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The invariant preserving property is one of the guiding principles for numerical algorithms 
in solving wave equations, in order to minimize phase and amplitude errors after long 
time simulation. In this paper, we design, analyze and numerically validate a Hamiltonian 
preserving discontinuous Galerkin method for solving the Korteweg–de Vries (KdV) 
equation. For the generalized KdV equation, the semi-discrete formulation is shown to 
preserve both the first and the third conserved integrals, and approximately preserve the 
second conserved integral; for the linearized KdV equation, all the first three conserved 
integrals are preserved, and optimal error estimates are obtained for polynomials of 
even degree. The preservation properties are also maintained by the fully discrete DG 
scheme. Our numerical experiments demonstrate both high accuracy of convergence and 
preservation of all three conserved integrals for the generalized KdV equation. We also 
show that the shape of the solution, after long time simulation, is well preserved due to 
the Hamiltonian preserving property.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper is the continuation of our project, initiated in [40], of developing a high order discontinuous Galerkin (DG) 
method to preserve some key invariants for the generalized Korteweg–de Vries (gKdV) [18] equation:

ut + f (u)x + εuxxx = 0, x ∈R, t > 0, (1)

where the subscript t (or x, respectively) denotes the differentiation with respect to time variable t (or x), ε is a given 
constant, and f is a smooth function. This is a nonlinear, dispersive partial differential equation for u of two real variables. 
The original form of the KdV equation corresponds to (1) with ε = 1 and f = 3u2.

The KdV equation has several connections to physical problems. In addition to being the governing equation of the string 
in the Fermi–Pasta–Ulam problem in the continuum limit, it approximately describes the evolution of long, one-dimensional 
waves in many physical settings, including shallow-water waves with weakly non-linear restoring forces, long internal waves 
in a density-stratified ocean, ion-acoustic waves in a plasma, acoustic waves on a crystal lattice, and more.

Dispersion and non-linearity can interact to produce permanent and localized wave forms; It can be shown that any 
sufficiently fast decaying smooth solution will eventually split into a finite superposition of solitons traveling to the right 
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plus a decaying dispersive part traveling to the left. This was first observed numerically by Zabusky & Kruskal (1965) [41], 
long after John Scott Russell’s experimental observation of solitons in 1834. One appealing feature of the KdV equation is 
that it has infinitely many integrals of motion (Miura, Gardner & Kruskal 1968) [27], which do not change with time. This 
is also accounted by the fact that the KdV equation can be reformulated into the Lax system, called Lax pairs [20].

The KdV equation is rich in conserved integrals; the first three for (1) are classical:

E1 =
∫
R

udx, E2 =
∫
R

u2dx, and E3 =
∫
R

⎛⎝ε

2
u2

x −
u∫

f (ξ)dξ

⎞⎠dx. (2)

The quality of the numerical approximation hence hinges on how well the conserved integrals can be preserved at the 
discrete level. The objective of this work is to develop a novel DG method to preserve these three conserved integrals at the 
discrete setting.

The conservation law structure of many PDEs is considered fundamental to their derivation, their behavior, and their dis-
cretization. For conservative PDEs, numerical methods preserving their invariants are often advantageous: besides the high 
accuracy of numerical solutions, an invariant preserving scheme can maintain good stability properties over a long-time pe-
riod. Numerical methods without this property may result in substantial phase and shape errors after long time integration. 
There are many numerical works in the literature to solve the KdV equation, ranging from finite difference methods [10,12,
13,19,32,41], finite element methods [1,29,31], spectral methods [9,14,23,25,26,30], operator splitting methods [16,15], and 
discontinuous Galerkin methods [3,22,34,35,39]. However, the majority of the developed methods is designed to preserve 
only E1, not other invariants.

The earlier effort of inheriting some invariants as characteristic properties followed mainly the symplectic method for 
Hamiltonian ODEs; for instance, Furihata [10] designed a finite difference scheme to preserve both E1 and E3. Preservation 
of E1 and E2 in the context of the DG method has been recently investigated by Bona et al. [2] and the authors [40].

Discovered by Gardner [11] and also by Faddeev and Zakharov [8], the KdV equation is a Hamiltonian system, allowing for 
an infinite sequence of Hamiltonians. For the generalized KdV equation (1), E3 is still a Hamiltonian since (1) is equivalent 
to

ut =
(

δE3

δu

)
x
.

This Hamiltonian structure sets the basis to construct an E3 preserving discretization for (1). In the case f (u) = u2/2, E2 is 
also a Hamiltonian since the KdV equation can be written as

ut =N
(

δE2

δu

)
,

where the Lenard operator N = −(∂2
x + 2

3 u∂x + 1
3 ∂xu) is linear and anti-symmetric. The main novelty in this work is the 

preservation of E3 by our method, which we call the Hamiltonian preserving DG method. Indeed, the proposed method is 
shown to preserve all three conserved integrals for the linearized KdV equation, and preserve both E1 and E3 for the gen-
eralized nonlinear KdV equation (1). The preservation of E2 is investigated with care: we observe that E2 is still preserved 
numerically, though its preservation is only shown in approximation sense. As illustrated in our numerical comparison (see 
Fig. 3), the E3-preserving scheme performs clearly better than the E2-preserving scheme introduced in [40]. Moreover, we 
observe large oscillations in the temporal evolution of E3 when testing the E2-preserving scheme (see Fig. 3(c)). To our best 
knowledge, the present DG method is the first one that can preserve all three invariants Ei (i = 1, 2, 3) numerically.

As for the numerical convergence, we should mention that the common feature of these central fluxes based DG methods 
is that the optimal order of accuracy can be achieved only for polynomials of even degree, as proved for the linearized KdV 
equation and numerically observed for the generalized KdV equation.

The DG method we discuss in this paper is a class of finite element methods using completely discontinuous piecewise-
polynomial space for the numerical solution and the test functions in the spatial variables. The application of DG methods 
to hyperbolic problems has been quite successful, e.g., Reed and Hill [28] for solving linear equations, and Cockburn et al. 
[4–7] for solving nonlinear equations, and the DG methods have been extended to various higher order PDEs by many 
authors, including the KdV type equations; see, e.g., [39,37,2,38,40], the Camassa–Holm equation [36] and the Degasperis-
Procesi equation [33,21]. These DG methods have several attractive properties. For instance, it can be easily designed for 
any order of accuracy, with the order of accuracy locally determined in each cell, thus allowing for efficient p adaptivity. 
The advantage of invariants preserving methods is to solve smooth wave problems, with the attempt to resolve all wave 
patterns for long time periods.

Obtaining a priori error estimates for various DG methods has been a main subject of research. The L2 a priori error 
estimates for nonlinear PDEs with high order derivatives such as the KdV equations have been obtained [39,35,3] using 
certain special local projections. For the conservative DG method for the generalized KdV equation in [2], a global projection 
was used in obtaining error estimates in some cases. Optimal L2 error estimates of the LDG method for the linearized KdV 
equation were obtained by Xu and Shu [38], where authors take advantage of stability estimates for auxiliary variables. The 
way of using error equations in the present work is closely related to that in [38].
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This paper is organized as follows. In Section 2, we present the semi-discrete DG method for the generalized KdV 
equation, and prove its invariant preserving properties. The optimal error estimate is also analyzed for the linearized KdV 
equation in Section 2 when polynomials are of even degree, and therein, the upper bound of errors is proved to grow 
linearly in time. In Section 3, we present the fully discrete DG method with invariants preserving properties. Section 4
contains numerical experiments that demonstrate the optimal convergence rates and invariants conservation of the proposed 
DG method. Finally, we give the concluding remarks in Section 5.

2. DG for the generalized KdV equation

We consider the generalized KdV equation of the form

ut = −( f (u) + uxx)x,

subject to initial data u(x, 0) = u0(x) and periodic boundary conditions. In order to design a DG method preserving three 
invariants, we reformulate this form into the following system

ut = qx, (3a)

q = − rx − f (u), (3b)

r = ux. (3c)

The third conservation law for the generalized KdV equation can be expressed as

E3 =
∫ (

1

2
r2 − F (u)

)
dx, F (u) =

u∫
0

f (ξ)dξ. (4)

2.1. DG formulation

Let us denote the computational mesh of the domain I by

I j = (x j−1/2, x j+1/2), j = 1, . . . , N.

The cell center is x j = (x j−1/2 + x j+1/2)/2, with h j = x j+1/2 − x j−1/2, and h = max1≤ j≤N h j . We assume that the mesh is 
regular, namely there is a constant c > 0 independent of h such that

ch ≤ h j, j = 1, · · · , N.

When c = 1, the mesh is uniform. We denote by w+
j+1/2 the value of w at x j+1/2 evaluated from the right element I j+1, 

and w−
j+1/2 the value of w at x j+1/2 evaluated from the left element I j . [w] = w+ − w− denotes the jump of w at cell 

interfaces, and {w} = 1
2 (w+ + w−) denotes the average of the left and right interface values. We then define the piecewise 

polynomial space Vh as the space of polynomials of degree k in each cell I j , i.e.,

Vh = {w : w ∈ Pk(I j) for x ∈ I j, j = 1, . . . , N}.
The DG method is formulated as follows: find uh, qh, rh ∈ Vh , such that ∀ξ, η, ρ ∈ Vh ,∫

I j

uhtξdx = −
∫
I j

qhξxdx + (q̂hξ)|∂ I j , (5a)

∫
I j

qhηdx =
∫
I j

rhηxdx − (r̂hη)|∂ I j −
∫
I j

f (uh)ηdx, (5b)

∫
I j

rhρdx +
∫

uhρxdx − (ûhρ)|∂ I j = 0, (5c)

with the numerical fluxes

(q̂h, r̂h, ûh) = ({qh}, {rh}, {uh}). (6)

Here we have used the notation ξ |∂ I j = ξ(x− ) − ξ(x+ ) to denote interface terms.
j+1/2 j−1/2
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The global form of the DG formulation may be obtained by summing (5) over all j’s,∫
uhtξdx = −

∫
qhξxdx −

∑
j

(q̂h[ξ ]) j+1/2, (7a)

∫
qhηdx =

∫
rhηxdx +

∑
j

r̂h[η] j+1/2 −
∫

f (uh)ηdx, (7b)

∫
rhρdx +

∫
uhρxdx +

∑
j

ûh[ρ] j+1/2 = 0, (7c)

where 
∫ =∑N

j=1

∫
I j

, and the periodic boundary conditions have been used.

2.2. Conservative properties

We now turn to establish the conservation properties.

Theorem 2.1. Let (qh, rh, uh) be obtained from the DG scheme (7). Then both invariants E1 and E3 are preserved in the sense that

d

dt

∫
uhdx = 0,

d

dt

∫ (
1

2
r2

h − F (uh)

)
dx = 0. (8)

E2 is preserved for f (u) = αu. For nonlinear flux, we have

d

dt

∫
u2

h

2
dx =

∑
j

⎛⎜⎜⎝{	 f (uh)}(u+
h − u−

h ) −
u+

h∫
u−

h

f (u)du

⎞⎟⎟⎠
x j+1/2

, (9)

where 	 denotes the piecewise L2-projection on space Pk:∫
I j

	 f (u)vdx =
∫
I j

f (u)vdx, ∀v ∈ Pk(I j), j = 1,2, · · · , N.

Proof. To see the scheme preserves E1 we simply take ξ = 1 in (7a) to obtain d
dt

∫
uhdx = 0. To show the conservation 

of E3, we take ξ = qh in (7a), η = −uht in (7b) and ρ = rh in ∂t (7c) to obtain∫
uhtqhdx = −

∫
qhqhxdx −

∑
j

(q̂h[qh]) j+1/2,

−
∫

qhuhtdx = −
∫

rhuhtxdx −
∑

j

r̂h[uht] j+1/2 +
∫

f (uh)uhtdx,

∫
rhtrhdx +

∫
uhtrhxdx +

∑
j

ûht[rh] j+1/2 = 0.

Adding the above together and integrating the complete derivative out, we obtain

d

dt

∫ (
r2

h

2
− F (uh)

)
dx = −

N∑
j=1

(
r̂h[uht] + ûht[rh] − [uhtrh]

)
j+1/2 = 0.

We next derive temporal change rate of E2.
Take ξ = uh , η = rh , ρ = qh in (7) we get∫

uht uhdx = −
∫

qhuhxdx −
∑

j

(q̂h[uh]) j+1/2,∫
qhrhdx =

∫
rhrhxdx +

∑
j

r̂h[rh] j+1/2 −
∫

f (uh)rhdx,

∫
rhqhdx +

∫
uhqhxdx +

∑
j

ûh[qh] j+1/2 = 0.
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Adding the above together and integrating the complete derivative out, we obtain

d

dt

∫
u2

h

2
dx =

∫
f (uh)rhdx =

∑
j

∫
I j

	 f (uh)rhdx.

Set ρ = 	 f (uh) in (7c) we have

d

dt

∫
u2

h

2
dx =

∑
j

∫
I j

	 f (uh)rhdx

= −
∑

j

∫
I j

uh(	 f (uh))xdx −
∑

j

ûh[	 f (uh)] j+1/2

=
∑

j

({	 f (uh)}[uh]) j+1/2 +
∑

j

∫
I j

	 f (uh) · uhxdx

=
∑

j

⎛⎜⎝{	 f (uh)} −
∫ u+

h

u−
h

f (u)du

u+
h − u−

h

⎞⎟⎠ [uh].

Note that for linear equation f (u) = −αu, we have

{	 f (uh)} −
∫ u+

h

u−
h

f (u)du

u+
h − u−

h

= 0,

hence E2 is also exactly preserved. This finishes the proof of the theorem. �
Remark 2.1. For nonlinear flux, the change rate of E2 is in general non-vanishing, but can be quite small. For instance, if 
uh|I j ∈ P 0(I j), the change rate reduces to∣∣∣∣∣∣∣∣

∑
j

⎛⎜⎜⎝ f (u+
h ) + f (u−

h )

2
[uh] −

u+
h∫

u−
h

f (u)du

⎞⎟⎟⎠
j+1/2

∣∣∣∣∣∣∣∣≤
max | f ′′|

12

∑
j

|u+
h − u−

h |3j+1/2 ∼ h2,

at least for approximating smooth solutions.

Remark 2.2. In the DG formulation (7), the nonlinear term 
∫

f (uh)ηdx is calculated by quadratures with accuracy of order 
bigger than O (hk+2). For instance, if we use a Gauss quadrature with L ≥ k

2 + 1 points, it has accuracy of order at least 
O (hk+2). The evaluation of E3 involves the calculation of 

∫
F (uh)dx, for which we need to use quadratures with sufficient 

accuracy. In our numerical examples, f (u) = u2/2, then F (uh) is a polynomial of degree 3k, for which we use a Gauss 
quadrature with L points, L ≥ 3k−1

2 , so that the numerical evaluation of E3 is exact.

2.3. Error estimation for the linearized KdV equation

In the following, we derive the error estimation of the discontinuous Galerkin method for the linearized KdV equation 
of the form

ut − αux + uxxx = 0, (10)

subject to initial data u0(x) and periodic boundary conditions.
The corresponding DG method for (10) is formulated as follows: find uh, qh, rh ∈ Vh , such that ∀ξ, η, ρ ∈ Vh ,∫

I j

uhtξdx +
∫
I j

qhξxdx − q̂hξ |∂ I j = 0, (11a)

∫
I

qhηdx −
∫
I

rhηxdx + r̂hη|∂ I j − α

∫
I

uhηdx = 0, (11b)
j j j
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∫
I j

rhρdx +
∫

uhρxdx − ûhρ|∂ I j = 0, (11c)

with the central numerical fluxes

(q̂h, r̂h, ûh) = ({qh}, {rh}, {uh}). (12)

For the error estimates, we introduce a special global projection P as follows. For any u, P u|I j ∈ Pk(I j) satisfies

(P u, v)I j = (u, v)I j , ∀v ∈ Pk−1(I j), (13a)

{P u}|x
j+ 1

2
= u(x j+ 1

2
), j = 1,2, · · · , N. (13b)

Lemma 2.2. Suppose the mesh is regular, and u is sufficiently smooth and periodic. Assume that k is even and that the number of cells 
N is odd. Then the projection P defined in (13) exists, and has the approximation property,

‖u − P u‖L2(I) ≤ Chk+1, (14)

for a constant C independent of the mesh size h.

Proof. Step 1. We first show the existence of such a projection. Let {Li(ξ)}k
i=0 be the Legendre polynomials on Î = [−1, 1]

with ‖Li(ξ)‖2
L2( Î)

= 2
2i+1 , and φ j

i (x) = Li(2(x − x j)/h j), then the projection of u can be expressed as

P u(x)|I j =
k∑

i=0

u j
i φ

j
i (x), 1 ≤ j ≤ N.

From (13a) with v = {φ j
i }k−1

i=0 , it follows that for 1 ≤ j ≤ N ,

u j
i = 2i + 1

2

∫
Î

û j(ξ)Li(ξ)dξ, i = 0,1, · · · ,k − 1,

where û j(ξ) = u(x j + h j
2 ξ). It remains to determine u j

k by using the interface conditions (13b), which leads to

u j
k + (−1)ku j+1

k = b j := 2u(x j+1/2) −
k−1∑
i=0

(u j
i + (−1) ju j+1

i ), j = 1,2, · · · , N.

The above equations can be written in matrix form as follows,⎡⎢⎢⎢⎢⎣
1 (−1)k

1
. . .

. . . (−1)k

(−1)k 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u1
k

u2
k
...

uN
k

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
b1
b2
...

bN .

⎤⎥⎥⎥⎦ (15)

It is clear that the determinant of coefficient matrix of (15) is nonzero if and only if k is even and N is odd. Then the 
existence of global projection (13) follows.

Step 2. We now show the projection error. For i = 0, 1, · · · , k − 1, j = 1, 2, · · · , N , we have

|u j
i |2 = (2i + 1)2

4

⎛⎜⎝∫
Î

û j(ξ)Li(ξ)dξ

⎞⎟⎠
2

≤ 2i + 1

2
‖û j(·)‖2

L2( Î)
. (16)

For {u j
k}N

j=1, from (15) and (16) we have

N∑
j=1

(u j
k)

2 ≤ C
N∑

j=1

|b j|2 ≤ C
N∑

j=1

(|u(x j+1/2)|2 +
k−1∑
i=0

|u j
i |2)

≤ C
N∑

(‖û j(ξ)‖2
L∞( Î)

+ k2‖û j(·)‖2
L2( Î)

) ≤ C
N∑

‖û j(·)‖2
H1( Î)

.

(17)
j=1 j=1
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From (16) and (17), we obtain

N∑
j=1

k∑
i=0

|u j
i |2 =

N∑
j=1

k−1∑
i=0

|u j
i |2 +

N∑
j=1

|u j
k|2 (18)

≤ k2

2

N∑
j=1

‖û j(·)‖2
L2( Î)

+ C
N∑

j=1

‖û j(·)‖2
H1( Î)

≤ C
N∑

j=1

‖û j(·)‖2
H1( Î)

.

Then we get the following stability property for the projection P :

‖P u‖2
L2(I) =

N∑
j=1

h j

2

∫
Î

(
k∑

i=0

u j
i Li(ξ)

)2

dξ (19)

≤ h
N∑

j=1

k∑
i=0

(u j
i )

2 ≤ Ch
N∑

j=1

‖û j(·)‖2
H1( Î)

.

Using (19) and (18), we derive the L2-error estimation (14) as follows.

‖u − P u‖2
L2(I) = inf

v∈Vh

‖(I − P )(u + v)‖2
L2(I) ≤ Ch

N∑
j=1

inf
v̂∈Pk( Î)

‖û j + v̂‖2
H1( Î)

≤ Ch
N∑

j=1

|û j|2
Hk+1( Î)

= Ch
N∑

j=1

(
h j

2

)2k+1

|u|2
Hk+1(I j)

≤ Ch2k+2|u|2
Hk+1(I)

. �
In order to obtain the error estimate to smooth solutions for the semi-discrete DG scheme (11), we first write the global 

form obtained by summing over all j’s in (11),

(uht, ξ) + (qh, ξx) +
∑

j

(q̂h[ξ ]) j+1/2 = 0, (20a)

(qh, η) − (rh, ηx) −
∑

j

(r̂h[η]) j+1/2 − α(uh, η) = 0, (20b)

(rh,ρ) + (uh,ρx) +
∑

j

(ûh[ρ]) j+1/2 = 0, (20c)

where the periodic boundary conditions have been used. The consistency of the DG scheme implies that the exact solution u, 
with r = ux , q = −uxx + αu also satisfies (20). Hence for

(eu, eq, er) = (u − uh,q − qh, r − rh),

we have the following error equations:

((eu)t, ξ) + (eq, ξx) +
∑

j

(êq[ξ ]) j+1/2 = 0, (21a)

(eq, η) − (er, ηx) −
∑

j

(êr[η]) j+1/2 − α(eu, η) = 0, (21b)

(er,ρ) + (eu,ρx) −
∑

j

(êu[ρ]) j+1/2 = 0. (21c)

Let P be the global projection defined in (13), we use the following decomposition:

eu = (u − P u) + (P u − uh) = eP
u + eD

u ,

eq = (q − Pq) + (Pq − qh) = eP
q + eD

q ,

e = (r − Pr) + (Pr − r ) = eP + eD .

(22)
r h r r
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First we have the following.

Lemma 2.3. Let (u, q, r) and (uh, qh, rh) be the exact solutions and their numerical approximations, respectively, then

(er, eD
u ) = 0, ((er)t, (eD

u )t) = 0. (23)

Proof. Take ρ = eD
u in equation (21c) to get

(er, eD
u ) + (eP

u , (eD
u )x) + (eD

u , (eD
u )x) +

∑
j

(ê P
u [eD

u ]) j+1/2 +
∑

j

(êD
u [eD

u ]) j+1/2 = 0. (24)

With

(eD
u , (eD

u )x) +
∑

j

(êD
u [eD

u ]) j+1/2 = 0,

and the definition of the global projection (13), we have

(er, eD
u ) = 0. (25)

In a similar manner, we take the time derivative in (21c), and choose ρ = (eD
u )t , to get

((er)t, (eD
u )t) = 0. �

We proceed to derive the energy equations for eu , eq and er , from which the error estimates follow. Take the test 
functions ξ = eD

u , η = −eD
r , and ρ = eD

q in (21) to get

((eu)t, eD
u ) + (eq, (eD

u )x) +
∑

j

(êq[eD
u ]) j+1/2 = 0,

− (eq, eD
r ) + (er, (eD

r )x) +
∑

j

(êr[eD
r ]) j+1/2 + α(eu, eD

r ) = 0,

(er, eD
q ) + (eu, (eD

q )x) +
∑

j

(êu[eD
q ]) j+1/2 = 0.

(26)

These in virtue of decomposition (22) and the projection properties yield

((eu)t, eD
u ) + (eD

q , (eD
u )x) +

∑
j

(êD
q [eD

u ]) j+1/2 = 0,

α(eu, eD
r ) − (eP

q , eD
r ) − (eD

q , eD
r ) = 0,

(eD
u , (eD

q )x) +
∑

j

(êD
u [eD

q ]) j+1/2 + (er, eD
q ) = 0.

(27)

In the second equation we have used (eD
r , (eD

r )x) +∑
j
(êD

r [eD
r ]) j+1/2 = 0. Note that

(eD
q , (eD

u )x) + (eD
u , (eD

q )x) +
∑

j

(êD
q [eD

u ]) j+1/2 +
∑

j

(êD
u [eD

q ]) j+1/2 = 0,

so that the sum of all three equations in (27) gives

((eu)t , eD
u ) + α(eu, eD

r ) − (eP
q , eD

r ) + (eP
r , eD

q ) = 0. (28)

From the first equation of (23), we have (eD
u , eD

r ) + (eD
u , eP

r ) = 0. Hence (28) reduces to

((eP
u )t, eD

u ) + ((eD
u )t, eD

u ) + α(eP
u , eD

r ) − α(eD
u , eP

r ) − (eP
q , eD

r ) + (eP
r , eD

q ) = 0. (29)

We take the time derivative in (21b)–(21c), with (21a), to obtain

((eu)t , ξ) + (eq, ξx) +
∑

j

(êq[ξ ]) j+1/2 = 0, (30a)

− α((eu)t , η) + ((eq)t, η) − ((er)t, ηx) −
∑

j

((̂er)t[η]) j+1/2 = 0, (30b)

((eu)t ,ρx) +
∑

j

((̂eu)t[ρ]) j+1/2 + ((er)t,ρ) = 0. (30c)



784 H. Liu, N. Yi / Journal of Computational Physics 321 (2016) 776–796
Taking the test functions ξ = −(eD
r )t , η = eD

q , and ρ = (eD
u )t in (30), we get

− ((eu)t, (eD
r )t) − (eq, ((eD

r )tx) −
∑

j

(êq[(eD
r )t]) j+1/2 = 0,

− α((eu)t, eD
q ) + ((eq)t, eD

q ) − ((er)t, (eD
q )x) −

∑
j

((̂er)t[eD
q ]) j+1/2 = 0,

((eu)t, (eD
u )tx) +

∑
j

((̂eu)t[(eD
u )t]) j+1/2 + ((er)t, (eD

u )t) = 0.

(31)

Using the notation in (22) and the projection properties, we have

− ((eu)t, (eD
r )t) − (eD

q , ((eD
r )tx) −

∑
j

(êD
q [(eD

r )t]) j+1/2 = 0,

− α((eu)t, eD
q ) + ((eq)t, eD

q ) − ((eD
r )t, (eD

q )x) −
∑

j

((̂eD
r )t[eD

q ]) j+1/2 = 0,

((eD
u )t, (eD

u )tx) + ((eP
r )t, (eD

u )t) + ((eD
r )t, (eD

u )t) +
∑

j

((̂eD
u )t[(eD

u )t]) j+1/2 = 0.

(32)

Note that

((eD
u )t, (eD

u )tx) +
∑

j

((̂eD
u )t[(eD

u )t]) j+1/2 = 0,

(eD
q , (eD

r )tx) + (eD
r , (eD

q )tx) +
∑

j

(êD
q [(eD

r )t]) j+1/2 +
∑

j

((̂eD
r )t[eD

q ]) j+1/2 = 0,

so that the sum of all three equations in (32) leads to

((eP
q )t, eD

q ) + ((eD
q )t, eD

q ) − ((eP
u )t, (eD

r )t) − α((eP
u )t, eD

q ) − α((eD
u )t, eD

q ) + ((eP
r )t, (eD

u )t) = 0. (33)

We take the time derivative in (21c), with (21b), to obtain

− α(eu, η) + (eq, η) − (er, ηx) −
∑

j

((̂er)[η]) j+1/2 = 0, (34a)

((eu)t,ρx) +
∑

j

((̂eu)t[ρ]) j+1/2 + ((er)t,ρ) = 0. (34b)

Taking the test functions η = −(eD
u )t , and ρ = eD

r in (34), we get

α(eu, (eD
u )t) − (eq, (eD

u )t) + (er, ((eD
u )tx) +

∑
j

(êr[(eD
u )t]) j+1/2 = 0,

((eu)t, (eD
r )x) +

∑
j

((̂eu)t[eD
r ]) j+1/2 + ((er)t, eD

r ) = 0.

(35)

Using the notation in (22) and the projection properties, we have

α(eu, (eD
u )t) − (eq, (eD

u )t) + (eD
r , (eD

u )tx) +
∑

j

(êD
r [(eD

u )t]) j+1/2 = 0,

((eD
u )t, (eD

r )x) + ((er)t, eD
r ) +

∑
j

((̂eD
u )t[eD

r ]) j+1/2 = 0.

(36)

Note that

(eD
r , (eD

u )tx) + ((eD
u )t, (eD

r )x) +
∑

j

(êD
r [(eD

u )t]) j+1/2 +
∑

j

((̂eD
u )t[eD

r ]) j+1/2 = 0,

then adding two equations in (36) gives

α(eP
u , (eD

u )t) + α(eD
u , (eD

u )t) + ((eP
r )t, eD

r ) + ((eD
r )t, eD

r ) − (eP
q , (eD

u )t) − (eD
q , (eD

u )t) = 0. (37)
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Similar in deriving the equation (29), we take the time derivative in (21c) and choose the test functions ξ = (eD
u )t , η =

−(eD
r )t , and ρ = (eD

q )t . After some algebraic manipulation, we get

((eP
u )tt, (eD

u )t) + ((eD
u )tt, (eD

u )t) + α((eP
u )t , (eD

r )t) + α((eD
u )t, (eD

r )t) − ((eP
q )t, (eD

r )t) + ((eP
r )t , (eD

q )t) = 0. (38)

From the second equation of (23), we have

((eD
u )t, (eD

r )t) + ((eD
u )t, (eP

r )t) = 0.

Then we get

((eP
u )tt, (eD

u )t) + ((eD
u )tt, (eD

u )t) + α((eP
u )t , (eD

r )t) − α((eD
u )t, (eP

r )t) − ((eP
q )t, (eD

r )t) + ((eP
r )t, (eD

q )t) = 0. (39)

Summing all the four equations (29), (33), (37) and (39) together, after some algebraic manipulation, we obtain

(1 + α)((eD
u )t, eD

u ) + ((eD
q )t, eD

q ) + ((eD
r )t, eD

r ) + ((eD
u )tt, (eD

u )t) + I P + I D = 0, (40)

where

I P = ((eP
u )t, eD

u ) + α(eP
u , eD

r ) − α(eP
r , eD

u ) − (eP
q , eD

r ) + (eP
r , eD

q )

+ ((eP
q )t, eD

q ) − α((eP
u )t, eD

q ) + (α − 1)((eP
u )t, (eD

r )t) + (1 − α)((eP
r )t, (eD

u )t)

+ α(eP
u , (eD

u )t) + ((eP
r )t, eD

r ) − ((eP
q , (eD

u )t)

+ ((eP
u )tt, (eD

u )t) − ((eP
q )t, (eD

r )t) + ((eP
r )t, (eD

q )t)

and

I D = −(1 + α)((eD
u )t, eD

q ).

Integration of (40) with respect to time between 0 and t gives

1 + α

2
‖eD

u (t)‖2 + 1

2
‖eD

q (t)‖2 + 1

2
‖eD

r (t)‖2 + 1

2
‖(eD

u (t))t‖2

= 1 + α

2
‖eD

u (0)‖2 + 1

2
‖eD

q (0)‖2 + 1

2
‖eD

r (0)‖2 + 1

2
‖(eD

u (0))t‖2 −
t∫

0

(I P + I D)dτ .

We now estimate the terms in 
∫ t

0 I P dt and 
∫ t

0 I Ddt , respectively. Using the approximation property of the projection in (14), 
we have

‖∂ i
t (eP

φ )‖ ≤ Chk+1, 0 ≤ i ≤ 2

for φ ∈ {u, q, r}. Upon further integration by parts in time for 3 out of 15 terms in I P and further using the Cauchy–Schwartz 
inequality, we have

−
t∫

0

I P dτ ≤
t∫

0

Chk+1(‖eD
u (τ )‖ + ‖eD

q (τ )‖ + ‖eD
r (τ )‖ + ‖(eD

u (τ ))t‖)dτ

+
[
(α − 1)((eP

u )t, eD
r ) − ((eP

q )t, eD
r )) + ((eP

r )t, eD
q )
]
|t0

≤ Ch2k+2 +
t∫

0

F (τ )dτ + 1

4

[
‖eD

q (t)‖2 + ‖eD
r (t)‖2) + (‖eD

q (0)‖2 + ‖eD
r (0)‖2

]
,

where F (t) = ‖eD
u (t)‖2 + ‖eD

q (t)‖2 + ‖eD
r (t)‖2 + ‖(eD

u (t))t‖2. And

−
t∫

0

I Ddτ ≤ 1 + α

2

t∫
0

F (τ )dτ .

By the Grownwall inequality, we obtain

F (t) ≤ C F (0) + Ch2k+2. (41)
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Similar as in [17], we choose the initial condition such that

qh(x,0) = Pq(x,0), q(x,0) = −u0xx(x) + αu0(x). (42)

From (11b) we find rh(x, 0) and further from (11c) we find uh(x, 0) so that they satisfy (see [38])

‖u(x,0) − uh(x,0)‖ + ‖q(x,0) − qh(x,0)‖ + ‖r(x,0) − rh(x,0)‖ + ‖ut(x,0) − (uh)t(x,0)‖ ≤ Chk+1. (43)

The triangle inequality with the estimate (43) and (14) implies F (0) ≤ Ch2k+2; hence F ≤ Ch2k+2, which using (14) again 
implies the following result.

Theorem 2.4. Assume that the linear KdV equation (10) with initial data and periodic boundary conditions admits a smooth solution 
u. Let (u, q, r) = (u, −uxx + αu, ux), and (uh, qh, rh) be the numerical approximation. Then

‖(u − uh)(t)‖ + ‖(q − qh)(t)‖ + ‖(r − rh)(t)‖ + ‖(u − uh)t(t)‖ ≤ Chk+1 (44)

holds for k even and N odd.

Remark 2.3. The error estimate for nonlinear f (u) appears difficult with the above analysis, since the scheme has no extra 
numerical dissipation for controlling the trouble terms from the nonlinear effect.

3. Time discretization

We now turn to time discretization of (7). Let {tn}, n = 0, 1, . . . , M be a uniform partition of the time interval [0, T ]. Let 
u0

h = 	u0 be the piecewise L2 projection of u0(x).

3.1. Algorithm

Let us give details related to the implementation of the method.

1. First, from (7c), we obtain rh in the following matrix form

Rh = MUh, (45)

where Uh denotes the vector containing the degree of freedom for uh .
2. From (7b) we obtain

Q h = −M Rh − (	( f (uh)))h, (46)

where 	 is the piecewise L2 projection on Vh .
3. We then substitute (45) and (46) into (7a) to obtain

d

dt
Uh = M Q h. (47)

4. We use a time discretization method to solve the obtained semi-discrete system (47).

The differential matrix M is a sparse block matrix, hence its multiplication with vectors involving it as the coefficient matrix, 
can be implemented efficiently.

In our numerical simulation, we use a semi-implicit time discretization so that two quantities E1 and E3 remain con-
served in time.

We define the following operator

Dt un
h = un+1

h − un
h

�t
, Aun

h = un+1
h + un

h

2
,

so that the fully discrete scheme has the form∫
Dt un

hξdx = −
∫

Aqn
hξxdx −

∑
j

( Âqn
h[ξ ]) j+1/2, (48a)

∫
Aqn

hηdx =
∫

Arn
hηxdx +

∑
j

Ârn
h[η] j+1/2 −

∫
F (un+1

h ) − F (un
h)

un+1
h − un

h

ηdx, (48b)

∫
rn

hρdx +
∫

un
hρxdx +

∑
j

ûn
h[ρ] j+1/2 = 0, (48c)

where 
∫ =∑N

j=1

∫
, and the periodic boundary conditions have been used.
I j
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Theorem 3.1. Let (qn
h, r

n
h, un

h) be obtained from the DG formulation (48). Then both invariants E1 and E3 are preserved for the DG 
scheme in the sense that

Dt

∫
un

hdx = 0, Dt

∫ (
1

2
(rn

h)2 − F (un
h)

)
dx = 0.

Proof. To see the scheme preserves E1 we simply take ξ = 1 in (48a) to obtain Dt
∫

un
hdx = 0.

To show the conservation of E3, we take ξ = Aqn
h in (48a), η = −Dt un

h in (48b) and ρ = Arn
h in Dt (48c) to obtain∫

Dt un
h Aqndx = −

∫
Aqn

hqn
hxdx −

∑
j

( Âqn
h[qn]) j+1/2,

−
∫

Aqn Dt un
hdx = −

∫
Arn

h Dt un
hxdx −

∑
j

Ârn
h[Dt un

h] j+1/2 + Dt

∫
F (un

h)dx,

∫
Dtrn

h Arn
hdx +

∫
Dt un

h(Arn
h)xdx +

∑
j

D̂t un
h[Arn

h] j+1/2 = 0.

Adding these together and integrating the complete spatial derivatives out, we obtain

d

dt

∫ (
(rn

h)2

2
− F (un

h)

)
dx = −

N∑
j=1

(
Ârn

h[Dt un
h] + D̂t un

h[Arn
h] − [Dt un

h Arn
h]
)

j+1/2
= 0. �

We compute numerical solutions for the KdV equation using our scheme (48). To solve the implicit scheme (48) numer-
ically we use the Newton iteration.

4. Numerical results

In this section we provide numerical examples to illustrate the accuracy and capability of the method. With the aid of 
successive mesh refinements we have verified that, in all cases, the results shown are numerically convergent.

Example 4.1. We consider the IVP of the KdV equation{
ut + uux + εuxxx = 0, x ∈ (0,1), t > 0,

u(x,0) = u0(x), x ∈ (0,1),
(49)

with periodic boundary conditions. The exact solution is the so-called cnoidal-wave solution,

u(x, t) = acn2(4K (m)(x − vt − x0)),

Table 1
Errors for Example 4.1 when using Pk polynomials on a uniform mesh of N cells. Final time T = 1.

k = 0

�t 1.0e−2 2.5e−3 6.25e−4 1.5625e−4

N 20 40 80 160

‖u − uh‖ 4.60e−1 2.00e−2 5.63e−2 2.04e−2

order – 1.20 1.83 1.47

k = 1

�t 1.0e−2 2.5e−3 6.25e−4 1.5625e−4

N 20 40 80 160

‖u − uh‖ 1.01e−1 3.71e−2 8.95e−3 3.60e−3

order – 1.44 2.05 1.31

k = 2

�t 1.0e−2 2.5e−3 6.25e−4 1.5625e−4

N 20 40 80 160

‖u − uh‖ 4.36e−3 3.76e−4 3.18e−5 3.60e−6

order – 3.54 3.56 3.14

k = 3

�t 6.25e−4 1.5625e−4 3.90625e−05 9.765625e−06

N 80 160 320 640

‖u − uh‖ 2.11e−5 2.10e−6 1.55e−07 1.03e−08

order – 3.33 3.76 3.91
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Fig. 1. Example 4.1, the solutions at t = 0,200,500 and 1000 with k = 2, �t = 1.0e−03 and 80 cells.

where cn(z) = cn(z|m) is the Jacobi elliptic function with modulus m = 0.9 and the parameters have the values a =
192mεK 2(m), v = 64ε(2m − 1)K 2(m), and x0 = 1/2. The function K = K (m) is the complete elliptic integral of the first 
kind.

In this example, we take ε = 1/242, and the computational domain is divided into N cells. We test the P k , k = 0, 1, 2, 3
polynomial approximations on uniform meshes. For the time discretization, we employ the second order implicit scheme 
(48). We first test the accuracy and convergence rate of the method. Table 1 reports the numerical errors and the orders of 
accuracy for Pk approximation at t = 1. We observe that the scheme achieves the optimal order for k even, and suboptimal 
for k odd; see also Example 4.4 in Table 3. This suboptimal convergence for polynomials of odd degree also occurs in the 
energy (E2) conserving DG scheme for solving the KdV equation, see [2,40].

We now verify the conservative properties of the DG method. Using the Cnoidal-wave test problem on uniform mesh of 
80 cells with k = 2 and �t = 0.001, we carry out the computation up to t = 1000. Fig. 1 presents the exact solution and 
the numerical solutions at times t = 0, 200, 500 and t = 1000, respectively, showing that the DG method gives a very good 
approximation to the exact solution. We also present the time evolution of the L2-error and the three conserved integrals 
E1, E2, E3 up to time t = 1000 in Fig. 2. We see that E1, E3 are well preserved, so is E2; also the L2 error of the DG method 
increases linearly with time. This may reflect the fact that all the solitons travel with well-preserved shape in the numerical 
solution and thus the principle part of the numerical error is the phase error.

We further compare the E2 preserving scheme introduced in [40] with our E3 preserving scheme in Fig. 3, in terms of 
the L2-error, the time history of E2 and E3, as well as the numerical solutions at times t = 200, 500, 1000, respectively. We 
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Fig. 2. Example 4.1, time history of the L2 error, E1, E2 and E3 plots using the DG methods with k = 2, �t = 1.0e−03 and 80 cells.

Table 2
The E2 and E3 of E2 preserving and E3 preserving schemes for Example 4.1 when using P 2 polynomials on a uniform mesh of 80 cell.

E2 preserving scheme t = 0 t = 200 t = 500 t = 900 t = 1000

E2(u) 1.00729302749 1.00729302749 1.00729302749 1.00729302749 1.00729302749

E2(uh) 1.00729302690 1.00729302690 1.00729302690 1.00729302690 1.00729302690
|E2(uh )−E2(u)|

E2(u)
5.8573e−10 5.8573e−10 5.8573e−10 5.8573e−10 5.8573e−10

E3 preserving scheme t = 0 t = 200 t = 500 t = 900 t = 1000

E2(uh) 1.00729302691 1.00729302692 1.00729302691 1.00729302692 1.00729302691
|E2(uh )−E2(u)|

E2(u)
5.7580e−10 5.6587e−10 5.7580e−10 5.6587e−10 5.7580e−10

E2 preserving scheme t = 0 t = 200 t = 500 t = 900 t = 1000

E3(uh) −0.18912751410 −0.19031815943 −0.19004235096 −0.18995786446 −0.19051454372

E3 preserving scheme t = 0 t = 200 t = 500 t = 900 t = 1000

E3(uh) −0.18925223716 −0.18925223716 −0.18925223716 −0.18925223716 −0.18925223716

clearly see that our E3 preserving scheme induces smaller L2 error and smaller phase errors. Moreover, it preserves both E2
and E3, while the E2 preserving scheme only preserves E2, with large oscillations observed in the time history of E3. The 
corresponding comparison data are listed in Table 2.
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Fig. 3. Example 4.1, the performance of the E2 preserving and E3 preserving schemes comparisons with k = 2, �t = 1.0e−03 and 80 cells.

Example 4.2. Consider again the KdV equation (49) with ε = 1, and u(x, 0) as the initial data, the exact solution is of the 
two soliton waves

u(x, t) = 12
k2

1eθ1 + k2
2eθ2 + 2(k2 − k1)

2eθ1+θ2 + a2(k2
2eθ1 + k2

1eθ2)eθ1+θ2

θ1 θ2 2 θ1+θ2 2
, (50)
(1 + e + e + a e )
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Fig. 4. Example 4.2, the solutions at t = 0,40,80 and 120 with k = 2, �t = 0.1 and 400 cells.

Fig. 5. Example 4.3, the solutions at t = 0,1/π and 3.6/π with k = 2, �t = 0.005/π and 400 cells.
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Table 3
Errors for Example 4.4 when using Pk polynomials on a uniform mesh of N cells. Final time T = 1.

k = 0

�t 4.0e−2 1.0e−2 2.5e−3 6.25e−4 1.5625e−4
N 10 20 40 80 160
‖u − uh‖ 4.69e−1 1.97e−1 8.54e−2 4.08e−2 2.02e−2
order – 1.25 1.21 1.06 1.02

k = 1

�t 4.0e−2 1.0e−2 2.5e−3 6.25e−4 1.5625e−4
N 10 20 40 80 160
‖u − uh‖ 1.18e−1 2.44e−2 8.13e−3 5.35e−3 2.84e−3
order – 2.23 1.59 0.61 0.91

k = 2

�t 4.0e−2 1.0e−2 2.5e−3 6.25e−4 1.5625e−4
N 10 20 40 80 160
‖u − uh‖ 2.41e−3 2.13e−4 2.30e−5 2.7e−6 3.0e−7
order – 3.50 3.21 3.09 3.17

k = 3

�t 4.0e−2 1.0e−2 2.5e−3 6.25e−4 1.5625e−4
N 10 20 40 80 160
‖u − uh‖ 1.90e−3 1.24e−4 7.55e−6 8.15e−7 3.28e−08
order – 3.93 4.01 3.21 4.64

Fig. 6. Example 4.4, the solutions at t = 0,200,500 and 1000 with k = 1, �t = 6.25e−04 and 80 cells.
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Fig. 7. Example 4.4, time history of the L2 error, E1, E2 and E3 plots using the DG methods with k = 1, �t = 6.25e−04 and 80 cells.

where

k1 = 0.4, k2 = 0.6, a2 =
(

k1 − k2

k1 + k2

)2

= 1

25
,

θ1 = k1x − k3
1t + x1, θ2 = k2x − k3

2t + x2,

x1 = 4, x2 = 15.

This example is derived from [24]. The solution region is taken to be [−40, 40] with periodic boundary conditions. Initially 
we have two solitons, the left the tall one and the right short one. Both solitons travel from left to right, and speed of the 
tall one is bigger than the speed of the short one. We perform computation for k = 2 and �t = 0.1. The grid is taken to be 
of 400 cells and the computation is implemented up to t = 120. The plots of the exact solution and numerical solution at 
the times are displayed in Fig. 4. It shows that the numerical solution agrees quite well with the exact one.

Example 4.3. Consider the Zabusky–Kruskal’s problem, setting the dispersion coefficient ε = 0.0222 and

u(x,0) = cos(πx),

with periodic boundary conditions. The solution starts with a cosine wave and later on develops a train of 8 solitons which 
travel at different speeds and interact with each other, see [41] for detailed description of the solution. There are several 
critical moments in the development of the solution: (1) t = tB = 1

π when the solution is about to breakdown, (2) t = 3.6tB
when a train of 8 solitons have been developed.

We perform computation on a uniform mesh of 400 cells with k = 2 and �t = 0.005
π . The initial values and the numerical 

solution at the two times t = tB , 3.6tB are plotted in Fig. 5. It shows that all of them agree quite well with the numerical 
result obtained by Zabusky and Kruskal in 1965, see [41], as well as the other numerical schemes in [2,24,40].
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Fig. 8. Example 4.4, the solutions at t = 0,200,500 and 1000 with k = 2, �t = 2.5e−03 and 40 cells.

Now, we come to show that our method can satisfy the first three conservation laws for the linear KdV equation.

Example 4.4. We solve the linear KdV equation given by⎧⎪⎨⎪⎩
ut − ux + uxxx = 0,

u(x,0) = sin(x),

u(0, t) = u(2π, t).

(51)

The exact solution is

u(x, t) = sin(x + 2t).

Firstly, we use this solution to check the accuracy and convergence rate of the method. We perform the computation on 
the grids of 10, 20, 40, 80, 160 cells, respectively, up to t = 1. The L2 errors and the corresponding convergence rates are 
presented in Table 3. We can clearly see from the table that our method achieves optimal order for polynomials of even 
degree, i.e., k = 0, 2 in Table 3.

Secondly, we use this solution to test the preserving feature of our method in long-time simulation. We perform the 
computation with (k, N, �t) = (1, 80, 6.25e−04) and (k, N, �t) = (2, 40, 2.5e−03), respectively. The numerical results are 
displayed in Fig. 6–Fig. 9. We can see from Fig. 6 and Fig. 8 that our method is quite stable in long-time simulation. The 
phase error in Fig. 6 with k = 1 tends bigger as time becomes large, yet the phase error at the same simulation time is 
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Fig. 9. Example 4.4, time history of the L2 error, E1, E2 and E3 plots using the DG methods with k = 2, �t = 2.5e−03 and 40 cells.

almost invisible when using k = 2, see Fig. 8. Fig. 7 and Fig. 9 show that the L2 error increases linearly with time, and the 
three qualities E1, E2, E3 are all preserved.

5. Concluding remarks

In this paper, we developed and analyzed a Hamiltonian preserving DG method for solving the generalized KdV equa-
tion. Both semi-discrete and fully discrete DG schemes are shown to preserve E1 and E3. The better performance of the 
E3-preserving scheme than the E2-preserving scheme is shown through numerical comparison.

For wave equations, usually it is difficult to obtain DG schemes which can preserve more conservative integrals while still 
maintaining optimal high order of accuracy. Our scheme when applied to the linearized KdV equation preserves all the first 
three conserved integrals and has the proven optimal error estimates for polynomial elements of even degree. Our numerical 
experiments have demonstrated both high accuracy of convergence and preservation of all three conserved integrals for the 
generalized KdV equation. It is confirmed by numerical simulations that the Hamiltonian preserving property is important 
for minimizing phase and amplitude errors after long time simulation.
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