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In this paper, we propose a non-iterative interface reconstruction method for 2D planar and 
axisymmetric geometries that is valid for arbitrary convex cells and intended to be used 
in multi-material simulation codes with sharp interface treatment for instance. Assuming 
that the normal vector to the interface is known, we focus on the computation of the 
line constant so that the polygon resulting from the cell-interface intersection has the 
requested volume. To this end, we first decompose the cell in trapezoidal elements and 
then propose a new approach to derive an exact formula for the trapezoids volumes. This 
formula, derived for both the planar and axisymmetric cases, is used to first bracket and 
then find the line constant that exactly matches the prescribed volume. The computational 
efficiency of the proposed method is demonstrated over a large number of reproducible 
conditions and against two existing methods.

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

Volume-tracking methods for multi-material flow simulations have been introduced in the early seventies with three 
different approaches in [8,11,10]. Their common points are 1) the different materials are represented by their volume frac-
tions, 2) these volume fractions are advected with the flow velocity to follow the materials evolution, 3) a cell-wise interface 
is reconstructed at each time step from the volume fractions to prevent its numerical diffusion. Many extensions and im-
provements have been proposed to these methods in the last decades, and nowadays the most widespread volume-tracking 
method uses a PLIC interface reconstruction technique (Piecewise Linear Interface Calculation) [17,13]. In this method, the 
material volume fractions equation is geometrically solved by making use of the cell-wise reconstructed linear interface in 
order to keep the interface sharp during simulation.

In this work, we are interested in the reconstruction process of a cell-wise linear interface that is represented by the line 
equation

nxx + ny y − c = 0

where �n = (nx, ny) is the unit normal vector to the interface and c its line constant. The reconstruction step classically 
consists of two steps, firstly the computation of �n and secondly the computation of the line constant c such that the 
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interface splits the cell in two sub-cells whose volumes correspond to the material volume fractions. In this work, we 
only focus on the latter step that we call volume-matching step by assuming that the normal vector is known. We remind 
that �n is usually computed as the volume fraction gradient by any existing gradient computation technique as instance 
a least-squares method (e.g. (E)LVIRA in [12] or k-exact in [2]) or a height function method [6]. A good review of these 
techniques can be found in [14].

The purpose of this paper is to propose an original non-iterative technique to the volume-matching problem for any 
convex polygonal cell. Let us first point out that several methods already exist for particular cell shapes, see [16] for trian-
gles/tetrahedra and [15,7] for squares/hexahedra, and are widely used in simulation codes. However, up to our knowledge, 
only the two methods presented in [4,9] are available for arbitrary cells in planar geometry while in the axisymmetric 
geometry only a very recent extension of [4] can be found in [1]. This recentness is most likely the reason why for com-
plex polygonal meshes (e.g. Voronoi meshes), the volume-matching technique proposed by Rider and Kothe in [13] is still 
mainly used in industrial or academic codes. Therefore we will use it as a reference to evaluate the cost of our method 
in the numerical results section. This volume-matching technique [13] is made of two sub-steps, the first one consists in 
computing the line constants and the resulting material volumes when lines parallel to the interface pass through all nodes 
of the cell in order to bracket the interface line constant. Then, once the two closest bounds are found, a Brent’s iterative 
method [3] is used to find the interface line constant that matches the requested volume fraction. This iterative procedure 
may be very costly since the intersection between the cell and the interface, and the resulting volumes must be computed 
at each iteration. In the sequel, we use Brent’s method to refer to the method used by Rider and Kothe in [13].

Let us now point out the differences between the approach we propose and the non-iterative ones of [4,1] and [9]. In 
[9], an analytical formula is deduced from the polygonal volume formula that uses the cell nodes coordinates. We did not 
choose this approach as we believe the reconstruction could be done more efficiently. Instead we use the same trapezoidal 
decomposition of the cell as the one adopted in [4,1] that allows an incremental bracketing of the solution (see Section 1). 
However our philosophy is to derive an analytical formula that can be used for both bracketing and finding the interface line 
constant. This is a major difference compared to [4,1], where they use a classical formula for the trapezoidal volumes during 
the bracketing step and then use an interpolation technique to find the interface line constant. More specific differences 
will be highlighted in the text when relevant. We claim that our approach leads to a clearer and more robust technique in 
addition to be less computationally expensive and more accurate volume-matching as demonstrated in the last section of 
this paper.

Finally let us add that the interface reconstruction technique we propose in this note is devised for two materials and 
that it could be adapted for more than two materials per cell by assuming a certain configuration (e.g. onion-skin or nested 
dissection [5]) as done with other classical two-material techniques.

The paper is split in three parts. The first part describes how the cell is decomposed. The next one presents the derivation 
of the analytical formulae for the planar and axisymmetric geometries and to their uses while the last one gathers the 
numerical results that demonstrate the improved efficiency of our method.

1. Cell decomposition and line constant bracketing

Let us consider an arbitrary convex polygonal cell with N nodes of coordinates Xl = (xl, yl), l = 1, ..., N with l the 
nodes indexes. We denote by V cell its volume, and by α ∈ [0, 1] and V̄ = αV cell the material volume fraction and associated 
material volume respectively. We recall that the unit normal vector to the interface �n = (nx, ny) is known and assume that it 
points from the material under consideration to the other one. We also remind that the volume-matching problem consists 
in finding the line constant c of the interface that splits the cell according to the given volume V̄ .

In the sequel, for any given line constant c, we call c-line the line parallel to the interface defined by the equation nx x +
ny y − c = 0. Moreover we call c-volume and denote by V c the volume of the material polygon resulting from intersection 
of the c-line with the cell. At last, we assume that for all N faces fl of the cell, the outward unit normal vector �n fl =
(n fl,x, n fl,y) is known and so is the tangential one �t fl = (−n fl,y, n fl,x).

The starting point of our procedure is to decompose the cell. To this end, we follow the same idea as in [4] and start 
by computing and sorting in increasing order the line constants c̃l = nxxl + ny yl of the lines parallel to the interface and 
passing through all nodes Xl . The sorted line constants are denoted ck in the following and are such that c1 < c2 < ... < cN . 
These N ck-lines define a natural partition of the cell made of (possibly degenerated) trapezoids, that we further denote Tk , 
formed by the portions of the cell lying between the ck- and ck+1-lines. It is important to remark that the volumes V ck are 
monotonically increasing with the constant lines ck , thus ensuring a unique solution to the volume-matching problem. We 
provide an illustration of the result of this procedure in Fig. 1 in which we have rotated the polygonal cell in order to plot 
the ck-lines horizontally.

As in existing methods [13,4], the next step is to bracket the solution line constant which consists of finding the closest 
lower and upper bounding values clo and cup in {c1, ..., cN} such that V clo ≤ V̄ ≤ V cup . To this end, we compute the increasing 
ck-volumes until V̄ is bounded. This step is made easier by using the formula derived in next section to compute the 
volumes (V ck+1 − V ck ) of the trapezoids Tk and summing them to get the current V ck+1 . Let us remark that as suggested 
in [4,9], if α is close to 1, it may be more efficient to apply this procedure to (1 − α) using the opposite of the normal 
vector.
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Fig. 1. Illustration of the cell partition defined by the lines parallel to the interface (whose normal vector is �n) and passing through the cell nodes X1, ..., X5. 
As an example, the outward normal vector �n f2 to the face f2 and the tangential one �t f2 are drawn and the c4-volume V c4 generated by the c4-line is also 
depicted. The cell has been rotated so that the ck-lines are horizontal.

Once the bounds, clo and cup , are found the problem reduces to

Find c such that clo ≤ c ≤ cup and V c = V̄ .

Using the volume Vh defined as (V c − V clo ), we rewrite the problem as

Find h such that 0 ≤ h ≤ (cup − clo), c = clo + h and Vh = (V̄ − V clo ).

Therefore the problem amounts to finding the unknown h such that the c-line, with c = (clo + h), is the interface that 
matches the given volume.

As mentioned in introduction, this approach is similar to the one adopted in [4]. However the formula (derived in next 
section) that we use to compute the volume of any trapezoid Tk is different from [4] and does not request the computation 
of the cell cross section by the ck+1-line as pointed out in Section 2.3.

2. Analytical formula for the trapezoidal volumes

We start this section by describing the particular trapezoidal configuration obtained once the cell is decomposed and the 
bounds found.

The trapezoid is formed by the intersection of the parallel clo- and cup -lines with exactly two faces of the polygonal 
cell, denoted f L and f R , the subscripts standing for Left and Right, respectively. The side included in the clo-line is referred 
to as the basis of the trapezoid. Moreover in order to derive the analytical formula we need to know the coordinates, 
XL = (xL, yL) and XR = (xR , yR), of the intersection points between the basis and the faces f L and f R respectively. We also 
need the oriented angle θL going from the line perpendicular to the basis and passing by XL to the face f L and likewise, 
the angle θR going from the line perpendicular to the basis and passing by XR to the face f R . We recall that the normal 
unit vectors for f L and f R are known and denoted by �n f L and �n f R respectively, and the tangential ones by �t f L and �t f R

respectively. At last, we point out that the c-line that we seek, for clo ≤ c ≤ cup , is parallel to and lies between the clo - and 
cup-lines so that it also forms a similar trapezoid.

An illustration of this configuration is provided in Fig. 2 in which we also show the decomposition of the trapezoid that 
we will use to obtain the analytical formula. This decomposition is given by the three following elements:

• a rectangle formed by the trapezoid basis of length B = √
(xR − xL)2 + (yR − yL)2 and the unknown height h,

• a right triangle on the left defined by the unknown height h and the algebraic length LL = h tan θL with angle θL being 
oriented,

• a right triangle on the right defined by the unknown height h and the algebraic length LR = −h tan θR with angle θR

being oriented,

for which the areas are respectively denoted by AB , AL and AR and the volumes by V B , V L and V R . This distinction is used 
in the axisymmetric case since areas and volumes are obviously equal in the planar case.

This decomposition allows to write the trapezoidal volume as the sum of the positive rectangle volume V B and of 
the two signed triangles volumes V L and V R and still holds for the minimal and maximal values of ck even though the 
trapezoid are degenerated into triangles (since B = 0 and so AB = V B = 0). Let us note that as shown in Fig. 3, only four 
configurations are possible according to the signs of θL and θR .

Let us point out that the normal vectors to the four sides of the trapezoid are known: the interface normal vector �n
for the parallel basis and the normal to faces f L and f R for the two other sides. Therefore the four corner angles of the 
trapezoid can be computed. In our case, we will only need the tangents of θL and θR given by
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Fig. 2. An example of trapezoidal configuration generated by a given c-line (bounded by clo and cup ) inside a generic convex polygon. The volume of the 
trapezoid is obtained as the sum of the positive rectangle volume V B and the two signed triangles volumes V L, V R for which the lengths LL , LR are 
algebraic and angles θL , θR are oriented.

Fig. 3. The four possible trapezoidal configurations depending on the signs of algebraic lengths LL , LR and oriented angles θL , θR . Note that XL and XR may 
be the same point.

tan θL = �n · �n f L

�n · �t f L

and tan θR = �n · �n f R

�n · �t f R

. (1)

We now derive the analytical formula for the volume in function of h = (c − clo) that is used during the cell decom-
position step to compute the volume when c = ck and that is inverted in order to compute the line constant c of the 
reconstructed interface. By inverted, we mean that we have to compute the value h such that V (h) = Vh that is equivalent 
to finding the root of polynomials V (h) − Vh of degree two and three for the planar and axisymmetric cases, respectively.

2.1. Formula for the planar geometry

We start with the planar geometry. This is the simplest situation since volumes are not position-dependent. It is thus 
easy to compute the volumes (i.e. areas) of the three elements using basic formulae and obtain the trapezoid volume V as:

V (h) = AB + AL + AR = hB + hLL

2
+ hLR

2
= hB + h2

(
tan θL − tan θR

2

)
. (2)

Note that the formula only uses the length of the trapezoid basis B and the tangents of the two oriented angles θL and 
θR that we have previously defined in Eq. (1).

2.2. Formula for the axisymmetric geometry

We now consider the axisymmetric geometry. For the sake of simplicity and to avoid confusion in notation, we still 
use the coordinates (x, y) instead of using the classical (r, z); x is thus the radial coordinate and y the axial one. In this 
case, volumes are given as the product of the elements area with the x-coordinate of the elements centroid, therefore it is 
position-dependent and obtaining the formulae is slightly more complex. In order to simplify this step, we consider for each 
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element a change of reference frame. More specifically, we combine a translation and a rotation so that the computation of 
the centroids position is trivial and then bring back their coordinates in the original frame. The translation is used to make 
one of the element node be the new frame origin as detailed below for each element while the rotation is such that the 
interface is horizontal in the new frame. The rotation angle is thus given by θ̃ = π/2 − θ̄ where θ̄ is defined by the line 
normal vector �n = (nx, ny) such that cos(θ̄ ) = nx and sin(θ̄ ) = ny . Therefore coming back to the original frame makes use of 
the rotation of angle −θ̃ corresponding to the matrix R−θ̄ =

(
ny nx

−nx ny

)
.

In the following, we separate the computation of the three elements volumes and provide details on the change of 
reference frame separately. Finally we gather the three formulae to obtain the trapezoid volume as a function of h.

Volume of the rectangle

The change of reference frame is obtained by the translation of vector (−xL, −yL) to bring the point XL to the origin 
followed by the rotation of angle θ̃ so that the rectangle basis is aligned with the x-axis. In this frame of reference, the 
centroid is simply given by (B/2, h/2). It is then straightforward to obtain the x-coordinate of the centroid in the original 
reference frame as

x̄B(h) = xL + B

2
ny + h

2
nx,

and hence the volume of the rectangle as

V B(h)

2π
= AB(h)x̄B(h) = h

(
B

(
xL + B

2
ny

))
+ h2

(
B

2
nx

)
.

Volume of the left triangle

We here apply the same change of reference frame as in the rectangle case. Thus in the new reference frame, the centroid 
of the triangle is given by (−LL/3, 2h/3) and in the original reference frame the x-coordinate of the centroid is

x̄L(h) = xL − LL

3
ny + 2h

3
nx,

and so the signed volume of the left triangle is

V L(h)

2π
= AL(h)x̄L(h) = h2

2
(tan θL xL) − h3

6

(
tan θL(tan θLny − 2nx)

)
.

Volume of the right triangle

In this case, the translation of vector (−xR , −yR) brings the point XR to the new origin while we apply the rotation of 
angle θ̃ . The centroid of the triangle is this reference frame is (LR/3, 2h/3) which yields to the x-coordinate of the centroid 
in the original reference frame

x̄R(h) = xR + LR

3
ny + 2h

3
nx = xL +

(
LR

3
+ B

)
ny + 2h

3
nx,

and to the following signed volume for the right triangle

V R(h)

2π
= AR(h)x̄R(h) = h2

2
(− tan θR xL − tan θR Bny) + h3

6

(
tan θR(tan θRny − 2nx)

)
.

Volume of the trapezoid

Finally after algebraic manipulations, we obtain the volume of the trapezoid as

V (h)

2π
= V B(h) + V L(h) + V R(h)

2π
= h

(
B

(
xL + B

2
ny

))
+h2

2

(
B(nx − tan θRny) − (tan θR − tan θL)xL

)

+ h3

6

(
(tan θR − tan θL)

(
(tan θL + tan θR)ny − 2nx

))
. (3)

Note that in this case, the formula is moreover depending on the position of the left node of the trapezoid basis xL . This 
must be interpreted as the contribution to the volume formula of the position of the trapezoid.

Before ending this section by detailing the global algorithm of our technique and in particular how formulae of Eqs. (2)
and (3) are used, let us draw some remarks about how our approach compares to the non-iterative approach of [1]. In order 
to get the cubic polynomial that we just derived, authors of [1] make use of a cubic interpolation between four volumes. 
More specifically, once the solution is bounded, the volumes associated to h = 0 and h = cup − clo are known, but two other 
volumes are still needed for the interpolation. Therefore they choose to compute the volumes associated to h = (cup − clo)/3
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and h = 2(cup − clo)/3 (it could be any values strictly in [0, cup − clo]) for which they need to compute the two cross 
sections lengths that themselves require the computation of two intersection points for each cross section. In consequence, 
the interpolation step of their approach is costly compared to our geometric approach as confirmed by the computational 
cost comparisons provided in the numerical results section.

2.3. The complete volume-matching algorithm

We give hereafter the general algorithm of our volume-matching technique and detail the use we make of formulae of 
Eqs. (2) and (3). Assuming that the unit normal vector �n to the interface is known, the proposed technique to match a 
volume V̄ consists of

Step 1 Compute the line constants of the lines parallel to the interface and passing through all cell nodes X1, ..., XN and 
sort them in increasing order such that c1 < ... < cN .

Step 2 Find the bounding line constants clo and cup such that V clo < V̄ < V cup by computing the increasing ck-volumes 
(V c1 < ... < V cN ). To this end, use h = (ck+1 − ck) in Eqs. (2) and (3) to compute the volume of each additional 
trapezoid in the planar and axisymmetric geometries, respectively.

Step 3 In the trapezoid defined by the clo- and cup -lines, compute the interface line constant c = clo +h where h is the only 
root in [0, cup − clo] of the polynomial V (h) − Vh with Vh = (V̄ − V clo ) and V (h) defined by Eqs. (2) and (3) in the 
planar and axisymmetric geometries, respectively.

Consequently formulae of Eqs. (2) and (3) are used in two different ways when bracketing and finding the interface line 
constant. More specifically, during the bracketing step (Step 2) these formulae are simply evaluated with h = (ck+1 − ck) to 
get the volume of the current trapezoid Tk , while during the volume-matching step (Step 3) they are used in a root finding 
process to find the only value of h that corresponds to the given volume V̄ . Let us now draw some remarks about these 
two different uses.

When computing the volume of the trapezoid Tk during the bracketing step, our approach does not need the cell cross 
section with the ck+1-line contrary to [4]. This avoids the computation of one intersection node and one square root to 
compute the length of the cross section and so, tends to reduce the computational cost of our method. Nevertheless, it is 
clear that if c is not bounded by ck and ck+1, we need to compute the intersection point Xk+1

K between the ck+1-line and 
the cell to define the next trapezoid basis. But within our configuration it is straightforwardly given by

Xk+1
K = Xk

K + (ck+1 − ck)
(
tan θk

K
�t + �n)

,

where K stand for L or R depending on the situation, Xk
K is the current trapezoid basis node and the interface tangential 

vector �t is defined as (−ny, nx).
It is also important to emphasize again that our approach avoids the costly computation of the complete polygonal (and 

its volume) resulting from the intersection of the lines with the cell as done in classical methods or in the method of [9].
Finally the volume-matching step is reduced to finding the root in [0, cup − clo] of the polynomial V (h) − Vh that is of 

degree two and three in the planar and axisymmetric geometries, respectively. This problem is simplified by the fact that 
only one root exists in this interval and that regardless of the geometry, we have V (0) − Vh ≤ 0 and V (cup − clo) − Vh ≥ 0.

However at the numerical level, we separate the planar and axisymmetric cases since the computation of the root from 
the exact formula for a polynomial of degree three is generally less efficient than using an iterative method when an 
accurate interval for the root is known. Therefore we always use a Newton’s method to find the root when dealing with 
axisymmetric geometry, but use the exact formula in the planar case for which it is straightforward to remark that the root 
always has the form (−B + √

�)/(2A) when writing the polynomial V (h) − Vh as Ah2 + Bh + C .

3. Numerical tests

In this section, we prove over several numerical tests the increased efficiency of our technique over the Brent’s method 
and the non-iterative approaches of [4,1] and [9]. We detail in Section 3.1 the conditions of the numerical tests that we use 
to assess the accuracy and computational cost of our volume-matching approach alone and give the results for the planar 
and axisymmetric geometries in Sections 3.2 and 3.3, respectively. Then in the last subsection we apply our method to an 
example within a complete interface reconstruction algorithm.

3.1. Testing conditions

During the course of a classical simulation of multi-material flow, the material volume fractions fluctuate between 0 
and 1 and may take all values in between, while the vector normal to the interface in each cell may cover all 2D directions. 
In addition the shape of cells may be different from one cell to another for unstructured meshes. Therefore we will consider 
a large number of configurations to render these realistic conditions and will define them in a deterministic manner for the 
sake of reproducibility. Moreover to asses the efficiency of our method, we will use as a reference the Brent’s-like iterative 
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Fig. 4. Illustration of the three non-regular cells used in the numerical tests.

method of Rider and Kothe [13] but will also consider the non-iterative method of [4,1] to show the superiority of our 
approach. Both errors in volume-matching and computational times will be compared.

Details on the test case configurations are given in the first part of this subsection while the second one is dedicated to 
comparison measures. In the last part, we give details about the parameters used in the three methods.

Test cases: Cell shapes, volume fractions and normal vectors

The numerical tests we propose are performed in four different cell shapes; a regular unit square for the sake of com-
parison with [9] for instance, and three non-regular ones that mimic the types of cells that may appear with unstructured 
meshes: a triangle, a quadrangle and a hexagon. The nodes coordinates of these non-regular cells, represented in Fig. 4, are 
given by

Triangle : (0,0), (0.72,0.13), (1,1),

Quadrangle : (0,0), (1,0.13), (.72,1), (0.13,0.56),

Hexagon : (0,0), (0.66,0.03), (1,0.22), (0.9,0.77), (0.72,1), (0.33,0.86).

Note that these cells are contained in a square of unit area to prevent round-off errors and that it does not induce any loss 
of generality since a simple scaling as the one described in Appendix A can be used to recover an analogous situation.

We now define the two sets S1 and S2 of configurations (i.e. couples formed by a normal vector �n and a volume 
fraction α) that will be used as test cases. To define these two sets, we simply gather the combinations obtained by 
considering a set S�n of normal vectors and two sets of volume fractions S1

α and S2
α respectively, that is

S1 = {
(�n,α)

∣∣ �n ∈ S�n,α ∈ S1
α

}
and S2 = {

(�n,α)
∣∣ �n ∈ S�n,α ∈ S2

α

}
.

The normal vectors of the set S�n are defined by the sines and cosines of 360 angles starting from zero and increasing by 
one degree, that is

S�n = {�n = (cos θ, sin θ)
∣∣ θ = 0◦,1◦,2◦, ...,359◦}.

We chose to consider two different sets of volume fractions S1
α and S2

α to emphasize the fact that our method is almost 
not affected by the values that are used, contrary to the Brent’s-based method for which the number of iterations increases 
when volume fractions are close to zero or one as described in [13]. Both sets contain 10,000 values so that the total 
number of combination in S1 and S2, denoted Ncomb , is 3.6 millions. Such a big Ncomb is necessary to have large enough 
computational times to ensure fair comparison between methods.

The set S1
α uses a constant increment between consecutive volume fractions ranging from 10−4 to 1, that is

S1
α = {

α = m.10−4
∣∣ m = 1,2,3, ...,104},

while the set S2
α focuses more on small volume fractions by considering 1000 uniformly distributed volume fractions in 

each of the 10 intervals [10−p, 10−p+1] with p = 1, ..., 10, that is

S2
α =

{
α = 10−p + m

103

(
10−p+1 − 10−p) ∣∣∣ m = 1,2, ...,103 and p = 1,2, ...,10

}
.

The first set is certainly closer to the reality of physics computation, but at the same time the set S2
α is relevant in that 

on the one hand volume fractions smaller than 10−4 often appear during simulation and on the other hand it is important 
to assess the insensitivity of our method to volume fractions close to 0 or 1 that badly affect the Brent’s method cost.
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It is worth noticing that ideally the computational time needed by any method to solve the volume-matching problem 
for the two sets S1 and S2 would only be dependent on the number of combinations and not on the different values of the 
volume fractions.

Comparison measures

To compare the proposed method to the two existing ones, we consider several measures both in terms of accuracy and 
computational cost. First, we consider two error norms that measure the global accuracy of the volume matching, a L∞
norm

max
1≤i≤Ncomb

∣∣V i
c − V̄ i

∣∣,
and a L1 norm

1

Ncomb

Ncomb∑
i=1

|V i
c − V̄ i|,

where the superscript i refers to a particular configuration (�n, α) in S1 or S2 so that the volume to match is V̄ i = αV cell
while V i

c is the c-volume corresponding to the interface line constant c computed by the method under consideration.
Finally we compare the computational times between the two methods using Relative Time Units (R.T.U.). More specifi-

cally, for each geometry we set that one R.T.U. is the computational time taken by our method to complete the set S1 for 
the triangular cell. This way, the comparisons between methods and also combinations sets are made easier.

Methods parameters

The three methods have been implemented in the same code such that the computational costs comparison is as fair as 
possible. It has been written in Fortran and compiled by Intel ifort with the -O2 and -ipo optimization options. We hereafter 
give the implementation details that needs to be highlighted for each of the three methods.

For the technique we propose, the interface line constant is found using the exact formula for the root in the planar 
geometry and a Newton’s method in the axisymmetric one. In the latter case, we always use h = (cup − clo)/2 as initial 
guess and |V (h) − Vh| < ε , with ε set to 10−15, as stopping criterion for all computations.

For the other non-iterative method, we use the exact formula given in [4] for the planar case. For the axisymmetric 
case, since few details are given in [1], we choose to perform the cubic interpolation relative to the h variable as in our 
method. It is simplified by the fact that the trapezoidal volume is zero for h = 0. In this case, we also separate the centroid 
computation for the first and last degenerated trapezoids (that are triangles) to speed up the computation. At last, the root 
of the cubic polynomial is found by the same exact Newton’s method that we use for our method.

Finally we implemented the Brent’s iterative method as described in [13] with a slight modification of the line constant 
bracketing. Indeed, as proposed in [9], we first compute and sort the values of ck for each node and start with computing 
the ck-volumes corresponding to the central index INT[(N + 1)/2], thus limiting the number of ck-volumes computations 
needed to bracket the solution. It decreased the cost of the Brent’s method in all the test cases we have carried out 
by about 10%. During the line constant computation, the Brent’s algorithm is stopped when the difference between two 
consecutive candidate roots is smaller than 10−14 or when |V (h) − Vh| is smaller than machine tolerance. These values 
have been chosen such that the errors in volume-matching are of the same magnitude than the ones with our method. We 
point out that increasing these values does not dramatically affect the computational times but clearly increases the errors 
and refer the reader to [9] for a study with different tolerance values.

3.2. Results for the planar geometry

We consider in this section the planar geometry case and gather in Table 1 the R.T.U., L∞ and L1 errors obtained for the 
sets S1 and S2 and for each of the four cell shapes using both the Proposed, the non-iterative method of [4] (referred to as 
‘MOF-like’) and the Brent’s methods. We also provide the average number of iterations (Avg. It. Nb.) of the Brent’s algorithm 
in the last column.

As expected the errors are exact to machine precision for all methods since the tolerance in the Brent’s method has been 
chosen to ensure this property. Nevertheless it is worth noticing that the maximal errors (L∞) over the sets are always 
more accurate by about one order of magnitude for the proposed method compared to the two other methods (MOF-like 
and Brent’s).

Let us first consider the set S1, the proposed method is 5 times faster than the classical method for the square cell and 
between 6 and 8 times faster for the non-regular shapes. The results on the square is explained by a smaller number of 
iterations (analogous to the ones in Tables 1 and 2 of [9]) for the Brent’s method. Moreover, as expected the comparisons 
with the non-iterative method of [4] reveals closer computational times but our approach is always at least 1.6 times faster 
with a better accuracy. It is worth remarking that indirect comparisons to the other non-iterative method proposed in [9]
shows that our method is about 3.5 times faster. Indeed for the square cell their method is about 1.4 times faster than the 
Brent’s method coupled with the efficient bracketing procedure while ours is 5 times faster.
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Table 1
Results in planar geometry. R.T.U. and volume-matching errors for the different cell shapes obtained by the Proposed method, the MOF-like method of [4]
and the Brent’s method. One R.T.U. corresponds to the computational time needed by the Proposed method to compute the results of the Set 1 on the 
triangular cell. When iterative method is used, the average number of iterations over the whole set of combinations is also specified.

Set Method Cell Shape R.T.U. L∞ Error L1 Error Avg. It. Nb.

Set 1 Proposed Triangle 1.00 1.94e-16 2.41e-17 N/A
Square 1.06 2.78e-16 2.48e-17 N/A
Quadrangle 1.16 3.89e-16 4.85e-17 N/A
Hexagon 1.55 6.94e-16 7.04e-17 N/A

MOF-like Triangle 1.70 3.30e-15 4.23e-17 N/A
Square 1.95 1.44e-15 5.55e-17 N/A
Quadrangle 2.14 4.02e-15 6.47e-17 N/A
Hexagon 2.83 3.00e-15 8.63e-17 N/A

Brent’s Triangle 8.40 3.18e-15 1.22e-16 7.168
Square 5.30 3.72e-15 6.72e-17 3.340
Quadrangle 8.43 3.83e-15 2.15e-16 6.445
Hexagon 9.39 5.22e-15 2.23e-16 6.046

Set 2 Proposed Triangle 0.94 2.78e-16 1.05e-17 N/A
Square 1.03 3.33e-16 6.82e-18 N/A
Quadrangle 1.04 3.89e-16 1.41e-17 N/A
Hexagon 1.26 6.38e-16 1.69e-17 N/A

MOF-like Triangle 1.68 5.88e-15 1.39e-17 N/A
Square 1.74 1.78e-15 1.12e-17 N/A
Quadrangle 1.80 4.02e-15 1.78e-17 N/A
Hexagon 2.10 3.61e-15 1.97e-17 N/A

Brent’s Triangle 18.34 3.53e-15 4.23e-17 18.498
Square 17.64 3.50e-15 3.99e-17 17.066
Quadrangle 18.58 3.61e-15 5.48e-17 17.510
Hexagon 19.50 4.22e-15 5.77e-17 16.188

Furthermore the proposed method is essentially insensitive to the values of volume fractions used in the tests as shown 
when running the combinations of set S2. While the Brent’s method is almost two times slower (with 2.5 more iterations) 
for the same number of combinations due to small volume fractions, the proposed method is even slightly faster than for 
the set S1 because of its incremental nature. The conclusions of comparisons between our approach and the one of [4] still 
hold for the set S2.

3.3. Results for the axisymmetric geometry

We now turn to the axisymmetric geometry case and give in Table 2 the R.T.U., L∞ and L1 errors obtained for the sets 
S1 and S2 for the four cell shapes with the three methods. However the average number of iterations refers to the Newton’s 
method for our method and the one of [1] while it still refers to the Brent’s algorithm for the reference method.

For this geometry, all methods use an iterative process but the Newton’s method always needs less iterations than the 
Brent’s one and most importantly a Newton’s iteration is much less expensive than a Brent’s one as it only consists of one 
evaluation of a polynomial of degree three and one evaluation of its derivative.

Let us first point out that the cost of the proposed technique in the axisymmetric case increases compared to the planar 
situation with a factor of about 1.6 for the set S1 and 2.4 for the set S2. This is what we expected because of the more 
complex nature of the formula for the axisymmetric geometry requiring the use of an iterative Newton’s method.

Regardless of this cost increase, the proposed method is still more efficient than the Brent’s method, at least 4.8 times 
faster for the set S1 and at least 7.7 times for the set S2 while the errors are at machine precision as wanted. Furthermore, 
the reduction in computational cost with our method compared to the MOF-like one is more important in this geometry 
than in the planar one as expected (see the remark at the end of Section 2) since it is at least 2 times faster on S1
and 1.8 on S2 with always a better accuracy. At last, the relative insensitivity of our method to the values used in the 
volume-matching problem is confirmed in the axisymmetric geometry as shown in the results with the set S2.

Finally our approach brings an important reduction in computational cost compared to the classical iterative method and 
a slight one compared to the non-iterative MOF-like method in addition to proposing a clearer geometric derivation of the 
exact formula.

3.4. Example within a complete interface reconstruction algorithm

We now want to assess the gain brought by our approach in a complete interface reconstruction problem. To this end, we 
consider a biohazard-like symbol (depicted in the right panel of Fig. 5) on an irregular Voronoi mesh computed from 6348 
randomly distributed generators (except on the domain boundaries). It leads to 6348 cells in total and 704 multi-material 
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Table 2
Results in axisymmetric geometry. R.T.U. and volume-matching errors for the different cell shapes obtained by the Proposed method, the MOF-like method 
of [4] and the Brent’s method. One R.T.U. corresponds to the computational time needed by the Proposed method to compute the results of the Set 1 on 
the triangular cell. When iterative method is used, the average number of iterations over the whole set of combinations is also specified.

Set Method Cell Shape R.T.U. L∞ Error L1 Error Avg. It. Nb.

Set 1 Proposed Triangle 1.00 1.55e-15 1.33e-16 4.892
Square 0.96 2.00e-15 1.80e-16 3.173
Quadrangle 1.06 1.78e-15 1.51e-16 4.402
Hexagon 1.26 1.78e-15 1.52e-16 3.881

MOF-like Triangle 2.08 2.39e-14 3.70e-16 4.892
Square 1.94 1.29e-14 3.72e-16 3.173
Quadrangle 2.31 2.03e-14 4.02e-16 4.402
Hexagon 2.76 1.55e-14 3.96e-16 3.881

Brent’s Triangle 5.68 1.30e-14 6.12e-16 7.457
Square 4.79 1.52e-14 7.34e-16 5.770
Quadrangle 5.78 1.33e-14 7.18e-16 7.195
Hexagon 6.18 1.20e-14 7.92e-16 6.648

Set 2 Proposed Triangle 1.41 1.89e-15 9.63e-17 10.721
Square 1.41 2.22e-15 8.72e-17 9.967
Quadrangle 1.41 1.78e-15 9.43e-17 10.045
Hexagon 1.49 1.60e-15 9.56e-17 9.353

MOF-like Triangle 2.50 3.09e-14 1.38e-16 10.721
Square 2.44 1.24e-14 1.22e-16 9.969
Quadrangle 2.53 1.42e-14 1.32e-16 10.045
Hexagon 2.64 1.38e-14 1.26e-16 9.353

Brent’s Triangle 11.30 1.75e-14 1.41e-16 17.788
Square 10.93 1.71e-14 1.71e-16 16.368
Quadrangle 11.42 1.38e-14 1.62e-16 16.978
Hexagon 11.89 1.29e-14 1.78e-16 15.743

Fig. 5. Interface reconstruction test. Left: Plot of the material volume fractions on the irregular Voronoi mesh: White cells contain only material 2, black 
cells contain only material 1 while red cells contain both materials. Right: Representation of the biohazard-like symbol with the details to reproduce the 
fundamental shape. Rotations of center C0 and angles 2π/3 and −2π/3 are used to complete the symbol.

ones with the smallest volume fraction being about 2.10−9 for both planar and axisymmetric geometries. An illustration of 
the mesh is given in the left panel of Fig. 5 where the volume fractions of material 1 have also been plotted.

For each cell, the first step of the algorithm used in this test is to detect if the cell is multi-material by looking at 
the material volume fractions. Then if it is the case, the normal vector to the interface is computed using a weighted 
least-squares technique [2] and the volume-matching technique described in Section 2.3 is used to find the line constant of 
the interface. The last step is the storage of the material polygons in memory. Note that in multi-material hydrodynamics 
simulations with sharp interface treatment, this algorithm is used at each time step to get the interface representation.

We compare in Tables 3 the computational times (in R.T.U.) obtained to complete the interface reconstruction problem 
described in previous paragraph for all cells both in planar and axisymmetric geometries with the three volume-matching 



S. Diot et al. / Journal of Computational Physics 275 (2014) 53–64 63
Table 3
Interface reconstruction test. Total computational times (Total CPU) for the interface reconstruction problem in R.T.U. and percentage corresponding to the 
volume-matching step (Vol. Match.) with the three volume-matching techniques: the Proposed method, the MOF-like method of [4] and the Brent’s method. 
One R.T.U. corresponds to the computational time needed by the Proposed method in the planar geometry.

Vol. Match. Technique Planar geometry Axisymmetric geometry

Total CPU (R.T.U.) Vol. Match. (%) Total CPU (R.T.U.) Vol. Match. (%)

Proposed 1.00 52.42 1.17 59.65
MOF-like 1.06 60.12 1.39 70.43
Brent’s 3.09 86.34 3.14 86.58

techniques used in previous sections (Proposed, MOF-like and Brent’s). We have set one R.T.U. to be the computational 
time needed for the Proposed technique in the planar geometry when repeating 30,000 times the problem in order to get 
fair computational times comparisons. Moreover the percentage of the total computational time that corresponds to the 
volume-matching step alone is also provided.

As expected, the complete interface reconstruction problem is solved in less computational time when using the pro-
posed volume-matching technique due to the gain observed in the previous section when only considering the volume-
matching step. In particular, we see that the proposed technique allows to solve the current problem three times faster than 
when the classical Brent’s method is used, and 10–15% faster than when the MOF-like method is used.

Let us finally note that the volume-matching step is reduced to 55–60% of the whole interface reconstruction process 
with the new method while it is about 85% with the Brent’s method, thus explaining the decrease in computational times. 
Nevertheless this gain will be mitigated when implemented in a complete simulation code since the reconstruction step is 
usually not be the main part of the algorithm.

4. Summary and conclusion

In this work, we propose a non-iterative interface reconstruction technique for planar and axisymmetric geometries 
based on analytical formulae that are derived from geometric considerations. Our approach is new and allows a direct use 
of the analytical formulae to both bracket and find the line constant that is solution of the interface positioning problem, 
contrary to existing efficient non-iterative methods [4,1] that use classical volume formulae and polynomial interpolation 
techniques. Our work is only focused on the second step of the interface reconstruction problem, the interface positioning, 
thus assuming that the normal vector to the interface is already computed by one of the many available techniques ([14]
and references therein).

Considering the trapezoidal decomposition of the cell defined by the lines parallel to the interface and passing through 
the cell nodes, we propose a simple geometric approach to derive analytical formula for the volumes of the particular 
trapezoids in both planar and axisymmetric 2D geometries. This technique has been tested over four different cell shapes 
and two different sets of configurations (normal vectors and material volumes) both containing 3.6 millions of combinations. 
We provided all the details on the conditions so that they are entirely reproducible.

Our method is found 5–19 times faster than the widely used Brent’s method, and is moreover mainly insensitive to vol-
ume fractions values. When compared to the efficient non-iterative method of [4,1], our approach is slightly faster (1.6–2.0 
times) in both the planar and axisymmetric geometries while always being more accurate.

In the future, we plan to apply the same ideas first to develop an exact interface reconstruction method for arbitrary 
three-dimensional convex cells, and then to extend it to arbitrary non-convex cells. Moreover we plan to test the new 
volume-matching method in dynamic advection and multi-material flows problems.
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Appendix A. Unit-area scaling valid for planar and axisymmetric geometries

In this appendix, we describe a simple scaling valid for both planar and axisymmetric geometries that may be used 
to avoid round-off errors during interface reconstruction in very small cells. The main idea is to scale the smallest box 
containing the cell under consideration to a square cell of unitary area. As such it is valid for any cell shape.

Let us denote by �x and �y the width and height of the smallest rectangle containing the cell under consideration. We 
then define the change of coordinates as

x̃ = x

�x
and ỹ = y

�y
,

where x̃ and ỹ are the scaled coordinates.
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In the scaled frame of reference, it is obvious that the smallest box containing the cell has unitary width and height and 
so unitary area. However the cell itself does not have unitary area in general and the volume of the box is not unitary for 
the axisymmetric case neither.

We now give the relation between the cell area A in the original frame and Ã the one in the scaled frame

Ã = A

�x�y
,

which is also the relation between volumes V and Ṽ for the planar geometry, while for the axisymmetric case the relation 
between volumes is given by

Ṽ = 2π Ã ˜̄x = 2π
A

�x�y

x̄

�x
= V

(�x)2�y
,

where x̄ and ˜̄x are the x-coordinate of the cell centroid in the original and scaled frame of reference respectively.
These relations between volumes in the original and scaled frames of reference ensure the equivalence between matching 

a prescribed volume fraction α in the scaled frame and matching it in the original one as long as we consider the change 
of reference frame for the interface equation too. Indeed we have

Ṽ rec

Ṽ
= α

planar
⇒ V rec

V
= Ṽ rec

�x�y

�x�y

Ṽ
= α

axisymmetric
⇒ V rec

V
= Ṽ rec

(�x)2�y

(�x)2�y

Ṽ
= α,

where V rec and Ṽ rec are the volumes defined by the reconstructed interface in the original and scaled reference frames 
respectively.

Finally, as mentioned the interface equation has to be scaled back to the original frame of reference. Considering the 
computed interface equation in the scaled reference frame given by ñx x̃ + ñy ỹ + c̃ = 0, the equation in the original frame is

nxx + ny y + c =
(

ñx

�x

)
x +

(
ñy

�y

)
y + c̃ = 0

that we can also renormalize in order to have a unit normal vector in the original frame by dividing the normal components 
and the line constant by 

√
n2

y + n2
y .

References

[1] H.R. Anbarlooei, K. Mazaheri, ‘Moment of fluid’ interface reconstruction method in axisymmetric coordinates, Int. J. Numer. Meth. Biomed. Eng. 27 
(2011) 1640–1651.

[2] T.J. Barth, P.O. Fredrickson, Higher-order solution of the Euler equations on unstructured grids using quadratic reconstruction, AIAA Aerosp. Sci. Meeting 
28 (1990).

[3] R.P. Brent, Algorithms for Minimization Without Derivatives, Prentice–Hall, Englewood Cliffs, New Jersey, ISBN 0-13-022335-2, 1973, 195 pp.
[4] V. Dyadechko, M. Shashkov, Moment-of-fluid interface reconstruction, LANL Report, LA-UR 07-1537, 2007, pp. 1–57.
[5] V. Dyadechko, M. Shashkov, Reconstruction of multi-material interfaces from moment data, J. Comput. Phys. 227 (2008) 5361–5384.
[6] M.M. Francois, B.K. Swartz, Interface curvature via volume fractions, heights, and mean values on nonuniform rectangular grids, J. Comput. Phys. 229 

(2010) 527–540.
[7] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional 

flows, J. Comput. Phys. 152 (1999) 423–456.
[8] R. DeBar, Fundamentals of the KRAKEN Code, LLNL Report, UCIR-760 (1974).
[9] J. López, J. Hernández, Analytical and geometrical tools for 3D volume of fluid methods in general grids, J. Comput. Phys. 227 (2008) 5939–5948.

[10] B.D. Nichols, C.W. Hirt, Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies, LANL Report LA-UR-75-1932 (1975).
[11] W.F. Noh, P. Woodward, SLIC (Simple Line Interface Calculation), Lect. Notes Phys., vol. 59, Springer-Verlag, New York, 1976, pp. 330–340.
[12] J.E. Pilliod Jr., E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199 (2004) 465–502.
[13] W.J. Rider, D.B. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (1998) 112–152.
[14] R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection, Int. J. Numer. Methods Fluid 41 (2003) 

251–274.
[15] T.G. Vignesh, S. Bakshi, Noniterative interface reconstruction algorithms for volume of fluid method, Int. J. Numer. Methods Fluid 73 (2013) 1–18.
[16] X. Yang, A.J. James, Analytic relations for reconstructing piecewise linear interfaces in triangular and tetrahedral grids, J. Comput. Phys. 214 (2006) 

41–54.
[17] D.L. Youngs, Time-dependent multi-material flow with large fluid distortion, in: K.W. Morton, M.J. Baines (Eds.), Numerical Methods for Fluids Dynam-

ics, Academic Press, New York, 1982, pp. 273–285.

http://refhub.elsevier.com/S0021-9991(14)00478-1/bib416E624D617A3131s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib416E624D617A3131s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4261724672653930s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4261724672653930s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4272653733s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4479615368613038s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4672615377613130s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4672615377613130s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4775654C694E61645363615A616C3939s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4775654C694E61645363615A616C3939s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4C6F704865723038s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib4E6F68576F6F3736s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib50696C5075633034s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib5269644B6F743938s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib5363615A616C3033s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib5363615A616C3033s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib56696742616B3133s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib59616E4A616D3036s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib59616E4A616D3036s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib596F753832s1
http://refhub.elsevier.com/S0021-9991(14)00478-1/bib596F753832s1

	An interface reconstruction method based on analytical formulae for 2D planar and axisymmetric arbitrary convex cells
	0 Introduction
	1 Cell decomposition and line constant bracketing
	2 Analytical formula for the trapezoidal volumes
	2.1 Formula for the planar geometry
	2.2 Formula for the axisymmetric geometry
	2.3 The complete volume-matching algorithm

	3 Numerical tests
	3.1 Testing conditions
	3.2 Results for the planar geometry
	3.3 Results for the axisymmetric geometry
	3.4 Example within a complete interface reconstruction algorithm

	4 Summary and conclusion
	Acknowledgements
	AppendixA Unit-area scaling valid for planar and axisymmetric geometries
	References


