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Gradient-enhanced Uncertainty Quantification (UQ) has received recent attention, in which 
the derivatives of a Quantity of Interest (QoI) with respect to the uncertain parameters 
are utilized to improve the surrogate approximation. Polynomial chaos expansions (PCEs) 
are often employed in UQ, and when the QoI can be represented by a sparse PCE, 
�1-minimization can identify the PCE coefficients with a relatively small number of 
samples. In this work, we investigate a gradient-enhanced �1-minimization, where 
derivative information is computed to accelerate the identification of the PCE coefficients. 
For this approach, stability and convergence analysis are lacking, and thus we address these 
here with a probabilistic result. In particular, with an appropriate normalization, we show 
the inclusion of derivative information will almost-surely lead to improved conditions, 
e.g. related to the null-space and coherence of the measurement matrix, for a successful 
solution recovery. Further, we demonstrate our analysis empirically via three numerical 
examples: a manufactured PCE, an elliptic partial differential equation with random inputs, 
and a plane Poiseuille flow with random boundaries. These examples all suggest that 
including derivative information admits solution recovery at reduced computational cost.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In complex engineering system analysis, inherent variability in inputs and imperfect knowledge of the physics can lead 
to unfounded confidence or unnecessary diffidence in understanding Quantities of Interest (QoI). Uncertainty Quantifica-
tion (UQ) [1–3] as a study aims to develop numerical tools that can accurately predict QoI and facilitate the quantitative 
validation of the simulation model.

To characterize uncertainty, probability is a natural framework. We model the uncertain inputs as a d-dimensional vec-
tor of independent random variables � := (�1, . . . , �d), with probability density function ρ(�). The QoI that we seek to 
approximate is denoted by a scalar u(�). Here we utilize polynomial chaos expansions (PCEs) [1,4] to approximate u(�), as-
sumed to have finite variance. In this case, u(�) can be represented as an expansion in multivariate orthogonal polynomials 
ψ j(�), i.e.,
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u(�) =
∞∑
j=1

c jψ j(�) ≈
P∑

j=1

c jψ j(�) + εt(�), (1)

where c j, j = 1, 2, . . . , are the corresponding PCE coefficients, and εt is the truncation error associated with retaining P
terms of a sorted basis. The PCE coefficients can be computed by the projection

c j =
∫

u(�)ψ j(�)ρ(�)d� = E
[
u(�)ψ j(�)

]
, (2)

where the operator E denotes the mathematical expectation. Here we assume that the ψ j(�) are normalized such that 
E

[
ψ2

j (�)
] = 1.

Typically, a full P term approximation is not necessary, and we can restrict to an unknown subset C ⊂ {1, . . . , P } such 
that |C|, the number of elements in C , is significantly smaller than P . In addition, |C| is referred to as the sparsity of the 
approximation. We approximate u(�) in (1) then by

u(�) ≈
∑
j∈C

c jψ j(�). (3)

This concept of using one basis, indexed by {1, . . . , P }, to compute an approximation in a small but unknown subset of 
those basis functions, indexed by C , falls within the context of compressive sampling [5–9].

To identify PCE coefficients, we consider non-intrusive sampling methods, in which deterministic solvers for the QoI are 
not modified. Such methods include Monte Carlo simulation [10,2], pseudo-spectral stochastic collocation [11,12,2,13], least 
squares regression [14–16], and �1-minimization [17,7,18,19,8,9,20,21]. In this work, we adopt �1-minimization to estimate 
the coefficients, solving the problem

arg min
c

‖c‖1 subject to ‖u − �c‖2 ≤ δ, (4)

where the vector c := (c1, . . . , cP )T contains PCE coefficients, while the vector u and the so-called measurement matrix �
contain function evaluations at realizations of the random input, �. Specifically, denoting the ith realization of � as ξ (i) ,

u :=
(

u(ξ (1)), . . . , u(ξ (N))
)T ; (5)

�(i, j) := ψ j

(
ξ (i)

)
. (6)

In (4), δ is a tolerance parameter necessitated by the truncation error, εt(�), to reduce the effect of overfitting. For this 
work, δ is identified via cross-validation [22].

It has been shown that as the number of samples, N , increases, the probability of accurately recovering PCE coefficients 
experiences a corresponding increase [9]. Often the deterministic solver of u is computationally demanding, and it is expen-
sive to compute realized u(ξ (i)). In order to deal with this situation, coefficient estimation based on gradient-enhanced PCE 
has received recent attention [23–27,21]. Specifically, the gradient information utilized is

u∂ :=
(

∂u

∂�1

(
ξ (1)

)
, . . . ,

∂u

∂�d

(
ξ (1)

)
, . . . ,

∂u

∂�1

(
ξ (N)

)
, . . . ,

∂u

∂�d

(
ξ (N)

))T

(7)

and

�∂ ((i − 1) · d + k, j) := ∂ψ j

∂�k
(ξ (i)), k = 1, . . . ,d. (8)

With this gradient-enhancement, c is solved by minimizing ‖c‖2, in least squares regression, or ‖c‖1, in compressive sam-
pling, subject to a constraint on∥∥∥∥

(
u

u∂

)
−

(
�

�∂

)
W c

∥∥∥∥
2
, (9)

where W is a positive-diagonal matrix depending on the basis functions and their derivatives, which we shall specify 
in Section 3.2. We note that these weights are chosen to maintain orthogonality (in expectation) in the matrix of basis 
evaluations, and that in practice it may be preferable to alter these weights to incorporate the normalizations given in [28]
or [29]. In this way, N realizations of the random inputs � provide an N(d +1) × P matrix, where the gradients ∂u/∂�k, k =
1, . . . , d, may be computed at each evaluation of � from, e.g., direct or adjoint sensitivity equations [30], or automatic 
differentiation [31]. We assume that u(�) and its partial derivatives are square integrable with respect to the measure for 
�, and are represented in the appropriate basis such that the QoI and its derivatives correspond to identical coefficients.

In a related context, a gradient-enhanced sparse approximation based on �1-minimization was proposed in [32], in which 
derivatives ∂u/∂�k, k = 1, . . . , d, are projected onto Legendre PCE, with a corresponding coefficient vector c∂ .
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1.1. Contribution of this work

In this work, we investigate a gradient-enhanced �1-minimization approach as seen in [21], in which the derivative 
information is empirically shown to improve the resolution of PCE coefficients.

In Section 3, a theoretical contribution concerning the Restricted Isometry Constant (RIC) is presented regarding recovery 
in �1-minimization with derivative information based on Hermite PCE. The RIC is a constant associated with the measure-
ment matrix that provides fruitful (probabilistic) bounds for recovery of solutions via �1-minimization [33]. Additionally, 
under an appropriate normalization introduced by W in (9), it is guaranteed that null-space, measurement matrix column 
inner-products, and coherence related measures are almost-surely improved, implying that stability for solutions computed 
by (4) are not reduced by including derivative information. These analyses are original to the authors’ best knowledge, and 
provide a framework for analysis of recovery in other PCE bases. Also, though not considered here, the approach may be 
extended to least squares polynomial chaos regression [16].

Three numerical experiments are used to demonstrate the gradient-enhanced �1-minimization in Section 4, among which 
a plane Poiseuille flow with random boundaries is simulated, and the derivative information is approximated via an adjoint 
sensitivity method. The empirical results agree with the theoretical analysis, and suggest that the inclusion of derivative 
information can improve solution recovery at a lower overall computational cost.

The structure of the manuscript is as follows. In Section 2, we state our problem and introduce the formulation of 
the gradient-enhanced �1-minimization approach. In Section 3, we present theoretical results concerning the stability and 
convergence of the gradient-enhanced �1-minimization approach, in the context of Hermite PCE. In Section 4, we demon-
strate our analysis empirically via three numerical examples: a manufactured PCE, an elliptic partial differential equation 
with random inputs, and a plane Poiseuille flow with random boundaries. Section 5 presents the proofs to the results in 
Section 3.

2. Method synopsis

2.1. Problem statement

We use differential equations to model engineering systems on a domain D ∈R
D , D ∈ {1, 2, 3}, in which the uncertainty 

sources characterized by � may be represented in one or many relevant parameters, e.g., boundary conditions and/or initial 
conditions. The solution u is governed by the equations

L(x, t,�; u(x, t,�)) = 0, x ∈ D,

I(x,�; u(x,0,�)) = 0, x ∈ D,

B(x, t,�; u(x, t,�)) = 0, x ∈ ∂D, (10)

where L, I , and B are differential operators depending on the physics of the problem, the initial conditions, and the 
boundary conditions, respectively. Our objective is to approximate the QoI, here u(x0, t0, �), for some fixed spatial location 
x0 and time t0. Since we denote the realizations of the random inputs by ξ (i) , the corresponding output is u(x0, t0, ξ (i)). To 
reduce notation, we drop the reference to x0 and t0, and simply write u(�) and u(ξ (i)).

2.2. Polynomial chaos expansion (PCE)

We rely on the PCE (1) to approximate the QoI, u(�). For convenience, we assume that the input random variables, �k , 
are independent and identically distributed according to the probability density function ρk , and define {ψik (�k)} to be the 
complete set of polynomials of degree ik ∈ N ∪ {0} orthonormal with respect to the weight function ρk [34,4]. Hence, the 
multivariate orthonormal polynomials in � are given by the products of the univariate orthonormal polynomials,

ψi(�) =
d∏

k=1

ψik (�k), (11)

where each i ∈ {(i1, . . . , id) : ik ∈ N ∪ {0}} is a d-dimensional multi-index of non-negative integers. For computation, we 
truncate the expansion in (1) to the set of P basis functions associated with the subspace of polynomials of total order not 
greater than p, that is 

∑d
k=1 ik ≤ p. For convenience, we also order these P basis functions so that they are indexed by 

{1, . . . , P }, as in (1), where there should be no confusion in using either notation. The basis set {ψ j(�)}P
j=1 has cardinality

P = (d + p)!
d!p! . (12)

2.3. �1-Minimization with gradient information

We generate derivative information for the QoI, denoted by u∂ , and correspondingly evaluate the derivatives of 
ψ j(�), j = 1, . . . , P , at the realizations ξ (i), i = 1, . . . , N , stored in a matrix �∂ , as in (7) and (8). For brevity, we de-
fine
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ũ =
(

u

u∂

)
(13)

and

�̃ =
(

�

�∂

)
W , (14)

where ũ ∈ R
N(d+1) , and �̃ ∈ R

N(d+1)×P is referred to as the gradient-enhanced measurement matrix. Here, W is a positive-
diagonal matrix, whose definition is deferred until Section 3.2. Gradient-enhanced �1-minimization solves the problem

arg min
c

‖c‖1 subject to
∥∥∥ũ − �̃c

∥∥∥
2
≤ δ, (15)

where δ generally differs from the choice in (4) and �̃ is assumed to be normalized such that E 
[

N−1�̃
T
�̃

]
= I , the P × P

identity matrix.

Remark 2.1. As the matrix W renormalizes the PC basis functions used in (1), the coefficient vectors c computed by (4) and 
(15) differ by these normalizations.

We next begin a theoretical development to justify the gradient-enhanced �1-minimization approach.

3. Theoretical discussion

We present results supporting the premise that the inclusion of derivative information does not reduce the stability of 
solutions recovered via (15) when compared to solutions recovered via (4), i.e., in the absence of derivative information. 
We refer to these solutions and the methods to attain them using the adjectives gradient-enhanced and standard, respec-
tively. We perform our analysis here with Hermite polynomials as they possess the convenient property that they and their 
derivatives are orthogonal with respect to the same measure, as by (5.5.10) of [35]. While we consider the Probabilists’ 
polynomials here for exposition, the Physicists’ polynomials would produce analogous results. Though we do not consider 
the details here, this analysis may be extended to the case of Laguerre or Jacobi polynomials where the derivative polyno-
mials form an orthogonal system with respect to a measure that differs from the orthogonality measure, yet is still explicitly 
known, as by (5.1.15) and (4.21.7) of [35], respectively.

First, we motivate and summarize results for standard �1-minimization. Then we expand on these results in the case 
of gradient-enhanced �1-minimization. The path of this analysis flows through the Restricted Isometry Constant (RIC) [5], 
which is denoted by δs(�) and is defined to be the smallest number satisfying

(1 − δs(�))‖y‖2
2 ≤ ‖�y‖2

2 ≤ (1 + δs(�))‖y‖2
2, (16)

for � ∈ R
N×P and all y ∈ R

P with at most s non-zero entries. Here, δs(�) yields a uniform bound on the spectral radius of 
the submatrices of � formed by selecting any s columns of �. Often, the matrix being considered is clear from context, and 
we then shorten δs(�) to δs . Related to the RIC are restricted isometry properties that occur when the RIC reaches a small 
enough threshold, and guarantee that �1-minimization with the given matrix is a stable computation. An example of such a 
restricted isometry property is given in Theorem 3.1 below reported from [39]. This theorem shows that if δ2s < 3/(4 +√

6), 
where s is dictated by the specific problem, then a stable recovery is assured.

Theorem 3.1. (See [39].) Let c ∈ R
P represent a solution we seek to approximate, and let ĉ be the solution to (4). Let

η := �c − u,

denote the contribution from sources of error, and let ε from (4) be chosen such that ‖η‖2 < ε . If

δ2s(�) < δ	 := 3/(4 + √
6) ≈ 0.4652,

then the following error estimate holds,

‖c − ĉ‖2 ≤ c1√
s

inf‖cs‖0≤s
‖cs − c‖1 + c2ε,

where c1 and c2 depend only on δ2s , and ‖ · ‖0 refers to the number of non-zero elements of the vector.

We note that, related to the discussion in Section 3.1, ε in Theorem 3.1 may be selected so that ‖η‖2 < ε holds with 
high probability. Unfortunately, identifying the RIC for a given matrix requires a computation for every submatrix of s
columns, which is intractable in most situations of interest. As a practical alternative we instead choose to bound the RIC
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in a probabilistic sense, allowing us to identify a probability that the RIC is below a chosen threshold. In this way we 
can guarantee that a restricted isometry property, such as the one of Theorem 3.1, holds with a certain probability. To 
do so, we introduce a definition of coherence, first considering the standard case, before expanding its definition to the 
gradient-enhanced case.

3.1. Standard �1-minimization analysis

We consider here an approach that uses arguments similar to those in [37,9]. We note that those works did not proceed 
through the RIC as we do here. First, let Q be an arbitrary subset of the sample space for �, that is the values which �
can take. Here, Q is used to truncate the domain to one on which the basis functions, here Hermite polynomials, can be 
uniformly bounded. The coherence parameter for the standard approach [37,9] is defined to be

μQ := sup
k,ξ∈Q

|ψk(ξ)|22, (17)

which for a precompact Q is guaranteed to be finite. An example of a Q suitable for use with Hermite polynomials, and 
used in [9,16], is

Q := {ξ : ‖ξ‖2
2 ≤ (4 + εp,d)p + 2}, (18)

where εp,d is a positive constant, which may be arbitrarily small but close to zero in an asymptotic analysis of the behavior 
of Hermite polynomials. We note that this truncation has not been analyzed when the number of samples is exponentially 
greater than the number of basis functions; however, this is not an issue here where the number of samples is typically 
less than or not substantially greater than the number of basis functions. The definition of coherence parameter as in (18)
leads to the following theorem, taken from Theorem 4.1 of [9].

Theorem 3.2. For d-dimensional polynomials of order p ≥ 1, the coherence in (17) is bounded by

μQ ≤ C0 · C p
1 , (19)

where C0 and C1 are modest constants depending on d, p, εp,d. As p/d → ∞, C0 decreases to 1, and C1 decreases to a limit of 
exp(2 − log(2)) ≈ 3.7.

This shows an exponential dependence of the coherence parameter on p. Let Xk denote a row vector consisting only of 
basis polynomial evaluations at ξ (k) . We bound the RIC for the matrix � as defined in (6).

Theorem 3.3. For any chosen Q, we may bound the RIC in a probabilistic sense by

P(δs < t) ≥ P(Q)N − exp

(
−CQ

Nt

sμQ
+ s + log(2s) + s log(P/s)

)
.

Remark 3.1. We note that we do not generally require arbitrarily small δs , as is seen in Theorem 3.1. The constant CQ scales 
with

εQ :=
∥∥∥E(

X T X |ξ ∈ Q
)

− I
∥∥∥

2
, (20)

which is a bias that is negligible in practical contexts for Q as in (18), [9]. Truncating in this way, neither CQ nor P(Q) are 
problematic in practice.

Remark 3.2. While our primary focus here is �1-recovery, the RIC corresponding to s = P is useful for analyzing the stability 
of a least squares solution, and so this result is also applicable to �2-minimization. For ways in which this parameter may 
bound error from solutions computed via �2-minimization we point the interested reader to [38,16]. In this case, a slight 
adjustment to the proof gives the bound

P(δP < t) ≥ P(Q)N − 2P exp

(
−CQ

Nt

PμQ

)
.

The following corollary, which follows from a rearrangement of the result of Theorem 3.3, highlights the relationship 
between several quantities.

Corollary 1. To insure that δs < δ	 with probability p	 , it is sufficient to take N	 satisfying

N	δ	 ≥ sμQ
CQ

[
s + log(2s) + s log(P/s) − log

(
P(Q)N	 − p	

)]
.



J. Peng et al. / Journal of Computational Physics 310 (2016) 440–458 445
Remark 3.3. This result has a quadratic scaling in s that is serviceable for many choices of s and N , but is less desirable than 
a nearly linear scaling in s when considering asymptotic behavior in N, s, and P . Though we leave detailed consideration to 
the proof of Theorem 3.3, a more careful chaining proof utilizing majorizing measures can reduce this to a linear dependence 
on s, up to logarithmic factors in s which arise due to structure in the random matrix �̃ . For example, following Theorem 8.4 
of [39] gives sufficiency if N	 satisfies

N	

log(10N	)
≥ D1δ

−2
	 s log2(100s)μQ log(100P ); (21)

N	 ≥ D2δ
−2sμQ log

((
P(Q)N	 − p	

)−1
)

. (22)

Here D1 ≤ 50963, D2 ≤ 456, and we note that this bound depends on the squared value of δ	 . It is appropriate to mention 
this bound showing a linear dependence on s up to logarithmic factors, for comparison with results in [39–41]. Explicit 
connection with these works is given in Remark 5.1.

For example, using Corollary 1 and δ	 as in Theorem 3.1, gives a guarantee for stability of solutions to (4) when the 
number of samples N satisfies

N ≥ (4 + √
6)sμQ

3CQ

[
s + log(2s) + s log(P/s) − log

(
P(Q)N − p	

)]
.

We note that N appears on both the left and right sides of the equation. This arises from the truncation, which has a 
technical issue when N is exponentially larger than P ; specifically, the probability that at least one sample had fallen in Qc

becomes large, while the analysis relies on this event being rare. As N is very often smaller than P , and rarely chosen to be 
exponentially larger than P , this issue is not of practical concern. Next, we extend these results to the case where gradient 
information is included.

3.2. Gradient-enhanced �1-minimization analysis

In the previous case the rows of � were independent, while �̃ has a more subtle independence structure, as only the 
sets of rows associated with the independent samples are independent. Related to this point, we let the (d + 1) × P block 
of independent information related with the kth sample be given by Xk , with a generic realization given by X . Specifically,

X(i, j) = ∂ψ j

∂�i
(ξ), i = 1, . . . ,d;

X(d + 1, j) = ψ j(ξ).

That is, the last row corresponds to the realizations of the function, while the first d rows correspond to the derivative 
information. We note that there is no effect in the computations considered here by rearranging the rows of the matrix �̃ . 
The RIC will necessarily be larger if the norms of the matrix columns are different. Adjusting for this can be done by 
adjusting the basis functions themselves. In the case of standard �1-minimization, we use orthonormal polynomials. Here, 
we will wish to include derivatives of those polynomials as well, requiring a different normalization. We use the Probabilists’ 
Hermite polynomials, and the following lemma is used to identify this normalization.

Lemma 3.1. For d-dimensional orthonormal Probabilists’ Hermite polynomials ψi and ψ j with order ik, jk in dimension k,

E

(
ψi(�)ψ j(�) +

d∑
k=1

∂ψi

∂�k
(�)

∂ψ j

∂�k
(�)

)
= δi, j

(
1 +

d∑
k=1

ik

)
, (23)

where δi, j is the Kronecker Delta.

This suggests a different normalization of the basis functions to enforce that columns of the gradient-enhanced mea-
surement matrix have the same expected �2-norm. We refer to this normalization as gradient-normalization. Specifically, we 
multiply the orthonormal basis function ψi by

w̃ i :=
(

1 +
d∑

k=1

ik

)−1/2

, (24)

to gradient-normalize. We note that it is these weights that define the W in (9) and (15). In this work, we assume that when 
derivative information is included, that those basis functions are gradient-normalized, and that when derivative information 
is not included, that those basis functions are orthonormal, which we refer to as standard-normalization. This insures that 
the expected norms for the columns of the sampled matrices are consistent in both cases.
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Recalling that N denotes the number of samples used, our analysis focuses on the Gramian matrix

M := 1

N

N∑
k=1

X T
k Xk. (25)

Here, M = N−1�T � for the standard approach, while M = N−1�̃
T
�̃ for the gradient-enhanced approach. We now present 

some summarized results for the standard approach that will be compared to the results presented for the gradient-
enhanced case. To analyze the spectrum of M in the case of gradient-enhanced �1-minimization, we use the following 
definition, which generalizes the �1-coherence as studied in [37,9,36] and defined in (17). Let Q be an arbitrary subset 
of 
, which we use to truncate the sample space to insure a uniformly bounded polynomial system, e.g. as in [37,9,16], and 
let

βQ := sup
k,ξ∈Q

‖X(:,k)‖2
2. (26)

This parameter is a generalization of μQ in the case where rows are not independent, but sets of rows are. Note that in 
the case that X is a row vector, then this definition reduces to (17). Specifically, the results of Section 3.1 all hold when 
substituted for this parameter, which we highlight as a theorem.

Theorem 3.4. The theorems of Section 3.1 hold for the gradient-enhanced case when μQ is replaced by βQ .

We conclude our analysis with three results which demonstrate that the inclusion of derivative information, coupled 
with gradient-normalization, does not reduce stability over the corresponding approach without derivative information.

The first result is an inequality concerning the coherence parameter defined in (17) and (26), showing that including 
derivative information does not require any weakening of the bounds of Section 3.1 in the case without derivative informa-
tion. This inequality then directly applies to all of the theorems in Section 3.1.

The second result is a direct null-space comparison of the two different matrices, which is known to be fundamental 
for recovery of exactly-sparse solutions [5,42,43]. Specifically, as ‖�̃c − ũ‖ < δ (or ‖�c − u‖ < δ) is enforced, the difference 
between potential solutions is close to an element of the null-space of �̃ (or �), so reducing the dimension of the null-space 
correspondingly reduces the space of potential solutions.

The third result concerns a bound on the inner-products of columns of the measurement-matrix. This is related to the 
RIC in that if the inner-product between several pairs of columns is of large absolute value then a linear combination of 
those columns will have small norm, resulting in a larger RIC. Similarly, if those inner-products are of small absolute value, 
then no linear combination will have a small norm. An analogous observation may be made regarding a linear combination 
of columns having a much larger norm. For this reason it is beneficial if the inner-product between columns is of small 
absolute value.

Theorem 3.5. Let �̃ be a realized measurement matrix with derivative information that is gradient-normalized. Similarly, let � be a 
realized measurement matrix with standard-normalization and no derivative information.

Assume that � and �̃ are formed from the same realized input samples, {ξ (i)}N
i=1 , so that up to row weighting, � is a sub-matrix 

of �̃ . Then the following statements related to the recovery of solutions via �1-minimization hold.
R1. Using the definition in (26) for the two different approaches,

βQ(�̃) ≤ μQ(�),

and this inequality is almost-surely strict.
R2. If N (·) represents the null-space, then N (�̃W −1) ⊂N (�), and this is almost-surely a strict subset when � is undersampled. 

Specifically, it almost-surely holds that dim(N (�̃)) = max{0, P − (d + 1)N} while dim(N (�)) = max{0, P − N}.
R3. If subscripts of matrices correspond to the columns, and ik denotes the order of the basis polynomial in the ith column in the 

kth dimension, then the associated inner product of columns is bounded by,

sup
i 
= j

|(�̃ i, �̃ j)| ≤ sup
i 
= j

|(� i,� j)|(1 + ∑d
k=1

√
ik jk)√

(1 + ∑d
k=1 ik)(1 + ∑d

k=1 jk)

≤ sup
i 
= j

|(� i,� j)|. (27)

Remark 3.4. The theorem is presented for full gradient information to ease presentation, but the three points generalize 
to the case that derivative information is included for a fraction of samples. Specifically, (1) holds with an appropriate 
adjustment to the dimensionality, (2) holds with an adjustment to the basis dependent multiplicative constant, and (3) holds 
if �̃ has derivative information for only a few samples. In summary adding derivative information for even a percentage of 
the samples leads to bounds as in Theorem 3.5.
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3.3. A note on potentially contrasting solutions

It is of practical importance to note what functions are recovered in an asymptotic sense by the gradient-enhanced and 
standard approaches, as they may differ significantly. The gradient-enhanced method gives û approximating u in a Sobolev 
type loss function,

L(û, u) := ‖û − u‖2
�2(�,N) +

d∑
k=1

∥∥∥∥∂(û − u)

∂�k

∥∥∥∥
2

�2(�,N)

, (28)

where the �2(�, N) indicates the discrete �2 norm using N evaluations drawn from realizations of �, here (ξ (1), . . . , ξ (N)). 
This norm is also normalized by N−1 so that as N goes to infinity this norm tends to L2(�), the standard L2 norm asso-
ciated with the distribution of �. Specifically (15) guarantees that N L(u, ̂u) < δ. In contrast, without derivative information 
using standard-normalization and producing a solution via (4), gives û approximating u such that N‖û − u‖2

�2(�,N)
< δ, that 

is the partial derivatives of the approximation need not be approximated by those of the target function. As these loss 
functions differ, so too does the limiting solution produced by each method for a finite expansion order p. However, the 
sequence of approximations given by the two loss functions and by using increasing p (and accordingly N) will converge to 
u in the L2(�) sense as p, N → ∞.

4. Numerical results

In this section, we empirically demonstrate the gradient-enhanced �1-minimization approach using Hermite polynomials 
and Gaussian inputs. This is done via three numerical examples: a manufactured PCE; an elliptic PDE with stochastic coeffi-
cient; and a plane Poiseuille flow with random boundaries. To compare the standard and gradient-enhanced �1-minimization 
solutions, we define an equivalent sample size Ñ ,

Ñ := Ne + νNg, (29)

which accounts for the added cost of computing the derivative information. In (29), Ne is the number of samples without 
derivative information, Ng is the number of samples with derivatives (along all d directions), and ν is a positive parameter 
depending on the problem at hand and the approach employed to compute the derivatives. For the example of Section 4.2, 
the cost of generating d derivatives of the QoI, obtained by the adjoint sensitivity method, is roughly the same as that of 
evaluating the QoI, thus implying that ν = 2. For transient problems where the cost of solving the adjoint equations for 
derivative calculations may be considerably more than that of a single QoI evaluation, ν > 2. Nevertheless, we here present 
all cost comparisons in terms of the number of equivalent sample size Ñ in (29), for choices of ν that we shall specify. 
For simulations based on standard �1-minimization, we set Ñ = Ne . Additionally, for the interest of convenience, we ignore 
the cost of solving the �1-minimization problems in (4) and (15). This is a valid assumption as often that cost is negligible 
relative to the cost of evaluating the QoI or its derivatives. For terminology, if X% of samples used in the computation of 
the solution contain derivative information, then we say that method is X% gradient-enhanced. In this way, the standard 
approach without derivatives would give a solution that is 0% gradient-enhanced, denoted as standard in the subsequent 
figures. Similarly, if all samples include derivative information, the associated solution would be 100% gradient-enhanced. In 
all cases, all samples are drawn from the orthogonality distribution, that is the multivariate standard normal distribution.

4.1. Case I: A manufactured PCE

First, we consider the reconstruction of a manufactured PCE, in which the sparsity and the entries of the coefficient 
vector c are a priori prescribed. Specifically, we set the dimension of the expansion to d = 25 and use a p = 3 order PCE 
(hence P = 3276 basis functions) to manufacture the QoI u(�). To generate c , we first draw its P entries independently 
from the standard Gaussian distribution. We then retain |C| ∈ {50, 150} coefficients with largest magnitude and set the rest 
to zero. This gives a randomized sparsity support. Finally, the realizations of u(�) and its derivative with respect to �k , 
k = 1, . . . , d, are generated by

u(ξ (i)) =
P∑

j=1

c jψ j(ξ
(i)) (30)

and

u∂k (ξ
(i)) :=

P∑
j=1

c j
∂ψ j

∂�k
(ξ (i)), (31)

respectively. We then approximate the PCE coefficients c via (4) and (15) from these generated data.



448 J. Peng et al. / Journal of Computational Physics 310 (2016) 440–458
Fig. 1. Probability of successful recovery of manufactured PCE with p = 3, d = 25, and sparsity |C| = 50 via gradient-enhanced and standard �1-minimization. 
(a) 100% vs. 0% gradient-enhanced. (b) 20% vs. 0% gradient-enhanced. ( gradient-enhanced, standard.)

Fig. 2. Probability of successful recovery of manufactured PCE with p = 3, d = 25, and sparsity |C| = 150 via gradient-enhanced and standard 
�1-minimization. (a) 100% vs. 0% gradient-enhanced. (b) 20% vs. 0% gradient-enhanced. ( gradient-enhanced, standard.)

4.1.1. Results
Beginning with the |C| = 50 case, we seek to recover the manufactured c . If the computed solution, denoted by ĉ , has a 

relative root-mean-square-error (RRMSE) below 0.01%, then we call it a successful recovery of c .
We first consider the case where evaluations of u(�) and its derivatives are exact, i.e., noise free. In Fig. 1, we compare 

the probability of successful recovery for gradient-enhanced and standard approaches, using 100 independent replications 
for each Ñ . To set Ñ , we pretend the cost of evaluating d derivatives of u(�) is the same as that of evaluating u(�), and 
therefore we set ν = 2.

In Fig. 1(a), we see that 100% gradient-enhanced �1-minimization helps in reducing the computational effort to recover 
c , while Fig. 1(b) demonstrates a notable, but less, improvement for 20% gradient-enhanced �1-minimization. The figure 
suggests that adding derivative information is a cost-effective means to increase the probability of successfully recovering c
at low sample sizes Ñ .

Fig. 2 shows similar results for sparsity |C| = 150. Since |C| is larger in this case, both standard and gradient-enhanced 
methods require more samples for recovery with a given success probability. This is consistent with the sampling rate 
presented in Corollary 1. We, however, note that the inclusion of derivative information still enhances the solution recovery.

In practice, there is often error (or noise) in the evaluation of u(�) and its derivatives, with the latter being more prone 
to errors. To model such inaccuracies, here we multiply the realizations of u(�) and their derivatives from (30) and (31), 
respectively, by independent realizations of (1 +εN ), where εN is a zero mean Gaussian random variable with variance 10−5. 
In Fig. 3, we consider the sparsity |C| = 50 case and compute the probability of successful solution recovery as a function of 
Ñ . Similar as in the previous test cases, we use an RRMSE error of 0.01% to identify a successful recovery. We observe that 
the inclusion of derivative information, while imprecise, still improves the performance of the standard �1-minimization.

Fig. 4 considers a case with lower dimension d = 8, and higher order p = 6, giving P = 3003. This shows the effect 
with regards to having lower dimensionality and higher order on recovery. It is noted that increasing the order of Hermite 
expansions significantly increases both μQ in (17) and βQ in (26). While tangible improvement in solution recovery is still 
noticed when considering gradient-enhanced samples, the amount of improvement is reduced. This reduction in efficacy 
may be related to the reduction in the dimensionality of information provided by the gradient.
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Fig. 3. Probability of successful recovery of gradient-enhanced and standard �1-minimization for the manufactured PCE case with p = 3, d = 25, and 
sparsity |C| = 50. (a) 100% gradient-enhanced. (b) 20% gradient-enhanced. ( gradient-enhanced, gradient-enhanced with noisy u∂ only, 
gradient-enhanced with both noisy u and u∂ , standard, standard with noisy u.)

Fig. 4. Probability of successful recovery of gradient-enhanced and standard �1-minimization for the manufactured PCE case with p = 8, d = 6, and sparsity 
|C| = 50. (a) 100% vs. 0% gradient-enhanced. (b) 20% vs. 0% gradient-enhanced. ( gradient-enhanced, standard.)

4.2. Case II: Two-dimensional elliptic PDE with random coefficient

We next consider the two-dimensional (in space) elliptic PDE

−∇ · (a(x,�)∇u(x,�)) = 1, x ∈ D = [0,1]2,

u(x,�) = 0, x ∈ ∂D , (32)

where the diffusion coefficient a(x, �) is modeled by the lognormal random field

a(x,�) = exp

[
ā + σa

d∑
k=1

√
λkφk(x)�k

]
. (33)

Here, d = 30, and �k, k = 1, . . . , d, are independent standard Gaussian random variables. In addition, ā = 0.1, σa = 0.5, and 
{φk}d

k=1 are the eigenfunctions corresponding to the d largest eigenvalues {λk}d
k=1 of the Gaussian covariance kernel

Caa(x1, x2) = exp

[
− (x1 − x2)

2

l2c
− (y1 − y2)

2

l2c

]
, (34)

with correlation length lc = 1/16.
The QoI u(�) is chosen as the solution to (32) at location x = (0.5, 0.5), i.e., u(�) = u ((0.5,0.5),�). The derivatives 

∂u/∂�k are computed using the adjoint sensitivity method explained in detail in Section 4.2.1. Both forward and adjoint 
solvers are implemented in the finite element method (FEM) project FEniCS [44].

4.2.1. Adjoint sensitivity derivatives
The adjoint sensitivity methods are commonly used in research areas such as sensitivity analysis [45,46], optimiza-

tion [47,48], shape design [49,50], etc., to compute the derivatives of the solutions of interest with respect to the underlying 
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Fig. 5. Comparison of the statistics of the RRMSE in reconstructing u ((0.5,0.5),�), where the realizations of u and its derivatives are computed on a 
uniform 256 × 256 FEM mesh. (a) Mean of RRMSE. (b) Standard deviation of RRMSE. ( 100% gradient-enhanced, standard.)

model parameters. In this work, we adopt the discrete adjoint sensitivity method to compute derivatives of the QoI at the 
� samples.

In detail, for the interest of convenience, we consider the discrete formulation of the generic PDE in (10), at a fixed time, 
given by the residual equation

R(w,�) = 0, (35)

where w ∈ R
M contains the discrete values of solution over the spatial domain D, and M is the number of solution 

degrees-of-freedom. Recalling that u(�) (here a scalar functional of the solution) denotes the QoI, we seek to compute the 
sensitivity derivatives du/d�k from

du

d�k
= ∂u

∂�k
+ ∂u

∂ w

∂ w

∂�k
. (36)

Taking the derivative of (35) with respect to �k , we have

∂R
∂�k

+ ∂R
∂ w

∂ w

∂�k
= 0, (37)

which results in ∂ w/∂�k = − (∂R/∂ w)−1 ∂R/∂�k . Plugging this in (36) gives

du

d�k
= ∂u

∂�k
− ∂u

∂ w

(
∂R
∂ w

)−1
∂R
∂�k

,

which can be rewritten as

du

d�k
= ∂u

∂�k
+ λT ∂R

∂�k
, (38)

where λ is the solution to the discrete adjoint equation(
∂R
∂ w

)T

λ = −
(

∂u

∂ w

)T

. (39)

For the case of elliptic PDE (32), ∂R/∂ w is the symmetric stiffness matrix of the FEM discretization and ∂R/∂�k in 
(38) can be computed semi-analytically from (33) and the FEM formulation of (32). Here, we assume the inverse or a 
factorization of ∂R/∂ w is not stored when solving for w , and that the total cost of obtaining ∂R/∂�k is smaller than that 
of computing w . Therefore, the cost of solving for λ from (39) is roughly the same as solving for w , which in turn suggests 
that ν = 2 in (29).

4.2.2. Results
We approximate u(�) in a Hermite PCE with total degree p = 3, and seek to approximate the first 2500 coefficients. 

We sort the elements of {ψ j} such that, for any given total order basis, the random variables �k with smaller indices k
contribute first to the basis.

To solve for the coefficients, we first generate the realizations u and u∂ using a 256 × 256 uniform, linear FEM mesh, 
which resolves both quantities with low numerical errors. In Fig. 5, we compare the mean and standard deviation of the 
RRMSE for solutions computed by the standard and gradient-enhanced �1-minimization, using 100 independent replications. 
The reference PCE coefficients are computed using least squares regression [16] with 10 000 solution realizations and yields 
a relative error of 0.36% for 1000 additional validation samples. From Fig. 5, we observe that higher accuracies are achieved 
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Fig. 6. Approximate PCE coefficients of u ((0.5,0.5),�) with Ñ = 80 vs. the reference coefficients obtained by least squares regression. (" reference, 
standard �1-minimization, gradient-enhanced �1-minimization.)

Fig. 7. Comparison of the statistics of the RRMSE in reconstructing u ((0.5,0.5),�) via gradient-enhanced and standard �1-minimization. (a) Mean of 
RRMSE. (b) Standard deviation of RRMSE. ( 100% gradient-enhanced, standard. Dashed and solid lines, respectively, correspond to the 16 × 16
and 256 × 256 mesh simulations.)

Fig. 8. Schematic figure of plane Poiseuille flow with random boundaries.

by the gradient-enhanced �1-minimization with the same number of samples Ñ . In Fig. 6, we show the magnitude of the 
approximate PCE coefficients computed via standard and gradient-enhanced �1-minimization with Ñ = 80 samples. More 
accurate coefficient estimates are obtained by the gradient-enhanced �1-minimization.

To study how the accuracy of derivative information affects the accuracy of solution obtained by the gradient-enhanced 
�1-minimization, we repeat this experiment on a coarser 16 × 16 mesh, where the derivative information is noticeably less 
accurate. We observe from Fig. 7 that, the accuracy improvement achieved by the gradient-enhanced �1-minimization is not 
as considerable as in the case of 256 × 256 mesh. This suggests that high accuracy on the derivative samples u∂ may be 
required for the gradient-enhanced �1-minimization to be most effective.

4.3. Case III: Plane Poiseuille flow with random boundaries

We consider a 2-D plane Poiseuille flow with random boundaries as depicted in Fig. 8.
The average width of the channel is 2R̄ = 0.2, and the width of the channel is model as 2R(x) = 2R̄ + 2r(x, �), where 

2r(x, �) describes the random fluctuation of the channel width around 2R̄ (see Fig. 9). We use d = 20 independent standard 
Gaussian random variables �k, k = 1, . . . , d, to represent the uncertainty in R , and let
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Fig. 9. Two realizations of velocity magnitude corresponding to two realizations of random boundaries.

r(x,�) = exp

[
r̄ + σr

d∑
k=1

√
λkφk(x)�k

]
. (40)

Here, r̄ = −4, σr = 0.5, and {λk}d
k=1 and {φk}d

k=1 are the d largest eigenvalues and corresponding eigenfunctions of the 
exponential covariance kernel

Crr(x1, x2) = exp

(
−|x1 − x2|

lc

)
, (41)

where the correlation length lc = 1/21.
We seek to investigate the steady state velocity field of the flow, which is governed by the incompressible steady state 

Navier–Stokes equations

(v · ∇)v − 1

Re
∇2 v = −∇p, x ∈ D(�),

∇ · v = 0, x ∈ D(�),

∂ p

∂x
= G, x ∈ D(�),

v = 0, y = ±R, (42)

where the Reynolds number Re = 60, and p denotes pressure. Notice that in (42), we assume that all physical quantities are 
non-dimensional. The flow is driven by a pressure gradient G = −0.1.

The QoI is vx(0.5, 0), the horizontal velocity at (0.5, 0), and we approximate it in a Hermite PCE of total degree p = 3.

4.3.1. Adjoint sensitivity derivatives
To compute the derivative information, we again adopt the adjoint sensitivity method, in which we approximate 

∂R/∂�k, k = 1, . . . , d, in (38) via finite difference quotient

∂R
∂�k

≈ R(w,� + ��k) −R(w,�)

ε
. (43)

Here, the mth entry of the vector ��k is defined as

��k
m =

{
ε, m = k,

0, m 
= k.
(44)

To solve the non-linear problem (42), we employ a standard Newton solver, in which ∂R/∂ w from (39) is the Jacobian 
matrix. In (43), the discrete representation of the velocity field, w , is kept unchanged; hence, (42) does not need to be 
solved again. The perturbed residual R(w, � + ��k) is computed by deforming the mesh to conform to the geometry 
corresponding to � + ��k , without recomputing w . Compared to solving the adjoint equation (39), the cost of calculating 
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Fig. 10. Comparison of the statistics of the RRMSE in reconstructing vx ((0.5,0),�) via standard and gradient-enhanced �1-minimization, with 100 inde-
pendent replications. (a) Mean of RRMSE. (b) Standard deviation of RRMSE. ( 100% gradient-enhanced, 20% gradient-enhanced, standard.)

(43) is negligible. Additionally, in our deterministic solver, computing w required on average 3 Newton steps. Therefore, 
the extra cost of computing derivative information is roughly equivalent to 1/3 of the cost of computing w , which in turn 
suggests setting ν = 4/3 in (29).

4.3.2. Results
We consider 0%, 20% and 100% gradient-enhanced �1-minimization, with Ñ ∈ {20,40,80,160}.
Fig. 10 displays the comparisons of the mean and standard deviation of the RRMSE, with 100 independent replications 

of computed PCE coefficients, showing that gradient-enhanced �1-minimization again leads to cost-effective accuracy im-
provement.

5. Proofs

5.1. Theorem 3.4

We prove our results here in the case of βQ defined as in (26), which due to the non-independent rows is a slight 
generalization of the results using (17). Adjusting the proofs present here to account for the latter case requires only the 
substitution of μQ for βQ , showing this Theorem.

5.2. Lemma 3.1

We begin by providing a brief proof for Lemma 3.1, which follows directly from the explicit form for the Hermite 
derivative as in (5.5.10) of [35].

Proof. Note that linearity of expectation allows us to take the expectation inside the sum, so that we may work on each 
term independently. For one-dimensional orthonormal Hermite polynomials, where i represents the order of the polynomial, 
(5.5.10) of [35] shows that

∂ψi

∂�
(�) = √

iψi−1(�). (45)

As the tensor product of orthonormal polynomials is orthonormal, (23) for i = j follows from the derivative being exactly in 
the direction of a Hermite polynomial. For i 
= j, (23) follows because each term in the sum is the expectation of a product 
of orthogonal polynomials that differ in at least one coordinate, and hence the integral is equal to zero. �
5.3. Theorem 3.3

To prove Theorem 3.3, we appeal to a matrix variant of the Chernoff bound [51], which is similar to approaches taken 
in [38,37,52,16].

Proof. Recall that Q represents a truncation for the domain of �, and may be given by (18). We have that

I = E

(
X T X |ξ ∈ Q

)
P(Q) +E

(
X T X |ξ ∈ Qc

)
P(Qc). (46)

A brief calculation gives that
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εQ :=
∥∥∥E(

X T X |ξ ∈ Q
)

− I
∥∥∥

2
(47)

≤ P(Qc)

P(Q)

(∥∥∥∥E
(

X T X

∣∣∣∣ξ ∈ Qc
)∥∥∥∥

2
+ 1

)
(48)

bounds the bias introduced from not accepting samples within Qc . We note that with the truncation in (18), and using 
this bound, εQ ≤ 0.1/

√
P [9], for all N considered here, and in most similar problems. Specifically, an analytic issue does 

not arise until consideration of exponential levels of oversampling. This analytic issue arises as the truncated events are no 
longer negligibly rare when a high number of samples are taken.

Restating (47), let λmin(·) and λmax(·) correspond to the smallest and largest eigenvalues of the argument matrix, respec-
tively. Then for any arbitrary set of columns, denoted S ,

1 − εQ ≤ λmin

(
E

(
X T (:,S)X(:,S)|ξ ∈ Q

))
(49)

≤ λmax

(
E

(
X T (:,S)X(:,S)|ξ ∈ Q

))
≤ 1 + εQ. (50)

From (26) we have that if each sample ξ (k) ∈Q, then for all k,

‖Xk(:,S)‖2
2 ≤ sβQ, (51)

holds uniformly for all choices of S such that |S| < s. This provides an upper bound on the singular values of our indepen-
dent self-adjoint matrices, X T

k (:, S)Xk(:, S), uniformly over all choices of S consisting of at most s elements. We define

MS := 1

N

N∑
k=1

X T
k (:,S)Xk(:,S). (52)

An application of the Chernoff bound as in Theorem 1.1 of [51] and Theorem 1 of [38] gives that for δ ∈ [0, 1] and |S| ≤ s,

P

(
λmin (MS) ≤ (1 − δ)(1 − εQ)

∣∣∣∣∣ξ (k) ∈ Q ∀k

)
≤ s

(
e−δ

(1 − δ)1−δ

) N(1−εQ)

sβQ ; (53)

P

(
λmax (MS) ≥ (1 + δ)(1 + εQ)

∣∣∣∣∣ξ (k) ∈ Q ∀k

)
≤ s

(
eδ

(1 + δ)1+δ

) N(1+εQ)

sβQ
. (54)

Note that

(1 − δ)(1 − εQ) ≥ 1 − t ⇒ δ ≤ t − εQ
1 − εQ

; (55)

(1 + δ)(1 + εQ) ≤ 1 + t ⇒ δ ≤ t − εQ
1 + εQ

, (56)

and so we have a critical δ, given by

δt := (t − εQ)/(1 + εQ), (57)

is such that for all δ < δt the matrix MS is guaranteed to satisfy ‖MS − I‖2 ≤ t . Note that for 0 ≤ δ < 1,

e−δ

(1 − δ)1−δ
≥ eδ

(1 + δ)1+δ
, (58)

and so we may bound the sum of the probabilities by

P

(
‖MS − I‖ ≤ t

∣∣∣∣∣ξ (k) ∈ Q ∀k

)
≤ 2s

(
e−δt

(1 − δt)1−δt

) N(1−εQ)

sβQ
. (59)

We now bound this probability. We note that if εQ ≤ t then

0 < δt ≤ t − εQ
1 + εQ

≤ t − εQ. (60)

To create a bound without explicit dependence on εQ , we note that for

ct := t − εQ + (t + εQ) log(t + εQ);
e−δt

1−δt
≤ exp(−ct).
(1 − δt)
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Thus for t ∈ (0, 1),

P

(
‖MS − I‖ ≤ t

∣∣∣∣∣ξ (k) ∈ Q ∀k

)
≤ 2s exp

(
− ct(1 − εQ)N

sβQ

)
; (61)

≤ 2s exp

(
−CQ

tN

sβQ

)
, (62)

where CQ is a reasonably small positive constant for most truncations. Via a union bound over the 
(P

s

)
possibilities of 

subsets of P with cardinality s, it follows that

P

(
sup
|S|≤s

λmax(MS − I) ≥ t

)
≤ 2s

(
P

s

)
exp

(
−CQ

Nt

sβQ

)
. (63)

Remark 5.1. Here we point out the difference between the result from the presented proof and the approach leading to the 
result in Remark 3.3. The proof here proceeds via a union bound over all possible selections of s columns from the full set 
of P , which provides servicable bounds for many choices of s and N . However, this leads to an unnecessarily loose bound 
when considering asymptotically large s and P . Specifically, the tail bound of (61) for an arbitrary subset of s columns is 
sufficient to bound a number of points that can be used to bound λmax(MS − I) uniformly over choices S satisfying |S| ≤ s. 
These arguments [39–41] yield a version of (63) which omits the 

(P
s

)
scaling, such that the probability scales linearly in s

up to logarithmic factors.
The specifics of these arguments are not repeated here. The interested reader is directed to Section 8 of [39] for analysis 

of bounded orthonormal systems that translate to the setup presented here. To account for the generalization of indepen-
dence structure from independent rows to independent sets of rows, (61) demonstrates the appropriateness of the definition 
in (26) to generalize the coherence of the orthonormal system from that given by (17).

Recalling that

sup
|S|≤s

λmax(MS − I) = δs,

gives

P(δs ≥ t) ≤ exp

(
−CQ

Nt

sβQ
+ log

(
2s

(
P

s

)))
. (64)

We assume that having any sample ξ (k) ∈Qc leads to an arbitrarily large λmax, hence yielding the bound,

P(δs ≥ t) ≤ 1 − P(Q)N + exp

(
−CQ

Nt

sβQ
+ log

(
2s

(
P

s

)))
. (65)

Using the relation, P(δs < t) = 1 − P(δs ≥ t), gives that

P(δs < t) ≥ P(Q)N − exp

(
−CQ

Nt

sβQ
+ log

(
2s

(
P

s

)))
. (66)

Using the relation that(
P

s

)
≤

(
e P

s

)s

,

it follows that

2s

(
P

s

)
≤ 2ses

(
P

s

)s

; (67)

log

(
2s

(
P

s

))
≤ log(2s) + s + s log(P/s), (68)

which completes the proof. Remark 3.2 follows from (66), taking s = P and using that 
(P

P

) = 1. �
We note that Corollary 1 follows from Theorem 3.3, by substituting p	 for P(δs < t); substituting δ	 for t; and performing 

some algebraic manipulation.
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5.4. Theorem 3.5

The proof of Theorem 3.5 relies on the properties of the measurement matrices �̃ and � themselves. In an intuitive 
sense, the results follow from the two matrices having similar properties, but the gradient-enhanced matrix having more 
rows, yielding better conditioned Gramians.

Proof. We begin by showing R1 for the one-dimensional case. Note that for arbitrary ξ , and i,

|ψi(ξ)|2 + i|ψi−1(ξ)|2
1 + i

≤ max
{
|ψi(ξ)|2, |ψi−1(ξ)|2

}
and that equality can only hold if ψi(ξ) = ψi−1(ξ) for some i, which is an event that occurs with probability zero. As this 
inequality holds for all i and ξ , being strict for almost all ξ , R1 follows for the one-dimensional case. The d-dimensional 
analogue follows as the d-dimensional polynomials are tensor-products of the one-dimensional polynomials.

To show R2, note that up to an invertible post-multiplication, � is a submatrix of �̃ , and thus N (�̃W −1) ⊂ N (�). 
Additionally, we notice that � , and �̃ are almost surely full rank matrices.

We next show R3 in the case of 1-dimensional Hermite polynomials. Here subscripts of matrices refer to the column 
corresponding to that polynomial order. We have by the normalization (24) and (45) that

(�̃ i, �̃ j) = (� i,� j) + √
i j(� i−1,� j−1)√

(1 + i)(1 + j)
. (69)

It follows that,

|(�̃ i, �̃ j)| ≤ |(� i,� j)| + √
i j|(� i−1,� j−1)|√

(1 + i)(1 + j)
.

Applying a supremum,

sup
i 
= j

|(�̃ i, �̃ j)| ≤ sup
i 
= j

|(� i,� j)| + √
i j|(� i−1,� j−1)|√

(1 + i)(1 + j)
,

≤ sup
i 
= j

|(� i,� j)| 1 + √
i j√

(1 + i)(1 + j)
,

where we have used the inequality

1 + √
(i − 1)( j − 1)√

(1 + (i − 1))(1 + ( j − 1))
≤ 1 + √

i j√
(1 + i)(1 + j)

. (70)

This shows the result for the one-dimensional case. The d-dimensional case leads to a decomposition in (69) with inner 
products of lower order along each dimension, and the inequality in (70) is replaced by d similar inequalities. �
6. Conclusion

Within the context of compressive sampling of sparse polynomial chaos expansions, we investigated �1-minimization 
when derivative information of a quantity of interest (QoI) is present. We provided analyses on gradient-enhanced 
�1-minimization for Hermite polynomial chaos, in which we showed that, for a given normalization, including derivative 
information will not reduce the stability of the �1-minimization problem. Further, we identified a coherence parameter 
that we used to bound the associated Restricted Isometry Constant, a useful and well-studied measure of the stability for 
solutions recovered by �1-minimization as in the context used here.

Furthermore, we observed improved solution accuracy from gradient-enhanced �1-minimization in three numerical ex-
amples: Manufactured polynomials; an elliptic equation; and a plane Poiseuille flow with random boundaries. Consistently, 
gradient-enhanced �1-minimization was seen to improve the quality of solution recovery at the same computational cost, 
or equivalently achieve the same solution quality at a reduced computational cost. As the QoI derivatives are often more 
sensitive to discretization errors than the QoI itself, so too is the accuracy of the solution obtained by the gradient-enhanced 
�1-minimization. This was empirically observed in the second numerical example considered, thereby suggesting high accu-
racy requirements on derivative calculations for the gradient-enhanced �1-minimization to be most effective.
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