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The multiscale control-volume methods for solving problems involving flow in porous
media have gained much interest during the last decade. Recasting these methods in an
algebraic framework allows one to consider them as preconditioners for iterative solvers.
Despite intense research on the 2D formulation, few results have been shown for 3D, where
indeed the performance of multiscale methods deteriorates. The interpretation of multi-
scale methods as vertex based domain decomposition methods, which are non-scalable
for 3D domain decomposition problems, allows us to understand this loss of performance.

We propose a generalized framework based on auxiliary variables on the coarse scale.
These are enrichments of the coarse scale, which can be selected to improve the interpo-
lation onto the fine scale. Where the existing coarse scale basis functions are designed to
capture local sub-scale heterogeneities, the auxiliary variables are aimed at better captur-
ing non-local effects resulting from non-linear behavior of the pressure field. The auxiliary
coarse nodes fits into the framework of mass-conservative domain-decomposition (MCDD)
preconditioners, allowing us to construct, as special cases, both the traditional (vertex
based) multiscale methods as well as their wire basket generalization.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Geological porous media are typically characterized as heterogeneous at virtually every scale. This reflects the process by
which geological formations are created, where natural sedimentation processes spanning kilometers horizontally and mil-
lennia in time lead to composite materials that are intrinsically complex in structure. Compounding the difficulties intro-
duced by multiscale geological parameterizations are the strongly non-linear equations that describe multi-phase flow in
porous media. These equations lead to challenges that are manifested in discontinuous solutions as well as both gravitational
and viscous instabilities. Such phenomena are frequently best understood as multiscale in nature. As a consequence of the
complexity in modeling multi-flow in geological porous media, virtually every text-book on the subject address issues of
scale. We refer to [1] for classical examples.

Two main avenues are typically followed when confronting multiscale phenomena. The most classical approach, multi-
scale modeling, is to manipulate equations defined at a finest, verified scale, and attempt to derive effective equations valid
on coarser scales. These equations are typically stated for derived variables. These derived variables broadly fall into three
categories: conserved (extensive) quantities, auxiliary (intensive) state variables, and problem specific variables. This final
category of variables may be unique to the problem, or to the coarser scales, and can be interpreted to represent emerging
properties of the system. In some cases these emerging properties are parameterizations of what would otherwise be seen as
ten).
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hysteretic, or non-unique, behavior. In the context of multi-phase flow in porous media, component masses are conserved at
all scales, pressure is an intensive state variable at all scales, and finally various parameterizations of hysteresis or dynamical
behavior are introduced to make the models appropriate in practice [2]. This classical approach has seen several formaliza-
tions in recent years, among the most instructive of which is the Heterogeneous Multiscale Method [3].

A more recent approach to handling multiscale characteristics is through adaption of the numerical methods themselves.
Classically introduced as generalized finite elements by Babuska et al. [4], it was first made into a useful concept through the
residual-free bubble methods [5], where multiscale features of the solution can be handled. Later, this concept was also ap-
plied to multiscale coefficients, in what is termed multiscale finite element and multiscale finite volume methods (see [6] for
an introduction). While multiscale numerical methods have shown good properties on academic problems, they often fail to
live up to their promise on real problems [7]. By exploiting the link between multiscale numerical methods and domain
decomposition (DD), multiscale control volume methods can be framed in an iterative setting which greatly increases the
potential for robust implementations [8]. However, an improved multiscale representation without iterations is still the ulti-
mate goal.

In this paper, we propose to enhance the common understanding of multiscale numerical discretizations through an anal-
ogy to multiscale modeling. In particular, as multiscale control volume methods inherently discretize conserved quantities, it
is natural to ask if the discrete approximation, like its modeling counterpart, can be enhanced through introducing problem-
specific additional variables. We term these additional variables auxiliary, and the remainder of the paper is devoted to
developing and verifying this concept. In particular we consider the issue of assigning boundary conditions to the local prob-
lems based on the state in the coarse variables. This poses challenges for multiscale numerical methods, especially in the
presence of long correlation pathways that render non-local dependence of the solution. The problem is difficult already
in two spatial dimensions, where the state in the coarse variables must be mapped onto a 1D boundary. Strategies proposed
to remedy the situation include oversampling [9,10], utilizing global information [10,11] and using specialized boundary
conditions [7,12]. The situation becomes worse in three spatial dimensions, since a mapping to a 2D boundary is needed.
In this paper, auxiliary coarse variables are used to address these challenges. By exploiting links between multiscale control
volume methods and domain decomposition, the auxiliary variables can easily be introduced in the linear solver. We con-
sider grids with relatively few primary coarse variables (corresponding to aggressive coarsening), and enhance the coarse
space by auxiliary variables. Thus the number of internal boundaries decreases, while there is enough degrees of freedom
in the coarse space to capture details in the solution. Our numerical experiments involve model problems as well as indus-
trial benchmark data. The results show that auxiliary coarse variables can improve the performance of the linear solver
considerably.

The rest of the paper is structured as follows: in Section 2, multiscale methods for three-dimensional problems are dis-
cussed and difficulties are pointed out. A multiscale linear solver is introduced in Section 3, and the extension to coarse
spaces is introduced in Section 4. Simulation results are presented in Section 5, and the paper is concluded in Section 6.
2. Challenges of 3D multiscale elliptic problems

In this study we consider the following elliptic problem for flow in three dimensional porous media,
�r � Kruð Þ ¼ q; ð1Þ
where K is the permeability of the medium, u is the potential and q represents the source terms of the system. The heter-
ogeneous structure of porous rocks is reflected in the permeability K, which can vary by several orders of magnitude on dif-
ferent scales. It is the variation of this parameter which represents the major challenge, and has been the main focus of the
multiscale methods for problems involving flow in porous media. Hou and Wu [13] showed that the sub-scale information of
the elliptic operator can be captured within a few coarse-scale basis functions, which increases the accuracy of the recovered
fine-scale solution. Several multiscale numerical methods have later been developed for the capturing of sub-scale informa-
tion into local basis-functions. We refer to [6] for an overview of these methods.

A special focus of this paper will be on problems involving long correlation lengths of the parameter K, e.g. fractures,
faults and channels which occupy several coarse-scale grid blocks. The discretization of such problems are particularly dif-
ficult to upscale, and local iterations are required to guarantee accurate solutions [14]. Due to the difficulties involved, the
primary focus of previous works has been the 2D problem. In the remainder of this section we will briefly discuss some of the
existing challenges of multiscale numerical methods, and highlight some of the main challenges of extending these methods
to 3D simulations.

2.1. Multiscale numerics

In general porous media there are rarely only two or a couple of distinct scales, but rather a continuum of physical scales
which needs to be taken into account. However, for practical purposes we need to define a finest (geological) scale for the
discretization of our problem. Usually the fine-scale discretization leads to a large coupled problem which is extensive and
often too computationally expensive to solve. For multiscale methods, one or a couple of coarse scales are added to speed up
the calculation of a fine-scale conservative solution.
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The solution space for each coarse scale is spanned by local coarse-scale basis functions. This is referred to as the coarse
space. As for upscaling, the coarse scale equations for the multiscale method are stated for conserved variables, thus the mul-
tiscale methods can be categorized as upscaling methods. In addition, through the construction of coarse-scale basis func-
tions, the multiscale methods can be applied as multilevel DD-preconditioners. In this paper we will consider the multiscale
control volume methods, which can be written as DD-preconditioners in the framework of mass conservative domain
decomposition (MCDD) [8].

While the multiscale methods are designed to capture local heterogeneities within the sub-domains, one of the difficul-
ties has been to include non-local and global information, which may influence the solution locally. An oversampling strat-
egy was proposed by Hou et al. [9] to include non-local information into the calculation of the local basis-function, thus
reducing the resonance effect of the intermediate scale heterogeneities. Adaptivity w.r.t the size and structure of these over-
sampling regions has further improved the accuracy and limited the number of additional computations [15]. The use of glo-
bal information has also been considered [10,11]. Finally, local iterations seem to be inevitable when constructing robust
implementations of the multiscale methods.
2.2. Extension to 3D

Despite intense research on challenging problems in 2D, few results have been reported for problems in 3D. The capturing
of sub-scale information naturally becomes more challenging for three dimensional flow. However, the extension from 2D to
3D problems also introduces new challenges w.r.t. the construction of the coarse-scale basis functions.

Concerning upscaling, the third dimension results in a larger gap between the numerical scales, where the number of fine
cells per coarse cell grows as ndim. Any aggressive coarsening strategy is obviously more challenging for 3D problems. The
boundary conditions for the local elliptic problems are difficult to approximate. The localization approximations embedded
in the multiscale simulations are usually lower-dimensional approximations of the flow on the sub-domain faces and edges
and the errors due to these approximations become more severe for three dimensional flow.

From a domain decomposition perspective, it is well known that the extension of the coarse-scale basis functions from 2D
to 3D problems is non-trivial. The multiscale methods are in general vertex-based (VB) methods (Fig. 1(a)), meaning that the
coarse-scale degrees of freedom (dof) are associated with the vertices of the local sub-domains. For these methods, the stan-
dard piecewise linear interpolation is not robust, and do not result in scalable preconditioners for 3D-problems [16]. While
the 2D coarse scale solution is mapped directly onto the boundary, the 3D coarse-scale solution, defined on vertices, needs to
be mapped in two stages. The solution is first interpolated onto the edge dof, and secondly onto the face dof. The harmonic
basis functions of the multiscale methods have shown to be more robust than the usual piecewise linear basis functions,
w.r.t. problems involving sub-scale heterogeneities in 2D [17], however, this has not been verified for 3D problems. More-
over, in the homogeneous limit, harmonic basis functions degenerate to the usual piecewise linear basis functions, which are
not scalable with the size of the problem.

In domain decomposition, various extensions of the coarse space have been proposed to retain the approximation prop-
erties obtained in 2D simulations. Of special interest to this paper is the wire basket (WB) method [18], where both the ver-
tex and edge dof belong to the coarse space, see Fig. 1(b). Thus, we only have one interpolation from the coarse-scale dof
(wire basket) onto the boundary dof, which is similar to VB-methods for 2D-problems. Other extensions of the coarse space
involves defining special interpolations on the sub-domain faces [16,19]. Such methods will not be discussed in this paper.
Instead we will show how the traditional VB-methods with standard interpolations can be improved through the use of aux-
iliary coarse variables.

While the WB-method is attractive w.r.t. convergence of the fine-scale solution, it uses a large static coarse space result-
ing in a much larger and more dense numerical scheme on the coarse scale. In many cases, it is not necessary to use all these
Fig. 1. Figure (a) and (b) shows the vertex cells and wire basket cells, respectively.
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dof related to the wire basket. Thus, by discarding the less important dof on the coarse scale, we may save many unnecessary
computations.

In this paper, we develop a generalized framework for multiscale simulation by introducing auxiliary variables to the
coarse space. The auxiliary variables are strategic sampling points of the coarse scale and they are meant as a supplement
to the existing conserved variables on the vertices. Thus, it can be seen as a generalization of the existing vertex-based mul-
tiscale control volume methods. Furthermore, we observe that the WB-distribution of coarse variables becomes a special
choice of the auxiliary coarse variables. The auxiliary variables fit naturally into the framework of MCDD, in which case they
represent an additional flexibility with respect to multiscale simulation and multiscale numerical modeling. However, before
we can introduce the auxiliary coarse variables, we need to formulate the domain decomposition framework.
3. MCDD

The discretization of Eq. (1) results in a sparse system of linear equations,
Fig. 2
Au ¼ b; ð2Þ
where the system matrix A is in general large. Hence, a direct calculation of Eq. (2) is typically very time-consuming. In res-
ervoir simulations, several linear systems on this form must be solved within each time-step, in which case inexact solvers
are always used. We seek a fast inexact solver for approximating the solution of the fine-scale problem (2).
3.1. Mass conservative coarse-scale operator

Mass conservation is an essential property for reservoir simulation and fluid flow. In our case the equation is discretised
into a set a fine-scale control-volumes xi, resulting in a linear system of equations which is mass conservative on the fine-
scale. Each row of the linear system (2) will represent the mass balance equation over xi.

For the multiscale methods, the coarse model is defined on a primal coarse grid X, where each cell Xi is a collection of
fine-scale control volumes and the coarse-scale interfaces coincide with interfaces on the fine-scale as seen in Fig. 2. If
the fluxes on the coarse scale are mass conservative, it is possible to recalculate a mass conservative flux field on the
fine-scale by a pre-processing of the fine-scale system (2) [20].

If all the equations corresponding to the fine-cells contained within a primal coarse cell Xi are added, the resulting equa-
tion will represent mass balance for Xi. This coarse scale equation is substituted for the row of the coarse cell (centermost
cell of Xi). More precisely, we can write the pre-processed fine-scale system of equations as
Cu ¼ p; ð3Þ
where
C ¼
X
Xi

Rið ÞT MiRiA and p ¼
X
Xi

Rið ÞT MiRib:
Here, Mi is the integration matrix, while Ri represents the usual restriction matrix, consisting of zeros and ones, such that,
acting on the global dof, Ri picks out the degrees of freedom corresponding to Xi. The integration matrix Mi is written as
Mi ¼ I þ eiV 1� eiVð ÞT ; ð4Þ
where I is the identity matrix, eiV is the unit vector identifying the row of the vertex cell and 1 is the vector entirely filled with
ones.
. The figure shows the multiscale grid. Here, the bold faces indicate the primal coarse grid, constructed on top of an underlying fine-scale grid.
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3.2. Schur complement system

Several domain decomposition techniques coupled with various iterative schemes have been developed. For the majority
of cases, the domain decomposition techniques are applied as preconditioners, where the iterations are accelerated by the
use of Krylov subspace iterative methods. In this paper we will focus on the two-level additive Schwartz MCDD precondi-
tioner, applied to Eq. (3). For information about other DD preconditioners, see e.g. [16,21,22]. The preconditioner will be
accelerated using GMRES [23].

To formulate the MCDD preconditioner, we need to introduce the dual coarse grid X0, consisting of dual coarse cells X0i. The
dual coarse grid is defined such that the centers of the coarse cells Xi are located at the vertices of X0. Thus the coarse scale con-
servation of mass is associated with the vertices of X0. The fine-scale cells joining the vertex cells belong to the boundary of the
dual-grid. The dual coarse-grid X0 is a corner-cell grid and represents a non-overlapping decomposition of the global domain.
For simplicity, we will refer to X0i as a sub-domain. For each sub-domain, the fine-scale dof corresponding to internal cells are
denoted as internal cells, while the fine-scale dof located on the sub-domain boundaries are denoted as boundary cells. The
boundary cells are further sub-divided into face cells, edge cells and vertex cells, see Fig. 3. While the internal cells are localized
on each sub-domain, the boundary cells are shared by neighboring sub-domains and are globally coupled.

By rearranging the system of equations into those dof corresponding to internal and boundary unknowns we can rewrite
Eq. (3) as
Fig. 3.
face cel
CII CIB

CBI CBB

� �
uI

uB

� �
¼

pI

pB

� �
: ð5Þ
The internal cells belonging to different sub-domains are now decoupled, and the block-diagonal matrix CII can formally be
inverted directly on each sub-domain X0i. The Schur complement system is found by eliminating these internal cells, result-
ing in a system for the boundary cells only:
SuB ¼ g; ð6Þ
where
S ¼ CBB � CBIC
�1
II CIB; ð7Þ
and
g ¼ pB � CBIC
�1
II pI:
We can further split the Schur complement matrix into cells corresponding to the face (F), edge (E) and vertex (V):
S ¼
SFF SFE SFV

SEF SEE SEV

SVF SVE SVV

2
64

3
75: ð8Þ
(a) Internal (b) Face

(d) Vertex

(c) Edge

An illustration of the internal, face, edge and vertex cells used in the domain decomposition method. For clarity of the visualization, only some of the
ls are shown.
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Written on this form, the Schur complement S still has a block diagonal structure, but all the blocks are now full. An explicit
construction of S will in fact require the same amount of work as solving the entire fine-scale problem (5). Hence, the various
Schur complement matrices must be approximated by sparse matrices, such that we can decompose the Schur problem. This
gives us a MCDD or Schur complement preconditioner. A special requirement for the MCDD preconditioner is that the equa-
tion for the vertices (conserved variables on the coarse scale) must be solved exactly, providing a mass conservative coarse
scale solution.

3.3. Interface approximations

The accuracy of the multiscale methods depends highly on the choice of boundary conditions for the local elliptic prob-
lems. A successful choice of boundary conditions may result in an accurate representation of the coarse scale problem and a
good first approximation to the fine-scale solution. However, within an iterative setting, an accurate representation of the
boundary conditions only affects the first iteration; after the first iteration, the residual does not represent any actual physics
but should be regarded as noise. Thus, the best multiscale approximation does not necessarily give the most efficient pre-
conditioner [7].

The most common interface approximation for the multiscale control volume methods is similar to the tangential com-
ponent (TC) approximation for DD-preconditioners. The TC-approximation of the Schur matrix S (see Eq. (7)), can be written
as
Ŝ ¼ CT
BB; ð9Þ
where CT
BB is denoted the tangential part of the CBB. While CBB is a diagonally dominant matrix, CT

BB has reduced diagonal ele-
ments such that the row-sum equals to zero, i.e. CT

BB � 1 ¼ 0. The tangential part of CBB arises in the multiscale methods as a
lower dimensional discretization (in the ‘‘tangential’’ direction), also called the reduced boundary condition. This is in gen-
eral only possible for regular Cartesian grids, however the TC-approximation is also valid for general grids [7]. We can write
the TC-approximation for the Schur complement (8) on matrix form,
Ŝ ¼
CT

FF CFE 0

0 CT
EE CEV

SVF SVE SVV

2
64

3
75: ð10Þ
While S in general is a dense and globally coupled matrix, Ŝ is sparse and locally decoupled.

3.4. The coarse scale operator

For multiscale methods, the coarse cells represent integrated and conserved quantities on X. We will denote the coarse
cells as C. Normally they are spanned by the vertex cells, in which case we write C ¼ V . By using Eq. (6) and (10) we can write
up the equations for the face, edge and vertex cells:
CT
FF uF ¼ gF � CFEuE;

CT
EEuE ¼ gE � CEV uV ;

AV uC ¼ bV ; ð11Þ
where
AV ¼ SVF SVE SVV½ �
CT

FF

� ��1
CFE CT

EE

� ��1
CEV

� CT
EE

� ��1
CEV

I

2
66664

3
77775 ð12Þ
is the coarse-scale operator and
bV ¼ gV þ ðSVFðCT
FFÞ
�1CFE � SVEÞgE � SVFgF ð13Þ
is the corresponding right-hand side vector on the coarse scale.

3.5. Remark on implementation

The terminology used to describe the linear solver is based on domain decomposition literature. This point of view con-
venient, since it highlights the similarity between the auxiliary variables introduced in the next section and traditional wire
basket domain decomposition methods. The domain decomposition framework can be viewed as a bottom-up approach in
that the coarse linear system is constructed by a series of approximated Schur-complement reductions of the fine-scale
equations. An alternative top-down approach is offered by the family of multiscale linear solvers, wherein the link between
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the coarse and fine linear system represented by basis functions that are associated with each coarse degree of freedom [6].
The coarse approximation can be formulated in terms of both approaches. We have found the top-down approach most con-
venient both in terms of implementation and in obtaining a unified framework for linear solvers and upscaling, where the
coarse system can be considered an independent, coarse discretization of the continuous problem [24].
4. Auxiliary coarse variables

Due to the more aggressive coarsening that necessarily follows from considering higher-dimensional problems, the mul-
tiscale methods become increasingly sensitive to the approximations introduced to the Schur complements. This is analo-
gous to the situation that arises for traditional static condensation type methods, where in three spatial dimensions a
discussion between vertex-based and wire basket methods arises. In this section, we introduce a framework for addressing
these problems for multiscale preconditioners, in which the coarse space can be enriched by what we term auxiliary coarse
variables.
4.1. Generalized preconditioner

Originally, the multiscale grid has been structured in a hierarchical way, where the coarse cells are fixed and represent
coarse scale volumes or elements, on which mass conservation is satisfied. Indirectly, the coarse scale equation represents
a special mass conservative discretization on a coarse scale grid.

The MCDD preconditioner satisfies the same hierarchical structure, where the vertex cells preserve the coarse-scale mass
conservation, however, the MCDD framework is not restricted to those coarse scale degrees of freedom. An extension of the
coarse-scale degrees of freedom has been studied in domain decomposition, where certain configurations of the coarse space
can improve the interpolation of the coarse scale solution and give scalable and more robust preconditioners; see e.g. [25,26]
for more information. This is specially important in 3D, where the usual vertex-based domain decomposition method, like
most multiscale numerical methods, fail to be scalable for linear interpolations on the homogeneous problem. To address
this shortcoming we generalize the multiscale iterative methods by introducing auxiliary variables on the coarse scale.
We define the coarse cells as C ¼ X V½ �, where X represents the non-conserved auxiliary variables and V is the conserved
variables on the vertices. Any fine-scale cell can in general be chosen as an auxiliary coarse variable; we have found place-
ment along the dual edges to be a robust choice, see Fig. 4 for illustrations. If X ¼ E we have the wire basket distribution of
the coarse cells, which can be used to build preconditioners that are provably scalable [18]. On the other hand, if X is empty,
we retain the VB-method.

The general Schur complement preconditioner can now be written
B ¼ Ŝ�1 ¼
CT

FF CFE CFC jðC¼EÞ

0 CT
EE CEC

SCF SCE SCC

2
64

3
75

8><
>:

9>=
>;
�1

; ð14Þ
where the approximate Schur complement matrix Ŝ, is on the same form as (10). We observe that if X contains any edge cells,
these will no longer be represented in the set E and connections to these cells will be stored in the third block column of (14).
In the case of X being empty, the preconditioner (14) is similar to the multiscale control-volume preconditioner using vertex
dof on the coarse scale (see Eq. (10)). In the special case of X ¼ E, we can simplify the Schur complement preconditioner,
writing
BW ¼
CT

FF CFE 0½ �
SWF SWW

" #( )�1

;

Fig. 4. Figure (a)–(c) shows a coarse cell with three sets of auxiliary coarse cells.
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where W ¼ E V½ � is the wire basket. The auxiliary coarse variables (ACVs) X, as applied in the framework of the Schur com-
plement preconditioners, thus generalizes multiscale methods to include enriched coarse spaces. In general, adaptivity with
respect to the selection of coarse cells is not new. In algebraic multigrid methods, the coarse scale dof are algebraically cho-
sen within the iterative method. Several multilevel methods monitor the residual, and chooses the most inaccurate cells to
be corrected for on a ‘‘coarse’’ scale. In this setting, the coarse scale is nothing more than a bounded set of the fine-scale. The
idea of extending the coarse space are also considered in [27,28] in the setting of multiscale finite element methods.

4.2. Properties of the auxiliary coarse variables

The auxiliary variables give us the flexibility of including additional fine-scale information, which might have large influ-
ence on the coarse scale. In principle, we now have the freedom of designing the coarse scale that we want, like in the case of
numerical multiscale modeling. In this framework, the coarse cells represent distributed sampling points of the fine-scale
problem, and the distribution of these points are important for the accuracy of the method.

We envision at least three strategies for the use of auxiliary coarse variables:

� Parameter based. The auxiliary coarse variables can be applied by means of refinement of the coarse space. In par-
ticular, this strategy should be considered in regions with strong contrasts in permeability.

� Source based. The inclusion of auxiliary coarse cells could also be motivated by the right hand side of the problem. In
particular, auxiliary cells may be placed according to source terms of the system, normally represented by non-zero
right-hand side elements. By placing an auxiliary coarse variable on the position of a Dirichlet well, one basis
function will capture the fine-scale pressure in the vicinity of that well. This is analogous to constructing additional
well-basis functions [29], which is normally performed for the MSFV method. The support for the additional basis
function corresponding to the well is here limited to the corresponding sub-domain of the well.

� Algebraic construction. A third approach is to choose the auxiliary variables algebraically within an iterative proce-
dure based on error estimates. The auxiliary variables are dynamic, in the sense that we can include or discard these
variables at any stage of an iterative procedure. In any case, we only include or discard single basis-functions, which
by construction are independent. This will introduce another adaptivity with respect to solving large linear systems
effectively.

The placement of the additional coarse cells on the sub-domain boundaries is also analogous to multiscale methods with
polygonal coarse elements. For each additional coarse cell on the sub-domain, we get one additional basis function. In the sim-
plified case of linear basis functions, we observe that the extra auxiliary cells on the boundary will result in piecewise linear
functions on the boundary. In the limit, as all the boundary cells are filled with auxiliary coarse variables, every cell is treated
exactly and the true solution is captured. Even though this strategy is aimed at capturing non-linear and higher order functions
of the solution, this is not similar to higher order multiscale methods, in which case we would need to incorporate higher order
interpolations between the added coarse cells. In this paper we want to move the discussion away from only focusing on im-
proved interpolations or boundary conditions. Here we apply the same boundary conditions everywhere, but in areas where
the boundary conditions fail to capture the fine-scale physics, we show that enrichment of the coarse space may be applied
directly or within an iterative procedure to improve the sub-scale capturing and convergence of the fine-scale solution.

4.3. Computational cost

The motivation for introducing auxiliary variables is to enrich the coarse space such that the preconditioner becomes
more efficient in terms of the number of iterations needed for a sufficient reduction of the residual. The significant parameter
to be measured is however the overall computational cost of the linear solver. This will be highly dependent on issues such
as the degree of parallelization and available memory; for instance, for problems where many iterations are needed it may be
more effective e.g. to factorize the coarse scale matrix if one can afford to store the factorization. The final cost comparison
between refinement of the coarse space and addition of auxiliary variables therefore comes down to implementation and
hardware; we chose to use the total number of coarse variables as a proxy for computational cost in the result section pre-
sented next. Nevertheless, some theoretical considerations on the overall cost is presented here.

The multiscale method has three components with significant computational cost: the construction of restriction and
prolongation operators (basis functions), solving local subproblems on edges, faces and the interior of subdomains and solv-
ing the coarse system. The first component is computed prior to the iterations, while the two latter must be performed for all
iterations. We will discuss the cost of each component in some detail.

Let the number of primary and auxiliary coarse variables be denoted by NC and NA, respectively. The main cost of solving
local problems is related to the interior of the subdomains (represented by C�1

II in Eq. (7)), and we denote the cost of this by
M. Then, computing basis functions for the primary coarse cells on a 3D Cartesian coarse grid is dominated by the term
8MNC , since the basis function will have support in 8 subdomains. If the auxiliary coarse variables are located on edges with
four adjacent subdomains, the added cost of computing basis functions is 4MNA. There will be as many subdomains as there
are coarse nodes, thus solving local subproblems within the iterations have a cost of MNc for each iteration. The cost of an
individual iteration is not affected by the additional coarse degrees of freedom, but the overall cost of this component is
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reduced by MNcDNiter , where DNiter is the decrease in the number of iterations due to a richer coarse space. Finally, the size of
the coarse system is increased form NC to NC þ NA when auxiliary coarse variables are added, with an associated increase in
cost. In this context, it should also be mentioned that it is not necessary to solve the coarse system exactly in each iteration,
in particular the auxiliary coarse variables can be approximated without loosing the conservation property on the coarse
scale.

Finally, if time-dependent problems such as multi-phase flow in porous media is considered, the total number of itera-
tions needed throughout the simulation increases, while the coarse operator must only be updated in small parts of the do-
main for each time step. In this case, the benefit of auxiliary variables should increase.
5. Numerical results

In this section we demonstrate the method of auxiliary variables through numerical experiments of increasing complex-
ity. Our aim is to demonstrate the capability of auxiliary coarse variables to stabilize the multiscale methods for challenging
problems in 3D. The simulations are conducted on parameters describing porous media exhibiting both short and long cor-
relation lengths, as well as large jumps in the permeability coefficients. As for the geometry, only uniform Cartesian grids are
considered. For all the numerical tests we apply auxiliary coarse variables restricted to either the wire basket or Dirichlet
sources (fixed pressure wells).

When adding ACVs on an edge, the coarse space on the edge goes from representing linear (or reduced operators) func-
tions for the vertex based method to a piecewise linear (or piecewise reduced operators) functions. Thus ACVs can therefore
be considered a refinement of the coarse space in the form of a piecewise linear polynomial and increasing number of de-
grees of freedom, bearing some similarity with traditional p-refinement for finite elements. Therefore we chose to compare
ACV refinement of the coarse operator to classical h-refinement of a vertex based method, which is realized by reducing the
disparity between the fine and coarse scales. For simplicity, the additional ACVs are placed only on the subdomain edges.
This keeps the refinement strategy relatively simple, and the wire basket scheme provides an upper limit of the possible
improvement compared to the vertex based scheme.
5.1. Log-normal test case

Our first test case is a 3D grid with 108 cells in each direction, having in total 1.259.712 fine scale cells of unit size. The
permeability has a log-normal distribution, as illustrated in Fig. 5. A Dirichlet injection well is placed in a corner, while as
Neumann producer is located in the middle of the domain. For simplicity, periodic boundary conditions are applied.

The grid size facilitates vertex grids with a coarsening of 27, 9 and 3 cells in each direction, and we refer to these grids a
V1, V2 and V3, respectively. Thus the coarse grids V2 and V3 can be seen as vertex refinements of grid V1. We will also refine
grid V1 by placing 2 and 8 ACVs on each edge, rendering coarse grids denoted ACV1 and ACV2, respectively. Similarly, coarse
grid ACV3 is created by adding 2 ACVs to each edge of grid V2. Finally, grid WB1 and WB2 are wire basket refinements of grid
V1 and V2, respectively. A wire basket refinement of V3 was not considered, due to the large number of coarse nodes. The
coarse grid configurations, together with the number of coarse unknowns and the number of GMRES iterations needed are
summarized in Table 1.

Our first observation is that the vertex-based multiscale preconditioner is highly sensitive to the degree of coarsening,
and indeed performs very poorly for the coarsest cases. This is consistent with our notion of low robustness for the ver-
tex-based method in 3D. We observe that in this case, the numerical experiments indicate that the performance of the pre-
conditioner can be improved by adding ACVs instead of vertex nodes. This is clearly seen by comparing grid V2 and ACV2:
both coarse grids are refinements of grid V1, with grid V2 having somewhat more coarse unknowns than grid ACV2. Nev-
ertheless, the ACV strategy needs fewer iterations to reach the desired residual.
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Fig. 5. A log-normal permeability field. The base-10 logarithm of the permeability is plotted.



Table 1
The number of primary (PCV) and auxiliary coarse variables for the log-normal grid. The last column shows the number of GMRES iterations needed to achieve a
relative residual of 10�8.

Grid Type # PCV # ACV # (Coarse nodes) # it

V1 Vertex 64 1 65 212
V2 Vertex 1728 1 1729 151
V3 Vertex 46,656 1 46,657 45
ACV1 ACV 64 385 449 170
ACV2 ACV 64 1537 1601 107
ACV3 ACV 1728 10,369 12,079 74
WB1 WB 64 4993 5057 65
WB2 WB 1728 41,473 43,201 42

Fig. 6. Number of iterations vs. coarse unknowns for vertex and ACV grids for the log-normal permeability.

150 A. Sandvin et al. / Journal of Computational Physics 238 (2013) 141–153
For convenience, Fig. 6 plots the iteration count vs. the number of coarse unknowns. The figure illustrates that the ACV
scheme is a middle course between the vertex and wire basket schemes, and that the preconditioner can be significantly
improved compared to the vertex based method by adding relatively few coarse variables.
5.2. SPE 10

As our second test case, we consider the permeability field from the tenth SPE comparative benchmark problem [30]. The
grid consists of 60 � 220 � 85 cells. Of these, the permeability in the upper 35 layers in the z-direction resembles a log-
normal distribution, while the lower 50 layers are characterized by highly permeable channels and high permeability con-
trasts, see Fig. 7. Again, periodic boundary conditions are assumed in all tests. We note that to our knowledge, this represents
the first systematic investigation of the multi-scale finite volume type methods applied as a preconditioner reported for
problems of this size and complexity.

To investigate the impact of auxiliary coarse variables on this test case, we consider both the full model, as well as sub-
models from the upper and lower part of the formation. In all test cases, we will place an injection well in one corner, and a
producer in the middle of the domain. A fixed pressure is applied in the injection well, and the injection cell is modeled as an
ACV for all simulations.

5.2.1. Refinement of the coarse space
As a first test, we investigate how adding ACVs to a vertex grid impacts the number of iterations. We define three cases,

the two first being subsets of the full model, corresponding respectively to a log-normal and channelized permeability field.
The third case represents the full benchmark dataset:

Case A: a grid of 60 � 220 � 35, permeability from SPE10 layers 1–35
Case B: a grid of 60 � 220 � 35, permeability from SPE10 layers 36–70
Case C: a grid of 60 � 220 � 85, permeability from SPE10 layers 1–85



Fig. 7. The base-10 logarithm of the SPE10 permeability field. The formation is viewed upside down to emphasize the channelized features in the lower part
of the reservoir.

Table 2
The number of GMRES iterations needed to reach a relative residual of 10�6 for the SPE10 test cases.

# ACV # (Coarse nodes) # it, Case A # it, Case B

Cases A and B
Vertex 1 561 193 1207
ACV 1 2341 2801 99 876
ACV 2 5041 5601 96 931
ACV 3 8401 8961 62 618
WB 14,001 14,561 63 600

# ACV #(Coarse nodes) # it, Case C

Case C
Vertex 1 1361 1516
ACV 1 6801 8161 1082
ACV 2 13,601 14,961 1091
ACV 3 20,401 21,761 734
WB 34,001 35,361 780
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On all these cases, we apply a coarse grid of 15 � 11 � 5. We test vertex and wire basket preconditioners, as well as three
preconditioners with an increasing number of ACVs denoted ACV 1, 2 and 3. The ACV refinement is the same for each edge,
that is, permeability variations, etc. are not taken into account when defining the extra coarse nodes. The GMRES iterations
are halted when the relative residual reaches 10�6.

The number of coarse scale nodes and the results are summarized in Table 2. We see that the number of iterations needed
to reach the desired tolerance decrease as auxiliary coarse variables are added. With the ACVs placed on the edges, the wire
basket method is the limiting case with the densest coarse space, and thus a reduction factor of 2–3 compared to the vertex
scheme is optimal for these tests. A large part of that improvement is achieved already when going to ACV 1. Also, the extra
computational cost stemming from adding the extra coarse variables needed to go from ACV 3 to a full wire basket scheme
does not seem to be justifiable.

The reduction in the iteration count is highest in the upper layers, where there are few abrupt changes in the permeability
field, and thus the pressure solution has highest regularity. In the lower layers, the solution is erratic, and to best capture this
behavior by ACVs, the auxiliary nodes should likely be placed on strategic locations in the reservoir, such as highly perme-
able channels. Despite that no adaptivity was applied to position the ACVs in the current test, the number of iterations
needed is still reduced significantly, even when a relatively small number of ACVs are added.
5.2.2. Comparison of refinement strategies
It is worth comparing vertex and ACV refinement for the SPE 10 case, building on the analogy between h and p refine-

ment. In this test, only Cases A and B are considered, to emphasize the role of the different structure in the permeability
fields.

We consider three vertex grids with an increasing number of coarse unknowns. Furthermore, we consider two ACV
schemes, created by refining the coarsest vertex grid in such a way that the ACV grids and refined vertex grids have a similar



Table 3
The number of GMRES iterations needed to reach a relative residual of 10�6 for the SPE10 test cases. Three vertex preconditioners were tested, as well as two
ACV schemes.

Type # PCV # ACV # (Coarse nodes) # it, Case A # it, Case B

Cases A and B
Vertex 400 1 401 249 1481
Vertex 1680 1 1681 391 1984
Vertex 3698 1 3699 832 1732
ACV 400 1201 1601 171 1220
ACV 400 3201 3601 106 832
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number of coarse unknowns. Thus the simulations illustrate the performance of vertex and ACV refinement for a fixed num-
ber of coarse cells.

The results for both Cases A and B are shown in Table 3, together with the number of coarse unknowns for the different
schemes. For the log-normal-type permeability in Case A, vertex refinement renders a higher number of iterations needed
compared to the strategy of adding auxiliary coarse variables. However, for the channelized Case B, the picture is less clear.
This qualitative behavior is consistent with the notion of h-refinement for multiscale methods [6], where we note that for the
case with high regularity (the upper layers) it is beneficial to go refine the coarse grid, while for the case of less regularity
(the lower layers), the resonance effect between the characteristic length scales in the parameter field may influence the
optimal grid spacing in a way where it is not always beneficial to reduce the spacing on the coarse grid.

In contrast, for both upper and lower layers, adding ACVs to the coarsest vertex grid renders fewer iterations. Compared
to the vertex grids with similar number of coarse unknowns, the ACV scheme for most cases has about half the number of
iterations; in one case the reduction factor is almost 8. These results can be seen in the context of ACV providing a bridge
between the vertex-based approximation and the relatively more robust wire basket approximation, leading to a consis-
tently better approximation of the Schur complement systems.

5.3. Standalone multiscale methods

As discussed in Section 3.3, the multiscale preconditioners derived herein can be seen as standalone multiscale approx-
imations, which indeed gives the classical multiscale finite volume method [20]. As such, it is of interest to also discuss the
performance of the multiscale preconditioner as an approximate solution by itself, not just its convergence properties.

While for 2D cross sections of the testcases discussed above, the multiscale methods can be made reasonably robust [7],
the same is not true in 3D. In particular, for the regular Cartesian grids considered herein, the Multiscale preconditioner as a
stand-alone solver gives unacceptable approximations even on the log-normal type permeability fields, and completely fails
to give reasonable results for channelized problems such as the lower layers of SPE10. For this reason, we have chosen to
emphasize the utility of multiscale methods in the iterative framework.

In practical implementations, the great advantage of the mass conservative types of preconditioners discussed herein is
that converged solutions to the linear system of equations are not needed in order to have a locally conservative flow-field.
Thus, in the iterative framework the tolerance of the linear solver can be chosen well above the tolerance used both when
applying traditional preconditioners, but also above the tolerance used in our examples. This allows for considerable com-
putational savings.

6. Conclusion

We have developed a new way of constructing coarse spaces for 3D multiscale simulations. While the existing coarse
space for multiscale control volume methods based on vertex variables becomes unstable for three dimensional problems,
we propose a generalized framework for including additional variables enriching the coarse space. We have denoted the
additional coarse variables as auxiliary. The extended coarse space, based on auxiliary variables enables us to more accu-
rately and more directly transfer fine-scale heterogeneous information onto the coarse scale. Moreover, it gives us the flex-
ibility of constructing suitable coarse scale systems based on the complexity of the problem.

Numerical results show that the proposed framework can be used to construct efficient numerical methods for flow in 3D
porous media; specially for problems involving long heterogeneous structures. In particular, the robustness of the multiscale
framework in 3D is significantly enhanced with the novel formulation.

The wire basket multiscale method is a special case of the auxiliary coarse space, in which all edge cells are sampled on
the coarse scale. This method degenerates to a robust preconditioner for problems involving homogeneous permeability on
each sub-domain. While the WB-method usually gives the lowest number of iterations, much of the captured fine-scale
information is often unnecessary. Numerical experiments show that much of the non-linear information may be captured
within the local basis-functions by including a few auxiliary variables on the sub-domain boundaries. As such, the proposed
methodology forms a flexibel and reasonable compromise between computational cost and iterative efficiency, which can-
not be obtained by classical multiscale methods.



A. Sandvin et al. / Journal of Computational Physics 238 (2013) 141–153 153
References

[1] D. Das, S.M. Hassanizadeh (Eds.), Upscaling Multiphase Flow in Porous Media: From Pore to Core and Beyond, Springer, Dordrecht, 2005.
[2] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.
[3] W. E, B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (1) (2003) 87–132.
[4] I. Babuska, G. Caloz, J.E. Osborn, Special finite-element methods for a class of 2nd-order elliptic problems with rough coefficients, SIAM J. Numer. Anal.

31 (4) (1994) 945–981.
[5] T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method – a paradigm for computational mechanics, Comput. Methods Appl.

Mech. Eng. 166 (1–2) (1998) 3–24.
[6] Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4,

Springer, New York, 2009.
[7] A. Sandvin, J.M. Nordbotten, I. Aavatsmark, Multiscale mass conservative domain decomposition preconditioners for elliptic problems on irregular

grids, Comput. Geosci. 15 (3) (2011) 587–602.
[8] J.M. Nordbotten, P.E. Bjrstad, On the relationship between the multiscale finite-volume method and domain decomposition preconditioners, Comput.

Geosci. 12 (3) (2008) 367–376.
[9] T.Y. Hou, X.-H. Wu, Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comput.

68 (227) (1999) 913–943.
[10] Y. Efendiev, V. Ginting, T. Hou, R. Ewing, Accurate multiscale finite element methods for two-phase flow simulations, J. Comput. Phys. 220 (1) (2006)

155–174.
[11] L. Durlofsky, Y. Efendiev, V. Ginting, An adaptive local-global multiscale finite volume element method for two-phase flow simulations, Adv. Water

Resour. 30 (3) (2007) 576–588.
[12] I. Lunati, P. Jenny, Treating highly anisotropic subsurface flow with the multiscale finite-volume method, Multiscale Model. Simul. 6 (1) (2007) 308–

318 (electronic).
[13] T.Y. Hou, X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134 (1) (1997)

169–189.
[14] H. Hajibeygi, G. Bonfigli, M.A. Hesse, P. Jenny, Iterative multiscale finite-volume method, J. Comput. Phys. 227 (19) (2008) 8604–8621.
[15] J.M. Nordbotten, Adaptive variational multiscale methods for multiphase flow in porous media, Multiscale Model. Simul. 7 (3) (2008) 1455–1473.
[16] A. Toselli, O. Widlund, Domain Decomposition Methods – Algorithms and Theory, Series in Computational Mathematics, vol. 34, Springer-Verlag,

Berlin, 2005.
[17] I.G. Graham, P.O. Lechner, R. Scheichl, Domain decomposition for multiscale PDEs, Numer. Math. 106 (4) (2007) 589–626.
[18] B.F. Smith, A domain decomposition algorithm for elliptic problems in three dimensions, Numer. Math. 60 (1) (1991) 219–234.
[19] C. Farhat, F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Eng. 32 (1991)

1205–1227.
[20] P. Jenny, S.H. Lee, H.A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys. 187 (1) (2003)

47–67.
[21] A. Quarteroni, A. Valli, Domain decomposition methods for partial differential equations, in: Numerical Mathematics and Scientific Computation, The

Clarendon Press Oxford University Press, New York, 1999. Oxford Science Publications.
[22] B.F. Smith, P.E. Bjørstad, W.D. Gropp, Domain Decomposition, Cambridge University Press, Cambridge, 1996.
[23] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (3)

(1986) 856–869.
[24] J. Nordbotten, E. Keilegavlen, Inexact linear solvers for control volume discretizations, SIAM J. Sci. Comput., submitted for publication.
[25] J. Mandel, B. Sousedík, Coarse spaces over the ages, in: Domain Decomposition Methods in Science and Engineering XIX, Lecture Notes in

Computational Science and Engineering, vol. 78, Springer-Verlag, Berlin, Heidelberg, 2011.
[26] O. Widlund, The development of coarse spaces for domain decomposition algorithms, in: Domain Decomposition Methods in Science and Engineering

XVIII, Lecture Notes in Computational Science and Engineering, vol. 70, Springer-Verlag, Berlin Heidelberg, 2009.
[27] J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model. Simul. 8 (4) (2010) 1461–

1483.
[28] J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces, Multiscale

Model. Simul. 8 (5) (2010) 1621–1644.
[29] C. Wolfsteiner, S.H. Lee, H.A. Tchelepi, Well modeling in the multiscale finite volume method for subsurface flow simulation, Multiscale Model. Simul. 5

(3) (2006) 900–917 (electronic).
[30] M. Christie, M. Blunt, Tenth SPE comparative solution project: a comparison of upscaling techniques, SPEREE 4 (4) (2001) 308–317.


	Auxiliary variables for 3D multiscale simulations  in heterogeneous porous media
	1 Introduction
	2 Challenges of 3D multiscale elliptic problems
	2.1 Multiscale numerics
	2.2 Extension to 3D

	3 MCDD
	3.1 Mass conservative coarse-scale operator
	3.2 Schur complement system
	3.3 Interface approximations
	3.4 The coarse scale operator
	3.5 Remark on implementation

	4 Auxiliary coarse variables
	4.1 Generalized preconditioner
	4.2 Properties of the auxiliary coarse variables
	4.3 Computational cost

	5 Numerical results
	5.1 Log-normal test case
	5.2 SPE 10
	5.2.1 Refinement of the coarse space
	5.2.2 Comparison of refinement strategies

	5.3 Standalone multiscale methods

	6 Conclusion
	References


