–27] and the references therein. One of the main advantages of the DG meth-
od is its flexibility in the choice of the basis functions. The idea of constructing basis functions adaptively from the local envi-
ronment has also been explored in other circumstances in numerical analysis such as reduced basis method [28–31] and
multi-scale discontinuous Galerkin method [32–34] for solving PDE. In the current context, we apply the DG algorithm to
solve eigenvalue problems with oscillatory eigenfunctions, and the basis functions are constructed by solving auxiliary local
problems numerically.

The paper is organized as follows. Section 2 introduces the discontinuous Galerkin framework for Kohn–Sham density
functional theory. The construction of the adaptive local basis functions is introduced in Section 3. Section 4 discusses imple-
mentation issues in more detail. The performance of our method is reported in Section 5, followed by the discussion and
conclusion in Section 6.
2. Discontinuous Galerkin framework for Kohn–Sham density functional theory

2.1. Brief introduction of KSDFT

The Kohn–Sham energy functional in the pseudopotential framework [3] is given by:
EKSðfwigÞ ¼
1
2

XN

i¼1

Z
jrwij

2 dxþ
Z

Vextqdxþ
X
‘

c‘
XN

i¼1

Z
b�‘wi dx

���� ����2 þ 1
2

ZZ
qðxÞqðyÞ
jx� yj dxdyþ

Z
�xc½qðxÞ�dx; ð1Þ
where qðxÞ ¼
P

ijwij
2ðxÞ and the {wi}’s satisfy the orthonormal constraints:
Z

w�i wj dx ¼ dij: ð2Þ
In (1), we have taken the Kleinman–Bylander form of the pseudopotential [35]. The pseudopotential is given by
VPS ¼ Vext þ
X
‘

c‘jb‘ihb‘j:
For each ‘, b‘ is a function supported locally in the real space around the position of one of the atoms, c‘ = +1 or �1, and we
have used the Dirac bra-ket notation. We have ignored the spin degeneracy and have adopted the local density approxima-
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tion (LDA) [36,37] for the exchange–correlation functional. The proposed method can also be used for more complicated ex-
change–correlation functionals and when spin degeneracy is involved.

The Kohn–Sham equation, or the Euler–Lagrange equation associated with (1) reads
Heff ½q�wi ¼ �1
2

Dþ Veff ½q� þ
X
‘

c‘jb‘ihb‘j
 !

wi ¼ Eiwi; ð3Þ
where the effective one-body potential Veff is given by
Veff ½q�ðxÞ ¼ VextðxÞ þ
Z

qðyÞ
jx� yj dyþ �0xc½qðxÞ�: ð4Þ
Note that (3) is a nonlinear eigenvalue problem, as Veff depends on q, which is in turn determined by {wi}. The electron den-
sity is self-consistent if both (3) and (4) are satisfied. After obtaining the self-consistent electron density, the total energy of
the system can be expressed using the eigenvalues {Ei} and q as [3]
Etot ¼
XN

i¼1

Ei �
1
2

ZZ
qðxÞqðyÞ
jx� yj dxdyþ

Z
�xc½qðxÞ�dx�

Z
�0xc½qðxÞ�qðxÞdx: ð5Þ
The goal of Kohn–Sham density functional theory is to calculate the total energy Etot and the self-consistent electron density
q given the atomic configuration.

Numerical algorithms for Kohn–Sham density functional theory can be broadly divided into two categories: one may try
to directly minimize the energy functional (1) with respect to the Kohn–Sham orbitals {wi} (see, e.g. [38]); one may also try
to look for a solution for (3), usually by using the self-consistent iteration.

The self-consistent iteration goes as follows. Starting with an initial guess q0, one looks for a solution of (3) iteratively:

1. Discretization of the Hamiltonian: determine the effective Hamiltonian Heff[qn] from the input density at the nth step qn.
2. Evaluation of the electron density: obtain ~q ¼

P
ijwij

2 from the effective Hamiltonian Heff[qn].
3. Self-consistent iteration: determine the input density at the (n + 1)th step qn+1 from qn and ~q, for instance:
qnþ1 ¼ aqn þ ð1� aÞ~q
with some parameter a.
4. If kqn � ~qk 6 d, stop; otherwise, go to step (1) with n n + 1.

Remark. The mixing step above is called linear mixing in the literature, which is the simplest choice. More advanced mixing
schemes [39,40] can be used as well. The mixing scheme used in our current implementation is the Anderson mixing scheme
[39], but we will not go into the details of mixing schemes in this work.

In this paper we focus on the discretization of the Hamiltonian and the evaluation of the electron density. Given an effec-
tive potential Veff, we find ~q from
~qðxÞ ¼
XN

i¼1

jwij
2ðxÞ; ð6Þ
where the {wi}’s are the first N eigenfunctions of Heff.
Heffwi ¼ �1
2

Dþ Veff þ
X
‘

c‘jb‘ihb‘j
 !

wi ¼ Eiwi: ð7Þ
Note that the {wi}’s minimize the variational problem
EeffðfwigÞ ¼
1
2

XN

i¼1

Z
jrwiðxÞj

2 dxþ
Z

VeffðxÞqðxÞdxþ
X
‘

c‘
XN

i¼1

jhb‘;wiij
2
; ð8Þ
with the orthonormality constraints hwi,wji = dij.
The evaluation of the electron density is clearly the main bottleneck in the self-consistent iteration, which is the focus of

the numerical algorithms for Kohn–Sham density functional theory. We consider efficient and accurate discretization for the
evaluation of the electron density in this work.

2.2. Discontinuous Galerkin method for KSDFT

The discontinuous Galerkin (DG) methods have been developed for different types of partial differential equations
[22–27]. One of the main advantages of the DG method is its flexibility in the choice of the approximation space, as the
DG method does not require the continuity condition of the basis functions across the interfaces of the elements. This flex-
ibility is important for constructing effective discretization schemes for Kohn–Sham density functional theory.
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We present in the following a DG method for the evaluation of the electron density. Among the different formalisms in
the DG framework, we will use the interior penalty method [22,24]. The interior penalty method naturally generalizes the
variational principle (8).

We denote by X the computational domain with the periodic boundary condition, which corresponds to C point sam-
pling in the Brillouin zone. X is also referred to as the global domain in the following discussion. Bloch boundary conditions
can be taken into account as well, and this will appear in future publications. Let T be a collection of quasi-uniform rectan-
gular partitions of X (see Fig. 2 for an example with four elements):
1 In t
T ¼ fE1; E2; . . . ; EMg ð9Þ
and S be the collection of surfaces that correspond to T . Each Ek is called an element of X. For a typical choice of partitions
used in practice, the elements are chosen to be of the same size. For example, for a crystalline material, elements can be cho-
sen as integer multiples of the conventional cell of the underlying lattice. As a result, unlike the usual finite element analysis,
the element size will remain the same. 1

In the following discussion, we use extensively the inner products defined as below
hv ;wiE ¼
Z

E
v�ðxÞwðxÞdx; ð10Þ

hv ;wiS ¼
Z

S
v�ðxÞ �wðxÞdsðxÞ; ð11Þ

hv ;wiT ¼
XM

i¼1

hv ;wiEi
; ð12Þ

hv ;wiS ¼
X
S2S
hv ;wiS: ð13Þ
In the discontinuous Galerkin method (the interior penalty method), the discrete energy functional corresponding to (8) is
given by
EDGðfwigÞ ¼
1
2

XN

i¼1

hrwi;rwiiT �
XN

i¼1

hffrwigg; switiS þ hVeff ;qiT þ
a
h

XN

i¼1

hswit; switiS þ
X
‘

c‘
XN

i¼1

jhb‘;wiiT j
2: ð14Þ
Here the last term comes from the non-local terms in Eq. (8), and {{�}} and s�t are the average and the jump operators across
surfaces, defined as follows. For S 2 S� the set of interior surfaces, we assume S is shared by elements K1 and K2. Denote by n1

and n2 the unit normal vectors on S pointing exterior to K1 and K2, respectively. With ui ¼ uj@Ki
; i ¼ 1;2, we set
sut ¼ u1n1 þ u2n2 on S: ð15Þ
For S 2 S@ where S@ is the union of the surfaces on the boundary, we set
sut ¼ un on S; ð16Þ
where n is the outward unit normal. For vector-valued function q, we define
ffqgg ¼ 1
2
ðq1 þ q2Þ on S 2 S�; ð17Þ
where qi ¼ qj@Ki
, and
ffqgg ¼ q on S 2 S@ : ð18Þ
Note that in the current context S ¼ S� since we assume periodic boundary condition for the computational domain, and
every surface is an interior surface. The constant a in (14) is a positive penalty parameter, which penalizes the jumps of func-
tions across element surfaces to guarantee stability. The choice of a will be further discussed in Section 5.

Assume that we have chosen for each element Ek a set of basis functions fuk;jg
Jk
j¼1, where Jk is the number of basis func-

tions in Ek. We extend each uk,j to the whole computational domain X by setting it to be 0 on the complement set of Ek.
Define the function space V as
V ¼ spanfuk;j; Ek 2 T ; j ¼ 1; . . . ; Jkg: ð19Þ
We minimize (14) for fwig � V. The energy functional (14) in the approximation space V leads to the following eigenvalue
problem for fwig

N
i¼1. For any v 2 V,
1
2
hrv ;rwiiT �

1
2
hsvt; ffrwiggiS �

1
2
hffrvgg; switiS þ

a
h
hsvt; switiS þ hv;VeffwiiT þ

X
‘

c‘hv; b‘iT hb‘;wiiT ¼ kihv;wiiT :

ð20Þ
he language of finite element method, we will not use the h-refinement.
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Setting v ¼ uk0 ;j0 and
Fig. 1.
two Si
electron
wi ¼
X
Ek2T

XJk

j¼1

ci;k;juk;j; ð21Þ
we arrive at the following linear system
X
k;j

 
1
2
ruk0 ;j0 ;ruk;j

D E
T
� 1

2
hsuk0 ;j0t; ffruk;jggiS �

1
2
hffruk0 ;j0 gg; suk;jtiS þ

a
h
hsuk0 ;j0t; suk;jtiS þ huk0 ;j0 ;Veffuk;jiT

þ
X
‘

c‘huk0 ;j0 ; b‘iT hb‘;uk;jiT

!
ci;k;j ¼ ki

X
k;j

huk0 ;j0 ;uk;jici;k;j: ð22Þ
We define A to be the matrix with entries given by the expression in the parentheses, B to be the matrix with entries
huk0 ;j0 ;uk;ji, and ci to be the vector with components (ci;k,j)k,j, we have the following simple form of generalized eigenvalue
problem
Aci ¼ kiBci
for i = 1,2, . . . ,N. Following the standard terminologies in the finite element method, we call A the (DG) stiffness matrix, and B
the (DG) mass matrix. In the special case when the DG mass matrix B is equal to the identity matrix, we have a standard
eigenvalue problem Aci = kici. Once {ci} are available, the electron density is calculated by
~q ¼
XN

i¼1

X
Ek2T

XJk

j¼1

ci;k;juk;j

�����
�����
2

: ð23Þ
3. Basis functions adapted to the local environment

The proposed framework in the last section is valid for any choice of basis functions. To improve the efficiency of the algo-
rithm, it is desirable to use less number of basis functions while maintaining the same accuracy. In order to achieve this goal,
the choice of the functions {uk,j} is important. In this section, we discuss a way to construct the basis functions {uk,j} that are
adapted to the local environment.

The starting point is the following observation. The Kohn–Sham orbitals {wi} exhibit oscillatory behavior around the nu-
clei. In a full electron calculation, the nuclei charge density is the summation of delta functions located at the positions of the
nuclei (or numerical delta function after discretization) and the Kohn–Sham orbitals have cusp points at the positions of the
atoms. In the pseudopotential framework which involves only valence electrons, one can still see that the Kohn–Sham orbi-
tals and the electron density are much more oscillatory near the atom cores than in the interstitial region, as illustrated in
Fig. 1. In the setting of real space method or planewave method, in order to resolve the Kohn–Sham orbitals around the atom
cores where the derivatives of Kohn–Sham orbitals become large one has to use a uniform fine mesh. Therefore, the number
of mesh points becomes huge even for a small system. This makes the electronic structure calculation expensive.

In order to reduce the cost, we note that the Kohn–Sham orbitals are smooth away from the atoms and the uniform fine
discretization is not efficient enough. Adaptive refinement techniques can be used to improve the efficiency by reducing the
number of basis functions per atoms. Techniques of this type include finite element based adaptive mesh refinement method
[41], finite volume based adaptive mesh refinement method, and multiresolution basis functions [42–44], to name a few. Our
The electron density (a) and the norm of the gradient of the electron density (b) on a (001) slice of a mono-crystalline silicon system passing through
atoms. The two Si atoms are located at (2.57,2.57) au and at (7.70,7.70) au in this plane, respectively. Even in the pseudopotential framework, the

density is much more oscillatory around the nuclei of the Si atoms and is smooth in the interstitial region.
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approach builds the oscillatory behavior the Kohn–Sham orbitals near the atom cores into the basis functions. Hence, a small
number of basis functions are enough to characterize the Kohn–Sham orbitals. This idea is not entirely new. For example, the
philosophy of pseudopotential techniques is quite similar, though the reduction is done at the analytic level. On the side of
numerical methods, the ideas behind atomic orbital basis or numerical atomic basis are closely related [12,17].

The main difference from the previous approaches is that instead of predetermining basis functions based on the infor-
mation from isolated atoms, our approach builds the information from the local environment into the basis functions as well.
Thanks to the flexibility of the discontinuous Galerkin framework, this can be done in a seamless and systematic way. The
basis functions form a complete basis set in the global domain X. The basis set is therefore efficient, and at the same time the
accuracy can be improved systematically. This is an important difference between this approach and the previous methods
along the same line.

The basis functions {uk,j} are determined as follows. Given the partition T and the effective potential Veff, let us focus on
the construction of {uk,j}, j = 1, . . . , Jk for one element Ek 2 T . As discussed above, our approach is to adapt {uk,j} to the local
environment in Ek.

For each element Ek, we take a region Qk � Ek. Qk is called the extended element associated with the element Ek. The set
QknEk is called the buffer area. We will choose Qk which extends symmetrically along the ±x(y,z) directions from the bound-
ary of Ek. The length of the buffer area extended beyond the boundary of Ek along the ±x(y,z) direction is called the ‘‘buffer
size along the x(y,z) direction’’. We restrict the effective Hamiltonian on Qk by assuming the periodic boundary condition on
@Qk and denote by Heff ;Qk

the restricted Hamiltonian. Heff ;Qk
is discretized and diagonalized, and the corresponding eigenfunc-

tions are denoted by f euk;jg, indexed in increasing order of the associated eigenvalues. We restrict the first Jk eigenfunctions
f ~uk;jg from Qk to Ek, denoted by {uk,j}. Each uk,j is therefore defined locally on Ek. As discussed before we extend each uk,j to
the global domain X by setting the value to be 0 on the complement of Ek. The resulting functions, still denoted by {uk,j} are
called the adaptive local basis functions. Numerical result suggests that we can take very small Jk to achieve chemical
accuracy.

The reason why we choose the periodic boundary condition on Qk for the restriction Heff ;Qk
is twofold. On one hand, the

periodic boundary condition captures better the bulk behavior of the system (than the Dirichlet boundary condition for
example); On the other hand, the periodic boundary condition makes the solution of Heff ;Qk

more easily adapted to existing
DFT algorithms and packages, as most of them can treat periodic boundary conditions. Other choices such as the Neumann
boundary condition are possible, and the optimal choice of boundary conditions remains to be an open question.

The basis functions constructed from the buffer region capture well the local singular behavior of Kohn–Sham orbitals
near the nuclei. Hence, the approximation space formed by {uk,j} gives an efficient and accurate discretization to the prob-
lem, as will be illustrated by numerical examples in Section 5. Note that the f ~uk;jg’s are the eigenfunctions of the self-adjoint
operator Heff ;Qk

on Qk, and therefore form a complete basis set on Qk when Jk ?1. This implies that after restriction, the func-
tions {uk,j} also form a complete basis set on Ek as Jk ?1. The accuracy can therefore be systematically improved in the elec-
tronic structure calculation.

Eq. (22) proposes a generalized eigenvalue problem. From numerical point of view it would be more efficient if we can
choose {uk,j} such that the DG mass matrix is an identity matrix and that Eq. (22) becomes a standard eigenvalue problem.
Moreover, as Jk increases, the basis functions {uk,j} can become degenerate or nearly degenerate, which increases the con-
dition number. Both problems can be solved at the same time by applying a singular value decomposition (SVD) filtering
step, resulting in an orthonormal basis set {uk,j}:

1. For each k, form a matrix Mk ¼ ðuk;1;uk;2; . . . ;uk;Jk
Þ with uk,j.

2. Calculate SVD decomposition U D V⁄ = Mk,
D ¼ diagðkk;1; kk;2; . . . ; kk;Jk
Þ;
where kk,j are singular values of Mk ordered decreasingly in magnitude.
3. For a threshold d, find eJk such that jk

k;eJk
j > d and jk

k;eJkþ1
j < d (eJk ¼ Jk if all singular values are larger than the threshold).

Take Uj be the jth column of U; j ¼ 1; . . . ;eJk.
4. Set Jk  eJk and uk,j Uk,j for j ¼ 1; . . . ;eJk.

Remark. Although the threshold d can avoid numerical degeneracy of the basis functions, the numerical degeneracy is not
observed for the cases studied in Section 5. In other words, we will take d ¼ 0; Jk ¼ eJk.

After constructing the basis functions {uk,j}, we then apply the discontinuous Galerkin framework to solve {wi} and hence
q corresponding to Heff. We summarize the overall algorithm as follows:

1. Set n = 0, let T be a partition of X into elements, and q0 be an initial trial electron density.
2. Form the effective potential Veff[qn] and the effective Hamiltonian Heff[qn].
3. For each element Ek 2 T , calculate the eigenfunctions corresponding to the Hamiltonian Heff ;Qk

on the extended element
Qk, and obtain the orthonormal adaptive local basis functions {uk,j}.

4. Solve (22) to obtain the coefficients {ci;k,j} for the Kohn–Sham orbitals and reconstruct the electron density ~q by (23).
5. Mixing step: determine qn+1 from qn and ~q. If kqn � ~qk 6 d, stop; otherwise, go to step (2) with n n + 1.
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We remark that due to the flexibility of the DG framework one can supplement the functions {uk,j} constructed above by
other functions in Ek, such as local polynomials in Ek, Gaussian functions restricted to Ek, and other effective basis functions
based on physical and chemical intuition. From practical point of view, we find that the adaptive basis set constructed above
already achieves satisfactory performance.

4. Implementation details

This section explains the implementation details for the above algorithm. Specialists of the DG methods can skip this sec-
tion and go directly to the numerical results in Section 5. This section is mostly written for the readers who are less familiar
with the DG implementation.

4.1. Grids and interpolation

The above algorithm involves three types of domains: the global domain X, the extended elements {Qk}, and the elements
{Ek}. Quantities defined on these domains are discretized with different types of grids.

	 On X, the quantities such as q and Veff are discretized with a uniform Cartesian grid with a spacing fine enough to capture
the singularities and oscillations in these quantities.
	 The grid on Qk is simply the restriction of the uniform grid of X on Qk. This is due to the consideration that all quantities

on Qk are treated as periodic and hence a uniform grid is the natural choice.
	 The grid on Ek is a three-dimensional Cartesian Legendre–Gauss–Lobatto (LGL) grid in order to accurately carry out the

operations of the basis functions {uk,j} such as numerical integration and trace operator for each element Ek.

Transferring various quantities between these three grids requires the following interpolation operators.

	 X to Qk. This is used when we restrict the density qn and the effective potential Veff to the extended element Qk. Since the
grid on Qk is the restriction of the grid on X, this interpolation operator simply copies the required values.
	 Qk to Ek. This is used when one restricts f ~uk;jg and their derivatives to Ek. As the grid on Qk is uniform, the interpolation is

done by Fourier transform. Due to the fact that both grids are Cartesian, the interpolation can be carried out dimension by
dimension, which greatly improves the efficiency.
	 Ek to X. This is used when one assembles the Kohn–Sham orbitals {wi} from the coefficients {ci;k,j} of the elements. The

interpolation from the LGL grid to the uniform grid is done by Lagrange interpolation, again carried out dimension by
dimension. Averaging is performed for the grid points of X shared by multiple elements.

The non-local pseudopotentials are used both in solving f ~uk;jg on each Qk and in the numerical integration step on the LGL
grid of each Ek. In our implementation, the non-local pseudopotentials are directly generated in real space on Qk and on Ek

without further interpolation between the grids.

4.2. Implementation of the discontinuous Galerkin method

We use planewaves in each extended element Qk to discretize the local effective Hamiltonian Heff ;Qk
and the LOBPCG algo-

rithm [45] with the preconditioner proposed in [46] to diagonalize the discretized Hamiltonian. The resulting eigenfunctions
f euk;jgJk

j¼1 of Heff ;Qk
are restricted to Ek and interpolated onto its LGL grid. Within the SVD filtering step, the inner product that

we adopt is the discrete weighted ‘2 product with the LGL weights inside Ek. The main advantage of the SVD filtering step is
that the discontinuous Galerkin method results in a standard eigenvalue problem.

The assembly of the DG stiffness matrix follows (22) and consists of the following steps.

	 For the first term 1
2 hruk0 ;j0 ;ruk;jiT and the fifth term huk0 ;j0 ;Veffuk;jiT , their contributions are non-zero only when k = k0

since otherwise two basis functions have disjoint support. Hence, for each fixed k, we compute hruk;j0 ;ruk;jiEk
and

huk;j0 ; Veffuk;jiEk
. The integration is done numerically using the LGL grid on Ek. Part of the stiffness matrix corresponding

to these two terms clearly has a block diagonal form.
	 For the second, third, and fourth terms of (22), one needs to restrict basis functions and their derivatives to element faces.

As the one-dimensional LGL grid contains the endpoints of its defining interval, this is done simply by restricting the val-
ues of the three-dimensional LGL grid to the element faces. One then calculates these three terms using numerical inte-
gration on these resulting two-dimensional LGL grids. Since the integral is non-zero only when Ek and Ek0 are the same
element or share a common face, part of the stiffness matrix corresponding to these three terms is again sparse.
	 The last term of (22) is

P
‘c‘huk0 ;j0 ; b‘iT hb‘;uk;jiT . The integration is again approximated using the LGL grids of the ele-

ments. Notice that the contribution is non-zero iff uk0 ;j0 and uk,j overlap with the support of a common b‘. Since each
b‘ is localized around a fixed atom, uk,j and uk0 ;j0 need to be sufficiently close for this term to be non-zero. As a result, part
of the stiffness matrix corresponding to this last term is also sparse.
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Though the DG stiffness matrix A is sparse, this property is not yet exploited in the current implementation. The eigen-
values and eigenvectors of the DG stiffness matrix are calculated using the pdsyevd routine of ScaLAPACK by treating it as a
dense matrix. We plan to replace it with more sophisticated solvers that leverage the sparsity of A in future.

4.3. Parallelization

Our algorithm is implemented fully in parallel for message-passing environment. To simplify the discussion, we assume
that the number of processors is equal to the number of elements. It is then convenient to index the processors {Pk} with the
same index k used for the elements. In the more general setting where the number of elements is larger than the number of
processors, each processor takes a couple of elements and the following discussion will apply with only minor modification.
Each processor Pk locally stores the basis functions {uk,j} for j = 1,2, . . . , Jk and the unknowns {ci;k,j} for i = 1,2, . . . ,N and
j = 1,2, . . . , Jk. We further partition the non-local pseudopotentials {b‘} by assigning b‘ to the processor Pk if and only if the
atom associated to b‘ is located in the element Ek.

The eigenfunctions of the local Hamiltonian Heff ;Qk
are calculated on each processor Pk. In order to build the local Ham-

iltonian Heff ;Qk
, the processor Pk needs to access all the non-local pseudopotentials of which the associated atoms are located

in Qk. This can be achieved by communication among Ek and its nearby elements. Once these pseudopotentials are available
locally, the eigenfunctions of Heff ;Qk

are computed in parallel without any extra communication between the processors.
The parallel implementation of the DG solve is more complicated:

	 For the calculation of the first and the fifth terms of the DG stiffness matrix A in Eq. (22), each processor Pk performs
numerical integration on Ek. Since the local basis functions {uk,j} are only non-zero on Ek, this step is carried out fully
in parallel.
	 To calculate the second, third, and fourth terms, each processor Pk computes the surface integrals restricted to the left,

front, and bottom faces of Ek. This requires the basis functions of the left, front, and bottom neighboring elements.
	 To calculate the sixth term, each processor Pk computes the parts associated with the non-local pseudopotentials {b‘}

located on Pk. This requires the access to the basis functions of all elements that overlap with b‘.

To summarize, each processor Pk needs to access the basis functions from its neighboring elements and from the elements
that overlap with the support set of the non-local pseudopotentials located on the elements associated with Pk. Due to the
locality of the non-local pseudopotentials, these elements are geometrically close to Pk. Since the size of the elements is gen-
erally equal to or larger than one unit cell, the support set of the non-local pseudopotentials are generally within the range of
the neighboring elements. Therefore, the number of the non-local basis functions required by Pk is bounded by a small con-
stant times the typical number of the basis functions in an element.

The use of the pdsyevd routine of ScaLAPACK for solving the eigenvalue problem (22) results in another source of commu-
nication. ScaLAPACK requires A to be stored in its block cyclic form and this form is quite different from the distribution in
which the DG stiffness matrix is assembled (as mentioned above). As a result, one needs to redistribute A into this block cyc-
lic form before calling pdsyevd and then redistribute the eigenfunctions afterwards.

In order to support these two sources of data communication, we have implemented a rather general communication
framework that only requires the programmer to specify the desired non-local data. This framework then automatically
fetches the data from the processors that store them locally. The actual communication is mostly done using asynchronous
communication routines MPI_Isend and MPI_Irecv.

5. Numerical examples

In order to illustrate how our method works in practice, we present numerical results for the ground state electronic
structure calculation, using sodium (Na) and silicon (Si) as representative examples for metallic and insulating systems,
respectively. We find that very high accuracy (less than 10�6 au per atom) can be achieved by using only a small number
of adaptive local basis functions. Because of the small number of basis functions per atom, the DG scheme already exhibits
significant speedup in computational time for a small system containing 128 Na atoms. We demonstrate that the current
implementation is able to solve systems with thousands of atoms, and that the algorithm has a potential to be applied to
much larger systems with a more advanced implementation.

This section is organized as follows: Section 5.1 introduces the setup of the test systems and how the error is quantified.
Section 5.2 applies the adaptive local basis functions to disordered quasi-1D sodium and silicon system, followed by the re-
sult for the disordered quasi-2D and bulk 3D systems in Section 5.3. We discuss the effect of the penalty parameter a in Sec-
tion 5.4. Finally we demonstrate the computational performance of our parallel implementation of the adaptive local basis
functions in Section 5.5.

5.1. Setup

We use the local density approximation (LDA) [36,37] for the exchange–correlation functional, and Hartwigsen–Goedec-
ker–Hutter (HGH) pseudopotential [47] with the local and non-local pseudopotential fully implemented in the real space
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[48]. All quantities are reported in atomic units (au). All calculations are carried out on the Hopper system maintained at
National Energy Research Scientific Computing Center (NERSC). Each compute node on Hopper has 24 processors (cores)
with 32 gigabyte (GB) of memory (1.33 GB per core).

The performance of the adaptive local basis functions are tested using Na and Si as representative examples for simple
metallic and insulating systems, respectively. The crystalline Na has a body centered cubic (bcc) unit cell, with 2 atoms
per cell and a lattice constant of 7.994 au. The crystalline Si has a diamond cubic unit cell, with 8 atoms per cell and a lattice
constant of 10.261 au. Each atomic configuration in the following tests is obtained by forming a supercell consisting
m 
 n 
 p unit cells with perfect crystal structure, and a random displacement uniformly distributed in [�0.2,0.2] au is then
applied to each Cartesian coordinate of each atom in the supercell. The resulting atomic configuration is therefore mildly
disordered in order to avoid the possible cancellation of errors for the case of perfect crystalline systems. A system is called
quasi-1D if 1 = m = n < p, quasi-2D if 1 = m < n = p, and 3D bulk if 1 < m = n = p, respectively. In all the tests below, the element
is chosen to be the (conventional) unit cell of the lattice. Fig. 2 shows how a quasi-1D Na system with 8 atoms extended
along the z direction are partitioned in order to generate adaptive local basis functions. The global domain is partitioned into
4 elements fEkg4

k¼1 with 2 atoms per element. The red area represents one of the elements E2, and the corresponding ex-
tended element Q2 consists of both the red area and the blue area (buffer). We recall that the buffer size along the x(y,z)
direction refers to the length of the buffer area extended beyond the boundary of the element Ek along the x(y,z) direction.
The unit of buffer size is the lattice constant for the perfect crystalline system. Fig. 2 shows the case with the buffer size of
0.50 along the z direction, and 0.0 along the x and y directions.

We quantify the error of the adaptive local basis functions the error of the total energy per atom which is defined as fol-
lows. First, the electronic structure problem is solved by using planewaves on the global domain starting from a random ini-
tial guess of the electron wavefunctions. The total energy after reaching self-consistency is denoted by EGLB. Then, the same
electronic structure problem is solved by the DG formulation starting from a random initial guess of the adaptive local basis
functions on each element. The total energy after reaching self-consistency is denoted by EDG. The global domain calculation
and the DG calculation using adaptive local basis functions are therefore completely independent, and the error of the total
energy per atom is defined to be jEGLB � EDGj/Natom. For simplicity only C point is used in the Brillouin zone sampling. The
proposed method can be easily generalized to k-point sampling. 10 LOBPCG iterations are used in each SCF iteration for
the global domain calculation, and 3 LOBPCG iterations are used in each SCF iteration for generating the adaptive local basis
functions in the DG calculation. A small number of LOBPCG iterations is already sufficient, since the electron wavefunctions
in the global domain calculation and the adaptive local basis functions in the DG calculations at the end of each SCF iteration
can be reused as the initial guess in the consequent SCF iteration for continuous refinement. Anderson mixing is used for the
SCF iteration with a fictitious electron temperature set to be 2000 K to facilitate the convergence of the SCF iteration.

The grid spacing for the global domain calculation is 0.4 au for Na and 0.32 au for Si. This translates to a grid of size
20 
 20 
 20 to discretize one Na unit cell and a grid of size 32 
 32 
 32 to discretize one Si unit cell. The Legendre-
Gauss–Lobatto (LGL) grid for each element is 20 
 20 
 20 for Na and 40 
 40 
 40 for Si. The LGL grid is only used for
the purpose of numerical integration in the assembly process of the DG matrix. We remark that this grid is denser than what
is commonly used for the electronic structure calculation for three reasons: (1) the HGH pseudopotential used in the present
calculation is more stiff than many other pseudopotentials such as the Troullier–Martins pseudopotential [4]; (2) the
potentials and wavefunctions are represented in the real space rather than in the Fourier space; (3) most importantly, a
dense grid in the real space is needed in both global domain calculations and DG calculations in order to reliably reflect
the error of the total energy per atom.

We remarked in the end of Section 3 that the DG framework is very flexible and can incorporate not only the adaptive
local basis functions but also other basis functions such as local polynomials. In practice we find that the adaptive local basis
Fig. 2. A quasi-1D disordered Na system with 8 atoms extended along the z direction, viewed along the x direction. The length of each empty box is equal to
the lattice constant for the perfect Na crystal. The red area represents one of the elements E2. The corresponding extended element Q2 consists of both the
red area and the blue area (buffer). The buffer size is 0.50 (in the unit of lattice constant) along the z direction, and is 0.0 along the x and y directions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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functions are computationally more efficient than polynomials. Therefore in the following discussion only adaptive local
functions will be used in the basis set. The number of adaptive local functions per atom is also referred to as the degrees
of freedom (DOF) per atom.

5.2. Disordered quasi-1D system

The error of the total energy per atom with respect to different buffer sizes and different numbers of basis functions per
atom (DOF per atom) is illustrated for the disordered quasi-1D sodium system in Fig. 3(a) and for the disordered quasi-1D
silicon system in Fig. 3(b). The penalty parameter a is 20. In both cases, the error decreases systematically when the buffer
size and the number of basis functions per atom increase. For Na, the error of the total energy per atom is already below 10�3

au using as few as 4 basis functions per atom with a small buffer of size 0.50 (black diamond with solid line). When the buffer
size is increased to 1.00 (blue star with dashed line), the error of the total energy per atom is 4.3 
 10�7 au or 0.01 meV using
10 adaptive local basis functions per atom.

Similar behavior is found for the silicon system. For a small buffer of size 0.50 (black diamond with solid line), the error of
the total energy per atom is 2.3 
 10�4 au with 6 basis functions per atom. For the buffer of size 1.00 (blue star with dashed
line), the error of the total energy per atom is 7.8 
 10�8 au or 0.002 meV using as few as 8 basis functions per atom. Physical
intuition suggests that the minimum number of basis functions is 4, which reflects one 2s and three 2p atomic orbitals. 20–
40 number of basis functions per atom is generally required to achieve good accuracy if Gaussian type orbitals or numerical
atomic orbitals are to be used [17]. Therefore for the quasi-1D systems tested here, our algorithm achieves nearly the optimal
performance in terms of the number of basis functions per atom.

The behavior of the error found above depends weakly on the number of atoms of the quasi-1D system extended along
the z direction. The error of the total energy per atom for disordered quasi-1D systems of different numbers of atoms is
shown for Na in Fig. 4(a) and for Si in Fig. 4(b), respectively. In both cases the buffer size is 0.50, and the penalty parameter
is 20. Here 4 and 6 adaptive local basis functions per atom are used for Na and Si, respectively.

5.3. Disordered quasi-2D and 3D bulk systems

This section studies the relation between the error of the total energy per atom and the dimensionality of the system. The
partition of the domain for systems of higher dimension is similar to that in the quasi-1D case. Fig. 5 shows the partition of a
quasi-2D system with 32 sodium atoms, viewed along the x direction. The domain is partitioned into 16 disjoint elements.
The length of each element (red area) is equal to the length of the lattice constant of the crystalline unit cell. The correspond-
ing extended element for solving the adaptive local basis functions includes both the element (red area) and the buffer (blue
area). Fig. 6(a) shows the behavior of the error for a disordered quasi-2D sodium system containing 32 atoms with the buffer
of size 0.50 (black diamond with solid line) and of size 1.00 (blue star with dashed line), respectively. For the case with the
buffer size equal to 0.50, the error of the total energy per atom is 1.0 
 10�3 au using 8 basis functions per atom. The error of
the total energy per atom can reach 2.8 
 10�6 au with 16 basis functions per atom and buffer size 1.00. Fig. 6(b) shows the
behavior of the error for a disordered bulk 3D sodium system containing 128 atoms with the buffer of size 0.50 (black
Fig. 3. (a) The error of the total energy per atom (the y axis, plotted in log-scale) for a disordered quasi-1D sodium system consisting of 8 atoms, with
respect to the number of adaptive local basis functions per atom (the x axis). The buffer sizes are chosen to be 0.50 (black diamond with solid line), and 1.00
(blue star with dashed line). (b) The error of the total energy per atom (the yaxis, plotted in log-scale) for a disordered quasi-1D silicon system consisting of
32 atoms, with respect to the number of adaptive local basis functions per atom (the x axis). The legend is the same as in (a). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 4. (a) The error of the total energy per atom (the y axis) for disordered quasi-1D sodium systems of different numbers of atoms (the x axis) extended
along the z direction. The buffer size is 0.50, and 4 adaptive local basis functions per atom are used in each calculation. (b) The error of the total energy per
atom for the disordered quasi-1D silicon systems of different numbers of atoms (the x axis) extended along the z direction. The buffer size is 0.50, and 6
adaptive local basis functions per atom are used in each calculation.

Fig. 5. A quasi-2D disordered Na system with 32 atoms extended along the y and the z directions, viewed along the x direction. The red area represents one
of the elements E2,2, and the corresponding extended element Q2,2 consists of both the red area and the blue area (buffer). The buffer size is 0.50 (in the unit
of lattice constant) along the y and the z directions, and is 0.0 along the x direction. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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diamond with solid line) and of size 1.00 (blue star with dashed line), respectively. For the case with the buffer size equal to
0.50, the error of the total energy per atom is 1.2 
 10�3 au using 24 basis functions per atom. The error of the total energy
per atom can reach 5.6 
 10�6 au or 0.15 meV with 42 basis functions per atom and buffer size 1.00. Compared to the quasi-
1D case, the number of adaptive local basis functions per atom increases significantly in order to reach the same accuracy.
The increasing number of basis functions is partly due to the increasing number of Na atoms in the extended element. In this
case, the numbers of the Na atoms in the extended element with a buffer size of 1.00 are 4, 18, 54 for quasi-1D, quasi-2D and
bulk 3D systems, respectively. The increased number of Na atoms in the extended elements requires more eigenfunctions in
the extended elements, and therefore more adaptive local basis functions per atom in the elements.

5.4. The penalty parameter

The interior penalty formulation of the discontinuous Galerkin method contains an important parameter a to guarantee
stability. a = 20 has been applied uniformly to all the examples studied so far. The a-dependence of the error of the total
energy per atom is shown for the quasi-1D sodium system in Fig. 7(a) and for the quasi-1D silicon system in Fig. 7(b), respec-
tively. For Na, the buffer size is 1.00, and the number of basis functions per atom is 8. The error of the total energy per atom is



Fig. 6. (a) The error of the total energy per atom (the y axis, plotted in log-scale) for a disordered quasi-2D sodium system containing 32 atoms, with respect
to the number of basis functions per atom (the x axis). The buffer size is chosen to be 0.50 (black diamond with solid line), and 1.00 (blue star with dashed
line), respectively. (b) The error of the total energy per atom for a disordered bulk 3D sodium system (the y axis, plotted in log-scale) containing 128 atoms,
with respect to the number of basis functions per atom (the x axis). The buffer size is chosen to be 0.50 (black diamond with solid line), and 1.00 (blue star
with dashed line), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Log–log plot for the error of the total energy per atom (the y axis) with respect to the penalty parameter a (the x axis), for a quasi-1D sodium
system with 8 atoms. The buffer size is 1.00 and the number of basis functions per atom is 12. The error (black diamond with solid line) can be fitted with a
polynomial function of a (blue dashed line). (b) Log–log plot for the error of the total energy per atom (the y axis) with respect to the penalty parameter a
(the x axis), for a quasi-1D silicon system with 32 atoms. The buffer size is 1.00 and the number of basis functions per atom is 6. The error (black diamond
with solid line) can be fitted with a polynomial function of a (blue dashed line). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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empirically proportional to a0.66 up to a = 640. For Si, the buffer size is 1.00, and the number of basis functions per atom is 6.
The error of the total energy per atom is empirically proportional to a0.58 up to a = 640. We also remark that the DG formu-
lation can become unstable for a smaller than a certain threshold value. For example, the error of the total energy per atom is
2.9 
 10�1 au for Na with a = 5, and the error of the total energy per atom is 1.7 
 10�2 au for Si with a = 10. Therefore the
penalty parameter a plays an important role in the stability of the algorithm, but the DG scheme can be accurate and stable
with respect to a large range of a values.

5.5. Computational efficiency

The small number of the adaptive basis functions per atom can lead to significant savings of the computational time. We
illustrate the efficiency of our algorithm using a disordered bulk 3D sodium system with the buffer size of 1.00 and with 16
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basis functions per atom. Fig. 6(b) suggests that the error of the total energy per atom is about 10�3 au for this choice of the
parameters. The size of each element is equal to the lattice constant with 2 Na atoms in each element. The size of the global
domain X ranges from 4 
 4 
 4 unit cells with 128 Na atoms to 12 
 12 
 12 elements with 3456 atoms. The number of
processors (cores) used is proportional to the number of elements, and 1728 processors are used in the problem with
12 
 12 
 12 elements. We compare the wall clock time for one step self consistent iteration with 3 LOBPCG iterations
for solving the adaptive basis functions in the extended elements. Fig. 8 compares the wall clock time for solving the DG
eigenvalue problem using ScaLAPACK function pdsyevd (red triangle with solid line), the time for generating the adaptive lo-
cal basis functions in the extended elements using LOBPCG solver (blue diamond with dashed line), and the time for the
overhead in the DG calculation (black circle with dot dashed line). The buffer size is 1.00, and the number of basis functions
per atom is 16. Since both the size of the extended elements and the number of basis functions per atom are fixed, the com-
putational time for solving the adaptive basis functions does not depend on the global domain size. The overhead in the DG
calculation method includes mainly the assembly process of the DG Hamiltonian matrix via numerical integration and data
communication. All numerical integrations are localized inside each element and its neighboring elements. Our implemen-
tation ensures that the data communication is restricted to be within nearest neighboring elements. Therefore the time for
the overhead increases mildly with respect to the global system size. The complexity of the DG eigensolver using pdsyevd

scales cubically with respect to global system size in the asymptotic limit, and starts to dominate the cost of computational
time for system containing more than 1000 atoms. Since the number of processors is proportional to the number of ele-
ments, the asymptotic wall clock time for the DG eigensolver should scales quadratically with respect to the number of
atoms. The practical wall clock time for solving the DG eigensolver is found to be proportional to (Natom)1.64 (magenta dashed
line in Fig. 8), indicating that the asymptotic cubic scaling has not yet been reached. In the largest example with 3456 atoms,
the matrix size of the DG Hamiltonian matrix is 55,296.

The efficiency due to the dimension reduction of the adaptive basis functions can be illustrated by the comparison be-
tween the cost of the computational time of the LOBPCG eigensolver in the global domain calculation (Global), and that
of the DG eigenvalue problem with the adaptive basis functions (DG), as reported in Table 1. The global domain calculation
uses 10 LOBPCG iteration steps per SCF iteration. On a single processor, the global domain calculation costs 806 s for the bulk
3D sodium system with 128 atoms, and 19,112 s for the bulk 3D sodium system with 432 atoms. By assuming that the global
domain calculation can be ideally parallelized, the third column of Table 1 reports the computational time of the global do-
main calculation measured on a single processor divided by the number of processors used in the corresponding DG eigen-
solver. The fourth column reports the wall clock time for the DG eigensolver executed in parallel. We remark that the
computational time for solving the adaptive local basis functions is not taken into account, since we are comparing the sav-
Fig. 8. Log–log plot for the wall clock time (y axis) for solving disordered bulk 3D sodium systems of different sizes (x axis) with one step self-consistent
field iteration. The number of processors is chosen to be proportional to the number of atoms, with 1728 processors used for the largest problem solved here
(3456 Na atoms). The total wall clock time is broken down into the time for solving the DG eigenvalue problem using ScaLAPACK function pdsyevd (red
triangle with solid line), the time for generating the adaptive local basis functions in the extended elements using LOBPCG solver (blue diamond with
dashed line), and the time for the overhead in the DG calculation, including the matrix assembly and data communication (black circle with dot dashed
line). The buffer size is 1.00, and the number of basis functions per atom is 16. The scaling of the wall clock time for solving the DG eigenvalue problem using
pdsyevd with respect to the number of atoms is illustrated by the magenta dashed line. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)



Table 1
The comparison of the cost of the wall clock time using the LOBPCG iteration on the global domain (performed with a
single processor and divide the time by the number of processors in column 2, assuming that the LOBPCG are
perfectly parallelized) and the wall clock time using the adaptive local basis functions (only count the DG eigenvalue
solver using ScaLAPACK with the number of processors in column 2). The systems under study are the bulk 3D
sodium system with 4 
 4 
 4 elements (128 Na atoms), and with 6 
 6 
 6 elements (432 Na atoms), respectively.

Atom # Proc. # Global (s) DG (s)

128 64 13 1
432 216 88 14
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ings of the computational time due to the dimension reduction of the basis functions. It is found that the saving of the com-
putational time is already significant even when the system size is relatively small.
6. Discussion and conclusion

In this paper we proposed the adaptive local basis functions for discretizing the Kohn–Sham Hamiltonian operator, and
demonstrated that the adaptive local basis functions are efficient for calculating the total energy and electron density, and
can reach high accuracy with a very small number of basis functions per atom. The adaptive local basis functions are discon-
tinuous in the global domain, and the continuous Kohn–Sham orbitals and electron density are reconstructed from these dis-
continuous basis functions using the discontinuous Galerkin (DG) framework. The environmental effect is automatically
built into the basis functions, thanks to the flexibility provided by the DG framework.

The current implementation of the DG method is already able to perform the total energy calculation for systems consist-
ing of thousands of atoms. The performance of the DG method can be improved by taking into account the block sparsity of
the DG stiffness matrix. Furthermore, the local nature of the adaptive basis functions allows us to incorporate the recently
developed pole expansion and selected inversion type fast algorithms [49–52] into the DG framework. The capability of the
resulting algorithm is expected to be greatly enhanced compared to the current implementation. This is our ongoing work.

In order to generalize the current framework to the force calculation and further to the geometry optimization and the ab
initio molecular dynamics simulation, the adaptive local basis functions and their derivatives with respect to the positions of
the atoms (called Pulay force [53]) should be both accessible. Recently we propose the optimized local basis functions [54]
that is able to systematically control the magnitude of the Pulay force, which is a further improvement of the adaptive local
basis functions. This is also our ongoing work.
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