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In this paper, we develop three conservative discontinuous Galerkin (DG) schemes for the 
one-dimensional nonlinear dispersive Serre equations, including two conserved schemes 
for the equations in conservative form and a Hamiltonian conserved scheme for the 
equations in non-conservative form. One of the schemes owns the well-balanced property 
via constructing a high order approximation to the source term for the Serre equations 
with a non-flat bottom topography. By virtue of the Hamiltonian structure of the Serre 
equations, we introduce an Hamiltonian invariant and then develop a DG scheme which 
can preserve the discrete version of such an invariant. Numerical experiments in different 
cases are performed to verify the accuracy and capability of these DG schemes for solving 
the Serre equations.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

We introduce and study the discontinuous Galerkin (DG) methods for the Serre equations⎧⎪⎨⎪⎩
ht + (hu)x = 0,

ut + uux + ghx + βh−1(h2γ )x = 0,

γ = h(ux
2 − uxt − uuxx),

(1.1)

where h(x, t) represents the total water depth, u(x, t) is the averaged velocity of the fluid, g is the gravitational constant, β
is a parameter and γ is the fluid vertical acceleration on the free surface.

The Serre equations (1.1) can be used to describe the shallow water with large amplitude on the free surface. In [40], 
we know that Euler equations of the incompressible fluid flow describe the propagation of the full water waves on the free 
surface. Since the difficulty in solving this problem is mainly caused by the free surface, various approximate models for 
this case are presented, and the corresponding analytical theories and numerical simulations are also developed. In these 
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models, the propagation of the waves under the assumption of shallow water with large amplitude is governed by the Serre 
equations, while for small amplitude or weakly nonlinear shallow water waves the model reduces to the classical Boussinesq 
system [40]. The Serre equations can be regarded as an asymptotic approximation of the two-dimensional Euler equations. 
It is a fully nonlinear dispersive system that models two-way propagation of long waves on the surface of an ideal fluid in a 
channel. And if we ignore all the dispersive terms, it will become a hyperbolic system of shallow water wave. The dispersive 
terms combined by the temporal and spatial derivatives are the major difficulty in solving the Serre equations [16].

The Serre equations were first derived by Francois Serre [36] in 1953 and then restudied by Su and Gardner [39], Green 
[22], Seabra-Santos et al. [35], Green and Naghdi in [23] derived the system with two spatial dimensions for general uneven 
bottoms in 1976. Lannes and Bonneton in [24] provided the formal derivation of the equations from Euler equations and the 
justification for several approximative water wave models of Euler equations. Further studies can be got from some recent 
literatures by Barthélemy [3], Dias and Milewski [16], Carter and Cienfuegos [9], and the references therein.

There are various numerical methods dealing with the nonlinear Serre equations including higher order dispersive terms. 
In [26], a pseudo-spectral method was proposed and used to solve the one-dimensional Serre equations for free surface 
waves in a homogeneous layer of an ideal fluid. In [29,7,8,2,18], finite difference and finite volume methods were also 
applied in simulating all the processes of wave transformation with nonlinear dispersive effect. For the equations with 
non-flat bottoms (Green-Naghdi equations), the well-balanced central DG method was proposed in [25], in which the el-
liptic part was solved by the continuous finite element method. A local DG (LDG) scheme was presented in [31] for the 
one-dimensional Green-Naghdi equations based on rotational characteristics in the velocity field. For the two-dimensional 
problem, Duran and Marche developed a LDG method by rewriting the equations as a hyperbolic-elliptic system in [17], and 
a hybridized DG method was introduced in [34] for the splitting system (the hyperbolic part and dispersive part). As for the 
shallow water equations and other hyperbolic conservation laws, the conservative scheme is demanded when the solution 
is not smooth enough. In this paper, we will develop the LDG methods for the Serre equations based on their conservation 
laws and also well-balanced property as in the shallow water equations.

The DG method which is a class of finite element methods was first introduced by Reed and Hill [33] for solving the neu-
tron transport linear equation in 1973. Completely discontinuous piecewise polynomial space is used for the test functions 
and the numerical solutions in this method. Later, Cockburn and Shu have made a great contribution in developing the DG 
method in a series of papers [11,13–15]. They used the stable high order Runge-Kutta methods for temporal discretization 
and the exact or approximate Riemann solvers as the interface fluxes in spatial discretization. In addition, they also de-
signed the LDG method for solving convection-diffusion problems containing second derivative terms, which was motivated 
by Bassi and Rebay [4] in solving the compressible Navier-Stokes equations. At present, the DG method is widely used in 
many areas, such as gas dynamics, electromagnetism, magnetohydrodynamics, modeling of shallow water, etc. Moreover, 
the DG method enjoys many attractive properties. First we can get high order accuracy for the numerical solution by using 
element-based test functions. Second the DG method can be applied on arbitrary unstructured meshes with the suitable 
choices of the interelement boundary fluxes. Finally, parallel computing can easily be applied due to local data commu-
nications. In addition to the advantages given above, the LDG method contains auxiliary variables that approximate the 
gradients of the primary solutions to the expected order of accuracy. Then the auxiliary variables can be locally eliminated. 
The LDG methods have been generalized to nonlinear wave equations in [49,50,43–47,51], such as KdV equation, Camassa-
Holm equation and nonlinear Schrödinger equation, etc. We refer to the review paper [48] of LDG methods for high-order 
time-dependent partial differential equations and the references therein.

Most recently, a series of schemes so called structure-preserving schemes for nonlinear wave equations have been at-
tracted considerable attention. For some integrable equations, such as KdV type equations [6,27,52,53], Zakharov system 
[42], Schrödinger-KdV system [41], etc., the authors proposed various conservative numerical schemes to “preserve the 
structures”. For the Serre equations, the aliasing or spurious dissipative effects will result in significant errors for solving 
large amplitude or rapidly oscillating waves, such as the dispersive shock waves. Therefore, Mitsotakis and Dutykh [30]
constructed a non-dissipative finite element method to approximate the rapidly oscillating waves accurately. A fundamental 
property of the Serre equations is its Hamiltonian structure. From the following conservation laws derived by the equations 
(1.1),

(hu)t + (hu2 + 1

2
gh2 + βh2γ )x = 0, (1.2)

(hu − β(h3ux)x)t + (hu2 + 1

2
gh2 − 2βh3u2

x − βh3uuxx − 3βh2hxuux)x = 0, (1.3)

(u − βh−1(h3ux)x)t + (
1

2
u2 + gh − 1

2
h2u2

x − βuh−1(h3ux)x)x = 0, (1.4)

(
1

2
hu2 + 1

2
βh3u2

x + 1

2
gh2)t + ((

1

2
u2 + 1

2
βh2u2

x + gh + βhγ )hu)x = 0, (1.5)

we have the corresponding conservative quantities E0, E1, E2 and Hamiltonian H in the relevant domain I ,

E0 =
∫

hudx,
I
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E1 =
∫
I

(hu − β(h3ux)x)dx,

E2 =
∫
I

(u − βh−1(h3ux)x)dx,

H =
∫
I

1

2
(hu2 + βh3u2

x + gh2)dx.

The numerical schemes can be established based on the above conserved quantities. For the form (1.2), the main difficulty 
in designing E0 conserved numerical scheme lies in the mixed spatial and temporal derivatives in γ . Therefore, we design 
and implement three kinds of numerical schemes which are all based on the DG methods for the one-dimensional Serre 
equations. The first two are constructed for E1 and E2 in the conservative form, and the last one preserves the Hamiltonian 
invariant H in a non-conservative form. The E1 conserved scheme can maintain the still-water stationary for the water wave 
equations over non-flat bottom topography, so called well-balanced scheme. For the Hamiltonian (H) conserved DG scheme, 
we take advantage of the DG method for Hamilton-Jacobi equations [10] to deal with the nonlinear terms. Moreover, the 
stability of the Hamiltonian for the Serre equations would be proved theoretically.

The present paper is organized as follows. In Section 2, the E1 and E2 conserved DG schemes are designed in detail. For 
the E1 conserved scheme, we also discuss and prove its well-balanced property when the bottom is not flat. Section 3 is 
devoted to elaborate the Hamiltonian (H) conserved DG scheme. Moreover, the stability based on the Hamiltonian is also 
given in this part. In Section 4, numerical experiments in different circumstances are provided to illustrate the accuracy and 
capability of these schemes. Concluding remarks are given in Section 5.

2. The LDG discretization in conservative form

In this section, we devote to design LDG schemes for the Serre equations by adopting the conservation laws E1 and E2
in (1.3) and (1.4) respectively, and then give the corresponding algorithm flowcharts.

To discretize the spatial derivatives, we proceed as follows. For each partition of the interval I = [a, b], we set the cells 
and cell centers as I j = [x j− 1

2
, x j+ 1

2
], x j = 1

2 (x j− 1
2

+ x j+ 1
2
) for j = 1, · · · , N , and denote the mesh size �x = max

1≤ j≤N
�x j

with �x j = x j+ 1
2

− x j− 1
2

. The mesh is assumed to be quasi-uniform, namely there exists a positive constant c such that 
�x ≤ c min

1≤ j≤N
�x j .

We seek the numerical approximations belonging to the finite element space

Vh = {v(x) : v(x) ∈ Pk(I j) for x ∈ I j, j = 1, · · · , N},
where Pk(I j) denotes polynomials in I j of degree up to k. It transpires that the functions belonging to Vh could be dis-
continuous across the cell interfaces. For v ∈ Vh , the values of v at x j+ 1

2
, from the left and right cells I j and I j+1, can be 

regarded as v−
j+ 1

2
and v+

j+ 1
2

, respectively. The notations [ [v] ] = v+ − v− and { {v} } = 1
2 (v+ + v−) are used to represent the 

jump and the mean of the function at the cell interfaces.

2.1. E1 conserved DG scheme

In order to treat the mixed spatial and temporal derivatives in (1.1), we adopt the conservation law (1.3) and develop the 
E1 conserved DG scheme for the following system

ht + (hu)x = 0, (2.1a)

zt + (uz + 1

2
gh2 − 2βh3q2)x = 0, (2.1b)

hu − β(h3q)x = z, (2.1c)

q − ux = 0, (2.1d)

with periodic boundary conditions. To design the LDG method, we accomplish the complete schemes for the system as 
follows. For simplicity, we still use h, u, z and q to denote the numerical solutions.

For the time-dependent equations (2.1a) and (2.1b), assume that u and q are known and h and z are to be solved, then 
we can formulate the DG method as follows: Find h, z ∈ Vh such that, for all test functions θ, ϕ ∈ Vh ,∫

I

htθdx −
∫
I

(hu)θxdx + ( f̂1θ
−) j+ 1

2
− ( f̂1θ

+) j− 1
2

= 0, (2.2)
j j
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∫
I j

ztϕdx −
∫
I j

(uz + 1

2
gh2 − 2βh3q2)ϕxdx + ( f̂2ϕ

−) j+ 1
2

− ( f̂2ϕ
+) j− 1

2
= 0, (2.3)

∀ j = 1, · · · , N . The “hat” terms f̂1 and f̂2 appear on the cell boundary terms are the so-called numerical fluxes, which 
are single valued functions from integration by parts and should be designed to ensure the stability of the schemes. For 
conservation laws, the numerical fluxes are usually Lipschitz continuous functions and preserve the monotone property and 
consistent property, named the monotone fluxes [12]. Here, we can choose the following dissipative numerical flux

f̂1 = {{hu}} − α

2
[[h]], (2.4)

f̂2 = {{uz + 1

2
gh2 − 2βh3q2}} − α

2
[[z]], (2.5)

where α = max(|u| + √
gh) is the maximum taken in the relevant interval. We have omitted the half-integer indices j + 1

2
as all quantities in (2.4) are computed at the same cell interfaces.

For the time-independent equations (2.1c) and (2.1d), assume that h and z are known and u and q are to be solved, the 
LDG scheme can be formulated as follows: Find u, q ∈ Vh such that, for all test functions ρ , φ ∈ Vh ,∫

I j

huρdx +
∫
I j

βh3qρxdx − (ĥ3qρ−) j+ 1
2

+ (ĥ3qρ+) j− 1
2

=
∫
I j

zρdx, (2.6a)

∫
I j

qφdx +
∫
I j

uφxdx − (̂uφ−) j+ 1
2

+ (̂uφ+) j− 1
2

= 0. (2.6b)

Here we take the alternating fluxes [48] such as

ĥ3q = (h3q)−, û = u+. (2.7)

2.1.1. Algorithm flowchart (I)
This part shows the implementation about the fully-discrete E1 conserved scheme. For simplicity, we choose the Euler 

forward method to illustrate the numerical evolution from time level tn to time level tn+1. In numerical experiments, the 
explicit SSP/TVD Runge-Kutta methods [37,38] are adopted, which can be viewed as the convex combinations of the Euler 
forward method.

Let h, u, z and q denote the vectors containing the degrees of freedom for the numerical solutions h, u, z and q, respec-
tively. Given the solution hn, un, zn and qn at the time level tn , the algorithm can be divided into two steps.

Step I: From the equations (2.2) and (2.3) equipped with the corresponding numerical fluxes (2.4) and (2.5), we have the 
fully discrete scheme in the matrix form:

hn+1 − hn

�tn
= res1(hn,un), (2.8)

zn+1 − zn

�tn
= res2(hn,un, zn,qn), (2.9)

by the Euler forward method with the time step �tn = tn+1 − tn .
Step II: After we get hn+1 and zn+1 from the above, based on the schemes (2.6a) and (2.6b) with the fluxes (2.7), we 

can solve un+1, qn+1 in the following matrix form

A(hn+1)un+1+B(hn+1)qn+1 = zn+1, (2.10)

qn+1+Cun+1 = 0, (2.11)

where the matrices A, B and C are the corresponding discrete operators in the scheme. Then we get all the numerical 
solutions at time level tn+1.

2.1.2. The well-balanced scheme
In this subsection, we turn to present the well-balanced property of E1 conserved DG scheme for the Serre equations 

with a non-flat bottom, also known as Green and Naghdi equations in [23]. Thereinto, h can be represented as the sum of d
and η, where d denotes the bottom topography and η is the free surface elevation. In consideration of the one-dimensional 
shallow water flows with non-flat bottom topography, the model can be formulated as follows:
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ht + (hu)x = 0, (2.12a)

(hu)t + (hu2 + 1

2
gh2 + βh2γ + 1

2
h2�)x = (gh + 1

2
hγ + h�)dx, (2.12b)

with

� = −dxut − dxuux − dxxu2. (2.13)

It can be seen that for the flat bottom, meaning d(x) is a constant, the equation (2.12b) is equivalent to the equation (1.2).
The well-balanced methods [5] are introduced to exactly preserve the still-water stationary solution at a discrete level. 

For the Serre equations, the still-water stationary wave solution can be represented as follows,

u = 0 and η = h − d = constant. (2.14)

In order to deal with the mixed spatial and temporal derivatives in (2.12b), we introduce a new unknown variable

ω = −β(h3ux)x + h(1 − hxdx − 1

2
hdxx + d2

x)u. (2.15)

Notice that ω = z with the flat bottom. The equation (2.15) can be discretized similarly as the LDG scheme (2.6a) and (2.6b)
for z. Thus we omit the details here.

As in [25], we rewrite the time-dependent part of the system (2.12a)–(2.12b) into a balance law

ηt + (hu)x = 0, (2.16)

ωt + (ωu + 1

2
gh2 − 2βh3u2

x − h2uuxdx)x = ghdx + 1

2
h2uuxdxx + hu2dxdxx. (2.17)

Denoting U = (η, ω)T as the unknowns, we formulate the E1 conserved scheme for the balance equations as follows: Find 
η, ω ∈ Vh such that, for all test functions θ1, θ2 ∈ Vh ,∫

I j

Ut · 
dx −
∫
I j

F · 
xdx + ( F̂ · 
−) j+ 1
2

− ( F̂ · 
+) j− 1
2

=
∫
I j

S · 
dx, ∀ j = 1, · · · , N, (2.18)

where 
 equals (θ1, θ2)
T , the flux is taken as

F (U ) = (hu,ωu + 1

2
gh2 − 2βh3u2

x − h2uuxdx)
T ,

and the source term is given by

S = (0, ghdx + 1

2
h2uuxdxx + hu2dxdxx)

T .

In general, the numerical scheme (2.18) does not have the well-balanced property. Based on the idea in [32], we dis-
cretize the source term as follows:∫

I j

Ut · 
dx −
∫
I j

F · 
xdx + ( F̂ · 
−) j+ 1
2

− ( F̂ · 
+) j− 1
2

=
∫
I j

S1 · 
dx + S̃ j, (2.19)

with

S1 = (0,
1

2
h2uuxdxx + hu2dxdxx)

T ,

and

S̃ j = (0, s̃ j)
T ,

s̃ j = 1

2
g(−

∫
I j

d2(θ2)xdx + {{d2
j+ 1

2
}}(θ2)

−
j+ 1

2
− {{d2

j− 1
2
}}(θ2)

+
j− 1

2
)

+ gη̄ j(−
∫
I j

d(θ2)xdx + {{d j+ 1
2
}}(θ2)

−
j+ 1

2
− {{d j− 1

2
}}(θ2)

+
j− 1

2
)

+
∫
I j

g(η − η̄ j)dxθ2dx, (2.20)
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where s̃ j is the high order approximation of the source term 
∫

I j
ghdxθ2dx and η̄ j = 1∣∣I j

∣∣ ∫
I j

ηdx denotes the mean of η over 

I j . F̂ is a monotone flux, e.g. the Lax-Friedrichs flux.
In order to ensure the unique solvability of the equation (2.15) in the still-water stationary, the following assumptions 

are needed [25]:

(A1) The water height h in the still-water stationary solution considered here has a strictly positive lower bound.
(A2) 1 − 1

2 hdxx > 0.

Now we turn to prove the well-balanced property of the modified scheme (2.19).

Proposition 2.1. (Well-balanced property) Under the assumptions (A1) and (A2), the modified E1 conserved DG scheme described by 
(2.19) for the Serre equations with non-flat bottom has the well-balanced property.

Proof. Let Un (n ∈ N) be the numerical solution of (2.19) at time level tn . For brevity, here we consider Euler forward 
time discretization, which can be easily generalized to the SSP/TVD Runge-Kutta methods. Then we apply them into (2.19), 
leading to∫

I j

Un+1 · 
dx =
∫
I j

Un · 
dx + �tn(

∫
I j

F n · 
xdx − ( F̂ n · 
−) j+ 1
2

+( F̂ n · 
+) j− 1
2

+
∫
I j

Sn
1 · 
dx + ( S̃n) j). (2.21)

By induction, first we assume

Un = (C0,0)T and un = 0, (2.22)

where C0 is a constant. From this assumption we want to deduce that the numerical solution computed from (2.21) satisfies

Un+1 = (C0,0)T and un+1 = 0. (2.23)

By virtue of the assumptions (2.22), the equation (2.21) becomes

ηn+1 = ηn = C0, (2.24)∫
I j

ωn+1θ2dx = �tn
(∫

I j

1

2
g(hn)2(θ2)xdx − (

1

2
g{{(hn)2}}(θ2)

−) j+ 1
2

+ (
1

2
g{{(hn)2}}(θ2)

+) j− 1
2

+ (s̃n) j

)
. (2.25)

Denoting the sum of the right-hand side of equation ((2.25)) by R j , we can get

R j = �tn
(∫

I j

1

2
g(hn)2(θ2)xdx − (

1

2
g{{(hn)2}}(θ2)

−) j+ 1
2

+ (
1

2
g{{(hn)2}}(θ2)

+) j− 1
2

+ (s̃n) j

)

= �tn
(∫

I j

1

2
g((hn)2 − (dn)2 − 2η̄n

j d
n)(θ2)xdx − 1

2
g({{(hn)2

j+ 1
2
}} − {{(dn)2

j+ 1
2
}} − 2η̄n

j {{dn
j+ 1

2
}})(θ2)

−
j+ 1

2

+ 1

2
g({{(hn)2

j− 1
2
}} − {{(dn)2

j− 1
2
}} − 2η̄n

j {{dn
j− 1

2
}})(θ2)

+
j− 1

2
+

∫
I j

g(ηn − η̄n
j )d

n
xθ2dx

)

= �tn
(∫

I j

1

2
g(ηn)2(θ2)xdx − 1

2
g{{(ηn)2

j+ 1
2
}}(θ2)

−
j+ 1

2
+ 1

2
g{{(ηn)2

j− 1
2
}}(θ2)

+
j− 1

2

)
= 0, (2.26)

where we take use of the relationship h = d + η and the fact ηn = η̄n
j = C0 by (2.22). Then the equations (2.24)–(2.25) lead 

to Un+1 = (C0, 0)T . As the assumptions (A1) and (A2) ensure the unique solvability of the finite element discretization, it 
implies un+1 = 0. This completes our proof. �



J. Zhao et al. / Journal of Computational Physics 421 (2020) 109729 7
2.2. E2 conserved DG scheme

Similar to the development of the E1 conserved scheme, we adopt (1.1) and (1.4) to construct the E2 conserved scheme. 
The Serre equations are rewritten as follows:

ht + (hu)x = 0, (2.27a)

z̃t + (ũz − 1

2
u2 + gh − 1

2
h2q2)x = 0, (2.27b)

u − h−1 p = z̃, (2.27c)

p − β(h3q)x = 0, (2.27d)

q − ux = 0. (2.27e)

Without ambiguity, we still use h, ̃z, u, p, q to denote the numerical approximations. The E2 conserved DG scheme for 
(2.27a)-(2.27e) can be formulated as follows: Find h, u, q, ̃z, p ∈ Vh , such that, for all test functions θ , ϕ , ρ , ψ and φ ∈ Vh ,∫

I j

htθdx −
∫
I j

(hu)θxdx + ( f̂1θ
−) j+ 1

2
− ( f̂1θ

+) j− 1
2

= 0, (2.28)

∫
I j

z̃tϕdx −
∫
I j

(ũz − 1

2
u2 + gh − 1

2
h2q2)ϕxdx + ( f̂4ϕ

−) j+ 1
2

− ( f̂4ϕ
+) j− 1

2
= 0, (2.29)

∫
I j

pρdx +
∫
I j

βh3qρxdx − (ĥ3qρ−) j+ 1
2

+ (ĥ3qρ+) j− 1
2

= 0, (2.30)

∫
I j

uψdx −
∫
I j

h−1 pψdx =
∫
I j

z̃ψdx, (2.31)

∫
I j

qφdx +
∫
I j

uφxdx − (̂uφ−) j+ 1
2

+ (̂uφ+) j− 1
2

= 0, (2.32)

where the numerical fluxes are chosen as

f̂1 = {{hu}} − α

2
[[h]], (2.33)

f̂4 = {{ũz − 1

2
u2 + gh − 1

2
h2q2}} − α

2
[[̃z]], (2.34)

ĥ2q = (h3q)−, û = u+, (2.35)

where α = max(|u| + √
gh) is the maximum taken in the relevant interval.

2.2.1. Algorithm flowchart (II)
Similar to the fully discrete E1 conserved scheme, the E2 conserved scheme coupled with the Euler forward time dis-

cretization can be divided in two steps. Given the solution hn,un, ̃zn, pn and qn at the time level tn , the algorithm can be 
divided into two steps.

Step I: From the time dependent equations (2.28) and (2.29) with the fluxes (2.33) and (2.34) we have the fully discrete 
scheme in the matrix form:

hn+1 − hn

�tn
= res1(hn,un), (2.36)

z̃n+1 − z̃n

�tn
= res4(hn,un, z̃n,qn), (2.37)

by the Euler forward method with the time step �tn = tn+1 − tn .
Step II: After we get hn+1 and z̃n+1 from the last step, based on the time independent schemes (2.30), (2.31) and (2.32)

with the numerical fluxes (2.35), we can solve the corresponding linear system to get un+1, pn+1, qn+1 .
Thus we obtain all the numerical solutions at the next time step tn+1.
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3. The DG discretization in non-conservative form

In this section, we design and prove a Hamiltonian (H) conserved DG scheme and give its algorithm flowchart.
Combining (1.1) and (1.3) and after some manipulation, we can obtain the Serre equations in the following non-

conservative form:

ht + (hu)x = 0, (3.1)

hut − β(h3ux)xt + huux − β(u(h3ux)x)x + 1

2
g(h2)x − 2β(h3u2

x)x = 0. (3.2)

Introducing some auxiliary variables m, p, q, s, w, k, v, r,

m − hu = 0,

p − 1

2
u2 = 0,

s − h3q = 0,

q − ux = 0,

w − sx = 0,

k − (hu)x = 0,

v − 3

2
h2qk = 0,

r − 1

2
h2qmx − h2mqx − hqmhx = 0,

(3.3)

the Serre equations can be written as follows:

ht + (hu)x = 0, (3.4)

hut − βwt + hpx + 1

2
g(h2)x − β(v + r)x = 0. (3.5)

We will introduce the standard L2 projection operator P of a function ω into the finite element space Vh , i.e., for all 
v ∈ Pk(I j),∫

I j

(P (ω) − ω)vdx = 0, ∀ j = 1, · · · , N, (3.6)

and define the discrete derivative operator

D j(ω;ρ) =
∫
I j

ωρxdx − (ω̂ρ−) j+ 1
2

+ (ω̂ρ+) j− 1
2
,

where the numerical flux ω̂ is to be determined. Then for the equations (3.4), (3.5) and the auxiliary equations (3.3), 
the H conserved DG scheme can be constructed as follows: Find h, u, w, q, k, r ∈ Vh such that, for all test functions 
θ, φ, ζ, τ , γ , μ ∈ Vh ,∫

I j

htθdx − D j(hu; θ) = 0, (3.7)

∫
I j

hutφdx − β

∫
I j

wtφdx + D j(hφ; p) − 1

2
g D j(h

2;φ) + βD j(v + r;φ) = 0, (3.8)

∫
I j

qτdx + D j(u;τ ) = 0, (3.9)

∫
I

kγ dx + D j(hu;γ ) = 0, (3.10)
j
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∫
I j

wζdx + D j(s; ζ ) = 0, (3.11)

∫
I j

rμdx − 1

2
D j(h

2qμ;m) − D j(h
2mμ;q) − D j(hmqμ;h) = 0, (3.12)

with m =P (hu), p =P ( 1
2 u2), s =P (h3q) and v =P ( 3

2 h2qk) and the numerical fluxes

ĥu = {{hu}}, ĥφ = {{hφ}}, ĥ2 = h+h−, (3.13)

v̂ + r = v+ + r+, ŝ = s+, û = u−, (3.14)

̂h2qμ = {{h2qμ}}, ̂h2mμ = {{h}}{{hμ}}{{m}}, ̂hmqμ = {{hμ}}{{m}}{{q}}. (3.15)

Here the choices of the numerical fluxes in the scheme are not unique, which can be seen from the proof of its conservation 
of Hamiltonian.

3.1. H-stability

In this part, we prove the Hamiltonian conservation of the above scheme. For brevity, we define

(v, w) :=
N∑

j=1

∫
I j

v wdx, D(v; w) :=
N∑

j=1

D j(v; w). (3.16)

Proposition 3.1. (H-stability) The solution to the scheme (3.7)–(3.12) with the numerical fluxes (3.13)–(3.15) satisfies the following 
H-stability:

d

dt

∫
I

1

2
(hu2 + gh2 + βh3q2)dx = 0. (3.17)

Proof. Summing up the DG schemes (3.7)–(3.12) over j from 1 to N , we have

(ht, θ) − D(hu; θ) = 0, (3.18)

(hut, φ) − β(wt, φ) + D(hφ; p) − 1

2
g D(h2;φ) + βD(v + r;φ) = 0, (3.19)

(w, ζ ) + D(s; ζ ) = 0, (3.20)

(q, τ ) + D(u;τ ) = 0, (3.21)

(k, γ ) + D(hu;γ ) = 0, (3.22)

(r,μ) − D(
1

2
h2qμ;m) − D(h2mμ;q) − D(hmqμ;h) = 0. (3.23)

By introducing a new auxiliary variable ν =P ( 3
2 h2q2) and taking the test functions θ = p + gh − βν in (3.18) and φ = u in 

(3.19), it follows that

(ht, p + gh − βν) − D(hu; p + gh − βν) = 0,

(hut, u) − β(wt, u) + D(hu; p) − 1

2
g D(h2; u) + βD(v + r; u) = 0.

If the following identities hold

D(hu; gh) + 1

2
g D(h2; u) = 0, (3.24)

D(hu;ν) + D(v; u) = 0, (3.25)

D(r; u) = 0, (3.26)

then we have

(ht, p + gh − βν) + (hut, u) − β(wt, u) = 0. (3.27)
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The equality (3.24) can be obtained easily by substituting the numerical fluxes into it.
To obtain (3.26), by choosing τ = r, μ = q in (3.21) and (3.23) and from the identities

D(
1

2
h2q2;m) + D(h2mq;q) + D(hmq2;h) = 0, (3.28)

D(r; u) + D(u; r) = 0, (3.29)

we can deduce that (r, q) = 0 and D(r; u) = D(u; r) = 0.
For (3.25), taking τ = v and γ = ν in (3.21) and (3.22)

(q, v) + D(u; v) = 0,

(k, ν) + D(hu;ν) = 0,

and the identity

D(v; u) + D(u; v) = 0, (3.30)

implies that

D(hu;ν) + D(v; u) = −(k, ν) + (q, v) = −(k,
3

2
h2q2) + (q,

3

2
h2qk) = 0.

From the time derivative of the equations (3.20) and (3.21) with the test functions ζ = u and τ = st , we have

(wt, u) + D(st; u) = 0, (3.31)

(q, st) + D(u; st) = 0. (3.32)

Thus by the identity

D(st; u) + D(u; st) = 0, (3.33)

we get

−(wt, u) = (q, st) = (q, (h3q)t).

Also from

(ht, ν) = (ht,
3

2
h2q2),

it follows that

−β(ht, ν) − β(wt, u) = 1

2

∫
I

β(h3q2)tdx.

Similarly we can obtain

(ht, p + gh) + (hut, u) = 1

2

∫
I

(hu2 + gh2)tdx.

Thus, we see that the equation (3.27) is identical to the (3.17), which completes the proof. �
3.2. Algorithm flowchart (III)

This part displays some details about the implementation for the H conserved DG scheme. First, we rewrite the semi-
discrete scheme into the following vector form as follows:

ht = res5(h, u), (3.34)

D(h)ut − βwt = res6(h, u), (3.35)

with w =C(h)u and the matrices C(h) and D(h) are the corresponding discrete matrix in the scheme. Notice that there 
are two equations with three time derivative vectors h, u and w. Thus unlike the E1 and E2 conserved schemes, the fully 
discrete H conserved scheme can not be divided into time dependent and independent parts. Given the solution hn,un at 
time tn , the forward Euler method can be divided into two steps.
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Step I: First, from the equation (3.34), we obtain hn+1 from

hn+1 − hn

�tn
= res5(hn,un). (3.36)

Step II: Then for the equation (3.35), we get un+1 from

D(hn)
un+1 − un

�tn
− β

C(hn+1)un+1 − C(hn)un

�tn
= res6(hn,un), (3.37)

in which we need to solve a global linear system.
For higher order SSP/TVD Runge-Kutta methods, the convex combination of the forward Euler method will be performed 

on the term (hu − βw) other than u to get better performance numerically. For example, the second order SSP/TVD Runge-
Kutta method is as follows:

h∗ − hn

�tn
= res5(hn,un), (3.38)

D(hn)
u∗ − un

�tn
− β

w∗ − wn

�tn
= res6(hn,un), (3.39)

h∗∗ − h∗

�tn
= res5(h∗,u∗), (3.40)

D(h∗)u∗∗ − u∗

�tn
− β

w∗∗ − w∗

�tn
= res6(h∗,u∗), (3.41)

hn+1 = 1

2
hn + 1

2
h∗∗, (3.42)

D(hn+1)un+1 − βwn+1 = 1

2
(D(hn+1)un − βwn) + 1

2
(D(hn+1)u∗∗ − βw∗∗). (3.43)

In the numerical experiments, the similar higher order SSP/TVD Runge-Kutta methods will be used.

4. Numerical results

In this section we present numerical experiments to illustrate the behaviors of the numerical schemes. It is noted that in 
what follows, we will depict the deviation of the free surface η rather than the total depth h. Several numerical examples 
with flat bottom can be utilized to check the accuracy and capability. For non-flat bottom situation, we consider to verify 
the property of well-balanced for the E1 conserved scheme on different variable bottoms. In order not to cause misunder-
standing, we will specific that the notations h, u, η are exact solutions or numerical solutions in each numerical experiment 
subsequently. Without specific explanations, the CFL condition number is taken as 0.1.

Example 4.1. (Cnoidal wave solution)
In this example, we consider to solve cnoidal wave solutions [9] with the periodic boundary condition.

h(x, t) = d + η, u(x, t) = c
(

1 − h0

h(x, t)

)
, η = adn2(κ(x − ct),m) (4.1)

where dn(·, m) is Jacobian elliptic function with elliptic modulus m. And the parameters are

κ =
√

3a

2
√

(d + a)(d + (1 − k2)a)
, (4.2)

c =
√

g(d + a)(d + (1 − k2)a)

h0
, (4.3)

h0 = d + a
E(m)

K (m)
(4.4)

where K (m) and E(m) are the complete elliptic integrals of the first and second kind, respectively [1]. The period is cal-
culated by T p = 2K (m)/κ . The parameters are given by d = 1.0, a = 0.05, g = 1.0, β = 1

3 . The L2 and L∞ error orders of 
the three DG schemes for variables u, h are contained in Tables 4.1, 4.2 and 4.3. For the variable u, all DG schemes have 
the optimal order of accuracy. For the variable h, the E1 and E2 conserved DG scheme still has (k + 1)-th order of accu-
racy, however, the H conserved DG scheme can reach the optimal order of accuracy when k ≥ 2, only suboptimal order 
of accuracy when k = 1. The sketches of cnoidal wave in [−T p, T p] are plotted in Fig. 4.1. The efficiency of all three DG 
schemes is illustrated by CPU time at the terminal time T = 10 in Table 4.4, from which we can see that the E2 conserved 
DG scheme is the most efficient one. Due to more auxiliary variables and special time discretization technique adopted, the 
H conserved scheme is much slower.
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Table 4.1
Example 4.1, the E1 conserved scheme for the Serre equations: Cnoidal wave solution with the computational domain [−T p , T p], at time T = 2. The 
parameters d = 0.3, a = 0.1, m = 0.99, g = 9.8.

N ‖e‖L2 order ‖e‖L∞ order ‖e‖L2 order ‖e‖L∞ order

u h

P 1 80 5.96E-04 – 2.85E-03 – 2.56E-04 – 2.01E-03 –
160 1.11E-04 2.43 6.45E-04 2.14 6.67E-05 1.94 6.06E-04 1.73
320 2.41E-05 2.20 1.77E-04 1.87 1.71E-05 1.96 1.66E-04 1.87
640 5.79E-06 2.06 4.67E-05 1.92 4.31E-06 1.99 4.31E-05 1.95

P 2 80 8.33E-06 – 5.28E-05 – 7.83E-06 – 6.63E-05 –
160 1.16E-06 2.85 9.07E-06 2.54 1.28E-06 2.62 9.89E-06 2.75
320 1.29E-07 3.16 1.03E-06 3.14 1.65E-07 2.95 1.54E-06 2.68
640 1.52E-08 3.09 1.25E-07 3.05 1.99E-08 3.05 1.91E-07 3.01

P 3 80 3.36E-07 – 1.65E-06 – 4.57E-07 – 2.27E-06 –
160 1.16E-08 4.85 8.26E-08 4.32 1.51E-08 4.92 1.04E-07 4.45
320 7.15E-10 4.02 5.35E-09 3.95 9.59E-10 3.97 6.67E-09 3.96
640 4.47E-11 4.00 3.39E-10 3.98 4.78E-11 4.33 4.19E-10 3.99

Table 4.2
Example 4.1, the E2 conserved DG scheme for the Serre equations: Cnoidal wave solution with the computational domain [−T p, T p], at time T = 2. The 
parameters d = 0.3, a = 0.1, m = 0.99, g = 9.8.

N ‖e‖L2 order ‖e‖L∞ order ‖e‖L2 order ‖e‖L∞ order

u h

P 1 80 6.38E-04 – 3.49E-03 – 2.57E-04 – 2.10E-03 –
160 1.08E-04 2.56 6.36E-04 2.46 6.49E-05 1.99 5.68E-04 1.89
320 2.02E-05 2.42 1.39E-04 2.20 1.64E-05 1.98 1.58E-04 1.85
640 4.50E-06 2.17 3.84E-05 1.85 4.15E-06 1.99 4.12E-05 1.94

P 2 80 6.97E-06 – 4.64E-05 – 5.91E-06 – 4.21E-05 –
160 9.92E-07 2.81 8.07E-06 2.52 1.14E-06 2.38 9.52E-06 2.14
320 1.21E-07 3.03 1.00E-06 3.01 1.73E-07 2.71 1.56E-06 2.61
640 1.50E-08 3.02 1.23E-07 3.02 2.14E-08 3.02 1.97E-07 2.99

P 3 80 2.94E-07 – 1.46E-06 – 3.78E-07 – 1.77E-06 –
160 1.18E-08 4.64 8.66E-08 4.07 1.30E-08 4.86 1.13E-07 3.97
320 7.19E-10 4.04 5.37E-09 4.01 7.79E-10 4.06 6.48E-09 4.12
640 4.48E-11 4.01 3.35E-10 4.00 4.64E-11 4.07 4.03E-10 4.01

Table 4.3
Example 4.1, the H conserved DG scheme for the Serre equations: Cnoidal wave solution with the computational domain [−T p, T p], at time T = 2. The 
parameters d = 0.3, a = 0.1, m = 0.99, g = 9.8.

N ‖e‖L2 order ‖e‖L∞ order ‖e‖L2 order ‖e‖L∞ order

u h

P 1 80 1.78E-03 – 8.12E-03 – 9.32E-04 – 4.84E-03 –
160 3.85E-04 2.21 1.77E-03 2.19 5.65E-04 0.72 3.70E-03 0.39
320 8.94E-05 2.11 4.30E-04 2.04 3.17E-04 0.83 1.86E-03 0.99
640 2.23E-05 2.00 1.07E-04 2.01 1.67E-04 0.93 1.00E-03 0.89

P 2 80 4.52E-04 – 2.09E-03 – 1.16E-04 – 7.21E-04 –
160 5.74E-05 2.98 2.61E-04 3.01 1.39E-05 3.06 7.41E-05 3.28
320 7.26E-06 2.98 3.25E-05 3.00 1.69E-06 3.04 8.65E-06 3.10
640 9.21E-07 2.98 4.00E-06 3.02 2.16E-07 2.97 1.06E-06 3.02

P 3 80 5.36E-05 – 2.40E-04 – 1.22E-05 – 6.31E-05 –
160 3.40E-06 3.98 1.49E-05 4.01 7.80E-07 3.97 3.99E-06 3.98
320 2.20E-07 3.95 9.31E-07 4.00 5.22E-08 3.90 2.66E-07 3.91
640 1.56E-08 3.81 6.88E-08 3.76 3.87E-09 3.76 1.85E-08 3.85

Table 4.4
Example 4.1, CPU time of proposed LDG schemes: Cnoidal wave solution with N =
160 cells in computational domain [−T p , T p], at time T = 10. The parameters d =
0.3, a = 0.1, m = 0.99, g = 9.8.

E1 conserved scheme E2 conserved scheme H conserved scheme

P 1 5.02 4.08 29.56
P 2 12.17 9.67 63.69
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Fig. 4.1. Example 4.1, cnoidal wave solution with the computational domain [−T p, T p], N = 160 cells, P 2 elements. The parameters d = 0.3, a = 0.1, m =
0.99, g = 9.8.

Example 4.2. (Head-on collision)
In this example, we study the symmetric head-on collision of two solitary waves moving in opposite directions. There 

is no analytical solution for this problem because these waves do not retain their shapes after collision. We give the initial 
values which are two solitary waves located at x0 = ±20 with the same amplitude a1 = a2 = 0.15. Due to the exponential 
decay of the solution, we adopt the periodic boundary condition in computational domain [−40, 40] with N = 1000 uni-
form cells. The parameters are d = 1.0, g = 1.0, β = 1

3 . In Fig. 4.2, the process of interaction between two solitary waves 
is displayed. These two solitary waves collide quasi-elastically and continue to propagate in opposite directions after the 
interaction. At time T ≈ 18.84, the maximum value of amplitude (so called run-up value) is larger than the sum of the am-
plitudes of the two initial solitary waves. After head-on collision, two solitary waves with different amplitudes are separated 
and the amplitudes become a1 ≈ 0.1490, a2 ≈ 0.1486, compared with the initial amplitudes a1 = a2 = 0.15. And some small 
wavelets between two solitary waves shown in Fig. 4.2 (f) clearly indicate that the collision is inelastic.

Example 4.3. (Overtaking collision)
This example is devoted to show the overtaking collision of two different amplitude solitary waves. Initially, two solitary 

waves are located at x1 = −60 with the larger amplitude a1 = 0.6 and x2 = −45 with the smaller amplitude a2 = 0.1. 
The rest parameters are given by d = 1.0, g = 1.0, β = 1

3 . And the these two waves will travel in the same direction with 
different speeds. The computational domain is [−75, 75] with N = 1000 uniform cells. As shown in Fig. 4.3, there is a 
symmetric, unimodal conglomerate at the peak of interaction at time T = 50, 65. The small solitary wave is absorbed by the 
large solitary wave completely. Following this, the smaller solitary wave is ejected behind the larger wave and propagates 
independently. Compared with the head-on collision case, the overtaking collision is referred as a strong interaction of 
solitary waves due to the relative importance of nonlinearity [28]. And this interaction is also inelastic due to the small 
dispersive tails emerging after the over-taking collision.
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Fig. 4.2. Example 4.2, head-on collision with N = 1000 cells, P 3 elements.

Example 4.4. (Breakup of a Gaussian hump)
In this example, we take the initial conditions as a heap of water,

η0(x) = e
−x2
10 , u0 = 0, (4.5)

which represent a Gaussian hump initially. It will break up into two solitary waves and some small dispersive tails. These 
waves and their dispersive tails travel in opposite directions. The process is shown in Fig. 4.4. Compared with the results 
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Fig. 4.3. Example 4.3, overtaking collision with N = 1000 cells, P 3 elements.

in [30], our numerical schemes resolve this problem well. The CFL ratio can be taken as 0.5 to guarantee the numerical 
stability of our numerical schemes.

Example 4.5. (Dispersive shock wave)
In the shallow water system, when the dissipation can be ignored compared with the dispersive effects, it will emerge 

dispersive shock wave, which changes rapidly and monotonically in the flow properties. The dispersive shock wave attracted 
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Fig. 4.4. Example 4.4, breakup of a Gaussian hump with N = 1000 cells, P 3 elements.

much interest and been well studies in [20,19,21]. We will approximate this wave to test our three numerical scheme in 
this example. The initial data for exact solutions h, u are taken as step functions

h(x,0) = 1 + 1

2
η0[1 + tanh (250 − |x|)], (4.6)

u(x,0) = 2[√h(x,0) − 1], (4.7)
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Fig. 4.5. Example 4.5, the E1 conserved DG scheme for dispersive shock wave with N = 3000 cells, P 3 elements.

where η0 = 0.4182. Figs. 4.5, 4.6 and 4.7 shows the simulation at time T = 0, 50, 100, 200 for the E1, E2 and H conserved 
DG schemes, respectively. Without introducing spurious oscillations, it is clearly seen that a simple dispersive wave is 
generated and travel to the right, in the meantime, there is a rarefaction wave travel to the left with a small dispersive tail. 
At time T = 200, the amplitude of the leading edge solitary wave is approximately 0.8585 to 0.8589 at point x ≈ 516.6, 
which validate the high accuracy and non-dissipativity of these three numerical scheme, compared with [30].

Example 4.6. (Validation of well-balance property)
This example with variable bottoms is used to verify the property of well-balanced for the E1 conserved DG scheme 

which we mentioned in Section 2.1. A smooth variable bottom

d(x) = −0.5 + (x − 0.5)2, (4.8)

and discontinuous variable bottom

d(x) =
{

−0.5, 0.3 ≤ x ≤ 0.7,

0, otherwise,
(4.9)

are adopted in computational domain [0, 1], respectively, The initial condition for variables (η, u) are

η = h − d = 1, u = 0. (4.10)

For comparison with the results in [25], we give the L1 and L∞ errors between numerical solution (h, hu)|T =0.5 and the 
initial data (h0, h0u0) with N = 50 cells in Table 4.5. The error can arrive the order of machine error which guarantee the 
well-balanced property. The still-water stationary solutions are plotted in Fig. 4.8. Here, we use (H, U ) denote the exact 
solution and (h, u) denote the numerical solution to distinguish. We can see that the stationary solution is well preserved 
whether the bottom is smooth or not.
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Fig. 4.6. Example 4.5, the E2 conserved DG scheme for dispersive shock wave with N = 3000 cells, P 3 elements.

Table 4.5
Example 4.6, L1 and L∞ errors for variables (h, hu) at T = 0.5, P 2 elements.

‖h − h0‖L1 ‖h − h0‖L∞ ‖hu − h0u0‖L1 ‖hu − h0u0‖L∞

smooth bottom 6.93E-16 9.21E-15 1.40E-15 1.20E-14
discontinuous bottom 7.98E-16 4.75E-14 5.78E-15 4.12E-15

5. Conclusion

We designed three numerical schemes for the Serre equations under the DG framework. The forms of conservation laws 
were adopted for the development E1 or E2 conserved schemes. For the non-flat bottom situation, the E1 conserved scheme 
was modified to preserve exactly well-balanced property. The H conserved scheme was constructed based on the equations 
in nonconservative form successfully.

Furthermore, a series of numerical experiments were given to validate our methods. The cnoidal wave examples show 
that all numerical schemes are highly accurate and stable. To be more specific, for the variable u, all DG schemes can 
achieve the optimal order of accuracy. For the variable h, the E1 and E2 conserved schemes maintain the optimal order of 
accuracy, while the H conserved scheme can reach the optimal order of convergence rate when k ≥ 2, but only suboptimal 
order of accuracy when k = 1. In order to demonstrate the robustness and effectiveness, we have applied these schemes on 
the interaction of solitary waves, the breakup of a Gaussian hump, and the dispersive shock wave problems of the shallow 
water model. From the contrastive experimental figures, we can see that all three conserved schemes proposed in this paper 
are successfully validated.

The E1 and E2 conserved schemes can be extended to the two-dimensional problem directly. Since the non-conservative 
form and more unknown variables are involved in the Hamiltonian conserved scheme, the two-dimensional H conserved 
scheme and numerical comparisons will be presented in our future work.
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Fig. 4.7. Example 4.5, the H conserved DG scheme for dispersive shock wave with N = 3000 cells, P 2 elements.
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