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Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty 
quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It 
is known that bounding a probabilistic parameter, referred to as coherence, yields a bound 
on the number of samples necessary to identify coefficients in a sparse PC expansion 
via solution to an �1-minimization problem. Utilizing results for orthogonal polynomials, 
we bound the coherence parameter for polynomials of Hermite and Legendre type under 
their respective natural sampling distribution. In both polynomial bases we identify an 
importance sampling distribution which yields a bound with weaker dependence on 
the order of the approximation. For more general orthonormal bases, we propose the 
coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the 
basis functions under consideration to achieve a statistical optimality among all sampling 
schemes with identical support. We demonstrate these different sampling strategies 
numerically in both high-order and high-dimensional, manufactured PC expansions. In 
addition, the quality of each sampling method is compared in the identification of solutions 
to two differential equations, one with a high-dimensional random input and the other 
with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme 
leads to similar or considerably improved accuracy.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A precise approach to analyzing modern, sophisticated engineering systems requires understanding how various Quan-
tities of Interest (QoI) behave as functions of uncertain system inputs. An ineffective understanding may give unfounded 
confidence in the QoI or suggest unnecessary restrictions in the system inputs due to unnecessary incredulity concerning 
the QoI. This process of Uncertainty Quantification (UQ) has received much recent study [1–3].

Probability is a natural framework for modeling uncertain inputs by assuming the input depends on a d-dimensional 
random vector Ξ := (Ξ1, · · · , Ξd) with some joint probability density function f (ξ). In this manner we model the scalar 
QoI, denoted by u(Ξ), as an unknown function of the input, which we seek to approximate. In this work we approximate 
u(Ξ), assumed to have a finite variance, using an expansion in multivariate orthogonal polynomials, each of which we 
denote by ψk(Ξ), yielding a Polynomial Chaos (PC) expansion [1,4],
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u(Ξ) =
∞∑

k=1

ckψk(Ξ), (1)

≈
∑
k∈C

ckψk(Ξ).

Under conditions discussed in Section 2.1, the index set C may have few elements, allowing us to accurately reconstruct u
from a relatively small number of basis polynomials, i.e., there exists a sparse representation for u as a linear combination 
of orthogonal polynomials in Ξ . For computation we truncate the expansion in (1) so that we have c = (c1, · · · , cP )T and

u(Ξ) ≈
P∑

k=1

ckψk(Ξ), (2)

where the error introduced by this truncation to a finite number of terms is referred to as truncation error. The polynomials 
ψk(Ξ ) are naturally selected to be orthogonal with respect to the measure f (ξ ) of the inputs Ξ , [4,5]. For instance, when Ξ
follows a jointly uniform or Gaussian distribution (with independent components), ψk(Ξ) are multivariate Legendre or Her-
mite polynomials, respectively. For the interest of analysis, we assume that ψk(Ξ) are normalized such that E[ψ2

k (Ξ )] = 1, 
where E denotes the mathematical expectation operator. If we can accurately identify the coefficients ck = E[u(Ξ)ψk(Ξ)]
for our approximation, then as P → ∞ there is the mean-squares convergence of our PC approximation to u.

To identify c we consider non-intrusive, i.e., sampling-based, methods where we do not require changes to deterministic 
solvers for u as we generate realizations of Ξ to identify u(Ξ ). We denote these realizations ξ (i) and u(ξ (i)), respectively. 
We let i = 1 : N so that N is the number of independent samples considered, and define

u := (
u
(
ξ (1)

)
, · · · , u

(
ξ (N)

))T ; (3)

Ψ (i, j) := ψ j
(
ξ (i)).

These definitions imply the matrix equality Ψ c = u. We also introduce a diagonal positive-definite matrix W such that 
W (i, i) is a function of ξ (i) that depends on our sampling strategy and is described in Sections 3 and 4. To approximate c
we use Basis Pursuit Denoising (BPDN), [6–9]. This involves solving either the �1-minimization problem

arg min
c

‖c‖1 subject to ‖W u − W Ψ c‖2 ≤ δ, (4)

where δ is a tolerance of solution inaccuracy due to the truncation error, or the closely related

arg min
c

1

2
‖W u − W Ψ c‖2

2 + λ‖c‖1, (5)

where λ is a regularization parameter.
The solution to these problems is closely related to the solution of either

arg min
c

‖c‖0 subject to ‖W u − W Ψ c‖2 ≤ δ,

which is similar to (4), or the closely related

arg min
c

1

2
‖W u − W Ψ c‖2

2 + λ‖c‖0,

which is similar to (5). Here, ‖c‖0 = #(ck 	= 0) is the number of non-zero entries of c . Solutions to these problems are 
of great practical interest for sparse approximation and have received significant study in the field of Compressive Sam-
pling/Compressed Sensing, see, e.g., [10,8,11,12], and more recently in UQ, [13–23].

1.1. Contributions of this work

This work is concerned with convergence analysis and sampling strategies to recover a sparse stochastic function in both 
Hermite and Legendre PC expansions from �1-minimization problem (4). As an extension of our previous work in [13,14,20], 
the main contributions of this study are three-fold.

Firstly, we utilize properties of these polynomials, in conjunction with the analysis of sparse function recovery in [24,25], 
to give a framework which admits a bound on the number of samples sufficient for a successful solution of (4). To our best 
knowledge, the Hermite results are the first of their type, and the Legendre recovery bounds, while here obtained from 
different techniques, are similar to those in [25].

Secondly, we provide a contribution of particular practical interest in that we analyze sampling Hermite polynomials 
uniformly over a d-dimensional ball – with a radius depending on the order of approximation – instead of sampling from 
the standard Gaussian measure. This sampling arises in a similar context to the Chebyshev distribution as a sampling for 
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Legendre polynomials. Interestingly, as explained in Section 4.2.1, this sampling of Hermite polynomial expansion is anal-
ogous to Hermite function expansion, [26], of appropriately weighted solution of interest. We provide analytic and numeric 
results justifying the use of this importance sampling distribution for the recovery of sparse Hermite PC expansions.

Finally, we analytically identify an importance sampling distribution with a statistical optimality, in terms of the coherence
of the PC basis as a key recovery parameter of the method, and identify a Markov Chain Monte Carlo sampler for which 
we provide associated numeric results. This approach, here referred to as coherence-optimal sampling, provides a general 
sampling scheme for the reconstruction of sparse Hermite and Legendre PC expansions, and may be extended to other 
types of orthogonal bases.

The motivation to design a sampling strategy based on the coherence is similar to that of [25,27], but utilizing a dif-
ferent pre-conditioning from [27], considering unbounded bases and asymptotic scenarios, and providing a procedure for 
generating samples.

The presentation in this work has Section 2 clearly stating the problem. Section 3 provides key background information 
and motivates our approach, while Section 4 describes our sampling methods and provides key theoretical results. Section 5
demonstrates the performance of the sampling methods and Section 6 presents the proofs to the theorems from Section 4.

2. Problem statement and solution approach

We first describe the random inputs to the system, letting the random vector Ξ , defined on the probability space 
(Ω, F , P), represent the input uncertainties to the physical problem under consideration. We assume that (Ω, F , P) is 
formed by the product of d probability spaces (R, B(R), Pi) associated with each Ξi where B denotes the Borel σ -algebra. 
We note that this implies that F = B(Rd) the d-dimensional σ -algebra, and Ω = R

d . Further implied are that P is Lebesgue 
measurable and the Ξi are independent random variables. For convenience, we assume that the Ξi are identically dis-
tributed with distribution function f (ξ), and abuse this notation by allowing that Ξ is distributed according to f (ξ ), noting 
that the two distributions may be differentiated by the presence of a scalar or vector function argument.

We consider the physical system through which the input uncertainty Ξ propagates to be given by operators defined on 
a bounded Lipschitz continuous domain D ⊂ R

D for D ∈ {1, 2, 3}, with a boundary denoted by ∂D. Letting operators L, B
and I depend on the physics of the problem being considered, we assume that a solution u satisfies

L
(
x, t,Ξ ; u(t, x,Ξ)

) = 0 x ∈ D,

B
(
x, t,Ξ ; u(t, x,Ξ)

) = 0 x ∈ ∂D,

I
(
x,0,Ξ ; u(0, x,Ξ)

) = 0 x ∈ D.

We note that the problems considered in Section 5 depend only on space or time, but the methods considered here are 
independent of the underlying physical problem. We assume that conditioned on the ith independent sample of Ξ , denoted 
by ξ (i) , a numerical solution to this problem may be identified by a fixed solver; we utilize FEniCS [28] for the examples 
in the present work. For any fixed x0 ∈ D and t0 > 0, our objective is to reconstruct u(x0, t0, Ξ) via problem (4) using 
information obtained from {u(x0, t0, ξ (i))}N

i=1, that is N independent realizations of the QoI. For a cleaner presentation, we 
suppress the dependence of u on x0 and t0.

2.1. Approximately sparse PCE

Here we discuss the polynomials in (2) as utilized in this work, and the key sparsity assumption which this approxima-
tion frequently facilitates. We consider an arbitrary number of input dimensions, denoted by d, and the set of orthogonal 
polynomials in any mixture of these coordinates of total order less than or equal to p. To explain the total order, let 
k = (k1, . . . , kd) be a d × 1 multi-index such that ki ∈ N∪ {0} represents the order of the polynomial ψki (Ξi), orthogonal 
with respect to the measure of Ξi . The d-dimensional polynomials ψk(Ξ ) are constructed by the tensorization of ψki (Ξi),

ψk(Ξ) =
d∏

i=1

ψki (Ξi).

The total order of p implies that we consider all polynomials satisfying

‖k‖1 ≤ p ki ∈N∪ {0} ∀i.

We note that a direct combinatorial count implies that a d-dimensional approximation of total order p has P = (p+d
d

)
basis polynomials. This total order basis facilitates a polynomial approximation to the general function that favors lower 
order polynomials. If the coefficients have a sufficiently rapid decay or if certain dimensions are dominant in an accurate 
reconstruction, then we have

u(Ξ) ≈
∑

ckψk(Ξ),
k∈C
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where s := |C| 
 P is the operative sparsity of the approximation that leads to stable and convergent approximations of c
from (4), using N < P random samples of u(Ξ ). To demonstrate this, we rely primarily on existing theorems from [24] as 
presented in Section 3. Subsequently, in Section 4, we adapt these results to the case of sparse PC expansions for which we 
utilize basic properties of orthogonal polynomials, and further present our main results on the choices of random sampling 
of Ξ and, hence, u(Ξ ).

Notation. In the sequel we occasionally use a multi-index notation for polynomials, but also find it convenience to index 
polynomials by a scalar, e.g., k, from 1 to P .

3. Definitions and background

To contextualize the results from [24], presented in Section 3.3, we first introduce two main definitions that are used 
both in these results, as well as in constructing our sampling methods.

3.1. Sampling definitions

We first consider the set of polynomials, {ψk(ξ )}P
k=1, as defined in Section 2 and define B(ξ ) to be

B(ξ) := max
k=1:P

∣∣ψk(ξ)
∣∣. (6)

This represents a uniformly least upper bound on the basis polynomials of interest. In addition, we consider

G(ξ) ≥ B(ξ) ∀ξ ∈ Ω. (7)

Here, G(ξ) represents an upper bound on the tight bound of B(ξ ) for all ξ ∈ Ω , where Ω is the sample space of potential 
values for ξ as a realization of Ξ .

We note that for several orthonormal polynomials of interest a bound on B(ξ ) may be attained, [25,26,29–32]. In this 
case, we have that ψk(ξ)/G(ξ ) ≤ 1. It follows that for any set S ⊆ Ω ,

c =
(∫
S

f (ξ)G2(ξ)dξ

)−1/2

(8)

is such that

c2
∫
S

f (ξ)G2(ξ)dξ = 1,

and

fY (ξ) := c2 f (ξ)G2(ξ), (9)

is a probability distribution supported on S , which we consider as the distribution for Y . Let δi, j denote the Kronecker delta 
such that δi, j = 1 if i = j and 0 if i 	= j. Note that for i, j = 1 : P ,∣∣∣∣

∫
S

ψi(ξ)

cG(ξ)

ψ j(ξ)

cG(ξ)
c2 f (ξ)G2(ξ)dξ − δi, j

∣∣∣∣ ≤ εi, j, (10)

and we may select S such that εi, j may be made as small as needed, e.g., if we take S = Ω , then εi, j = 0. For this purpose 
we employ the heuristic of selecting S to encompass the largest values of f (ξ) until S is large enough to satisfy the con-
dition (13), discussed in Section 3.2. The justification for this is that in unbounded domains, e.g., for Hermite polynomials, 
regions of small f (ξ) typically correspond to larger supk=1:P |ψk(ξ)| as p grows, [26,30,29].

While this formulation is useful for identifying distributions for Y , unfortunately, we may no longer guarantee that 
E[ψi(Y )ψ j(Y )] − δi, j is small. Fortunately, from (10) if we let

w(Y ) := 1

cG(Y )
, (11)

then |E[w2(Y )ψi(Y )ψ j(Y )] − δi, j | ≤ εi, j . In this way we consider w(Y ) to be a weight function so that {w(Y )ψi(Y )}P
i=1, 

are approximately orthonormal random variables. This function defines the diagonal positive-definite matrix W from (4) as

W (i, i) = w
(
ξ (i)),

where ξ (i) is the ith realization of Y . For a notational symmetry with the conceptual connection, we refer to all realized 
random vectors by ξ regardless of the sampling distribution for ξ , noting that the weight function, w , depends on that 
distribution. Additionally, we note that for simulation, we are not interested in the normalizing constant, c, associated with 
describing our sampling distribution.
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3.2. Coherence definition

Consider realizations of w(Y )ψk(Y ) for k = 1 : P . We investigate the coherence parameter defined as in [24] by

μ(Y ) := sup
k=1:P ,ξ∈Ω

∣∣w(ξ )ψk(ξ)
∣∣2

. (12)

This is a conceptually simple parameter that we will see allows us to bound the number of samples necessary to accurately 
recover c via a solution to (4). From (11) and (12) we are motivated to take G(ξ ) to be B(ξ ) as defined in (6), and as 
we shall show in Section 4.3, this choice leads to an optimally minimal coherence. Fortunately, asymptotic results give us 
approximations to the distribution fY (ξ) of Y in certain cases. These approximations also lead to easier simulation of Y
when fY (ξ) corresponds to the choice of G(ξ ) = B(ξ ), as described in Section 4.3.1.

We utilize the definition in (12) when analyzing Legendre polynomials which are bounded on the domain [−1, 1]d . 
However, we note that (12) is not useful when supk=1:P ,ξ∈Ω |w(ξ)ψk(ξ)|2 is infinite, such as when ψk(ξ) are Hermite 
polynomials and w(ξ ) = 1. If N is the number of samples of Y which we will take, following [24], we consider a truncation 
of Ω to some appropriate S and let

μ(Y ) := min
S

{
sup

k=1:P ,ξ∈S
∣∣w(ξ)ψk(ξ)

∣∣2
subject to P

(
Sc) <

1

NP
;

P∑
k=1

E
[∣∣w(Y )ψk(Y )

∣∣2
1Sc

] ≤ 1

20
P−1/2

}
, (13)

where S is a subset of the support of f , a superscript c denotes a set complement, and 1 is the indicator function. While 
(12) highlights the quantity that we seek to bound, the conditions in (13) insure that the truncation from Ω to S has 
a limited effect on the orthogonality of the set of random variables, {w(Y )ψk(Y )}P

k=1. As normal random variables are 
unbounded, we use (13) in the analysis of Hermite polynomials with a truncation S that captures the essential behavior of 
w(ξ)ψk(ξ ). These definitions are compatible in that either definition may be used for the following theorems.

3.3. Convergence theorems

The following theorems, from [24], use the coherence parameter in either (12) or (13) to bound the number of samples 
necessary to recover a sparse signal with high probability.

Theorem 3.1. (See [24].) Let c be a fixed arbitrary vector in RP with at most s non-zero elements such that Ψ c = u, where Ψ is defined 
as in (3). With probability at least 1 − 5/P − e−β , and C an absolute constant, if

N ≥ C(1 + β)μ(Y )s log(P ), (14)

then c = arg minc{‖c‖1 : W Ψ c = W u}.

When allowing for truncation error and considering a regularized version of this �1-minimization problem as in (5), 
a similar result may be stated. Following [24], we require the condition that ‖Ψ T W 2z‖∞ ≤ ν , for some 0 ≤ ν < ∞, where 
z is the associated truncation error with the model u = Ψ c + z for an arbitrary solution vector c . Additionally, we denote 
by σw the standard deviation of the weighted truncation error w(Y )z(Y ).

Theorem 3.2. (See [24].) Let c be a fixed arbitrary vector in RP , and cs be a vector such that cs(i) = c(i) for the s largest |c(i)|, and 
cs(i) = 0 otherwise. For some s̄, let

N ≥ C(1 + β)μ(Y )s̄ log(P ).

With probability at least 1 − 6/P − 6e−β , and C an absolute constant, the solution to

ĉ = min
c̄∈RP

1

2
‖W Ψ c̄ − W u‖2

2 + λσw‖c̄‖1,

with λ = 10
√

log(P )
N obeys for any c ,

‖ĉ − c‖2 ≤ min
1≤s≤s̄

C(1 + α)

[‖c − cs‖1√
s

+ σw

√
s log(P )

N

]
;

‖ĉ − c‖1 ≤ min
1≤s≤s̄

C(1 + α)

[
‖c − cs‖1 + σw s

√
log(P )

N

]
,

where α :=
√

(1+β)s log5(P ) .
N
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We note that when ‖Ψ T W 2z‖∞ cannot be bounded by a ν , we may be interested in a subset S of Ω that will be 
sampled with sufficiently high probability and admit a bound on ‖Ψ T W 2z1(Y 1,···,Y N )∈S‖∞ . This may be related to the 
truncation of Ω to S in the conditions of (13).

These results show how a bound on μ(Y ) translates into a bound on the number of samples needed to recover a 
solution vector, and provide a theoretical justification to the identification of distributions for Y which yield a smaller 
bound on μ(Y ). With these bounds we may utilize Theorems 3.1 and 3.2 to bound the number of samples required to 
recover solutions of any particular sparsity.

4. Sampling methods

Here we describe the sampling methods that we consider in this work, and present theorems related to recovery when 
we use them. We first consider a sampling according to random variables defined by the orthogonality measure in Sec-
tion 4.1. Such a sampling, dubbed here standard sampling, is commonly used in PC regression, [33,2,14,16]. Second, we 
consider sampling from a distribution related to an asymptotic analysis of the orthogonal polynomials ψk(Ξ ) in Section 4.2, 
and refer to it as asymptotic sampling. Finally, in Section 4.3, we introduce the coherence-optimal sampling that corresponds 
to minimizing the coherence parameters defined in Section 3.2.

4.1. Standard sampling

Here we consider sampling ξ according to f (ξ), the distribution with respect to which the PC bases are naturally 
orthogonal. This implies taking w(ξ ) = 1.

4.1.1. Standard sampling method
For the d-dimensional Legendre polynomials the standard method corresponds to sampling from the uniform distribu-

tion on [−1, 1]d , while for d-dimensional Hermite polynomials this corresponds to samples from a multi-variate normal 
distribution such that each of d coordinates is an independent standard normal random variable.

4.1.2. Theorems
A standard sampling of Hermite polynomials leads to a coherence bounded as in Theorem 4.1, while a standard sampling 

of Legendre polynomials leads to a coherence bounded as in Theorem 4.2. We note that these results hold for a number of 
dimensions d and a set of orthogonal polynomials of arbitrary total order p as defined in Section 2.1.

Theorem 4.1. Assume that d = o(p), that is, d is asymptotically dominated by p. Additionally, let N = O (P k) for some k > 0, that 
is, the number of samples does not grow faster than a polynomial in the number of basis polynomials considered. For d-dimensional 
Hermite polynomials of total order p ≥ 1, the coherence in (13) is bounded by

μ(Ξ) ≤ C p · ηp
p , (15)

for some constants C p, ηp depending on p. For d = o(p), and as p → ∞, we may take C p and ηp to be larger than but arbitrarily close 
to 1 and exp(2 − log(2)) ≈ 3.6945, respectively.

We note that together with Theorems 3.1 and 3.2, this implies that with high probability, the number of samples required 
for recovery from Hermite polynomials grows exponentially with the total order of approximation. The following theorem 
for Legendre polynomials is analogous to previous results in [25], and provides a similar result for the number of samples 
required for signal recovery.

Remark. When sampling Hermite polynomials, we have the technical requirement that N = O (P k) for some finite k, and 
we note that this condition is satisfied here as N < P is the case of interest in compressive sampling.

Theorem 4.2. A standard sampling of the d-dimensional Legendre polynomials of total order p gives a coherence of

μ(Ξ) ≤ exp(2p). (16)

As we shall see in Section 6.5, for the case of p < d the bound in (16) may be improved to μ(Ξ ) ≤ 3p ≈ exp(1.1p). 
Additionally, for p > d, the bound in (16) is loose, but a sharper dimension-dependent bound is given by (2p/d + 1)d .

4.2. Asymptotic sampling

Here we consider taking G(ξ ) to approximate or coincide with the asymptotic (in order) envelope for the polynomials 
as the order p goes to infinity. Specifically, for the case of Hermite polynomials we consider a relatively simple envelope 
function over a significant range of ξ , corresponding to a uniform sampling, though this envelope does not coincide with 
B(ξ) and is loose compared to known behavior of Hermite polynomials at high orders, [34]. The uniform approximation 
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is, however, both simple to simulate and analyze. For the case of Legendre polynomials, we take G(ξ) to be B(ξ) for 
asymptotically large order p, which corresponds to Chebyshev sampling. For both cases, sampling with this choice of G(ξ )

leads to coherence parameters with weaker dependence on p, as compared to the standard sampling.

4.2.1. Asymptotic sampling method
For d-dimensional Hermite polynomials, we sample uniformly from within the d-dimensional ball of radius 

√
2
√

2p + 1, 
which corresponds to G(ξ ) = exp(‖ξ‖2

2/4) on this ball. This choice of uniform sampling and radius is motivated by the 
analysis of Section 6.1. For completion, we outline one algorithm for sampling uniformly from the d-dimensional ball of 
radius r. First, let Z := (Z1, · · · , Zd) be a vector of d independent normally distributed random variables with zero mean 
and the same variance. If U is another independent random variable that is uniformly distributed on [0, 1], then

Y := Z

‖Z‖2
rU 1/d,

represents a random sample uniformly distributed within the d-dimensional ball of radius r. This may be verified as Z/‖Z‖2
is uniformly distributed on the d-dimensional hypersphere, while rU 1/d is the distribution for the radius of the realization 
within the ball that coincides with a uniform sampling within the ball. Additionally, this leads to a weight function given 
by

w(ξ) := exp
(−‖ξ‖2

2/4
)
.

Remark (Connection with Hermite function expansion). We highlight that the application of the weight function w(ξ) =
exp(−‖ξ‖2

2/4) to the Hermite polynomials ψk(ξ ) leads to the Hermite functions, i.e., exp(−‖ξ‖2
2/4)ψk(ξ), that are orthogonal 

with respect to the uniform measure, [26]. This implies that the Hermite polynomial expansion with asymptotic sampling 
is analogous to Hermite function expansion of w(Ξ )u(Ξ ). Notice that in a standard Hermite function expansion, the so-
lution of interest, u(Ξ ), is expanded in {exp(−‖Ξ‖2

2/4)ψk(Ξ )}. The only computational difference between solving for a 
Hermite polynomial expansion under this sampling and a Hermite function expansion, is whether, during computation of 
the coefficients, the realized u(ξ ) are multiplied by w(ξ ) or not.

For the d-dimensional Legendre polynomials this corresponds to sampling from the Chebyshev distribution on 
[−1, 1]d , [25], that is the distribution in each of d coordinates is

fY (ξ) := 1

π
√

1 − ξ2
,

for ξ ∈ [−1, 1]. Each coordinate is easily simulated from cos(πU ) where U is uniformly distributed on [0, 1]. Additionally, 
this leads to a weight function given by

w(ξ) :=
d∏

i=1

(
1 − ξ2

i

)1/4
.

4.2.2. Theorems
Analysis of the Hermite and Legendre polynomials sampled according to these alternative distributions leads to a coher-

ence with a weaker asymptotic dependence on p. In Theorem 4.3 and Theorem 4.4 we quantify such a dependence.

Theorem 4.3. Assume that N = O (Pk) for some k > 0, that is the number of samples does not grow faster than a polynomial in 
the number of basis polynomials considered. We note that this includes the important and common case that N ≤ P . Let V (r, d) =
(r

√
π)d/Γ (d/2 + 1) denote the volume inside the hypersphere with radius r in dimension d.

For the sampling of Hermite polynomials, sampling uniformly from the d-dimensional ball of radius 
√

2
√

(2 + εp)p + 1, and 
weighting realized ψk(ξ

(i)) on this ball by w(ξ (i)) = exp(−‖ξ (i)‖2
2/4), gives

μ(Y ) = O
(
π−d/2 V (

√
2p,d)

) = O
(
(2p)d/2/Γ (d/2 + 1)

)
. (17)

Here, we note that εp → 0 if d = o(p), and that the radius of the sampling is a factor of 
√

2 times larger than the radius of the volume 
in the coherence, due to a normalization explained in Section 6.

In the uniform sampling in this work we set εp in Theorem 4.3 to be zero, leaving as an open problem the determination 
of an optimal εp , and hence sampling radius for uniform sampling of Hermite polynomials. Additionally, this theorem is 
applicable to sampling Hermite functions with a standard, i.e. uniform, sampling as w(ξ )ψk(ξ) is a Hermite function.

In the case of Legendre polynomials sampled by Chebyshev distribution we have a complete independence of the order 
of approximation, which agrees with previous results in [25].
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Theorem 4.4. For the sampling of d-dimensional Legendre polynomials according to the d-dimensional Chebyshev distribution and 
weight ψk(ξ) proportional to w(ξ) = ∏d

i=1(1 − ξ2
i )1/4 , regardless of the relationship between d and p, we have that

μ(Y ) ≤ 3d. (18)

It is worthwhile highlighting that the combination of Theorems 4.2 and 4.4 suggests sampling Legendre polynomials by 
uniform distribution when d > p and Chebyshev distribution when d < p. A similar observation has been made in [17].

4.3. Coherence-optimal sampling

Here we consider taking G(ξ ) = B(ξ) in (9), which implies sampling ξ according to the distribution

fY (ξ) = c2 f (ξ)B2(ξ), (19)

with some appropriate normalizing constant c. Corresponding to this sampling, we apply the weight function

w(ξ) = 1

B(ξ)
.

Notice that in (19), f (ξ) is the measure with respect to which the polynomials ψk(ξ ) are naturally orthogonal.

4.3.1. MCMC sampling method
While B(ξ ), as defined in (6), is straightforward to evaluate for a fixed ξ by iterating over each k = 1 : P , the quantity 

is difficult to evaluate over a range of ξ , thus making it difficult to accurately compute the normalizing constant c in (19). 
This motivates sampling Ξ from (19) via a Monte Carlo Markov Chain (MCMC) approach, specifically using the Metropolis-
Hastings sampler, [35]. The MCMC method uses the computable point-wise evaluation of B(ξ), and does not require an 
identification of c necessary to normalize to a probability distribution. Additionally, this sampling distribution allows the 
easy evaluation of w(ξ ) using only the realized sample.

The MCMC sampler requires a proposal, or candidate, distribution and when p > d we suggest those obtained from 
Section 4.2, giving a uniform sampling on a d-dimensional ball for Hermite polynomials, and d-dimensional Chebyshev 
sampling for Legendre polynomials. Similarly, when p ≤ d we suggest those obtained from Section 4.1, giving a standard 
normal sampling for Hermite polynomials, and sampling uniformly for [−1, 1]d for Legendre polynomials. We follow these 
proposal distributions for the sampling which we do in this work. Note that each proposal distribution covers the entire 
domain S , and if the proposal and target distribution approximately match, then the acceptance rate is high and few 
burn-in samples are needed to approximately draw from the desired distribution for Y . There is interest in identifying 
better proposal distributions, to be studied further. One caveat which we note is that the proofs of Theorems 3.1 and 3.2
require independent sampling, so that it is proper to restart a chain after each accepted sample, but a more practical method 
is to discard intermediate samples so that serial dependence is small, [36]. We note that in applications where evaluation of 
the QoI is expensive, the generation of the samples, {ξ (i)}N

i=1, is not typically a bottleneck, so that the extra cost of MCMC 
sampling is frequently acceptable in practice.

4.3.2. Theorem
Theorem 4.5 justifies the intuition that taking G(ξ ) associated with sampling to be the envelope function B(ξ ) leads to 

a minimal μ(Y ).

Theorem 4.5. Let S be a set chosen to satisfy the conditions of (13) implying that no subset Ss of S with μ(Ss) < μ(S) satisfies the 
conditions of (13). Let B(ξ) be as in (6). If we sample from the distribution proportional to f (ξ)B2(ξ) and weight ψk(ξ) proportional 
to w(ξ) = 1/B(ξ), then the coherence parameter achieves a minimum over all sampling schemes of ψk(ξ), k = 1 : P , and distributions 
supported on S .

In the next section we explore how the sample distributions associated with these results perform when used to ap-
proximate sparse functions in the appropriate PC basis.

5. Numerical examples

Here we numerically investigate the different sampling schemes discussed in Section 4, considering the coherence pa-
rameter in Section 5.1, randomly generated manufactured sparse functions in Section 5.2, the solution to an elliptic PDE 
with random coefficient in Section 5.3, and the amount of reaction at a given time in an adsorption model from [37] in 
Section 5.4.
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Fig. 1. Computed μ(Y ) for different sampling methods of Hermite polynomials for different d and p.

5.1. Computed coherence

The coherence parameter of Section 3.2 can be estimated from a large sample of realized points. Doing so leads to 
the results in Fig. 1 for Hermite polynomials, and those in Fig. 2 for Legendre polynomials. We consider three sampling 
schemes, the standard scheme where we sample based on the underlying distribution of random variables in question as 
in Section 4.1.1; an asymptotically motivated method to insure a coherence with weaker dependence on the order p as in 
Section 4.2.1; and a coherence-optimal sampling based on the distribution proportional to the envelope of basis functions 
as in Section 4.3.1. We see that standard sampling tends to perform poorly at high orders, while asymptotic sampling tend 
to perform poorly for high-dimensional problems. Additionally, coherence-optimal sampling performs well in all regimes. 
These observations are consistent with the theoretical results presented in Section 4.

5.2. Manufactured sparse functions

In this section, we investigate the reconstruction accuracy of the competing sampling schemes on randomly generated 
sparse solution vectors, c , such that Ψ c = u. Here, c is chosen to have a uniformly selected random support and inde-
pendent standard normal random variables for values of each supported coordinate. We measure reconstruction accuracy 
as a function of sparsity, denoted by s, and the number of independent samples of Y , denoted by N . We declare ĉ to be 
a successful recovery of c if ‖ĉ − c‖2/‖c‖2 ≤ 0.01, where ĉ is a solution to (4) and in this work is computed using the 
�1-minimization solver of SparseLab [38], which is based on a primal-dual interior-point method. Each success probability 
is calculated from 2500 independent realizations of Ψ and c .

For a more comparable presentation, we normalize the number of samples by the number of basis functions considered, 
N/P ∈ [0.1, 1], and similarly normalize the sparsity by the number of samples, s/N ∈ [0.1, 1]. To compare the ability to 
recover solutions, we identify the probability of recovery on a 90 × 90 uniform grid in (N/P , s/N) for different (d, p) pairs 
as well as for different distributions of Y . The results are presented in Figs. 3 and 4 for Hermite and Legendre polynomi-
als, respectively, where we consider three sampling schemes of Sections 4.1.1, 4.2.1, and 4.3.1. For the coherence-optimal 
sampling, in conjunction with Theorem 4.5, we use a Metropolis-Hastings sampling to generate realizations from the appro-
priate distribution, where we discard 99 samples before every one kept, which both provides a burn-in effect and reduces 
the serial correlation between samples.

The results in Figs. 3 and 4 identify a phase transition, [39], in the ability of �1-minimization to recover c . For a number 
of solution realizations, given by N/P , the method succeeds – with probability one – in reconstructing solutions with 
high enough sparsity, given by small s/N , and fails to do so for low sparsity. Between these two phases, the method 
recovers the solution with probability smaller than one. Here, we observe differentiation in the quality of solution recovery 
in the transition region based on how Ψ is sampled. In particular, we highlight the following notable observations: for the 
high order case (d, p) = (2, 30), the standard Hermite sampling performs poorly as compared to the uniform sampling, for 
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Fig. 2. Computed μ(Y ) for different sampling methods of Legendre polynomials for different d and p.

the high-dimensional case (d, p) = (30, 2), the standard Legendre sampling is much better than the Chebyshev sampling, 
and for the moderate values of (d, p) = (5, 5) the two sampling methods lead to similar performance. In all cases, the 
MCMC sampling leads to recovery that is similar to those of the other two sampling strategies or provides considerable 
improvements.

Remark. Though our results following from [24] do not necessarily imply uniform recovery over all functions of a certain 
sparsity, the results in this section are appropriately interpreted in the context of uniform recovery. For a more detailed 
definition of uniform recovery, we refer the interested reader to [40].

5.3. An elliptic PDE with random input

As an application of Legendre PC expansions, we next consider the solution of the linear elliptic PDE

∇ · (a(x,Ξ)∇u(x,Ξ)
) = 1, x ∈ D,

u(x,Ξ) = 0, x ∈ ∂D,

on the unit square D = (0, 1) × (0, 1) with boundary ∂D. The diffusion coefficient a is considered random and is modeled 
by

a(x,Ξ) = a0 + σa

d∑
k=1

√
ζkϕk(x)Ξk, (20)

in which the random variables {Ξk}d
k=1, d = 20, are independent draws from the U([−1, 1]) distribution, and we choose 

a0 = 0.1 and σa = 0.017. In (20), {ζk}d
k=1 are the d largest eigenvalues associated with {ϕk}d

k=1, the L2([0, 1]2)-orthonorm-
alized eigenfunctions of

Caa(x, y) = exp

[
− (x1 − y1)

2

l21
− (x2 − y2)

2

l22

]
(21)

with correlation lengths l1 = 0.8, l2 = 0.1 in the spatial dimensions. Given these choices of parameters, the model in (20)
leads to strictly positive realizations of a.

For any realization of Ξ , we use the finite element solver FEniCS [28] to compute an approximate solution u(Ξ) =
u((0.5, 0.5), Ξ ).
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Fig. 3. Hermite recovery phase diagrams: The rows correspond to differing dimension and total order while the columns correspond to the different 
sampling schemes. The shade of each square represents a probability of successful function recovery. For interpretation of the references to shade in this 
figure, the reader is referred to the web version of this article.

To identify u(Ξ ) as a function of the random inputs Ξ , we use a Legendre PC expansion of total order p = 4, which for 
this d = 20 stochastic dimensional problem yields P = 10,626 basis functions. We note that the root-mean-squared error is 
considered here as the primary measure of recovery.

We investigate the ability to recover u(Ξ ) via (4), using each of the three sampling schemes considered for Legendre 
polynomials. For this elliptic problem we further improve the quality of the MCMC sampling through an initial burn-in 
of 1000 discarded samples [36]. We provide bootstrapped estimates of the various moment based measures from a pool 
of samples generated beforehand. Specifically, samples for each realization are drawn from a pool of 50,000 previously 
generated samples, which are used to calculate bootstrap estimates of averages and standard deviations.

To identify the solution of (4) we use the SPGL1 package, [41,42], with a truncation error in (4), denoted by δ, and 
determined for each set of samples by two-fold, also known as hold-out, cross-validation, [43]. Specifically, we calculate this 
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Fig. 4. Legendre recovery phase diagrams: The rows correspond to differing dimension and total order while the columns correspond to the different 
sampling schemes. The shade of each square represents a probability of successful function recovery. For interpretation of the references to shade in this 
figure, the reader is referred to the web version of this article.

δ from N , an even number of available samples, by splitting the available samples into two equally sized sets, one a training 
set, and the other a validation set. This process, as we have implemented it, is summarized by the following algorithm,

1. For a number of δ, construct solutions, cδ , from the training set and the solution of (4). We use a set of potential δ
defined by 10−(−1:0.05:5) .

2. For each cδ use the validation set to identify the reconstruction error ε(1)
δ := ‖Ψ cδ − u‖2.

3. Repeat with the training and validation sets swapped to attain ε(2)
δ .

4. Identify the δ0 that minimizes ε(1)
δ + ε

(2)
δ .

5. Set the truncation error to δ� = √
2δ0, and identify a solution vector via the combined N samples from both the training 

and validation sets.
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Fig. 5. Plots for the moments of root-mean-squared error for independent residuals for the various sampling methods as a function of the number of 
samples.

Fig. 6. Plots for the moments of cross-validated estimates of tolerance for the various sampling methods as a function of the number of samples.

We utilize this method of cross-validation to calibrate the truncation error for each realized sample of the calculated 
solution to (4). Here, a lower cross-validated truncation error suggests a computed solution vector with a more accurate 
recovery.

In Fig. 5 we see plots of computed moments for the distribution of the relative root-mean-squared error between the 
computed and reference solutions obtained from 100 independent replications for each sample size, N . In addition, Fig. 6
presents similar plots for the truncation error computed with each sampling. We note here that the cross-validated compu-
tation of δ provides an available estimate for anticipated root-mean-squared error for additional independent samples.

We note the standard and coherence-optimal sampling offer significant improvements over asymptotic, i.e., Chebyshev, 
sampling using similar sample sizes, N , both in terms of accuracy and robustness to differing realized samples. These 
observations are compatible with the theoretical results of Section 4 demonstrating a smaller coherence for the uniform 
sampling – as compared to Chebyshev sampling – for the case of d > p. The coherence-optimal sampling by construction 
leads to smallest coherence. We also notice that at particularly low sample sizes any given sampling method prefers to 
recover a particular but ultimately poor approximation. As the number of samples increases the recovery can improve but 
the variability in the solution recovery will appear to increase first as this preferred solution is recovered less frequently.
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Fig. 7. PC coefficients of reference solution for the QoI ρc := ρ(t = 4,Ξ1,Ξ2) in the surface reaction model.

5.4. Surface reaction model

Another problem of interest in this work is to quantify the uncertainty in the solution ρ of the non-linear evolution 
equation⎧⎨

⎩
dρ

dt
= α(1 − ρ) − γρ − κ(1 − ρ)2ρ,

ρ(t = 0) = 0.9,

(22)

modeling the surface coverage of certain chemical species, as examined in [37,44]. We consider uncertainty in the adsorp-
tion, α, and desorption, γ , coefficients, and model them as shifted log-normal variables. Specifically, we assume

α = 0.1 + exp(0.05Ξ1),

γ = 0.001 + 0.01 exp(0.05Ξ2),

where Ξ1, Ξ2 are independent standard normal random variables; hence, the dimension of our random input is d = 2. The 
reaction rate constant κ in (22) is assumed to be deterministic and is set to κ = 10.

Our QoI is ρc := ρ(t = 4, Ξ1, Ξ2), and to approximate this, we consider a Hermite PC expansion of total order p = 32, 
giving P = 561 basis functions. This high-order approximation is necessary due to the large gradient of ρc in terms of the 
random variables, as evidenced by the relatively slow decay of coefficients in the reference solution presented in Fig. 7. This 
is computed using Gauss–Hermite quadrature approximation of the PC coefficients.

We utilize the same computational process as in Section 5.3 to identify approximate solutions. In Fig. 8, we see plots of 
moments for the relative root-mean-squared error – between the reference and �1-minimization solutions – as a function 
of the number of samples, N . These moments are obtained from 200 independent replications for each N . We find that the 
standard sampling fails to converge, while the uniform and coherence-optimal samplings lead to converged solution as N is 
increased. Fig. 9 presents plots for the truncation error computed with each sampling via cross-validation. One interesting 
fact to notice is that recovery for standard sampling appears to get worse for larger sample sizes. This may be an effect 
of the poor numerical conditioning of high order p = 32 Hermite polynomials under standard sampling, where very rare 
events with very large realized |ψk(ξ )| are necessary to capture the orthogonality of the polynomials. It further affirms the 
results of Fig. 1 and Theorem 4.1, that standard sampling of Hermite polynomials is not suited for high-order problems.

6. Proofs

Here we present proofs for the theorems in Section 4. These proofs, except for that of Theorem 4.5, rely on an analysis 
of the appropriate orthonormal polynomials. We first work toward proofs for Theorems 4.1 and 4.3, which rely on under-
standing Hermite polynomials. To do so we require a few technical Lemmas concerning broad behavior of the polynomials 
asymptotically in order.

This analysis is focused on three domains for one-dimensional polynomials. The first sampling region coincides nearly 
with the so-named oscillatory region of ψp(ξ), [30], within which all zeros of ψk(ξ) are found for k ≤ p. A second region, 
referred to as the monotonic region, [30], is the complementary region where polynomials tend to increase monotonically 
in magnitude, and in this region we focus on bounding the extreme values of ψk(ξ). The third region of importance is the 
boundary between the monotonic and oscillatory regions, referred to as the boundary region.
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Fig. 8. Moments of root-mean-squared error between the reference and �1-minimization solutions for the various sampling methods as a function of the 
number of samples.

Fig. 9. Plots for the moments of cross-validated estimates of tolerance for the various sampling methods as a function of the number of samples.

For multidimensional Hermite polynomials, we identify a domain S which fully contains the multidimensional analogue 
to the oscillatory and boundary regions, and partially contains the monotonic region. The size of the monotonic region 
included is determined so as to satisfy the conditions of (13), while admitting a useful bound on the extreme values of 
|ψk(ξ)| for ξ ∈ S . The method for our selection of S is to include ξ corresponding to the largest values of the density 
function, f (ξ), until S is verified to satisfy (13). In the case of Hermite polynomials, this heuristic is justified as Hermite 
polynomials tend to inversely relate with f (ξ) for ξ within the monotonic region, [26]. The selection of S determines our 
radius for sampling uniformly from the d-dimensional ball, and we will show that this involves taking S = {ξ : ‖ξ‖2 ≤ rp}
for an rp that grows asymptotically like 2

√
p.

6.1. Key Hermite lemmas

For convenience with the cited literature, we prove our results using the orthonormalized physicists’ Hermite polynomi-
als (orthonormal polynomials with respect to f (ξ ) := π−d/2 exp(−‖ξ‖2)). We note that our results in Section 4 are in terms 
of the probabilists’ polynomials (orthogonal with respect to f (ξ) := (2π)−d/2 exp(−‖ξ‖2/2)), but the two sets are related as 
follows. If {ψk(ξ)} denotes the orthonormalized physicists’ polynomials and {ψ ′

k(ξ)} represents the orthonormalized prob-

abilists’ polynomials, then for each k, ψk(
√

2ξ) = ψ ′
k(ξ). We point the reader to Section 5.5 of [26] for a derivation of this 

key relation. The effect on the results of the proof is that the probabilists’ polynomials require a sampling radius that is 
√

2
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Table 1
Bounds in the oscillatory and boundary regions of Hermite polynomials 
from [30]. Here, C is some positive constant and n := 2k + 1.

Range for ξ Bound for |ψk(ξ)|
0 ≤ |ξ | ≤ n1/2 − n−1/6 Cn−1/8(n1/2 − |ξ |)−1/4 exp(ξ2/2)

n1/2 − n−1/6 ≤ |ξ | ≤ n1/2 + n−1/6 Cn−1/12 exp(ξ2/2)

times larger than that for sampling the physicists’ polynomials. This radial effect does not effect the volume of the points 
in the interior, particularly as seen in Theorem 4.3, as the radius change is canceled out by the change in the normalizing 
constant for the distribution (π−d/2 vs. (2π)−d/2).

We bound (13) for the d-dimensional Hermite polynomials as follows. Let ξ be a d × 1 vector and k be a d × 1 multi-
index. In this framework ψk(ξ ) is an orthonormal polynomial whose order in the ith dimension is given by ki := k(i), and 
whose total order is at most p. As the total order is at most p, ‖k‖1 ≤ p, and as the weight function is formed by a tensor 
product of one-dimensional weight functions, ψk is a tensor product of univariate orthogonal polynomials. In this way the 
bounds in arbitrary dimension are tensor products of one-dimensional bounds, which are more easily derived.

As mentioned previously, the behavior of the Hermite polynomials in the monotonic region, and the radially symmetric 
concentration of the weight function π−1/2 exp(−‖ξ‖2

2) suggests the candidate set S := {‖ξ‖2 ≤ rp} with rp to satisfy the 
conditions of (13). We recall that the minimum over admissible S yields a coherence parameter less than any given choice 
of S , so that this selection of S leads to an upper bound on a minimal μ(Y ).

Being of classical and modern importance, several classes of one-dimensional orthogonal polynomials (e.g., Hermite, 
Jacobi, Legendre, Laguerre) have received much analysis and key results are available in the literature, [25,26,29–32].

In particular, for our interest in Hermite polynomials, a direct consequence of bounds from [30] gives the bounds in 
Table 1 for some positive C, γ , and n := 2k + 1. The key conclusion is that we may bound exp(−ξ2/2)ψk(ξ) for ξ in each 
of these regions.

The bounds in Table 1 are sufficient for both our uses within the oscillatory region and the boundary of the oscillatory 
and monotonic region. We derive a bound within the monotonic region using results in [29]. We first summarize the 
needed results as follows. Let σk(ξ) := √

ξ2 − 2k for |ξ | ≥ √
2k + εk where εk → 0 as k → ∞. We note that our analysis 

does not address how rapidly we may take εk to 0, and for our purposes it is more convenient to redefine εk such that 
|ξ | ≥ √

(2 + εk)k + 1, again letting εk → 0. This lack of effective analysis for εk implies a lack of effective analysis for derived 
quantities, and all results are guaranteed to hold in an asymptotic sense without an analysis as to how rapidly convergence 
occurs. We do refer the reader to [29] for some analysis of how εk may be taken to zero, specifically in a worst case, 
εk = O (k−1/6). As a matter of notation, while σk(ξ) depends on both k and ξ , in what follows we suppress the dependence 
on ξ . Following [29], we may approximate ψk(ξ) when |ξ | ≥ √

(2 + εk)k + 1 by

c′
k

Ck
exp

(
ξ2 − σkξ − k

2

)
(σk + ξ)k

√
1

2

(
1 + ξ

σk

)
≤ ψk(ξ);

ck

Ck
exp

(
ξ2 − σkξ − k

2

)
(σk + ξ)k

√
1

2

(
1 + ξ

σk

)
≥ ψk(ξ), (23)

where both c′
k, ck → 1 as k → ∞, and Ck = √

2kk! is the appropriate constant so that the {ψk} are orthonormal with 
regards to the weight f (ξ) = π−1/2 exp(−ξ2). For smaller |ξ | the polynomials are effectively oscillatory and more technically 
troublesome to work with. Thankfully, as we are more concerned with approximating key integrals where we know the 
value (1 or 0 by orthonormality) over the real line, we do not need to delve closely into the analysis for small |ξ |, and 
understanding the behavior for large |ξ | is sufficient.

The key technical results to bound ψk in the monotonic region are presented in the following lemma, where the mo-
tivating idea is to show that the polynomial ψk(ξ) is tightly bounded by an envelope with a well behaved exponential 
parameter, denoted by ηk(ξ). Due to the length of the proof we delay the proof to Appendix A.

Lemma 6.1. Let Ck and σk be as in (23), and define the function ηk(ξ) implicitly by,

1

Ck
exp

(
ξ2 − σkξ − k

2

)
(σk + ξ)k

√
1

2

(
1 + ξ

σk

)
= exp

(
ηk(ξ)ξ2). (24)

That is we approximate |ψk(ξ)| by exp(ηk(ξ)ξ2) with the exponent ηk(ξ) implicitly defined by the approximation in (23).
It follows that

1. For ε > 0, limk→∞ ηk(
√

(2 + ε)k + 1) → 1
2 − log(2)

2(2+ε)
.

2. For a sequence of εk > 0 such that εk → 0 as k → ∞, and for ξ1 > ξ0 ≥ √
(2 + εk)k + 1, ηk(ξ1) < ηk(ξ0).
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3. For a sequence of εk such that εk → 0, some finite K and k1 ≥ K , k0 < k1 , and for ξ ≥ √
(2 + εk1 )k1 + 1, it follows that 

ηk0 (ξ) < ηk1 (ξ).

Using Lemma 6.1, we show the following result which is useful for a direct bound on the coherence parameter.

Lemma 6.2. For some choice of εp such that εp → 0, and p ≥ p0 for some p0 it follows that for rp ≥ √
(2 + εp)p + 1,

sup
k≤p

∫
|ξ |>rp

ψ2
k (ξ)

e−ξ2

√
π

dξ ≤
(1 + δp)erfc(

√
(1 − 2ηp(rp))r2

p)√
1 − 2ηp(rp)

, (25)

where erfc(·) is the complement to the error function and δp → 0. Considering multidimensional polynomials and letting δp → 0,

sup
‖ξ‖2≤rp
‖k‖1≤p

∣∣ψk(ξ)
∣∣ ≤ (1 + δp)exp

(
ηp(rp)r2

p

)
. (26)

Here, ηp is defined implicitly as in (24), or equivalently, explicitly as in (31).

Proof. To show the first point note from Lemma 6.1 that for |ξ | ≥ √
2p + 1,∣∣ψk(ξ)

∣∣ ≤ ck exp
(
ηk(ξ)ξ2).

By the second point of Lemma 6.1, ηk(ξ) decreases as ξ increases, yielding the bound on the integral in (25), and by the 
third point of that Lemma, ηp(ξ) ≥ ηk(ξ) for all k ≤ p. The δp accounts for the approximation in (23) being inaccurate for 
finite p, but we do not address how quickly δp converges to zero.

To show (26) note that for column vectors η and ξ2 with coordinates representing coordinates of η and ξ2 in each 
dimension, |ηT ξ2| ≤ ‖η‖∞‖ξ2‖1, with equality holding if ‖η‖∞ is achieved at the one coordinate on which ξ2 is supported. 
Further noting that ‖ξ2‖1 = ‖ξ‖2

2, it follows from the third point of Lemma 6.1, and hence for large enough p,

sup
‖ξ‖2≤rp
‖k‖1≤p

∣∣ψk(ξ)
∣∣ ≤ (1 + δp)

∣∣ψp(rp)
∣∣,

where the bound on ψp from (23) shows (26). �
6.2. Proof of Theorem 4.1

With Lemma 6.2 we are prepared to prove Theorem 4.1 for the case of Hermite polynomials. Let S = {ξ : ‖ξ‖2 ≤ rp}
where rp is as in Lemma 6.2, and we show that the conditions for (13) are satisfied. Let the total number of polynomials 
be given by P = (p+d

d

)
where p is the total order of the approximation and d the number of dimensions. Recall that the 

number of samples from the orthogonal polynomial basis is N . We show that

P
(
Sc) = erfc(rp) <

1

NP
;

P∑
k=1

E
[
ψ2

k (Z)1Sc
] ≤

P (1 + δp)erfc(
√

(1 − 2ηp(rp))r2
p)√

1 − 2ηp(rp)
<

1

20
√

P
,

where Z is normally distributed with variance 1/2, and we recall that substituting Z ′ = √
2Z scales the physicists’ polyno-

mials to probabilists’ polynomials.
By Lemma 6.2 these are satisfied whenever

erfc(rp) <
1

NP
;

(1 + δp)
erfc(

√
(1 − 2ηp(rp))r2

p)√
1 − 2ηp(rp)

<
1

20P 3/2
.

Noting that δp → 0, and erfc(rp) = O (e−r2
p /rp) = O (exp(−(2 + εp)p)/

√
(2 + εp)p), [45], it follows that the first inequality 

is satisfied for rp = √
(2 + εp)p + 1 if NP = o(

√
(2 + εp)p exp((2 + εp)p)). Recall that we assume that N = O (Pk), and it 

remains to show that Pk = o(
√

p exp((2 + εp)p)), which we address shortly.
From the first point of Lemma 6.1, we see for large p that 1 − 2ηp(

√
(2 + εp)p + 1) ≥ c for a positive constant c. The 

second inequality is then satisfied for rp if P 3/2 = o(
√

p exp(cε p)) for an appropriate constant cε > 0 depending on εp .
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It remains to insure that both of these bounds allow εp to go to zero. If d is fixed this holds as P = O (pd) = o(exp(δp))

for any δ > 0 establishing the bounds for both conditions for a fixed d. We consider the case where d = c · p for some c > 0. 
Using Stirling’s approximation we have that

P = (p + d)!
p!d! = ((c + 1)p)!

p!(cp)! ,

≈
√

c + 1

pc2π
(c + 1)p

(
1 + 1

c

)cp

,

where the approximation holds with arbitrarily high accuracy as p, d → ∞. This gives us that for large p,

P ≈
√

c + 1

pc2π
β p,

where β = (c + 1)c+1/cc . Note that β goes to 1 as c → 0. It follows in the limit that

Pk ≈
( √

c + 1√
cp2π

)k

exp(αkp),

where α = log(β) → 0. As c · p = d > 0, it follows that Pk = o(
√

p exp(δp)) for any fixed k, δ > 0, establishing both inequal-
ities needed for the conditions of (13) when d = o(p) and N = O (Pk).

Having shown S is acceptable, we now bound μ(Ξ ) with this choice of S . By Lemma 6.2 and the definition of ηk
therein, together with the bounds in Table 1 we have that,

μ(Ξ) ≤ exp
(
ηp(rp)r2

p

)2
,

= exp

([
1 − log(2)

2 + εp
+ o(1)

]
εp

)
exp

([
1 − log(2)

2 + εp
+ o(1)

]
2p

)
.

Letting

C p := exp

([
1 − log(2)

2 + εp
+ o(1)

]
εp

)
;

ηp := exp

(
2

[
1 − log(2)

2 + εp
+ o(1)

])
,

it follows that

μ(Ξ) ≤ C pη
p
p .

As εp → 0, it follows that

C p → 1;
ηp → exp

(
2 − log(2)

) ≈ 3.6945.

6.3. Proof of Theorem 4.3

Here, we consider a transformation such that φk(ξ ) = ψk(ξ)/G(ξ ), with G(ξ) > 0 so that |φk(ξ)| ≤ C uniformly in k and 
ξ for some constant C . We may then use that ψk(ξ) = φk(ξ)G(ξ ) to identify ψk(ξ) and satisfy the conditions of (13). We 
note that this approach corresponds to a weight function w(ξ) = 1/G(ξ ). In this framework, we sample {ψk(ξ)} from a 
distribution proportional to f (ξ)G2(ξ ), where f (ξ ) is the distribution with respect to which the ψk(ξ) are orthogonal, and 
use that the {φk(ξ )} form a bounded and approximately orthogonal system.

By (26) of Lemma 6.2 and the bounds in Table 1, for ‖ξ‖2 ≤ √
(2 + εp)p + 1 and k ≤ p,∣∣ψk(ξ)exp

(−‖ξ‖2
2/2

)∣∣ ≤ C, (27)

which suggests taking G(ξ ) = exp(‖ξ‖2/2).

Remark. Notice that the function in the left side of the inequality in (27) is referred to as Hermite function whose upper 
bound C is explicitly known, for instance, from [46].
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From the argument in the proof of Theorem 4.1 for the case of one-dimensional polynomials,∣∣∣∣ 1√
π

∫
|ξ |≤√

(2+εp)p+1

(
ψi(ξ)exp

(−ξ2/2
))(

ψ j(ξ)exp
(−ξ2/2

))
dξ − δi, j

∣∣∣∣ ≤ εi, j,

where εi, j is small enough to insure that the conditions of (13) hold. Considering a corresponding change for multidimen-
sional polynomials, let

φk(ξ) = π−d/4 exp
(−‖ξ‖2

2/2
)

V 1/2(√(2 + εp)p + 1,d
)
ψk(ξ),

where V (r, d) = (r
√

π)d/Γ (d/2 + 1) represents the volume of a d-dimensional ball of radius r.
If we instead consider a draw from the uniform distribution on the ball of radius 

√
(2 + εp)p + 1, then for a 

d-dimensional ξ ,∣∣∣∣
∫

‖ξ‖2≤√
(2+εp)p+1

φi(ξ)φ j(ξ)

V (
√

(2 + εp)p + 1,d)
dξ − δi, j

∣∣∣∣ ≤ εi, j,

and we have that |φk(ξ)| is bounded, and of order π−d/4 V 1/2(
√

(2 + εp)p + 1, d), giving a bound on the coherence param-
eter of order π−d/2 V (

√
2p, d).

6.4. Key Legendre lemma

A key technical simplification is present when working with Legendre polynomials, namely we may fix S to be [−1, 1]d

as a finite number of polynomials on a bounded domain are necessarily bounded. The technical results we require are 
presented in the following lemma.

Lemma 6.3. For the 1-dimensional Legendre polynomials,

sup
ξ∈[−1,1]

∣∣ψk(ξ)
∣∣ =

√
2k + 1. (28)

Further,

sup
ξ∈[−1,1]

√
π

(
1 − ξ2)1/4∣∣ψk(ξ)

∣∣ ≤
√

2k + 1

k
≤ √

3. (29)

Proof. These are classical results, with (28) following from Theorem 7.32.1 of [26]. We note that a direct application of these 
theorems does require normalizing the polynomials to be orthonormal. Similarly, (29) follows from Theorem 7.3.3 of [26]
and is a direct restatement of Lemma 5.1 of [25]. �
6.5. Proof of Theorems 4.2 and 4.4

To show Theorem 4.2, we note that when p ≤ d, (16) follows from

μ(Y ) ≤ max
‖k‖1≤p

d∏
i=1

‖ψki ‖2∞

≤ 3p ≤ exp(2p),

where we note that at most p of the d dimensions can be non-constant polynomials. Similarly, when p > d,

μ(Y ) ≤ max
‖k‖1≤p

d∏
i=1

‖ψki ‖2∞

≤
(

2p

d
+ 1

)d

≤ exp(2p),

where the third bound is loose for small d.
To show (18), note that (29) implies that when sampling from the Chebyshev distribution and independently of p
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μ(Y ) ≤ max
‖k‖1≤p

d∏
i=1

‖ψki ‖2∞

≤
d∏

i=1

2ki + 1

ki
≤ 3d.

6.6. Proof of Theorem 4.5

The proof of Theorem 4.5 follows from a similar logic to the other proofs, but is approachable in a more general measure 
theoretic setting. By the definition of B(ξ ) in (6), we have for all ξ ∈ S that

sup
k=1:P

|ψk(ξ)|
B(ξ )

= 1.

This shows that sampling Y according to B(ξ ), gives a μ(Y ) which is achieved uniformly over all values of ξ . Let

c =
(∫
S

f (ξ)B2(ξ)dξ

)−1/2

;

that is, c2 normalizes f (ξ )B2(ξ ) to a probability distribution on S . Then for i, j = 1 : P ,∫
S

ψi(ξ)

cB(ξ)

ψ j(ξ)

cB(ξ)
c2 f (ξ)B2(ξ)dξ =

∫
S

ψi(ξ)ψ j(ξ) f (ξ)dξ ≈ δi, j,

and we assume that S is chosen so that the approximation holds within the satisfaction of requirements in (13). As

sup
k=1:P

|ψk(ξ)|
cB(ξ)

= c−1, (30)

for all ξ ∈ S , it follows that the coherence parameter for the scheme associated with sampling from the distribution 
c2 f (ξ )B2(ξ ) and ξ ∈ S is c−2.

We define the measure ν on Lebesgue measurable subsets of S , denoted by A, via

ν(A) :=
∫
A

f (ξ)dλ(ξ),

where λ(ξ) is the Lebesgue measure, and f is the distribution with respect to which the {ψk(ξ)} are orthogonal. Let B̂ be 
a function differing from B on a set of non-zero ν-measure, so that the sampling scheme corresponding to B̂ differs on a 
set of non-zero ν-measure. By (13), no subset Ss of S with μ(Ss) < μ(S) satisfies the conditions of (13), implying that 
B̂ may not be infinite (corresponding to applying a weight of zero) on any set of positive measure and still satisfy these 
conditions. As (30) is achieved for all ξ ∈ S , it follows that for the sampling scheme associated with B̂ , there is a set A�

with ν(A�) > 0 such that∫
A�

sup
k=1:P

|ψk(ξ)|
ĉ B̂(ξ)

dλ(ξ) > λ(A�)c−1,

and it follows by the Mean Value Theorem for integrals that

sup
ξ∈A�

sup
k=1:P

|ψk(ξ)|
ĉ B̂(ξ)

> c−1.

This implies that,

sup
ξ∈S

sup
k=1:P

|ψk(ξ)|
ĉ B̂(ξ)

≥ sup
ξ∈A�

sup
k=1:P

|ψk(ξ)|
ĉ B̂(ξ)

> c−1.

It follows by the definition of μ(Y ) given in (13) for the selected S , the coherence parameter μ(Y ) for the sampling scheme 
associated with B̂ is larger than c−2.
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7. Conclusions

We provided an analysis of Hermite and Legendre polynomials which allowed us to bound a coherence parameter and 
generate recovery guarantees for sparse polynomial chaos expansions obtained via �1-minimization. We also identified 
alternative random sampling schemes which provide sharper guarantees and demonstrate improved polynomial chaos re-
constructions relative to the random sampling from the orthogonality measure of these bases. These sampling methods 
were derived based on the properties of Hermite and Legendre polynomials. Furthermore, we showed a Markov Chain 
Monte Carlo method for generating samples that minimize the coherence parameter, thereby achieving an optimality for 
the number of random solution realizations. Such a sampling was referred to as coherence-optimal sampling.

The sampling methods were compared on arbitrary manufactured stochastic functions, and the different sampling strate-
gies were tested for identifying the solution of a 20-dimensional elliptic boundary value problem, where positive results 
were attained for the coherence-optimal sampling method. Similarly positive results were observed when computing the 
solution to a non-linear ordinary differential equation, where a high order Hermite polynomial chaos expansion was needed 
for an accurate solution approximation.
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Appendix A. Proof of Lemma 6.1

Proof. We may rewrite (24) as

ηk(ξ) = 1

2
− σk

2ξ
− log(Ck)

ξ2
− k

2ξ2
+ k log(σk + ξ)

ξ2
+ log( 1

2 (1 + ξ
σk

))

2ξ2
. (31)

A straightforward, but lengthy algebraic substitution for ξ yields that for any ε > 0, as k → ∞,

ηk
(√

(2 + ε)k
) = 1

2
− log(2)

2(2 + ε)
+ o(1). (32)

To show the second point of the lemma note that σk = √
ξ2 − 2k implies that ∂σk/∂ξ = ξ/σk , and differentiating the 

expression (31) with respect to ξ gives

∂ηk(ξ)

∂ξ
= σk

ξ2
+ 2 log(Ck)

ξ3
+ k

ξ3
+ k

ξ2σk
(33)

−
(

1

2σk
+ 2k log(σk + ξ)

ξ3
+ log( 1

2 (1 + ξ
σk

))

ξ3
+ ξ2 − σ 2

k

2ξ2σ 2
k (σk + ξ)

)
.

Using that σ 2
k = ξ2 − 2k, the above may be rewritten as

(
2σ 2

k ξ3)∂ηk(ξ)

∂ξ
= ξ2(2k + 4 log(Ck) − 1

) + ξσk

−
(

2σ 2
k

(
2k log(σk + ξ) + log

(
1

2

(
1 + ξ

σk

)))
+ 4k

(
k + 2 log(Ck)

))
.

It follows that ∂ηk(ξ)/∂ξ < 0 whenever

2σ 2
k

(
2k log(σk + ξ) + log

(
1

2

(
1 + ξ

σk

)))
+ 4k

(
k + 2 log(Ck)

)
> ξ2(2k + 4 log(Ck) − 1

) + ξσk.

Substituting σ 2
k for ξ and k, gives that this condition is equivalent to

ξ2

2k

(
2k log(σk + ξ) + log

(
1

2

(
1 + ξ

σk

))
− k − 2 log(Ck) + 1

2
− σk

2ξ

)

>

(
2k log(σk + ξ) + log

(
1
(

1 + ξ
))

− k − 2 log(Ck)

)
.

2 σk
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From this form and using that σk/ξ < 1, it follows that the derivative is negative for large enough ξ . More precisely, let

Xξ := 2k log(σk + ξ) + log

(
1

2

(
1 + ξ

σk

))
− k − 2 log(Ck);

Yξ := 1

2
− σk

2ξ
;

Zξ := ξ2

2k
,

where we wish to identify ξ such that Zξ (Xξ +Yξ ) > Xξ , which is equivalent to Zξ Yξ > (1 − Zξ )Xξ . Let εk ≥ 0, and note that 
if ξ ≥ √

(2 + εk)k + 1 then σk/ξ < 1 which implies that Yξ > 0. Further, for ξ ≥ √
(2 + εk)k + 1, it follows that Zξ > 1. We 

now identify an εk such that for ξ ≥ √
(2 + εk)k + 1, we verify that Xξ > 0, from which it follows that Zξ Yξ > (1 − Zξ )Xξ . 

Note that εk ≥ 0, implies that σk ≥ 1 and as such for ξ ≥ √
(2 + εk)k + 1,

Xξ ≥ 2k log
(√

(2 + εk)k
) − k − 2 log(Ck).

Recalling that Ck = √
2kk!, we conclude from properties of the Log Gamma function [47] that

log(k!) = (k + 1) log(k + 1) − (k + 1) − 1

2
log

(
k

2π

)
+ O

(
k−1);

2 log(Ck) = k log(2) + (k + 1) log(k + 1) − (k + 1) − 1

2
log

(
k

2π

)
+ O

(
k−1).

From this we may simplify terms, leading to a lower bound on Xξ for some C > 0 given by

Xξ ≥ k log

(
(2 + εk)k

2(k + 1)

)
+

(
1 − log(2π)

2

)
− log

(
k + 1√

k

)
− C

k
.

Noting that 1 > log(2π)/2, it follows that we may guarantee that Xξ is positive for some sequence of εk > 0 which admits 
that εk → 0. It follows that we have a monotonic derivative for ηk(ξ) with respect to ξ for ξ ≥ √

(2 + εk)k, and thus 
conclude the second point of this lemma.

To show the third point, we utilize a differential-difference equation [26] for orthonormal Hermite polynomials,√
2(k + 1)ψk+1(ξ) = 2ξψk(ξ) − ψ ′

k(ξ). (34)

We note here that the approximation in [29] giving the approximation of (24) for ψk extends to the derivative ψ ′
k so 

that for sufficiently large k the approximation to ψk in (24) is arbitrarily accurate for ψk , and when differentiated to ψ ′
k . 

Differentiating with the use of the chain rule gives that

∂

∂ξ
exp

(
ηk(ξ)ξ2) = exp

(
ηk(ξ)ξ2)(ξ2 ∂ηk(ξ)

∂ξ
+ 2ξηk(ξ)

)
. (35)

Plugging (31) and (33) into (35), and in turn into (34) we have that

ψk+1(ξ) ≈ 2ξ exp(ηkξ
2) − ∂

∂ξ
exp(ηkξ

2)√
2(k + 1)

,

= exp(ηkξ
2)√

2(k + 1)

(
ξ

(
1 + ξ

2σk

)
+ ξ2 − σ 2

k

2σ 2
k (σk + ξ)

)
.

It follows by (24) that

ψk+1(ξ)

ψk(ξ)
≈ exp(ηk+1(ξ)ξ2)

exp(ηk(ξ)ξ2)
,

≈ 1√
2(k + 1)

(
ξ

(
1 + ξ

2σk

)
+ ξ2 − σ 2

k

2σ 2
k (σk + ξ)

)
. (36)

Letting k go to infinity it follows that for some εk → 0 and |ξ | > √
(2 + εk+1)(k + 1) + 1, both the function and derivative 

approximations considered of exp(ηk(ξ)ξ2) to ψk(ξ) and ∂ exp(ηk(ξ)ξ2)/∂ to ψ ′
k(ξ) are arbitrarily accurate [29]. If the 

right-hand side of (36) is larger than 1, and k is large enough so that the approximation is sufficiently accurate for |ξ | =√
(2 + εk+1)(k + 1) + 1, then we will show that (36) implies that ηk+1(ξ) > ηk(ξ).

We note that larger εk, εk+1 complicate the proof, but small enough εk, εk+1 do not affect the comparisons made, and 
thus for brevity of presentation we set εk = εk+1 = 0 for the remainder of this proof. Note that the ratio ψk+1(ξ)/ψk(ξ) is 
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monotonically increasing for |ξ | > √
2(k + 1) + 1 as ∂σk/∂ξ < 1, and so it suffices to check when |ξ | = √

2(k + 1) + 1, and 
thus σk = √

3. In this case the ratio in (36) satisfies√
2k + 3

2k + 2
+

√
3

2(k + 1)
+ k/3√

2k + 2(
√

2k + 3 + √
3)

+ k
√

2/
√

3√
k + 1

≈ ψk+1(ξ)

ψk(ξ)
, (37)

> 1, (38)

as the first term is always larger than 1 and all terms are positive, with the last term increasing in k. It follows that the 
lemma is established when both k1 and k0 are larger than some K which insures that both the approximation in (24) is 
sufficiently accurate and that the gap in (37) is sufficiently large.

For k0 < K note that σk0 (
√

2k1 + 1) = √
2(k1 − k0) + 1 satisfies

σk0(
√

2k1 + 1)√
2k1 + 1

=
√

2(k1 − k0) + 1√
2k1 + 1

→ 1,

as k1/k0 → ∞, while σk1(
√

2k1 + 1) = 1 remains fixed. From the expression for ηk(ξ) in (31) it follows for any k0, a large 
enough K , and k1 ≥ K that ηk0 (

√
2k1 + 1) < ηk1 (

√
2k1 + 1), showing the third point of this lemma. �
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