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It is known that both linear and nonlinear optical phenomena can be produced when the 
plasmon in metallic nanostructures are excited by the external electromagnetic waves. In 
this work, a coupled system of Maxwell equations and a gas dynamic model including 
a quantum pressure term is employed to simulate the plasmon dynamics of free electron 
fluid in different metallic nanostructures using a discontinuous Galerkin method. Numerical 
benchmarks demonstrate that the proposed numerical method can simulate both the high 
order harmonic generation and the nonlocal effect from metallic nanostructures. Based on 
the switch-on-and-off investigation, we can conclude that the quantum pressure term in 
gas dynamics is responsible for the bulk plasmon resonance. In addition, for the dielectric-
filled nano-cavity, a coupled effective polarization model is further adopted to investigate 
the optical behavior of bound electrons. Concerning the numerical setting in this work, a 
strengthened influence of bound electrons on the generation of high order harmonic waves 
has been observed.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, there have been growing interests in complex optical phenomena associated with metallic nanostruc-
tures. One of them is the classical local optical response that features the macroscopic properties of materials. However, 
for small metallic nanoparticles and metallic clusters, the experimental studies [5] have retrieved a size-dependent surface 
resonance shift and a multiple bulk resonance at frequencies above the plasma frequency in the extinction cross sections 
(ECS). These novel phenomena, which are not observed in the classical local response, are due to the instantaneous re-
sponse to the excitation in a nonlocal manner: D(x, ω) = ε0

∫
ε(x, x′, ω) · E(x′, ω)dx′ , and thus are termed as the so-called 

nonlocal effect. Here, D is the electric displacement, ε0 is the electric permittivity in vacuum, ε is the relative permittivity 
tensor, ω is the frequency, and E denotes the electric field. These plasmonic responses have found their wide applications 
in biosensing [1], plasmonic waveguiding [3] and cancer therapy [15]. Another attractive optical phenomenon is the high 
order harmonic generation, in particular, the second harmonic generation (SHG). Physically, the SHG is an optical process 
in which an electromagnetic wave at the fundamental frequency interacts with metallic nanoparticles to generate a new 
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wave with twice of the fundamental frequency. Experiments [12,13,19,26] have shown that the second harmonic wave can 
be generated from various metamaterials. The SHG is of great importance with broad applications such as in development 
of the laser sources [21], the optical parametric amplifiers [31], and imaging and microscopy technology [4].

There have been many numerical methods and models proposed to simulate the above optical phenomena in nanostruc-
tures. In [16], the authors generalized a finite-difference time domain (FDTD) method to simulate the SHG from metallic 
nanostructures by using a fully coupled fluid-Maxwell system (called the nonlinear hydrodynamic Drude (NHD) model) 
that was derived from the cold-plasma wave equations [32] and the Maxwell equations. In the coupled system, the charge 
density ρ depends on the divergence of the electric field E, namely, ρ = ε0∇ · E. Since the normal electric field is discon-
tinuous at the dielectric-metal interface, the computation of the charge density is challenging. The authors introduced a 
smooth transition layer between the metal and dielectric materials so that the ion density varies from its bulk value to zero 
smoothly, leading to an efficient computation of ∇ · E. In [14], a fully second order hydrodynamic model has been employed 
to explore the mechanism of nonlocal feature on the nonlinear high order harmonic generation. In [2], an energy stable 
discontinuous Galerkin method has been designed for the Maxwell equations in Kerr-Raman-type nonlinear optical media 
for the simulation of third harmonic wave. Numerical investigations on the high order harmonic generation using a per-
turbation hydrodynamic model [32] and a fully hydrodynamic model [7,9] are also reported in literatures. Concerning the 
nonlocal effect, a mixed finite element method (FEM) adopting the Nédélec element has been developed in [10] for simulat-
ing the nonlocal effect of a groove and a nanowire by using a nonlocal hydrodynamic Drude model in the two-dimensional 
frequency domain. In [24], the authors developed an energy stable DGTD scheme to solve a linearized nonlocal dispersion 
model for studying the nonlocal dispersion effect from the interaction of light with nanometer scale metallic structures. In 
[29], the authors applied a hybridizable discontinuous Galerkin (HDG) method to solve the Maxwell equations coupled with 
the nonlocal hydrodynamic Drude model in the frequency domain for computing the nonlocal electromagnetic effect from 
a two-dimensional gold nanowire and a three-dimensional periodic annular nanogap structure.

In this paper, we employ a coupled system of the gas dynamic equations including the pressure term and the Maxwell 
equations (also named as the hydrodynamic electron fluid Maxwell equations (HEFMEs) in [33]) to simulate both the 
high-order harmonic generation and the nonlocal effect in metallic nanostructures using the high order Runge-Kutta dis-
continuous Galerkin (RKDG) method [6]. Analysis of an energy-stable discontinuous Galerkin (DG) method coupled with 
leap-frog or trapezoidal time discretization schemes for simulating nonlinear optical phenomenons has been discussed 
in [18]. We successfully simulate high-order harmonic generations from different arrays of periodically arranged metallic 
nanostructures. In addition, by a switch-on-and-off numerical examination on different nonlinear terms, we conclude that 
only the quantum pressure term is responsible for the nonlocal effects. In order to simulate the SHG from a metallic nanos-
tructure adjacent to a nanostructure with some kind of non-metallic material, we couple the HEFMEs with an effective 
polarization model [23] to numerically investigate the influence of bound electrons on the generation of high order har-
monics. A strengthened influence of bound electrons on the generation of high order harmonic waves associated to the 
numerical setting in this work has been successfully observed. A generalized Padé expansion model taking the bound elec-
trons into account has been formerly studied in [25] in which a high order upwind DG scheme on unstructured grid has 
been proposed for numerical solutions.

In [9], Hille et al. developed a robust DG scheme with upwind numerical flux for Maxwell’s equations and Lax-
Friedrichs(LF) numerical flux for electron fluid equations to have a systematic numerical survey on the SHG based on the 
coupled system. However, it is well known that, among all commonly used exact or approximate Riemann solvers, the LF 
numerical flux will lead to much larger numerical errors than other exact or approximate Riemann solvers due to its large 
amount of numerical viscosity, therefore, for long time wave propagation problem, a more robust and efficient approximate 
Riemann solver is preferred. Here, inspired by the work in [22], we employ the Harten-Lax-van-Leer(HLL) numerical flux 
for the simulation and make a comparison between the numerical solutions using HLL numerical flux and those using the 
LF numerical flux. Numerical accuracy tests indicate that the HLL numerical flux produces a better performance that the LF 
flux during our simulations.

This paper is organized as follows. In Section 2, we introduce the mathematical governing equations, and then formulate 
in details the numerical scheme for solving the coupled system in Section 3. In Section 4, numerical tests on the nonlocal 
effect and the second harmonic generation are presented to show the efficiency of the model and numerical method. 
Conclusions are finally given in Section 5.

2. Mathematical model

2.1. Maxwell equations

The governing equations for the propagation of electromagnetic waves are the Maxwell equations

μ0
∂H̃

∂ t̃
+ ∇̃ × Ẽ = 0 , (1)

ε0
∂ Ẽ − ∇̃ × H̃ = −J̃ − J̃b . (2)

∂ t̃
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Fig. 1. Illustration for the nanostructure.

Here, ε0, μ0 are the permittivity and the permeability in free space, respectively, Ẽ is the electric field, H̃ is the magnetic 
field, J̃ denotes the current density generated by the motion of electrons in a metallic nanostructure and thus identically 
equals to zero outside the metallic nanostructure, and J̃b is the bound current density which is trivial if the effect of bound 
electrons is neglected.

2.2. Gas dynamic equations

As being shown in Fig. 1, �2 is a bounded domain occupied by a metallic nanostructure, which is excited by an external 
electromagnetic field. From continuum mechanics, the motion of free electrons in the metallic nanostructure �2 satisfies 
the following Euler equations

∂(ñeq̃e)

∂ t̃
+ ∇̃ · (ñeq̃eũe) = 0 , (3)

m̃e

[
∂ũe

∂ t̃
+ (ũe · ∇̃)ũe

]
= q̃e(Ẽ + μ0ũe × H̃) − γ̃ m̃eũe − ∇̃ p̃

ñe
, (4)

where q̃e, m̃e, ̃ne, ̃ue denote the electron charge, mass, number density and velocity field, respectively. γ̃ = 1/τ̃ denotes 
the relaxation time, the average time of collisions between the electrons and the ions. p̃ = (3π2)

2/3
(h̄2/5m̃e)ñ

5/3
e , with h̄

being the Planck’s constant, is the electron gas pressure evaluated by the Thomas-Fermi theory [20]. We name equations 
(1)-(4) as the HEFMEs which has been used in [9,33] for SHG simulations. Unlike the NHD in [16], the HEFMEs provides 
a nonlocal description of free electrons by adding additional quantum pressure term. With its inherent nonlinearity, one 
expects to be able to observe both the high-order harmonic generation and the nonlocal optical response in numerics using 
this self-consistent model.

2.3. Polarization model

Let �3 (see Fig. 1) be a bounded domain filled with some kind of non-metallic material, being adjacent to �2 . In the 
domain �3, the electrons are subject to the linear and nonlinear restoring forces and can not leave far away from their 
atomic nucleus. We call these electrons as the bound electrons. Let P̃ be the polarization and J̃b be the bound current 
density, respectively, an effective polarization model for bound charges can be obtained by using Newton’s second law and 
neglecting the nonlinear restoring forces [23]

∂P̃

∂ t̃
= J̃b, (5)

∂ J̃b

∂ t̃
+ γ̃b J̃b + ω̃2

b P̃ = ñbq̃2
e

m̃e
Ẽ + μ0q̃e

m̃ec
J̃b × H̃ . (6)

Here, ñb , γ̃b , ω̃b denote the constant ion density, damping coefficient and resonance frequency for the bound electrons, 
respectively, and c denotes the speed of light in vacuum. We point out that this model defined on the domain �3 is 
coupled with the HEFMEs for the numerical simulation only when we consider the numerical test on the influence of 
bound electrons (the last part in Section 4.2).



4 M. Lyu et al. / Journal of Computational Physics 409 (2020) 109354
Table 1
Unit system.

Physical quantity Reference scale Redefined quantity

L̃ L0 = 1.0 × 10−9m L = L̃/L0

t̃ t0 = L0/c, c = 1/
√

μ0ε0 t = t̃/t0

∇̃ ∇ = L0∇̃
∂/∂ t̃ ∂/∂t = t0∂/∂ t̃
Ẽ E0 = 1.0 × 107 V /m E = Ẽ/E0

H̃ H0 = E0/Z , Z = √
μ0/ε0 H = H̃/H0

J̃ J0 = E0/(Z L0) J = J̃/ J0

J̃b J0 Jb = J̃b/ J0

P̃ t0 J0 P = P̃/(t0 J0)

ρ̃ ρ0 = ε0/L0 ρ = ρ̃/ρ0

ω̃ ω0 = c/L0 ω = ω̃/ω0

2.4. Compact nondimensionalized forms

In this paper, we will investigate the nonlinear and nonlocal responses in numerics based on the HEFMEs. As pointed 
out in [24], a simple 2D TE mode modeling is sufficient to produce the bulk plasmons for inducing the nonlocal effect. 
Concerning the nonlinear responses such as the high order harmonic generation, the nonlinearity in the 2D HEFMEs in TE 
mode is not adequate, and a full 3D simulation is preferred for numerical simulations. As a compromise in the current 
work, we make an assumption of z-invariance for the materials to be considered which implies that the metamaterials 
are uniformly infinitely arranged along the z axis. The following notation for the curl operator is used for the vector field 
u = (ux, u y, uz):

∇ × u =
(

∂uz

∂ y
,−∂uz

∂x
,
∂u y

∂x
− ∂ux

∂ y

)�
.

Assume that �1 ⊂R2 is a finite truncation enclosing �2 ∪ �3 inside. By defining the charge density ρ̃ and the current 
density J̃ as follows

ρ̃ = ñeq̃e , J̃ = ρ̃ũe ,

we can write the equations (1)-(2) and (3)-(4) in the following compact hyperbolic system after a nondimensionalization 
procedure according to Table 1

∂U1

∂t
+ ∇ · F 1(U1) = S1(U2, U3), in �1 × [0, T ] , (7)

∂U2

∂t
+ ∇ · F 2(U2) = S2(U1, U2), in �2 × [0, T ], (8)

where F 1(U1) = (F1(U1), G1(U1)), F 2(U2) = (F2(U2), G2(U2)). We could also formulate the polarization model into the 
following compact ordinary differential system according to Table 1

dU3

dt
= S3(U1, U3), in �3 × [0, T ] . (9)

In the above formulations,

U1 =

⎛
⎜⎜⎜⎜⎜⎝

Hx

H y

Hz

Ex

E y

Ez

⎞
⎟⎟⎟⎟⎟⎠

, F1(U1) =

⎛
⎜⎜⎜⎜⎜⎝

0
−Ez

E y

0
Hz

−H y

⎞
⎟⎟⎟⎟⎟⎠

, G1(U1) =

⎛
⎜⎜⎜⎜⎜⎝

Ez

0
−Ex

−Hz

0
Hx

⎞
⎟⎟⎟⎟⎟⎠

, S1 = −

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
ρux + Jbx
ρu y + Jby
ρuz + Jbz

⎞
⎟⎟⎟⎟⎟⎠

U2 =

⎛
⎜⎜⎝

ρ
ρux

ρu y

ρuz

⎞
⎟⎟⎠ , F2(U2) =

⎛
⎜⎜⎜⎝

ρux

ρuxux + kρ5/3

ρuxu y

ρu u

⎞
⎟⎟⎟⎠ , G2(U2) =

⎛
⎜⎜⎜⎝

ρu y

ρuxu y

ρu yu y + kρ5/3

ρu u

⎞
⎟⎟⎟⎠ ,
x z x z
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k = 1

5

(
h̄

me

)2(3π2

qe

)2/3

, S2 =

⎛
⎜⎜⎜⎜⎝

0
ρqe
me

(Ex + u y Hz − uz H y) − γρux
ρqe
me

(E y + uz Hx − ux Hz) − γρu y
ρqe
me

(Ez + ux H y − u y Hx) − γρuz

⎞
⎟⎟⎟⎟⎠ ,

U3 =

⎛
⎜⎜⎜⎜⎜⎝

P x

P y

P z

Jbx
Jby
Jbz

⎞
⎟⎟⎟⎟⎟⎠

, S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Jbx

Jby

Jbz

nbq2
e

me
Ex + qe

me
( Jby Hz − Jbz H y) − γb Jbx − ω2

b P x

nbq2
e

me
E y + qe

me
( Jbz Hx − Jbx Hz) − γb Jby − ω2

b P y

nbq2
e

me
Ez + qe

me
( Jbx H y − Jby Hx) − γb Jbz − ω2

b P z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T is the final simulation time, and the subscript x (y or z) denotes the x (y or z) component of corresponding unknowns.

3. Numerical schemes

In this section, we will present the numerical method solving the equations (7)-(9). Let Th be a partition of �1. For each 
element K ∈ Th , we define the following finite dimensional discrete spaces consisting of piecewise polynomials with the 
degree at most k

V p
h,�1

: = {U ∈
(

L2(�1)
)p : U |K ∈

(
Pk(K )

)p
,∀K ∈ Th} ,

W q
h,�2

: = {U ∈
(

L2(�2)
)q : U |K ∈

(
Pk(K )

)q
,∀K ∈ T̃h} ,

V p
h,�3

: = {U ∈
(

L2(�3)
)p : U |K ∈

(
Pk(K )

)p
,∀K ∈ T̂h} ,

where T̃h = {K ∈ Th : K ⊂ �2}, and T̂h = {K ∈ Th : K ⊂ �3}. We assume that the boundary of each subdomain �i , i =
1, 2, 3, belongs to the set of boundary of K , or contains the vertex nodes of K .

3.1. Schemes with the forward Euler time discretization

We start introducing the schemes with the first order forward Euler method for the time discretization, and the higher 
order time discretization will be discussed in Section 3.2. The proposed schemes evolve the numerical solutions U1h , U2h
and U3h , which are assumed to be available at t = tn , denoted by Un

1h ∈ V 6
h,�1

, Un
2h ∈ W 4

h,�2
and Un

3h ∈ V 6
h,�3

, and will be 
computed at t = tn+1 = tn + 
tn , denoted by Un+1

1h , Un+1
2h and Un+1

3h .

3.1.1. Updating Un+1
1h

To get Un+1
1h , we apply to (7) with the DG method for the space discretization and the first order forward Euler method 

for the time discretization. That is, to look for Un+1
1h ∈ V 6

h,�1
, for ∀ �h ∈ V 6

h,�1
and ∀K ∈ Th , such that

∫
K

Un+1
1h · �hdx =

∫
K

Un
1h · �hdx + 
tn

∫
K

F1(Un
1h) · ∇�hdx

− 
tn
∫
∂ K

H1(Un,int
1h , Un,ext

1h ) · �hdS + 
tn
∫
K

S1(Un
2h, Un

3h) · �hdx , (10)

where H1(·, ·) denotes the numerical flux evaluated on the interface between two adjacent elements, and Un,int
1h , Un,ext

1h are 
the traces of Un

1h on ∂ K evaluated from the interior and exterior of element K . In this paper, we employ the upwind(UW) 
numerical flux [17] given by

H1(Un,int
1h , Un,ext

1h ) =

⎛
⎜⎜⎜⎝

nK × (Y E−nK ×H)
n,int
h +(Y E+nK ×H)

n,ext
h

Y n,int
h +Y n,ext

h

−nK × (Z H+nK ×E)
n,int
h +(Z H−nK ×E)

n,ext
h

Zn,int
h +Zn,ext

h

⎞
⎟⎟⎟⎠ ,

where Z = 1 =
√

μ denotes the local impedance, and nK denotes the unit outward normal of K .
Y ε
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3.1.2. Updating Un+1
2h and Un+1

3h

To get Un+1
2h , we apply to (8) with the DG method for the space discretization and the first order forward Euler method 

for the time discretization. That is, to look for Un+1
2h ∈ W 4

h,�2
, for ∀ �h ∈ W 4

h,�2
and ∀K ∈ T̃h , such that

∫
K

Un+1
2h · �hdx =

∫
K

Un
2h · �hdx + 
tn

∫
K

F2(Un
2h) · ∇�hdx

− 
tn
∫
∂ K

H2(Un,int
2h , Un,ext

2h ) · �hdS + 
tn
∫
K

S2(Un
1h, Un

2h) · �hdx , (11)

where H2(·, ·) denotes the numerical flux evaluated on the interface between two adjacent elements, and Un,int
2h , Un,ext

2h are 
the traces of Un

2h on ∂ K evaluated from the interior and exterior of element K . In [9], the following Lax-Friedrichs (LF) 
numerical flux is employed:

HL F
2 (Un,int

2h , Un,ext
2h ) = 1

2

[
F 2(Un,int

2h ) · nK + F 2(Un,ext
2h ) · nK − αn

(
Un,ext

2h − Un,int
2h

)]
,

where, αn is taken as the absolute value of eigenvalues in the direction nK of the hyperbolic system. However, as pointed out 
in [22], among the commonly employed exact or approximate Riemann solvers, the Lax-Friedrichs numerical flux introduces 
a relatively large amount of numerical viscosity, therefore, for long time wave simulation, a more robust Riemann solver is 
preferred. In this paper, we adopt the Harten-Lax-van Leer (HLL) numerical flux:

HH LL
2 (Un,int

2h , Un,ext
2h ) =

⎧⎪⎪⎨
⎪⎪⎩

F (Un,int
2h ) · nK if 0 ≤ Sint,

Sext F (Un,int
2h )·nK −Sint F (Un,ext

2h )·nK +Sint Sext (Un,ext
2h −Un,int

2h )

Sext−Sint if Sint < 0 < Sext,

F (Un,ext
2h ) · nK if Sext ≤ 0,

where, Sint and Sext are simply taken as [30]

Sint = min(V int − cint
f , V ext − cext

f ), cint
f =

√
5

3
κρ int 2/3

, (12)

Sext = min(V int + cint
f , V ext + cext

f ), cint
f =

√
5

3
κρext 2/3 (13)

where V int and V ext are the velocity components of the interior and exterior states with respect to the cell boundary ∂ K . 
More advanced approximate Riemann solver, for example, an entropy stable numerical flux for the HEFMEs will be explored 
in the future work.

Since (9) is an system of ordinary differential equations, with the first order forward Euler method we look for U n+1
3h ∈

V 6
h,�3

, such that

Un+1
3h = Un

3h + 
tn S3(Un
1h, Un

3h) . (14)

3.2. Schemes with high order time discretizations

In the previous subsection, we have only discussed the first order forward Euler time discretization. To match the high 
order accurate spatial DG discretization, the high order temporal discretizations will be used in the numerical implemen-
tation. Due to the presence of strong nonlinearity and complicated magneto-hydrodynamic coupling in this context, the 
HEFMEs admit discontinuous solutions, and the nonphysical numerical oscillations may induce the blow-up of the simula-
tion. In [8], Gottlieb et al. proposed a strong stability preserving high-order time discretization scheme which is stable in 
any norm and ensures total-variation-diminishing (TVD) numerical solutions. In this paper, we choose the third order TVD 
Runge-Kutta method

U (1) = Un + 
tnL(Un)

U (2) = 3

4
Un + 1

4
(U (1) + 
tnL(U (1)))

Un+1 = 1

3
Un + 2

3
(U (2) + 
tnL(U (2))) . (15)

We point out finally that the scheme (15) is a convex combination of the forward Euler time discretization.
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3.3. Numerical ingredients

Numerical investigations on complex optical phenomena are closely related to numerical settings. In this subsection, we 
will describe in details numerical ingredients, including the initial conditions, and the interface and absorbing boundary 
conditions, etc.

3.3.1. Initial conditions
Before excited by the electromagnetic fields, the electrons in the nanostructures are at rest if the thermal effect is 

ignored. Under this circumstance, the electron number density is equal to the ion number density n0 so that nanostructures 

are electrically neutral, where n0 could be evaluated via the plasma frequency ωp =
√

n0q2
e

me
. Therefore, the initial conditions 

are set as follows

E(x,0) = H(x,0) = 0, in �1 ,

ρ(x,0) = qen0, u(x,0) = 0, in �2 ,

P(x,0) = Jb(x,0) = 0, in �3 .

3.3.2. Boundary conditions on �2 = ∂�2
In order to solve the HEFMEs, two boundary conditions need to be prescribed, one of which is the boundary condition 

on the metal surface �2 = ∂�2. At the microscopic level, the charge density ρ varies continuously across the dielectric-
metal interface, and there is actually a transition region with a scale of a few atomic diameters where the charge density 
changes gradually down to be trivial [28,16]. However, the thickness of the transition layer is a negligible scale compared 
to the finest mesh that we are able to afford in domain discretizations. This fact makes it impossible for us to implement 
the ab-initio boundary condition in a macroscopic model [11]. We use a natural boundary condition in this work, namely 
∂ρ
∂n = 0. For the current density J, we employ the so-called slip boundary condition, i.e. n · J = 0. It implies that the current 
density is prohibited to travel out of the nanoparticle surface in a normal direction with respect to the interface while a 
tangential current shift is allowed. For the coupled polarization model, we do not need to specify any boundary conditions 
as the governing equations are a set of ordinary differential equations.

3.3.3. Artificial boundary conditions on �1 = ∂�1

We need to employ an artificial boundary enclosing �2 ∪ �3, denoted by �1 = ∂�1, for the practical computation. We 
claim that there is no intersection between �1 and the boundary of �2 ∪ �3. In this paper, we use the uniaxial perfectly 
matched layer (PML) [17] to absorb the electromagnetic waves propagating through the boundary �1 except for those tests 
with particular specifications. Let �p be the PML region (see Fig. 2) surrounding the finite truncation �1, and the modified 
formulations for (7) in �p are written as

∂U1

∂t
+ ∇ · F 1(U1) = S p(U1, U7), in �p × [0, T ] , (16)

and
dU7

dt
= S7, in �p × [0, T ] , (17)

where

S p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q x + (σx − σy)Hx

Q y + (σy − σx)H y

Q z − (σx + σy)Hz

P x + (σx − σy)Ex

P y + (σy − σx)E y

P z − (σx + σy)Ez

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, U7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q x

Q y

Q z

P x

P y

P z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σx Q x − σx(σx − σy)Hx

−σy Q y − σy(σy − σx)H y

−σxσy Hz

−σx P x − σx(σx − σy)Ex

−σy P y − σy(σy − σx)E y

−σxσy Ez

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, the parameters of the dissipative layer for absorbing the fields propagating in the i-th direction σi are given by

σi = σm

(
di

δ

)n

, i = x, y ,

where di, δ, n denote the distance from the PML-vacuum interface, the thickness of PML, and the degree of polynomials, 
respectively. σm is the maximum electric conductivity which can be determined by

R(0) = e−2σmδ/(n+1) ,

where R(0) denotes the theoretical reflection at normal incidence. The equations (16)-(17) are solved by the RKDG method 
as well.
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Fig. 2. Perfectly matched layer.

Fig. 3. Gaussian pulse: E A = 2.0, λ0 = 1200, td = 3.598 × 104, tb = 0.6td .

Fig. 4. Total-field and Scattered-field.

3.3.4. TF/SF technique
In order to stimulate the plasmon resonances in the metallic nanostructures, the initial conditions presented in 3.3.1 are 

not sufficient, and an extra appropriate wave source should be added during the computation. In this paper, we take the 
incident wave as a z-polarized Gaussian pulse modulated by the sine function

Ez = E Asin(ωmt)e
(− 4π(t−td)2

t2
b

)

, ωm = 2π

λ0
,

where λ0 is the carrier center wavelength, E A is the peak amplitude, td is the pulse duration, and tb is the optical 
bandwidth (see Fig. 3). To implement this source injection in simulations, since the popular method of hard source in 
computational electromagnetics may produce backward-scattered waves in a longtime simulation, we apply in this work 
the total-field/scattered-field (TF/SF) technique [27] which requires to divide the computational domain into a total-field 
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Fig. 5. Injection of sine plane wave via TF/SF, Left: Electric field Ez without object. Right: Electric field Ez with a square perfect electric conductor in total 
zone. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

zone and a scattered-field zone (see Fig. 4) through a virtual TF/SF boundary F inside �1. An incident wave is then intro-
duced into the total-field zone from the virtual boundary without introducing any nonphysical effects. Meanwhile, a simple 
process on numerical fluxes along the virtual boundary allows us to realize this purpose efficiently and accurately (see 
Fig. 5).

4. Numerical results

We present in this section numerical results which are computed based on the coupling system of (7)-(8) ( J b = 0 and �3

is empty) except for the last case in Section 4.2 where we compute the HEFMEs (7)-(8) together with the polarization model 
(9). In addition, all the simulations are performed with P k(k = 1, 2 or 3) elements on structured grids, and if not specified, 
only numerical results approximated by fourth-order P 3 elements are presented for illustration. All physical parameters and 
numerical results, including the dimensions of nanostructures, are shown in nondimensionalized units. The time step 
t is 
dynamically determined by


t = Ccf l
ax

x + ay


y

,

where ax = max(|ux| + c f , 1.0), ay = max(|u y | + c f , 1.0), c f =
√

5
3 k|ρ| 2

3 , Ccf l is the CFL number taken as 0.3, 0.18 and 0.1
for k = 1, k = 2 and k = 3 respectively.

4.1. Accuracy test

We start with a manufactured example to study the accuracy of the RKDG with two different numerical fluxes, termed 
as RKDG-UW-LF and RKDG-UW-HLL respectively. We take k = 0.8, qe

me
= 1, γ = 0.05 in the equations (7) and (8) and employ 

the following functions as the manufactured solutions
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = 1 + 0.5sin[2π(x + y − 2t)]
ux = 1

u y = 1

uz = 0

Hx = 0

H y = 0

Hz = cos(2πx)cos(2π y)sin(4παt)

Ex = αcos(2πx)sin(2π y)cos(4παt)

E y = −αsin(2πx)cos(2π y)cos(4παt)

Ez = 0

where α =
√

2
2 . The computational domain is �2 = �1 = [0, 1] × [0, 1]. Periodic boundary conditions are applied in both x−

and y-directions. In this experiment, the CFL numbers are taken as 0.3 and 0.18 for k = 1 and k = 2, while for k = 3, to 
maintain fourth-order accuracy in time, the time step is further restricted as dτ = dt4/3 with Ccf l = 0.3. In Table 2, we list 
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Table 2
Error table for ρ approximated by P 1, P 2 and P 3 element at T = 1.0 with LF numerical flux (left) and HLL numerical flux 
(right).

Mesh U W − L F U W − H LL

L2 error Order L∞ error Order L2 error Order L∞ error Order

P 1

10 × 10 3.50E-02 – 1.95E-01 – 2.03E-02 – 1.14E-01 –
20 × 20 8.74E-03 2.00 4.89E-02 2.00 4.37E-03 2.22 2.84E-02 2.00
40 × 40 2.20E-03 1.99 1.20E-02 2.03 1.02E-03 2.09 7.19E-03 1.98
80 × 80 5.51E-04 2.00 2.94E-03 2.03 2.53E-04 2.02 1.83E-03 1.98
160 × 160 1.38E-04 2.00 7.28E-04 2.01 6.28E-05 2.01 4.57E-04 2.00

P 2

10 × 10 5.78E-03 – 4.00E-02 – 2.11E-03 – 1.64E-02 –
20 × 20 7.11E-04 3.02 5.59E-03 2.84 2.50E-04 3.07 2.05E-03 3.00
40 × 40 8.34E-05 3.09 6.83E-04 3.03 3.00E-05 3.06 2.55E-04 3.01
80 × 80 1.02E-05 3.03 8.50E-05 3.01 3.71E-06 3.02 3.16E-05 3.01
160 × 160 1.30E-06 2.97 1.08E-05 2.98 4.63E-07 3.00 3.91E-06 3.01

P 3

10 × 10 3.40E-04 – 3.48E-03 – 1.68E-04 – 1.97E-03 –
20 × 20 2.86E-05 3.57 2.97E-04 3.55 1.08E-05 3.97 1.27E-04 3.96
40 × 40 2.07E-06 3.79 2.03E-05 3.87 6.88E-07 3.97 7.96E-06 4.00
80 × 80 1.36E-07 3.93 1.31E-06 3.96 4.24E-08 4.02 5.73E-07 3.80
160 × 160 8.61E-09 3.98 8.16E-08 4.00 2.64E-09 4.00 3.50E-08 4.03

the errors and the corresponding order of accuracy for ρ at T = 1.0. It shows that both schemes lead to optimal accuracy for 
Pk approximations with k = 1, 2, 3. However, due to the fact that the LF numerical flux is more dissipative, the numerical 
results in terms of LF numerical flux indicate a larger value on errors than those in term of the HLL numerical flux.

4.2. High-order harmonic generation

The high-order harmonic generation is a nonlinear optical process sensitive to the configurations of metallic nanostruc-
tures. In this test, we simulate the high-order harmonic generation from two typical metallic nanostructures, namely, an 
array of rectangular nanostructures (see the left of Fig. 6) and an array of L-shaped nanostructures (see the middle of 
Fig. 6). In addition, we also consider an array of L-shaped nanostructures with metallic materials and an array of rectan-
gular nanostructures with non-metallic materials (see the right of Fig. 6) for purpose of studying the influence of bound 
electrons on the generation of high order harmonic waves. In our simulations, the nanostructures are arranged periodically 
in x-direction with plasma frequency ωp = 4.560 × 10−2, and γ = 2.160 × 10−4. For simplicity, we only focus on one single 
structure by using periodic boundary condition in x-direction and PML in y-direction [16]. Measurements on the linear 
response and the SHG signal can be computed in terms of the integrals of the electric fields Ez and Ex along the probing 
line S as follows

Ê Linear = 1

|S|
∫
S

Ezds ,

Ê S HG = 1

|S|
∫
S

Exds .

We employ an uniform mesh 
x = 
y = 2.0 in the simulation and the final time T = 1.499 × 105. Based on the accu-
racy study in section 4.1, we provide numerical results obtained by both the RKDG-UW-LF scheme and the RKDG-UW-HLL 
scheme.

Firstly, we study the high order harmonic generation from the rectangular metallic nanostructures whose dimension is 
shown in Fig. 6 (Left). In Fig. 7, we plot the time history of linear response and SHG. As being shown in Fig. 7, there 
is no SHG from the rectangular metallic particle. This result is reasonable since the rectangular metallic nanostructure 
possesses a perfect centrosymmetric property which leads to a vanishing second-order nonlinear optical susceptibility tensor 
χ(2) prohibiting the SHG. However, the rectangular metallic nanostructure does allow for the third harmonic generation 
(THG) since the symmetric property would not remove the third-order nonlinear optical susceptibility tensor χ(3) . In Fig. 8
(Left), spectrums of these responses are presented. In order to show the spectrums apparently, a zoom-in plot of the 
spectrum is presented in Fig. 8 (Right). It can be observed that, the third-order harmonic generation (400), the fifth-order 
harmonic generation (240) and the seventh-order harmonic generation (171.4) are captured in the simulation. We observe 
that there is no significant difference between the results attained by RKDG-UW-LF scheme and RKDG-UW-HLL scheme, 
respectively.
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Fig. 6. Setup for simulations of high-order harmonic generations. Left: rectangular metallic nanostructure; middle: L-shaped metallic nanostructure; right: 
L-shaped metallic nanostructure adjacent to a rectangular non-metallic nanostructure.

Fig. 7. Time history of electric fields from a rectangular nanostructure.

Fig. 8. Spectrum with a rectangular nanostructure. Left: Spectrum of incident wave Ez , transmitted wave Ex, Ez ; right: Zoom-in plot of the spectrum.

Then, we take an investigation on the high order harmonic generation from the L-shaped metallic nanostructures (see 
Fig. 6 (middle) for the setup). In Fig. 9, we plot the time history of the linear response and the SHG. In Fig. 10 (Left), 
spectrums of these responses are presented. Since the centrosymmetry is broken in this case, the second order harmonic 
generation appears. As we can see from Fig. 10 that the fundamental wave (1200) can be frequency-doubled after propa-
gating through the nanostructure, and the higher order harmonic waves, such as the third-order harmonic generation (400), 
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Fig. 9. Time history of electric fields from a L-shaped nanostructure.

Fig. 10. Spectrum with an L-shaped nanostructure. Left: Spectrum of incident wave Ez , transmitted wave Ex, Ez ; right: Zoom-in plot of the spectrum.

Fig. 11. Spectrum from a nanostructure with bound electrons. Left: Spectrum of transmitted wave Ex, Ez ; right: Zoom-in plot of the spectrum.

the fifth-order harmonic generation (240) and the seventh-order harmonic generation (171.4) in the transmitted Ez , are also 
captured in the simulation. The above results associated with both the rectangular and the L-shaped metallic nanostructures 
are in a good agreement with those presented in [16]. Again, no significant difference between the results obtained by two 
DG schemes is observed.
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Fig. 12. ECS calculated by nonlinear HD model for Ag nanowire with radius r = 2.0.

Finally, we investigate the high order harmonic generation from a L-shaped metallic nanostructure, with a rectangular 
non-metallic material occupied nanostructure being located at its corner (see the right of Fig. 6), to study the influence of 
bound electrons on the generation of high order harmonic waves. The simulation setting is the same as the L-shaped case. 
In the simulations, we set nb = 58.0, ωb =

√
nbq2

e /me , γb = 0.8γ . In Fig. 11 (Left), spectrums of the linear and nonlinear 
optical responses are presented, in comparison with spectrums obtained from the L-shaped metallic nanostructure in the 
previous test. It can be observed that the SHG is enhanced when the interaction between the bound electrons and the 
external electromagnetic waves has been taken into account.

4.3. Nonlocal effect

For small optical particles, especially for particles with size down to subwavelength, apart from the surface plasmon, the 
bulk plasmon could be excited as well. In this test, we solve the HEFMEs in TE mode to investigate the nonlocal effect for 
the Ag nanowire. As in [10], we choose the nanowire with radius r = 2.0, the plasma frequency ωp = 2.885 × 10−2, and the 
damping constant γ = 0.01ωp . PML boundary conditions are employed in both x− and y-directions. To resolve the ECS in 
the time domain, we introduce the x-polarized incident wave propagating in y-direction by the TF/SF technique and collect 
the Fourier-transformed total field and scattered field on the TF/SF boundary. The ECS is calculated as follows

Csca(ω) =
∫

F n · Ssca(ω)dl

|Sinc(ω)| ,

Cabs(ω) = −
∫

F n · Stot(ω)dl

|Sinc(ω)| ,

Cext(ω) = Csca(ω) + Cabs(ω) ,

where n denotes the outward unit normal to the TF/SF boundary F , and S� denotes the time averaged Poynting vector

S�(ω) = 1

2
E�(ω) × H∗

�(ω) . (18)

Since this additional on-the-fly Fourier transform requires a big amount of computation, currently we can only provide P 2

results on uniform grids 
x = 
y = 0.04 for this test. And due to the very small difference of two different numerical 
fluxes, we here use RKDG-UW-LF scheme. We try to recover the normalized ECS with frequency ranges in 0.4ωp-1.4ωp

[10]. In the simulations, we adopt a short Gaussian pulse with tb = 2.998, λ0 = 300 carrying effective information in the 
range 0.4ωp -1.4ωp to perform a broad-band calculation. We simulate the optical interaction for a long time such that 
the scattered field decays adequately into a steady state and we set the final time T = 5.996 × 104 for this purpose. In 
Fig. 12, we present the ECS being normalized with respect to the diameter of nanowire as a function of the normalized 
angular frequency ω/ωp . It can be seen from Fig. 12 that the bulk plasmon resonances beyond the plasma frequency 
can be excited with the 2D HEFMEs. A slight blue-shift (from ω/ωp = 0.703 to ω/ωp = 0.714) of the surface plasmon 
resonance has been retrieved in the ECS as well. In order to make a further exploration on the source for the appearance 
of bulk plasmon resonances, we switch off the different nonlinear terms (quantum pressure term: kρ5/3, convection terms: 
ρuiu j, i, j = x, y, z, magnetic terms: ui H j −u j − Hi, (i, j) = (x, y), (y, z), (z, x)) in the equation (8), and make the calculation 
of the ECS, respectively. It can be observed from Fig. 12 that, apart from the ECS calculated from the 2D HEFMEs without 
the quantum pressure term, i.e., the 2D NHD model, all other ECSs are in perfect match with the calculated ECSs associated 
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Fig. 13. The bulk plasmon resonances of the current density (ω/ωp = 1.1835).

to the HEFMEs. This indicates that, among all three terms, the quantum pressure makes a unique contribution to appearance 
of the nonlocal effect. In Fig. 13, we provide with the Fourier-transformed current density at ω/ωp = 1.1835. As it is shown, 
the resonances, namely the bulk plasmon, get excited in the bulk of nanowire.

5. Conclusions

In this paper, we develop an RKDG method for Maxwell’s equations nonlinearly coupled with gas dynamic models with 
both the quantum pressure and bound electrons being taken into account. In particular, in addition to using Lax-Friedrichs 
numerical flux for electron fluid equation, we also consider using of the Harten-Lax-van-Leer numerical flux. It turns out 
that the proposed RKDG-UW-HLL scheme is more accurate than the RKDG-UW-LF scheme for HEFMEs. Numerical results 
show that high order harmonic waves can be produced from the L-shaped nanostructure and the rectangular nanostructure, 
and the bulk plasmon resonance can be excited for the metallic nanowire. The effect of bound electrons on the generation 
of high order harmonic waves has been confirmed in numerics. Meanwhile, a switch-on-and-off comparison reveals that the 
quantum pressure term in the HEFMEs is essentially important for the production of nonlocal effects. More advanced ap-
proximate Riemann solvers, numerical investigations on the influence of spill-out electrons on these important and complex 
optical phenomena associated to nanostructures with complex and irregular geometry, and three dimensional simulations 
will be envisioned in our future work.
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