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We present a sequential method for approximating an unknown function sequentially using 
random noisy samples. Unlike the traditional function approximation methods, the current 
method constructs the approximation using one sample at a time. This results in a simple 
numerical implementation using only vector operations and avoids the need to store the 
entire data set. The method is thus particularly suitable when data set is exceedingly 
large. Furthermore, we present a general theoretical framework to define and interpret the 
method. Both upper and lower bounds of the method are established for the expectation 
of the results. Numerical examples are provided to verify the theoretical findings.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We are concerned with the problem of approximating an unknown function f (x) using its sample data f (xi), i = 1, . . . , 
where x, xi ∈ R

d , d ≥ 1. This is a central task of approximation theory, which has been developed for a long time. The 
classical setting is that, given a set of finite number of sample data { f (x1), . . . f (xM)}, M ≥ 1, find a function p(x) ≈ f (x). 
Numerous methods exist, for example, least squares, interpolation, etc. The topic has been extensively discussed in a large 
amount of literature. Here we mention only a few early books for reference, cf., [5,6,11,12].

In this paper we discuss a different approach, which seeks to construct the approximation p iteratively using only one 
sample at a time. This results in a sequential approximation, which can become progressively more accurate as more data 
are used. The implementation of the method requires only vector operations. In contrast, most of the classical approximation 
methods require operations on a Vandermonde-like matrix, also known as model matrix, whose number of rows is the 
number of samples and number of columns is the number of basis functions used to construct p. When the data set 
is extraordinarily large, the classical methods can be challenging to implement, as they require declaring, storing, and 
operating on, the extremely large model matrix. On the contrary, the current method uses one sample at a time and is not 
affected by the size of the data set. The sequential approximation (SA) method is rooted on the recent work of randomized 
approximation method [13,16], which was motivated by randomized Kaczmarz methods for linear system of equations 
[14] that were further analyzed and extended in a series of work, cf., [10,17,4,7,9,3,15]. Convergence and error analysis 
of the SA method were established in [13,16] for noiseless data. It was shown that the method can be highly efficient 
for extremely large data set, especially for approximations in very high dimensional space. The major contributions of the 
current paper are in two fronts: (1) We establish a broader framework for the SA method. In particular, we define a cost 
function which measures the difference between the approximation and the current data sample and the difference between 
two consecutive approximations. We then prove that the SA scheme is the minimization of the cost function. (2) Utilizing 
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this new framework, we extend the application of the SA method to noisy data, which was not considered in the earlier 
work [13,16]. We then further provide analysis of the numerical errors and establish convergence of the method. We prove 
that when the noisy data samples are collected at independent and identically distributed (i.i.d.) random locations, the 
expectation of the errors in the approximation shall have (tight) upper and lower bounds. Furthermore, when the sampling 
locations follow a certain “optimal” probability measure, we derive the numerical error in a form of equality.

The paper is organized as follows. After setting up notation and preliminaries in Section 2, we present the general 
framework for defining the sequential approximation methods in Section 3. Two special cases, which correspond to two 
practical implementation procedures, are discussed. Theoretical results are presented for the errors of the methods. We 
then present extensive numerical results in Section 4 to verify the theoretical results, before concluding the paper.

2. Setup

Consider the problem of approximating an unknown function f : D → R using its samples, where D ⊆ R
d , d ≥ 1, and is 

equipped with a measure ω. Let x = (x1, . . . , xd) be the coordinate and f ∈ L2
ω(D), the standard Hilbert space with inner 

product

(g,h)L2
ω

:=
∫
D

g(x)h(x)dω(x),

and the corresponding induced norm ‖ · ‖L2
ω

. The measure ω is assumed to be absolute continuous, and satisfy 
∫

D dω = 1.
Let xk ∈ D , k = 1, · · · , be a sequence of sample points and f (xk) be the function values at the samples. Let

fk = f (xk) + εk, k = 1, . . . , (2.1)

be the sample data, where εk , k = 1, · · · , are independent random noises with zero mean value and bounded variance, i.e.,

E(εk) = 0, E(ε2
k ) = σ 2(xk) ≤ σ 2

B < +∞, k = 1, . . . . (2.2)

The case of σB = 0 corresponds to the noiseless case.
Let V ⊂ L2

ω(D) be a finite dimensional linear subspace with dim V = N ≥ 1. We then seek p ∈ V as an approximation to 
f . Let {ψ j(x), j = 1, . . . , N} be a basis of V . Without loss of generality, we assume the basis functions are orthogonal with 
respect to the measure ω, i.e.,(

ψi,ψ j
)

L2
ω

= δi j, 1 ≤ i, j ≤ N. (2.3)

(Note that non-orthogonal basis can always be orthogonalized by the Gram–Schmidt procedure.) The approximation can 
then be expressed as

p(x) =
N∑

j=1

c jψ j(x). (2.4)

Upon using vector notation

�(x) = (
ψ1(x), . . . ,ψN(x)

)�
, c = (

c1, . . . , cN
)�

, (2.5)

the approximation can be written as

p(x) = 〈c,�(x)〉, (2.6)

where 〈·, ·〉 is the standard vector inner product. The obvious goal is to compute the expansion coefficients c.
The best L2

ω approximation of f in V is its orthogonal projection onto V , i.e.,

PV f =
N∑

k=1

ĉkψk(x) = 〈ĉ,�(x)〉, (2.7)

where

ĉ = (
ĉ1, . . . , ĉN

)�
, ĉk = ( f ,ψk)L2

ω
1 ≤ k ≤ N. (2.8)

Throughout this paper we shall use PV f as the reference solution to examine the quality of the numerical approximation p, 
in the form of ‖p −PV f ‖ 2 , or, equivalently, ‖c − ĉ‖ in vector 2-norm.
Lω
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3. Sequential approximation methods

In this section we present the sequential approximation methods. We first present a general mathematical framework 
to define the methods. We then discuss a few special cases for practical implementation. Finally, we provide theoretical 
analysis for the errors of the methods.

3.1. General method and its variations

The sequential approximation method is of iterative nature. From the linear subspace V , we choose an arbitrary initial 
approximation p(0)(x). Then, at the k-th step, k = 1, . . . , when the sample (xk, fk) is available, we seek the k-th approxima-
tion as the solution of the following minimization problem.

p(k)(x;γk) = argmin
p∈V

(∥∥∥p(x) − p(k−1)(x)

∥∥∥2

L2
ω

+ 1

γk
|p(xk) − fk|2

)
, (3.1)

where γk ≥ 0, k = 1, · · · , are parameters, and the limiting case of γk = 0 is defined as

p(k)(x;0) := argmin
p∈V

(∥∥∥p(x) − p(k−1)(x)

∥∥∥2

L2
ω

)
, subject to p(xk) = fk. (3.2)

Hereafter we will omit the explicit dependence on γk and simply write p(k)(x), unless confusion arises otherwise.
The solution of this optimization problem can be explicitly derived.

Theorem 3.1. For k = 1, . . . , let p(k) ∈ V be expressed as

p(k)(x) =
N∑

j=1

c(k)
j ψ j(x) = 〈c(k),�(x)〉, (3.3)

where the orthonormal basis (2.3) is used and the vector notations (2.5) are employed. Then the solution to (3.1), which includes the 
special case (3.2), is

p(k)(x) = p(k−1)(x) + fk − p(k−1)(xk)

‖�(xk)‖2
2 + γk

�(xk)
��(x), k = 1, . . . , (3.4)

or, equivalently, in the form of the expansion coefficients

c(k) = c(k−1) + fk − 〈c(k−1),�(xk)〉
‖�(xk)‖2

2 + γk
�(xk), k = 1, . . . . (3.5)

Proof. See Appendix A. �
Equation (3.5) thus defines a simple algorithm for the implementation of sequential approximation, as follows.

• Start from an arbitrary initial choice of the coefficient vector c(0) , which defines the arbitrary initial approximation 
p(0)(x).

• At k-th step, when the sample (xk, fk) is available, use the scheme (3.5) to update the coefficient vector, which defines 
the corresponding approximation p(k)(x).

An alternative way to interpret the scheme (3.5) is to view it as stochastic gradient descent (SGD) ([2]) for minimizing 
the following objective function

min
c∈RN

∫
D

(
〈c,�(x)〉 − f (x)

)2
dω(x),

with randomly selected data points and a specific step size. However, we emphasize the following fact: in each iterative 
step of SA, the k-th solution p(k)(x) is the exact solution to the proposed optimization problem (3.1). The form of (3.1) has 
certain resemblance to Kalman filter, which was associated with the recursive least squares algorithm ([1]). Unlike any least 
squares methods, the SA method is matrix-free and involves only vectors.

The sequential approximation (3.1), or equivalently, its implementation scheme (3.5), depends on the choice of the pa-
rameter γk . This parameter is related to the noise level in the data and becomes zero for the noiseless case. Here we discuss 
two special cases.
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3.1.1. Method I: γk ≡ τ

A natural choice for the parameter γk is a constant τ ≥ 0. This results in the following scheme.

c(k) = c(k−1) + fk − 〈c(k−1),�(xk)〉
‖�(xk)‖2

2 + τ
�(xk), k = 1, . . . . (3.6)

The constant τ can be chosen according to the noise level in the data, i.e. τ ∝ σB , where σB is defined in (2.2). For 
the noiseless case σB = 0, one may set τ = 0, which corresponds to the limiting optimization case (3.2). These choices 
are intuitive from a practical point of view. On the other hand, our analysis in the following sections will show that the 
convergence of the method can be achieved by an arbitrary choice of τ ≥ 0. We also remark that the limiting case of τ = 0
reproduces the randomized approximation method presented in [13,16], which considered only the noiseless case.

3.1.2. Method II: γk = τ ‖�(xk)‖2
2

Again, let τ > 0 be a constant. We set γk = τ ‖�(xk)‖2
2. This gives us the following scheme.

c(k) = c(k−1) + fk − 〈c(k−1),�(xk)〉
(1 + τ )‖�(xk)‖2

2

�(xk), k = 1, . . . . (3.7)

We present this special case because it allows one to obtain certain “optimal” convergence, under certain conditions. Again, 
the value of τ can be set to be proportional to the noise level in the data, although the convergence of the method can be 
obtained for any positive value of τ .

3.2. Error analysis

In this section we present error analysis for the sequential approximation methods in the previous section. Our analysis 
is based on random sampling in the domain D and the errors are evaluated as expectations of the random sequences.

3.2.1. Notations
Since the parameter γk in the main method (3.5) depends on the iteration step, which in turn depends on the location 

of the sample xk , we write γk = γ (xk). We then define the following measures

dμ̃ = 1

‖�(x)‖2
2 + γ (x)

dμ,

dω̃ = ‖�(x)‖2
2(‖�(x)‖2

2 + γ (x)
)2

dμ,

dν̃ = dμ̃ − dω̃,

(3.8)

and let (·, ·)L2
μ̃

and (·, ·)L2
ν̃

be their corresponding inner products. Let

� = (
�i j

)
1≤i, j≤N , �i j = (ψi,ψ j)L2

μ̃
, 1 ≤ i, j ≤ N, (3.9)

be a N × N covariance matrix. It is symmetric and positive definite, and has the following eigenvalue decomposition

� = Q��Q,

where Q is orthogonal and � = diag{λ1, λ2, · · · , λN } with

λmax := λ1 ≥ λ2 ≥ · · · ≥ λN =: λmin > 0. (3.10)

Let

�∗ := � +
(
(ψi,ψ j)L2

ν̃

)
1≤i, j≤N

(3.11)

be another covariance matrix, whose eigenvalues are

λ∗
max := λ∗

1 ≥ λ∗
2 ≥ · · · ≥ λ∗

N =: λ∗
min > 0. (3.12)

Again, upon using vector notations, we denote

e = (
e1, e2, . . . , eN

)�
, e∗ = (

e∗
1, e∗

2, . . . , e∗
N

)�
, (3.13)

where, for j = 1, . . . , N ,

e j = (
f −PV f ,ψ j

)
L2
μ̃

, e∗
j = (

f −PV f ,ψ j
)

L2
ν̃
. (3.14)
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3.2.2. Errors for the general method (3.5)
For the general method (3.5), we first provide the following error bound on the solution coefficients.

Lemma 3.2. Let dμ be the sampling measure from which the i.i.d. samples of the sequence x1, x2, . . . , are drawn. Then the k-th iterative 
solution of (3.5) satisfies

∥∥c(0) − ĉ
∥∥2

2rk

 + 1 − rk




λ∗
max

E + B(r
) ≤ E
(∥∥c(k) − ĉ

∥∥2
2

) ≤ ∥∥c(0) − ĉ
∥∥2

2rk
u + 1 − rk

u

λ∗
min

E + B(ru),

where ĉ is the best L2
ω projection coefficients (2.8),

r
 = 1 − λ∗
max, ru = 1 − λ∗

min, (3.15)

and

E = ‖ f −PV f ‖2
L2
ω̃

+ ‖σ‖2
L2
ω̃

,

B(r) := 2e�∗
(

Q�D(k)(r)Q
(
�(ĉ − c(0)) + e

) + 1 − rk

1 − r
�−1e

)
,

with

D(k)(r) := diag
{

d(k)
1 , · · · ,d(k)

N

}
, d(k)

i = rk − (1 − λi)
k

λi
(
1 − r − λi

) .

In the limit of k → ∞,

2e�∗ �−1e + E
λ∗

max
≤ lim

k→∞
E
(∥∥c(k) − ĉ

∥∥2
2

) ≤ 2e�∗ �−1e + E
λ∗

min
.

Here, λ and λ∗ are the eigenvalues defined in (3.10) and (3.12), respectively.

Proof. See Appendix B. �
We then immediately have the error bounds for the k-th iterative solution.

Theorem 3.3. Let dμ be the sampling measure from which the i.i.d. samples of the sequence x1, x2, . . . , are drawn. Then the k-th 
iterative solution of (3.4) satisfies

E
(∥∥p(k) − f

∥∥2
L2
ω

) ≤ ∥∥ f −PV f
∥∥2

L2
ω

+ ∥∥p(0) −PV f
∥∥2

L2
ω

rk
u + 1 − rk




λ∗
max

E + B(ru),

and

E
(∥∥p(k) − f

∥∥2
L2
ω

) ≥ ∥∥ f −PV f
∥∥2

L2
ω

+ ∥∥p(0) −PV f
∥∥2

L2
ω

rk

 + 1 − rk

u

λ∗
min

E + B(r
).

In the limit of k → ∞,∥∥ f −PV f
∥∥2

L2
ω

+ 2e�∗ �−1e + E
λ∗

max
≤ lim

k→∞
E
(∥∥p(k) − f

∥∥2
L2
ω

) ≤ ∥∥ f −PV f
∥∥2

L2
ω

+ 2e�∗ �−1e + E
λ∗

min
.

Proof. The proof is a direct consequence of Lemma 3.2, using the fact that 
∥∥p(k) − f

∥∥2
L2
ω

= ∥∥ f −PV f
∥∥2

L2
ω

+ ∥∥c(k) − ĉ
∥∥2

2. �
3.2.3. Errors for Method I (3.6) with γk = τ

Since Method I (3.6) is a special case of the general method (3.5), its errors can be directly derived from the error bounds 
in the previous section. The following result is a different estimate of the upper bound. Although it is not as sharp as the 
result from Lemma 3.2, it has a simpler form.

Theorem 3.4. Let dμ be the sampling measure from which the i.i.d. samples of the sequence x1, x2, . . . , are drawn. Then the k-th 
iterative solution of (3.6) satisfies



368 Y. Shin et al. / Journal of Computational Physics 371 (2018) 363–381
E

(∥∥∥c(k) − ĉ
∥∥∥2

2

)
≤ rk

u

∥∥∥c(0) − ĉ
∥∥∥2

2
+ 1

λmin
(1 − rk

u)

(
‖ f −PV f ‖2

L2
μ̃

+ ‖σ‖2
L2
ω̃

)
, (3.16)

where

ru = 1 − λmin. (3.17)

Proof. See Appendix C. �
If we choose a specific sampling measure for the sequence x1, x2, . . . , then we have the following sharp error bounds.

Theorem 3.5. Let

dμ = ‖�(x)‖2
2 + τ

N + τ
dω,

be the sampling measure from which the i.i.d. samples of the sequence x1, x2, . . . , are drawn, then the k-th iterative solution of (3.6)
satisfies

E
(‖c(k) − ĉ‖2

2

) ≤ ‖c(0) − ĉ‖2
2rk

u + ηu

(
1 − rk

u

)(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
,

E
(‖c(k) − ĉ‖2

2

) ≥ ‖c(0) − ĉ‖2
2rk


 + η


(
1 − rk




)(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
,

(3.18)

where

�sup := sup
x∈D

‖�(x)‖2
2, �inf := inf

x∈D
‖�(x)‖2

2,

ru = 1 − �sup + 2τ

(N + τ )(�sup + τ )
, ηu = �sup

�sup + 2τ
,

r
 = 1 − �inf + 2τ

(N + τ )(�inf + τ )
, η
 = �inf

�inf + 2τ
.

In the limit of k → ∞, we have

η


(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
≤ lim

k→∞
E
(‖c(k) − ĉ‖2

2

) ≤ ηu

(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
. (3.19)

Proof. See Appendix D. �
It is worth mentioning that �sup in the theorem can be infinity. The conclusion still holds in that case, with ru = 1 − 1

N+τ
and ηu = 1.

3.2.4. Errors for Method II (3.7) with γk = τ ‖�(xk)‖2
2

Again, we first present a different upper bound of the error, which, albeit not as sharp as that of Lemma 3.2, possesses 
a simpler form.

Theorem 3.6. Let dμ be the sampling measure from which the i.i.d. samples of the sequence x1, x2, . . . , are drawn. Then the k-th 
iterative solution of (3.7) satisfies

E
(∥∥c(k) − ĉ

∥∥2
2

) ≤ rk
u‖c(0) − ĉ‖2

2 + 1 − rk
u

λmin

(
‖ f −PV f ‖2

L2
μ̃

+ 1

1 + τ
‖σ‖2

L2
μ̃

)
,

where

ru = 1 − λmin.

Proof. The proof is similar to that of Theorem 3.4. �
We now present an error analysis based on a specific choice of sampling measure. Under this sampling measure, we 

establish the error in a form of equality, which implies that the upper and lower bounds meet.
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Theorem 3.7. Let

dμ = ‖�(x)‖2
2

N
dω,

be the sampling measure from which the i.i.d. samples of the sequence x1, x2, . . . , are drawn. Then the k-th iterative solution of (3.7)
satisfies

E
(∥∥c(k) − ĉ

∥∥2
2

) = rk‖c(0) − ĉ‖2
2 + 1 − rk

1 + 2τ

(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
, (3.20)

where

r = 1 − 1 + 2τ

N(1 + τ )2
.

In the limit of k → ∞,

lim
k→∞

E
(∥∥c(k) − ĉ

∥∥2
2

) = 1

1 + 2τ

(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
. (3.21)

Proof. See Appendix E. �
It is therefore obvious that one may choose a larger value for γk , resp. τ , to obtain smaller numerical error in the final 

converged solution, at the expense of slower rate of convergence r.

3.2.5. Errors for the special case of γk ≡ 0
One can always set the parameter γk in the main method (3.5) to be zero. This special case recovers the method 

presented in [13,16], which assumed the sample data are noiseless. Here we present an error estimate when data contain 
noises in the form of (2.1).

Theorem 3.8. Assume γk ≡ 0, and let dμ be the sampling measure from which the i.i.d. samples of the sequence x1, x2, . . . , are drawn. 
Then the k-th iterative solution of (3.5) satisfies

E
(∥∥c(k) − ĉ

∥∥2
2

) ≤ rk
u‖c(0) − ĉ‖2

2 + 1 − rk
u

λmin

(
‖ f −PV f ‖2

L2
μ̃

+ ‖σ‖2
L2
μ̃

)
,

E
(∥∥c(k) − ĉ

∥∥2
2

) ≥ rk

‖c(0) − ĉ‖2

2 + 1 − rk



λmax

(
‖ f −PV f ‖2

L2
μ̃

+ ‖σ‖2
L2
μ̃

)
,

(3.22)

where

ru = 1 − λmin, r
 = 1 − λmax. (3.23)

In the limit of k → ∞,

1

λmax

(
‖ f −PV f ‖2

L2
μ̃

+ ‖σ‖2
L2
μ̃

)
≤ lim

k→∞
E
(∥∥c(k) − ĉ

∥∥2
2

) ≤ 1

λmin

(
‖ f −PV f ‖2

L2
μ̃

+ ‖σ‖2
L2
μ̃

)
.

Proof. This is a direct corollary of Theorem 3.2 by noting e∗ = 0 and dω̃ = dμ̃ when γ → 0. �
Using a specific sampling measure, the following result holds.

Theorem 3.9. Assume γk = 0, and the

dμ = ‖�(x)‖2
2

N
dω, (3.24)

be the sampling measure from which the i.i.d. samples of the sequence x1, x2, . . . , are drawn. Then the k-th iterative solution of (3.5)
satisfies

E
(∥∥c(k) − ĉ

∥∥2
2

) = rk‖c(0) − ĉ‖2
2 + (1 − rk)

(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
, (3.25)

where
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r = 1 − 1/N. (3.26)

Furthermore,

lim
k→∞

E
(∥∥c(k) − ĉ

∥∥2
2

) = ‖ f −PV f ‖2
L2
ω

+ ‖σ‖2
L2
ω
. (3.27)

Proof. This is a direct corollary of Theorem 3.8. �
4. Numerical examples

In this section we present numerical examples to verify the properties of the proposed sequential approximation meth-
ods.

4.1. Setup

Without loss of generality, we consider polynomial approximation and let the subspace V be �d
n , the linear polynomial 

subspace of polynomials of degree up to n ≥ 1. That is,

�d
n := span{xi = xi1

1 · · · xid
d , |i| ≤ n}, (4.1)

where i = (i1, . . . , id) is multi-index with |i| = i1 + · · · + id . Immediately, we have

N = dim �d
n =

(
n + d

d

)
= (n + d)!

n!d! . (4.2)

We choose the domain to be hypercube, i.e., D = [−1, 1]d , and employ the normalized Legendre polynomials as the orthog-
onal basis. To demonstrate the properties in multiple dimensions d > 1, we present examples in d = 2 and d = 10.

For benchmarking purpose, we use the following four multivariate functions as target functions. These are from [8] and 
have been widely used for multi-dimensional function integration and approximation tests. They include

f1(x) = exp

(
−

d∑
i=1

a2
i

(
xi + 1

2
− χi

)2
)

; (GAUSSIAN)

f2(x) = exp

(
−

d∑
i=1

ai

∣∣∣∣ xi + 1

2
− χi

∣∣∣∣
)

; (CONTINUOUS)

f3(x) =
(

1 +
d∑

i=1

ai
(xi + 1)

2

)−(d+1)

, where ai = 1

i2
; (CORNER PEAK)

f4(x) =
d∏

i=1

(
a−2

i +
(

xi + 1

2
− χi

)2
)−1

; (PRODUCT PEAK),

(4.3)

where a = (a1, · · · , ad) are parameters controlling the difficulty of the functions, and χ = (χ1, · · · , χd) are shifting parame-
ters.

The convergence results are examined by the errors in the approximation p(k) at k-th step iteration, k = 1, . . . . To evaluate 
the errors we independently draw a set of dense samples, 20,000 for d = 2 and 100,000 for d = 10, uniformly in the domain 
and compute the difference between p(k) and the target function f at these sampling points. The vector 2-norm is then 
used to report the difference. This gives us a numerical estimation to the error 

∥∥p(k) − f
∥∥

L2
ω

. We then use this error to 
verify the theoretical convergence results in Section 3.2.

To draw the random sequence x1, x2, . . . , we employ several different probability measures: uniform distribution, ten-
sorized Chebyshev distribution, and the specific measures defined in the Theorems 3.5, 3.7, and 3.9. These specific measures 
are not standard probability measures, but can be effectively produced by using Markov chain Monte Carlo method.

4.2. Two-dimensional case d = 2

We first present extensive numerical results in d = 2. All the results are averaged over 50 independent sample sequences 
simulations. This is to verify our theoretical error estimates, which are expressed in term of expectation.
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Fig. 4.1. Function approximation errors versus number of iterations for four test functions in (4.3) at d = 2 without noise. γk = 0 is used in our method. Top 
left: f1 with a = (1, 1) and χ = (0.375, 0.375); Top right: f2 with a = (−2, 1) and χ = (0.25, −0.75); Bottom left: f3; Bottom right: f4 with a = (−1.5, 1)

and χ = (0.375, 0.375).

4.2.1. Noiseless data
We first consider the case where the data contain no noise. Consequently, we set the parameter γk in the methods to be 

0. The errors in p(k) with respect to the iteration count k are plotted in Fig. 4.1, for all four test functions using Legendre 
polynomials of degree n = 6. The sampling probability measures include the Chebyshev measure, uniform measure and 
the specific (optimal) measure (3.24) in Theorem 3.9. Exponential convergence rate can be observed, where the Chebyshev
measure and the optimal measure exhibit similarly faster convergence.

We then examine the errors in the converged numerical results (at k → ∞), for polynomial degrees n = 1 to n = 8. 
The results are shown in Fig. 4.2. For comparison, the errors of the orthogonal projection P� f are also shown, which are 
approximated by high-order numerical quadrature. One can see that the numerical errors of the proposed method are very 
close to the errors of the orthogonal projection, as suggested by Theorems 3.8 and 3.9.

To verify the theoretical error bounds in Theorems 3.8 and 3.9, we accurately compute all the terms in the theoretical 
estimates. (This is possible because we know the form of the target functions.) The comparison between the theoretical 
bounds (in expectation) and numerical curves are shown in Fig. 4.3 for f1 and n = 6. With the specific (optimal) measure, 
the upper and lower bounds become the same, as the error analysis Theorem 3.9 is in the form of equality. The Chebyshev 
measure produces very tight upper and lower bounds. This suggests that the Chebyshev measure, which be easily sampled, 
is a good alternative to the optimal measure. The uniform measure produces wider bounds.

4.2.2. Noisy data
We now consider the case when data contain noises. We set the noises in the functions f1 and f2 to be Gaussian 

distribution N (0, 0.012) and the noises in the functions f3 and f4 to follow uniform distribution U(−0.01, 0.01). (The 
results behave very similarly for other choices of noises.)

We first employ the Method 1 with τ = σ 2. Fig. 4.4 gives the convergence of the errors with respect to the iteration 
count for all the test functions in (4.3), for polynomial degree up to n = 6. Again, we observe the exponential type con-
vergence of the errors, and the results by Chebyshev and the specific measure in Theorem 3.5 are very similar. Due to the 
presence of the noise, the converged errors become larger than those from the noiseless case shown in Fig. 4.1.

It is discovered that increasing τ can reduce the approximation errors in the converged solutions, see Fig. 4.5 for the 
results obtained by Method I with τ = 500. The convergence rate, however, becomes slower, and the behavior of uniform 
sampling measure becomes closer to the specific one. Fig. 4.6 reports the approximation errors in the converged solutions for 
different polynomial degrees from 1 to 8. Those plots further validate the above observation. Such impact of the parameter 
choice τ is already visible from the analysis, see, for example, Theorem 3.7. More detailed analysis of the parameter τ shall 
be pursued in a separate study.
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Fig. 4.2. Approximation errors in the converged solutions with respect to the polynomial degrees at d = 2 for no noise data. γk = 0 is used in our method. 
Top left: f1 with a = (1, 1) and χ = (0.375, 0.375); Top right: f2 with a = (−2, 1) and χ = (0.25, −0.75); Bottom left: f3; Bottom right: f4 with a =
(−1.5, 1) and χ = (0.375, 0.375).

Fig. 4.3. Numerical approximation errors and theoretical error bounds from Theorem 3.9 at d = 2 for γk = 0 and no noise data: Chebyshev (left), uniform 
(middle) and specific (right) measure.

We now verify the theoretical error bounds in Theorems 3.2, 3.3, 3.4 and 3.5, by numerically computing all the terms in 
the theoretical analysis. The comparison between the theoretical bounds (in expectation) and numerical curves for f1 and 
n = 6, τ = 500 is displayed in Fig. 4.7, where “simple bounds” denotes those given by Theorems 3.4 and 3.5. The results are 
consistent with the theoretical findings, as the “simple bounds” from Theorems 3.4 and 3.5 are not as sharp as the bounds 
from Theorem 3.2. (Again, the “simple bounds” possess simpler form and are easier to evaluate.)

We then test the proposed Method II with τ = σ 2. Fig. 4.8 shows the error convergence for all the test functions in (4.3)
by polynomials of degree up to n = 6. It is seen that Method II also exhibits the exponential type convergence with respect 
to iteration count. The convergence behaviors are very similar to those of Method I in Fig. 4.4.

Again, we find that increasing τ can reduce the approximation errors in the converged solutions, albeit at slower rate 
of convergence. See Fig. 4.9 for the results obtained by Method II with n = 6 and τ = 20. This is further validated by the 
results given in Fig. 4.10, where the approximation errors in the converged solutions by using different polynomial degrees 
are displayed.

We now verify the theoretical error bounds in Theorems 3.2, 3.3, 3.6 and 3.7, by numerically computing the terms in 
the theory. The comparison between the theoretical bounds (in expectation) and the actual numerical convergence for the 
function f1 with n = 6, τ = 20 is shown in Fig. 4.11, where the simple upper bound is that given in Theorem 3.6. The 
numerical bounds are consistent with the theoretical bounds.
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Fig. 4.4. Same as Fig. 4.1 except for the data with noise and Method I with τ = σ 2.

Fig. 4.5. Same as Fig. 4.1 except for the data with noise and Method I with τ = 500.

4.3. Ten-dimensional case d = 10

We now focus on a higher dimension d = 10. Here all the numerical results are reported as those of single simulation. 
We only show the results of approximating f1 in (4.3) and assume that the data contain Gaussian noises of N(0, 0.012), i.e. 
with standard deviation σ = 0.01. The results for the other functions in (4.3) behave very similarly and will not be shown.
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Fig. 4.6. Same as Fig. 4.2 except for the data with noise and using Method I.

Fig. 4.7. Same as Fig. 4.3 except for the data with noise and Method I with τ = 500.

We employ Method I with τ = σ 2 and τ = 104 and Method II with τ = σ 2 and τ = 10. Fig. 4.12 shows the error 
decay at polynomial degree n = 6 with respect to the number of iterations. We again observe the expected exponential 
type convergence of the errors, for both methods using different sampling measures. Similar to the two-dimensional case, 
with larger τ we obtain smaller errors in the converged solutions, at the expense of slower rate of convergence. To further 
demonstrate this phenomenon, we repeat the tests by using different degree of polynomials, and plot the approximation 
errors in the converged solutions with respect to n in Fig. 4.13. The errors decay at higher polynomial degree, as expected, 
and saturate at modest polynomial orders because the data noises become dominant. It is obvious that Increasing the 
parameter τ can reduce the errors in converged solutions for all polynomial degrees.

5. Conclusion

In this paper we presented a framework of sequential function approximation. The sequential approximation methods 
are of iterative nature and utilize one data sample at each step. They render simple numerical implementations and can 
handle practical problems with exceedingly large data set. This paper extends the earlier work of [13,16] to handle the case 
of noisy data and also presents a more broader theoretical framework. The convergence and error estimates of the methods 
were presented, along with numerous examples to demonstrate the effectiveness of the methods.
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Fig. 4.8. Same as Fig. 4.1 except for the data with noise and Method II with τ = σ 2.

Fig. 4.9. Same as Fig. 4.1 except for the data with noise and Method II with τ = 20.

Appendix A. Proof of Theorem 3.1

We start from the derivation of (3.5). By using the orthogonality of the basis ψi , the optimization problem (3.1) can be 
rewritten into the following equivalent problem
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Fig. 4.10. Same as Fig. 4.2 except for the data with noise and using Method II.

Fig. 4.11. Same as Fig. 4.3 except for the data with noise and Method II with τ = 20.

c(k) = argmin
c∈RN

Jk(c), (A.1)

where

Jk(c) := ∥∥c − c(k−1)
∥∥2

2 + 1

γk
|〈c,�(xk)〉 − fk|2 .

The function Jk(c) is a convex, because its Hessian matrix is 2
(
I + 1

γk
�(xk)�(xk)

�)
which is positive definite. Thus the 

problem (A.1) is a convex quadratic programming, whose solution is unique and solves

∂Jk(c)

∂c j
= 2

(
c j − c(k−1)

j + 1

γk

(〈c,�(xk)〉 − fk
)
ψ j(xk)

)
= 0, j = 1,2, · · · , N.

This can be written into vector form

c − c(k−1) + 1

γk
�(xk)

(
�(xk)

�c − fk
) = 0,

or, (
I + 1

�(xk)�(xk)
�
)

c = c(k−1) + 1
fk�(xk). (A.2)
γk γk
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Fig. 4.12. Function approximation errors versus number of iterations for f1 (with ai = 1 and χ = 0.375) in (4.3) at d = 10 with data noise obeying 
N(0, 0.012). Top left: Method I with τ = σ 2; Top right: Method I with τ = 104; Bottom left: Method II with τ = σ 2; Bottom right: Method II with τ = 10.

Fig. 4.13. Approximation errors given by Method I (left) and II (right) in the converged solutions with respect to the polynomial degrees.

Note that the inverse of I + 1
γk

�(xk)�(xk)
� is

I − 1

‖�(xk)‖2
2 + γk

�(xk)�(xk)
�.

Therefore, we obtain from (A.2) the solution to (A.1),

c(k) =
(

I − 1

‖�(xk)‖2
2 + γk

�(xk)�(xk)
�
)(

c(k−1) + 1

γk
fk�(xk)

)
,

which delivers (3.5) upon further simplification. The result of (3.5) then follows directly from (3.4).
Next, we consider the limiting case of γk = 0 for problem (3.2). Its equivalent form is

c(k) = argmin
c∈RN

∥∥c − c(k−1)
∥∥2

2, subject to 〈c,�(xk)〉 = fk. (A.3)

Let
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c∗ = c(k−1) + fk − 〈c(k−1),�(xk)〉
‖�(xk)‖2

2

�(xk),

then 〈c∗, �(xk)〉 = fk , and∥∥c − c(k−1)
∥∥2

2 = ∥∥c − c∗∥∥2
2 + ∥∥c∗ − c(k−1)

∥∥2
2, (A.4)

where the relation

〈c − c∗, c∗ − c(k−1)〉 = fk − 〈c(k−1),�(xk)〉
‖�(xk)‖2

2

〈c − c∗,�(xk)〉

= fk − 〈c(k−1),�(xk)〉
‖�(xk)‖2

2

(
fk − fk

) = 0,

has been used. It is then clear from Eq. (A.4) that c∗ is the solution to problem (A.3).

Appendix B. Proof of Lemma 3.2

To prove Theorem 3.2, we first introduce a preliminary result. For notational convenience and without loss of generality, 
let us assume c(0) = 0. For c(0) �= 0, we only need to consider the problem for approximating f (x) −〈c(0), �(x)〉, and replace 
ĉ by (ĉ − c(0)) and c(k) by (c(k) − c(0)).

B.1. Preliminary

At the k-th iteration, we introduce the notation Ek to denote the expectation of the random sample xk and the noise εk , 
conditioned upon the previous (k − 1) random variables {x j}1≤ j≤k−1, {εk}1≤ j≤k−1, i.e.

Ek(·) = Exk,εk (·|x1, · · · ,xk−1, ε1, · · · , εk−1).

Lemma B.1. Assume that c(0) = 0. The k-th iterative solution of the algorithm (3.5) satisfies

E(c(k)) = Q�D̂(k)Qc̃, (B.1)

where c̃ = (
c̃1, ̃c2, · · · , ̃cN

)�
with c̃ j = ( f , ψ j)L2

μ̃
, and

D̂(k) = diag{d̂(k)
1 , · · · , d̂(k)

N }, d̂(k)
i = 1 − (1 − λi)

k

λi
.

Proof. By taking expectation on (3.5) we obtain

Ek(c(k)) = c(k−1) + c̃ − �c(k−1) = (I − �) c(k−1) + c̃,

which implies

E(c(k)) = (I − �)E(c(k−1)) + c̃.

Upon iteratively using this recursive relation, we then have

E(c(k)) =
k∑

j=1

(I − �) j−1 c̃,

which further yields (B.1) via the eigenvalue decomposition of �. �
B.2. Proof of Lemma 3.2

We now complete the proof of Lemma 3.2.

Proof. The proof starts from the following equality

Ek
(∥∥c(k) − ĉ

∥∥2
2

) = Ek

(∥∥c(k−1) − ĉ + c(k) − c(k−1)
∥∥2

2

)
= ∥∥c(k−1) − ĉ

∥∥2
2 + 2

(
c(k−1) − ĉ

)�
Ek

(
c(k) − c(k−1)

) +Ek

(∥∥c(k) − c(k−1)
∥∥2

2

)
. (B.2)
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The Ek
(
c(k) − c(k−1)

)
in the second term can be computed as

Ek
(
c(k) − c(k−1)

) =
∫
D

(
f (x) −PV f (x) − 〈c(k−1) − ĉ,�(x)〉

)
�(x)dμ̃

= e − �
(
c(k−1) − ĉ

)
, (B.3)

and the last term can be expressed as

Ek

(∥∥c(k) − c(k−1)
∥∥2

2

)
=

∫
D

Eεk

(
f (x) + εk − 〈c(k−1),�(x)〉

)2
dω̃

=
∫
D

(
f (x) −PV f (x) − 〈c(k−1) − ĉ,�(x)〉

)2
dω̃ + ‖σ‖2

L2
ω̃

= E + (
c(k−1) − ĉ

)�
�̃

(
c(k−1) − ĉ

) − 2ẽ�(
c(k−1) − ĉ

)
, (B.4)

where �̃ := (
(ψi, ψ j)L2

ω̃

)
N×N = 2� − �∗ , and ẽ := (

ẽ1, ̃e2, · · · , ̃eN
)� = e − e∗ with ẽ j = ( f −PV f , ψ j)L2

ω̃
.

By substituting (B.3) and (B.4) into (B.2), we then obtain

Ek
(∥∥c(k) − ĉ

∥∥2
2

) = (
c(k−1) − ĉ

)�(
I − �∗

)(
c(k−1) − ĉ

) + 2e�∗
(
c(k−1) − ĉ

) + E
≤ (

1 − λ∗
min

)‖c(k−1) − ĉ‖2
2 + 2e�∗

(
c(k−1) − ĉ

) + E . (B.5)

It follows that

E
(∥∥c(k) − ĉ

∥∥2
2

) ≤ (
1 − λ∗

min

)
E
(∥∥c(k−1) − ĉ

∥∥2
2

) + 2e�∗
(
E(c(k−1)) − ĉ

) + E
=: ruE

(∥∥c(k−1) − ĉ
∥∥2

2

) + Gk−1,

where

Gk−1 = 2e�∗
(
Q�D̂(k−1)Qc̃ − ĉ

) + E,

and (B.1) has been used. Repeating the same operation (k − 1) times gives

E
(∥∥c(k) − ĉ

∥∥2
2

) ≤ ∥∥ĉ
∥∥2

2rk
u +

k−1∑
j=0

G jr
k− j−1
u ,

where the last term can be computed as

k−1∑
j=0

G jr
k− j−1
u = 2e�∗ Q�

( k−1∑
j=0

D̂( j)rk− j−1
u

)
Qc̃ + (

E − 2e�∗ ĉ
) k−1∑

j=0

rk− j−1
u

= 2e�∗
(

Q�D(k)(ru)Qc̃ + 1 − rk
u

1 − ru
�−1c̃

)
+ (

E − 2e�∗ ĉ
)1 − rk

u

1 − ru

= 2e�∗
(

Q�D(k)(ru)Qc̃ + 1 − rk
u

1 − ru

(
�−1c̃ − ĉ

)) + 1 − rk
u

λ∗
min

E

= B(ru) + 1 − rk
u

λ∗
min

E .

Here c̃ = �ĉ + e has been used in the last equality. This completes the proof of the upper bound. Similarly, one can obtain 
the lower bound. �
Appendix C. Proof of Theorem 3.4

Proof. The proof also starts from (B.2), where the last term is estimated as

Ek

(∥∥c(k) − c(k−1)
∥∥2

2

)
=

∫
Eεk

(
f (x) + εk − 〈c(k−1),�(x)〉

)2 ‖�(x)‖2
2

‖�(x)‖2
2 + τ

dμ̃
D
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≤
∫
D

(
f (x) −PV f (x) − 〈c(k−1) − ĉ,�(x)〉

)2
dμ̃ + ‖σ‖2

L2
ω̃

= E0 + (
c(k−1) − ĉ

)�
�

(
c(k−1) − ĉ

) − 2e�(
c(k−1) − ĉ

)
,

with E0 := ‖ f −PV f ‖2
L2
μ̃

+ ‖σ‖2
L2
ω̃

.

Hence, we have

Ek
(∥∥c(k) − ĉ

∥∥2
2

) = (
c(k−1) − ĉ

)�
(I − �)

(
c(k−1) − ĉ

) + E0

≤ (1 − λmin)
∥∥c(k−1) − ĉ

∥∥2
2 + E0.

It follows that

E
(∥∥c(k) − ĉ

∥∥2
2

) ≤ (1 − λmin)E
(∥∥c(k−1) − ĉ

∥∥2
2

) + E0.

The proof is completed after repeating the same operation (k − 1) times. �
Appendix D. Proof of Theorem 3.5

Proof. Under the assumption, dμ̃ = dω
N+τ , and e = 0, � = 1

N+τ I, the proof also starts from (B.2), with the last term estimated 
as

Ek

(∥∥c(k) − c(k−1)
∥∥2

2

)
= 1

N + τ

∫
D

Eε

(
f (x) + εk − 〈c(k−1),�(x)〉

)2 ‖�(x)‖2
2

‖�(x)‖2
2 + τ

dω

≤ �sup

(N + τ )(�sup + τ )

(
‖ f −PV f ‖2

L2
ω

+ ‖c(k−1) − ĉ‖2
2 + ‖σ‖2

L2
ω

)
.

Hence, we have

Ek

(∥∥c(k) − ĉ
∥∥2

2

)
≤ ru

∥∥c(k−1) − ĉ
∥∥2

2 + �sup

(N + τ )(�sup + τ )

(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
=: ru

∥∥c(k−1) − ĉ
∥∥2

2 + �supE1

(N + τ )(�sup + τ )
.

It follows that

E

(∥∥c(k) − ĉ
∥∥2

2

)
≤ ruE

(∥∥c(k−1) − ĉ
∥∥2

2

)
+ �supE1

(N + τ )(�sup + τ )

≤ · · · ≤ rk
u

∥∥c(0) − ĉ
∥∥2

2 + �supE1

(N + τ )(�sup + τ )

k−1∑
j=0

r j
u

= rk
u

∥∥c(0) − ĉ
∥∥2

2 + ηuE1(1 − rk
u).

Similarly, one can prove the lower bound. �
Appendix E. Proof of Theorem 3.7

Proof. Under the assumption e∗ = 0, we have �∗ = 1+2τ
N(1+τ )2 I because of (1 + 1/τ )dν̃ = (1 + τ )dω̃ = dμ̃ = dω

N(1+τ )
. By using 

(B.5) we have

Ek
(∥∥c(k) − ĉ

∥∥2
2

) = (
c(k−1) − ĉ

)�(
I − �∗

)(
c(k−1) − ĉ

) + E

= r
∥∥c(k−1) − ĉ

∥∥2
2 + 1

N(1 + τ )2

(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
.

It follows that

E
(∥∥c(k) − ĉ

∥∥2
2

) = rE
(∥∥c(k−1) − ĉ

∥∥2
2

) + 1

N(1 + τ )2

(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
.

The proof is then completed after iteratively using the recursive relation. �
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Appendix F. A general result

Theorems 3.5, 3.7 and 3.9 can be regarded as special cases of the following general result.

Theorem F.1. Assume γk = γ (xk), and the sampling measure is

dμ = ‖�(x)‖2
2 + γ (x)

N∗
dω,

with N∗ = N + ∫
D γ (x)dω, then the k-th iterative solution of (3.5) satisfies

E
(‖c(k) − ĉ‖2

2

) ≤ ‖c(0) − ĉ‖2
2rk

u + ηu

(
1 − rk

u

)(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
,

and

E
(‖c(k) − ĉ‖2

2

) ≥ ‖c(0) − ĉ‖2
2rk


 + η


(
1 − rk




)(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
,

where

ru = 1 − 2 − �u

N∗
, ηu = �u

2 − �u
,

r
 = 1 − 2 − �


N∗
, η
 = �


2 − �


,

with

�u := sup
x∈D

‖�(x)‖2
2

‖�(x)‖2
2 + γ (x)

, �
 := inf
x∈D

‖�(x)‖2
2

‖�(x)‖2
2 + γ (x)

.

Therefore

η


(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
≤ lim

k→∞
E
(‖c(k) − ĉ‖2

2

) ≤ ηu

(
‖ f −PV f ‖2

L2
ω

+ ‖σ‖2
L2
ω

)
.

Proof. The proof is similar to that of Theorem 3.5. �
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