
Journal of Computational Physics 258 (2014) 555–567
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Fluid preconditioning for Newton–Krylov-based, fully implicit,
electrostatic particle-in-cell simulations

G. Chen a,∗, L. Chacón a, C.A. Leibs b, D.A. Knoll a, W. Taitano c

a Los Alamos National Laboratory, Los Alamos, NM 87545, United States
b University of Colorado Boulder, Boulder, CO 80309, United States
c University of New Mexico, Albuquerque, NM 87131, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 July 2013
Received in revised form 28 October 2013
Accepted 29 October 2013
Available online 7 November 2013

Keywords:
Electrostatic particle-in-cell
Implicit methods
Direct implicit
Implicit moment
Energy conservation
Charge conservation
Physics based preconditioner
JFNK solver

A recent proof-of-principle study proposes an energy- and charge-conserving, nonlinearly
implicit electrostatic particle-in-cell (PIC) algorithm in one dimension [9]. The algorithm in
the reference employs an unpreconditioned Jacobian-free Newton–Krylov method, which
ensures nonlinear convergence at every timestep (resolving the dynamical timescale of
interest). Kinetic enslavement, which is one key component of the algorithm, not only
enables fully implicit PIC as a practical approach, but also allows preconditioning the
kinetic solver with a fluid approximation. This study proposes such a preconditioner, in
which the linearized moment equations are closed with moments computed from particles.
Effective acceleration of the linear GMRES solve is demonstrated, on both uniform and non-
uniform meshes. The algorithm performance is largely insensitive to the electron–ion mass
ratio. Numerical experiments are performed on a 1D multi-scale ion acoustic wave test
problem.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The particle-in-cell (PIC) method solves Vlasov–Maxwell’s equations for kinetic plasma simulations [1,2]. In the standard
approach, Maxwell’s equations (or in the electrostatic limit, Poisson equation) are solved on a grid, and the Vlasov equation
is solved by the method of characteristics using a large number of particles, from which the evolution of the probability
distribution function (PDF) is obtained. The field-PDF description is tightly coupled. Maxwell’s equations (or a subset thereof)
are driven by moments of the PDF such as charge density and/or current density. The PDF, on the other hand, follows a
hyperbolic equation in phase space, whose characteristics are self-consistently determined by the fields.

To date, most PIC methods employ explicit time-stepping (e.g. leapfrog scheme), which can be very inefficient for
long-time, large spatial scale simulations. The algorithmic inefficiency of standard explicit PIC is rooted in the presence
of numerical stability constraints, which force both a minimum grid-size (due to the so-called finite-grid instability [1,2],
which requires resolution of the smallest Debye length) and a very small timestep (due to the well-known CFL constraint,
which requires resolution of the fastest plasma wave, or in the more general electromagnetic case, the light wave). More-
over, a fundamental issue with explicit schemes is numerical heating due to the lack of exact energy conservation in a
discrete setting [1,2], which makes the accuracy of explicit PIC simulations questionable on long time scales. This problem
is particularly evident for realistic ion-to-electron mass ratios.

* Corresponding author.
E-mail address: gchen@lanl.gov (G. Chen).
0021-9991/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2013.10.052

http://dx.doi.org/10.1016/j.jcp.2013.10.052
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:gchen@lanl.gov
http://dx.doi.org/10.1016/j.jcp.2013.10.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2013.10.052&domain=pdf

556 G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567
Implicit methods hold the promise of overcoming the difficulties and inefficiencies of explicit methods for long-term,
system-scale simulations. Exploration of implicit PIC started in the 1980s. Two approaches, namely implicit moment [3,4]
and direct implicit [5,6] methods, were explored. Both approaches use linear implicit schemes to simplify the inversion of
the original Vlasov–Poisson–Maxwell system, and both enable a numerically stable time integration with large timesteps.
These implicit approaches avoided inverting the system of a large set of coupled field-particle equations by using a predictor-
corrector strategy. The main limitation of these linear implicit schemes is the lack of nonlinear convergence, which leads
to inconsistencies between fields and particle moments. As a result, significant numerical heating is often observed in long
term simulations [7].

There has been significant recent work exploring fully implicit, fully nonlinear PIC algorithms, either Picard-based [8]
(following the implicit moment method school) or using Jacobian-Free Newton–Krylov (JFNK) methods [9–11] (more aligned
with the direct implicit school). In contrast to earlier studies, these nonlinear approaches enforce nonlinear convergence to
a specified tolerance at every timestep. Their fully implicit character enables one to build in exact discrete conservation
properties, such as energy and charge conservation [9,8]. In these studies, particle orbit integration is sub-stepped for
accuracy, and to ensure automatic charge conservation.

The purpose of this study is to demonstrate the effectiveness of fluid (moment) equations to accelerate a JFNK-based
kinetic solver (moment acceleration in a Picard sense has already been demonstrated in Ref. [8]). An enabling algorithmic
component of the JFNK-based algorithm is the enslavement of particles to the fields, which removes particle quantities from
the dependent variable list of the JFNK solver. With particle enslavement, memory requirements of the nonlinear solver
are dramatically reduced. Particle equations of motion are orbit-averaged and evolve self-consistently with the field. The
kinetic-enslaved JFNK not only makes the fully implicit PIC algorithm practical, but also makes the fluid preconditioning of
the algorithm possible.

It is worth pointing out that the preconditioned JFNK approach proposed here can be conceptually viewed as an optimal
combination of the direct implicit and moment implicit approaches. The fluid preconditioner is derived by taking the first
two moments of the Vlasov equation, and then linearizing them into a so-called “delta-form” [12]. Textbook linear analysis
shows that such a system includes stiff electron modes in an electrostatic plasma. Although taking large timesteps for
low-frequency field evolutions is desirable, previous work [9] indicates that the implicit CPU speedup over explicit PIC is
largely insensitive to the timestep size for large enough timesteps owing to particle sub-cycling for orbit resolution. It is
thus sufficient in this context to target the stiffest time scales supported, i.e., electron time scales. Therefore, we base our
fluid preconditioner on electron moment equations only. The implicit timestep is chosen to resolve the ion plasma wave
frequency. This is to resolve ion waves of all scales (including the Debye length scale, which is physically relevant for
some nonlinear ion waves). For consistency with the orbit averaging of the kinetic solver, we take the time-average of the
linearized moment equations in the preconditioner. We show that the fluid preconditioner is asymptotic preserving in the
sense that it is well behaved in the quasineutral limit (as in Ref. [13]). However, beyond the study in Ref. [13], the algorithm
proposed here is also well behaved for arbitrary electron–ion mass ratios.

The rest of the paper is organized as follows. Section 2 motivates and introduces the concept to kinetic enslavement in
the implicit PIC formulation. Section 3 introduces the mechanics of the JFNK method and preconditioning. Section 4 dis-
cusses the performance limits of the implicit PIC algorithm. Section 5 formulates the fluid preconditioner of an electrostatic
plasma system in detail, with an extension to 1D non-uniform meshes. Linear analysis of electron and ion waves, together
with an asymptotic analysis of the preconditioner are also provided. Section 6 presents numerical parametric experiments
to test the performance of the preconditioner. Finally, we conclude in Section 7.

2. Kinetically enslaved implicit PIC

We consider a collisionless electrostatic plasma system (without magnetic field) described by the Vlasov–Ampere equa-
tions in one dimension (1D) in both position (x) and velocity (v) [9]:

∂ fα
∂t

+ v
∂ fα
∂x

+ qα

mα
E

∂ fα
∂v

= 0, (1)

ε0
∂ E

∂t
+ j = 〈 j〉, (2)

where fα(x, v) is the particle distribution function of species α in phase space, qα and mα are the species charge and
mass respectively, E is the self-consistent electric field, j is the current density, 〈 j〉 = ∫

j dx/
∫

dx, and ε0 is the vacuum
permittivity. The evolution of Vlasov equation is solved by the method of characteristics, represented by particles evolving
according to Newton’s equations of motion,

dxp

dt
= v p, (3)

dv p

dt
= ap . (4)

Here xp , v p , ap are the particle position, velocity, and acceleration, respectively, and t denotes time. As a starting point, we
discretize Eqs. (2), (3), and (4) by a time-centered finite-difference scheme, to find:

G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567 557
ε0
En+1

i − En
i

�t
+ jn+1/2

i = 〈 j〉, (5)

xn+1
p − xn

p

�t
− vn+1/2

p = 0, (6)

vn+1
p − vn

p

�t
− qp

mp
E
(
xn+1/2

p
) = 0, (7)

where a variable at time level n + 1/2 is obtained by the arithmetic mean of the variable at n and n + 1, the subscript
i denotes grid-index and subscript p denotes particle-index, ji = ∑

p qp v p S(xp − xi), E(xp) = ∑
i Ei S(xi − xp), and S is a

B-spline shape function [14].
It is critical to realize that solving the complete system of field-particle equations (i.e., with the field and particle position

and velocity as unknowns) in a Newton–Krylov-based solver is impractical, due to the excessive memory requirements of
building the required Krylov subspace. To overcome the memory challenges of JFNK for implicit PIC, the concept of kinetic
enslavement has been introduced [9,10]. With kinetic enslavement, the JFNK residual is formulated in terms of the field
equation only, nonlinearly eliminating Eqs. (6) and (7) as auxiliary computations. The resulting JFNK implementation has
memory requirements comparable to that of a fluid calculation. A single copy of particle quantities is still needed for the
required particle computations.

One important implication of kinetic enslavement is that the enslaved particle pusher has the freedom of being adaptive
in its implementation. This can be effectively exploited to overcome the accuracy shortcomings of using a fixed timestep
�t to discretize the time-derivatives of both field and particle equations [15]. This is so because solving low-frequency field
equations demands using large timesteps, but if particle orbits are computed with such timesteps, large plasma response
errors result [16]. In Ref. [9], a self-adaptive, charge-and-energy-conserving particle mover was developed that provided si-
multaneously accuracy and efficiency. For each field timestep �t , the orbit integration step consists of four main algorithmic
elements:

1. Estimate the sub-timestep �τ using a second order estimator [17].
2. Integrate the orbit over �τ using a Crank–Nicolson scheme.
3. If a particle orbit crosses a cell boundary, make it land at the first encountered boundary.
4. Accumulate the particle moments to the grid-points.

In the last step, the current density is orbit-averaged (over �t = ∑
�τ) to ensure global energy conservation. Additionally,

binomial smoothing can be introduced without breaking energy or charge conservation. This is done in the particle pusher
by using the binomially smoothed electric field, and the binomially smoothed orbit-averaged current density in Ampere’s
equation. The resulting Ampere’s equation reads:

ε0
En+1

i − En
i

�t
+ S M(j̄)n+1/2

i = 〈 j〉n+1/2, (8)

where the orbit-averaged current density is:

jn+1/2
i = 1

�t�x

∑
p

Nν∑
ν=1

qp S
(
xi − xν+1/2

p
)

vν+1/2
p �τν. (9)

The binomial operator SM is defined as SM(Q)i = Q i−1+2Q i+Q i+1
4 . A detailed description of the algorithm can be found in

Refs. [9,18].
The kinetically enslaved JFNK residual is defined from Eq. (8) as:

Gi
(

En+1) = En+1
i − En

i + �t

ε0

(
SM

(
j̄
[

En+1])n+1/2
i − 〈 j〉n+1/2). (10)

The functional dependence of j̄ with respect to En+1 has been made explicit. Evaluation of j̄[En+1] requires one particle
integration step, and each linear and nonlinear iteration of the JFNK method requires one residual evaluation. We summarize
the main elements of the JFNK nonlinear solver next.

3. The JFNK solver

In its outer loop, JFNK employs Newton–Raphson’s method to solve a nonlinear system G(x) = 0, where x is the un-
known, by linearizing the residual and inverting linear systems of the form:

∂G
∣∣∣∣
(k)

δx(k) = −G
(
x(k)

)
, (11)
∂x

558 G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567
with x(k+1) = x(k) + δx(k) , and (k) denotes the nonlinear iteration number. Nonlinear convergence is reached when:

∥∥G
(
x(k)

)∥∥
2 < εt = εa + εr

∥∥G
(
x(0)

)∥∥
2, (12)

where ‖·‖2 is the Euclidean norm, εt is the total tolerance, εa is an absolute tolerance, εr is the Newton relative convergence
tolerance, and G(x(0)) is the initial residual.

Such linear systems are solved iteratively with a Krylov subspace method (e.g. GMRES), which only requires matrix–
vector products to proceed. Because the linear system matrix is a Jacobian matrix, matrix–vector products can be imple-
mented Jacobian-free using the Gateaux derivative:

∂G

∂x

∣∣∣∣
(k)

v = lim
ε→0

G(x(k) + εv) − G(x(k))

ε
, (13)

where v is a Krylov vector, and ε is in practice a small but finite number (p. 79 in [19]). Thus, the evaluation of the
Jacobian–vector product only requires the function evaluation G(x(k) + εv), and there is no need to form or store the
Jacobian matrix. This, in turn, allows for a memory-efficient implementation.

An inexact Newton method [20] is used to adjust the convergence tolerance of the Krylov method at every Newton
iteration according to the size of the current Newton residual, as follows:

∥∥ J (k)δx(k) + G
(
x(k)

)∥∥
2 < ζ(k)

∥∥G
(
x(k)

)∥∥
2 (14)

where ζ (k) is the inexact Newton parameter and J (k) = ∂G
∂x |(k) is the Jacobian matrix. Thus, the convergence tolerance of

the Krylov method is loose when the Newton state vector x(k) is far from the nonlinear solution, and tightens as x(k)

approaches the solution. Superlinear convergence rates of the inexact Newton method are possible if the sequence of ζ (k) is
chosen properly (p. 105 in [19]). Here, we employ the prescription:

ζ A(k) = γ

(‖G(x(k))‖2

‖G(x(k−1))‖2

)α

,

ζ B(k) = min
[
ζmax,max

(
ζ A(k), γ ζα(k−1)

)]
,

ζ (k) = min

[
ζmax,max

(
ζ B(k), γ

εt

‖G(x(k))‖2

)]
,

with α = 1.5, γ = 0.9, and ζmax = 0.2. The convergence tolerance εt is defined in Eq. (12). In this prescription, the first step
ensures superlinear convergence (for α > 1), the second avoids volatile decreases in ζk , and the last avoids oversolving in
the last Newton iteration.

The Jacobian system (11) must be preconditioned for efficiency. Here, we employ right preconditioning, which transforms
the original system into the equivalent one:

J P−1y = −G(x) (15)

where J = ∂G/∂x is the Jacobian matrix, P is a preconditioner, and δx = P−1y. The Jacobian-free preconditioned system
employs

JP−1v = lim
ε→0

G(x + εP−1v) − G(x)

ε
(16)

for each Jacobian–vector product. An important feature of preconditioning is that, while it may substantially improve the
convergence properties of the Krylov iteration (when P approximates J and is relatively easy to invert), it does not alter
the solution of the system upon convergence.

The purpose of this study is to formulate an effective, fast preconditioner P for the implicit PIC kinetic system. Before
deriving the preconditioner, however, we review the fundamental CPU speedup limits of implicit vs. explicit PIC.

4. Performance limits of implicit PIC

As mentioned earlier, the ability of implicit PIC to take large timesteps without numerical instabilities does not neces-
sarily translate into performance gains of implicit PIC over its explicit counterpart [9]. In this section, we summarize the
back-of-envelope estimate for the CPU speedup introduced in the reference that supports this statement.

We begin by estimating the CPU cost for a given PIC solver to advance the solution for a given time span �T as:

CPU = �T
Npc

(
L

)d

C, (17)

�t �x

G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567 559
where Npc is the number of particles per cell, (L/�x) is the number of cells per dimension, d is the number of physical
dimensions, and C is the computational complexity of the solver employed, measured in units of a standard explicit PIC
Vlasov–Poisson leapfrog timestep. Accordingly, the implicit-to-explicit speedup is given by:

CPUex

CPUim
∼

(
�xim

�xex

)d(
�t

�tex

)
1

Cim
,

where we denote �t to be the implicit timestep. Assuming that all particles take a fixed sub-timestep �τ in the implicit
scheme, and that the cost of one timestep with the explicit PIC solver is comparable to that of a single implicit sub-step,
it follows that Cim ∼ NFE(�t/�τim), i.e., the cost of the implicit solver exceeds that of the explicit solver by the number
of function evaluations (NFE) per �t multiplied by the number of particle sub-steps (�t/�τim). Assuming typical values
for �τim ∼ min[0.5�x/vth,�t], �t ∼ 0.1ω−1

pi (for reasons that become apparent later, see Section 5.3), �tex ∼ 0.1ω−1
pe ,

�xim ∼ 0.2/k, and �xex ∼ λD , we find that the CPU speedup scales as:

CPUex

CPUimp
∼ 1

(5kλD)d
min

[
1

kλD
,

√
mi

me

]
1

NFE
. (18)

This result supports two important conclusions. Firstly, it predicts that the CPU speedup is asymptotically independent of
the implicit time step �t for �t � �τim . The effect of the implicit time step is captured in the extra power of one in
the (kλD) term, once one accounts for sub-stepping, but that effect disappears when the mesh becomes coarse enough
(i.e., kλD <

√
me/mi). It also predicts that the speedup improves with a larger ion-to-electron mass ratio, indicating that

the approach is more efficient with realistic mass ratios. Because the CPU speedup is asymptotically independent of �t ,
algorithmically it will be advantageous to use a time step that is large enough to be in the asymptotic regime, but no larger.
This will motivate the choice in the preconditioner to include only electron stiff physics.

Secondly, Eq. (18) indicates that large CPU speedups are possible when kλD
 1, particularly in multiple dimensions, but
only if NFE is kept small and bounded. The latter point motivates the development of suitable preconditioning strategies.
We focus on this in the next section.

5. Fluid preconditioning the electrostatic implicit PIC kinetic system

The preconditioner of the nonlinear kinetic JFNK solver needs to return an approximation for the E-field update only.
The approximate E-field update will be found from a linearized fluid model, consistently closed with particle moments. As
will be shown, the fluid model provides an inexpensive approximation to the kinetic Jacobian. We demonstrate the concept
in the 1D electrostatic, multispecies PIC model.

5.1. Formulation of the fluid preconditioner

Following standard procedure [12], we work with the linearized form of the governing equations to derive a suitable
preconditioner. The linearized, orbit-averaged, binomially smoothed 1D Ampere’s residual equation (Eq. (5) with E = E0 +δE ,
and δ j̄ ≡ ∫ �t

0 δ j dt/�t) reads:

δE = −�t

(
G(E0) + 1

ε0
SM(δ j̄)

)
, (19)

where G(E0) = E0 − En + �t
ε0

(SM(j̄n+1/2
0)−〈 j̄0〉) is the residual of Ampere’s law, the superscript n denotes last timestep, and

the subscript 0 of the E-field denotes the current Newton state. From the discussion in the previous section, for the purpose
of preconditioning we consider only the linear response of electron contribution to the current (δ j̄ � −eδΓ̄ where Γ is the
electron flux). Thus, the electric field update in the preconditioner will be found from:

δE ≈ −�t

(
G(E0) − e

ε0
SM(δΓ̄)

)
, (20)

where δΓ̄ = 1
�t

∫ �t
0 dt δΓ (t), a time-average between timestep n and n + 1.

We approximate the linear response of the electron current via the continuity and momentum equations of electrons,
closed with moments from particles (as in the implicit moment method [3]). The continuity equation for electrons is

∂n

∂t
+ ∂Γ

∂x
= 0, (21)

where n is electron number density. Linearizing, we obtain:

∂δn = −∂δΓ
, (22)
∂t ∂x

560 G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567
where we have used particle conservation (∂n0/∂t + ∂Γ0/∂x = 0), which is satisfied at all iteration levels owing to exact
charge conservation [9]. We then take the time-average [1

�t

∫ �t
0 dt , equivalently to the orbit average in Eq. (9)] of Eq. (22)

to obtain

δn = −�t
∂δΓ̄

∂x
. (23)

The update equation for δΓ̄ is found from the electron momentum equation, which in conservative form reads

m

[
∂Γ

∂t
+ ∂

∂x

(
Γ Γ

n

)]
= −enE − ∂ P

∂x
(24)

where m is the electron mass, P ≡ nT is the electron pressure, and T is the electron temperature. Linearizing it, we obtain:

m

[
∂δΓ

∂t
+ ∂

∂x

(
2Γ0δΓ

n0
− Γ0Γ0

n2
0

δn

)]
+ e(n0δE + δnE0) + ∂(δnT0)

∂x
= 0, (25)

where T0 ≡ ∫
f (v)m(v − u)(v − u)dv/n0 is the current temperature (or normalized pressure). Closures for Γ0, n0 and T0

are obtained from current particle information. In Eq. (25), we take m[∂Γ0/∂t + ∂(Γ0Γ0/n0)/∂x] + en0 E0 + ∂(n0T0)/∂x = 0
by ansatz. To close the fluid model, we have neglected the linear temperature response δT .

To cast Eq. (25) in a useful form, we take its time-derivative to get (assuming that n0, E0, and T0 do not vary with time):

m
∂2δΓ

∂t2
+ e

(
n0

∂δE

∂t
+ ∂δn

∂t
E0

)
+ ∂

∂x

(
T0

∂δn

∂t

)
= 0, (26)

and then time-average the result to find (substituting Eqs. (19) and (22)):

2mδΓ̄

�t2
+ e2n0δΓ̄ − eE0

∂δΓ̄

∂x
− ∂

∂x

(
T0

∂δΓ̄

∂x

)
= −n0G(E0). (27)

Here, we have neglected the convective term for simplicity, and approximated the first time-derivative term as:

∂δΓ

∂t
� 2δΓ̄

�t
(28)

(which is exact if δΓ (t) is linear with t). We discretize Eq. (27) with space-centered finite differences, resulting in a tridi-
agonal system, which we invert for δΓ̄ using a direct solver. Finally, we substitute the solution of δΓ̄ in Eq. (20) to find the
E-field update.

5.2. Extension to curvilinear meshes

The fully implicit PIC algorithm has been recently extended to curvilinear meshes [21]. In this section, we rewrite the
above fluid model on a 1D non-uniform mesh using a map x = x(ξ). In 1D, the curvilinear form of in Eqs. (21) and (24)
can be derived straightforwardly by replacing every dx with J dξ , where J ≡ dx/dξ is the Jacobian. It follows that the
continuity equation in logical space is written as:

∂n

∂t
+ 1

J
∂Γ

∂ξ
= 0. (29)

The transformed momentum equation is

m

[
∂Γ

∂t
+ 1

J
∂

∂ξ

(
Γ Γ

n

)]
= qnE − 1

J
∂ P

∂ξ
. (30)

Similar to the procedure described above, linearizing and discretizing Eqs. (29) and (30) again results in a tridiagonal system.

5.3. Electrostatic wave dispersion relations

It is instructive to look at the dispersion relation of Eqs. (19), (22) and (25), for both electrons and ions. Fig. 1 shows the
dispersion relation of electron plasma waves and ion acoustic waves [22], from which we make the following observations.
The stiffest wave is the electron plasma wave, whose frequency ωpe is essentially insensitive to the wave number k for
kλD < 1. The wave frequency increases for kλD > 1, but in that range the plasma wave is highly Landau-damped [23]. In
contrast to the electron wave, the ion wave frequency increases with k for kλD < 1, but saturates at ∼ ωpi for kλD > 1. In
a propagating ion acoustic wave (IAW), nonlinear effects lead to wave steepening. Because of the wave dispersion, the IAW
steepening stops when the high frequency waves propagate slower than the low-frequency ones [24]. Those high frequency
ion waves are physically important, and therefore need to be resolved. For this reason, in our numerical experiments, we
limit the implicit time step to �t ∼ 0.1ω−1

pi . The frequency gap between the electron and ion waves is about a factor of√
mi/me , which provides enough room to place the algorithm in the large timestep asymptotic regime (Eq. (18)).

G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567 561
Fig. 1. Dispersion relations of electron and ion waves in an electrostatic plasma. The dispersions can be obtained by Fourier analysis of the fluid model of
Eqs. (19), (22) and (25), for both electrons and ions, assuming that E0,Γ0,n0, T0 = const.

5.4. Asymptotic behavior of the implicit PIC formulation in the quasineutral limit

Since the implicit scheme is able to use large grid-sizes and timesteps stably, it is important to ensure that the fluid
preconditioner be able to capture relevant asymptotic regimes correctly [13]. In the context of electrostatic PIC, the relevant
asymptotic regime is the quasineutral limit, which manifests when the domain length is much larger than the Debye length
(L � λD) and when me
 mi . In this limit, the electric field must be found from the fluid equations [25], and leads to the
well know ambipolar electric field, E = − 1

en ∂x P .
In our context, the algorithm must be well behaved when L varies from ∼ λD to � λD , and for arbitrary mass ratios. In

particular, the fluid preconditioner must feature these properties to successfully accelerate the kinetic algorithm. To confirm
that this is the case, following Ref. [13] we normalize the electron fluid equations to the following reference quantities:

x̂ = x

x0
, v̂ = v

v0
, t̂ = tv0

x0
, n̂ = n

n0
, q̂ = q

q0
, m̂ = m

m0
, Ê = Eq0x0

kB T0
. (31)

We choose x0 = L, v0 = √
kB T0/m0, q0 = e, m0 = mi . For electrons, q = −e, and hence q̂ = −1. The normalized precondi-

tioning equations become:

λ̂2
D

∂ Ê

∂ t̂
− Γ̂ = 0, (32)

∂n̂

∂ t̂
+ ∂Γ̂

∂ x̂
= 0, (33)

m̂
∂Γ̂

∂ t̂
+ n̂Ê + T̂

∂n̂

∂ x̂
= 0, (34)

where in Eq. (34) we have neglected the convective term. Substituting Eq. (32) into Eq. (34), we find the equation for the
electric field:

m̂
∂

∂ t̂

(
λ̂2

D
∂ Ê

∂ t̂

)
+ n̂Ê + T̂

∂n̂

∂ x̂
= 0, (35)

where λD may change in time and space. The solution of Ê is well behaved as m̂λ̂2
D → 0, where we indeed find that

n̂Ê = −T̂ ∂n̂
∂ x̂

, which is the correct (ambipolar) E-field. Our fluid preconditioner is based on the linearization of Eqs. (32)–(34),
and therefore inherits this asymptotic property. In what follows, we will demonstrate among other things the effectiveness
of the preconditioner as we vary the domain size and the mass ratio.

6. Numerical experiments

We use the IAW problem for testing the performance of the fluid-based preconditioner. IAW propagation is a multi-scale
problem determined by the coupling between electrons and ions. The 1D case used in Ref. [9] features large-amplitude
IAWs in an unmagnetized, collisionless plasma without significant damping. The base simulation parameters used here
are Te/Ti = 545 and mi/me = 1836. The periodic computational domain, measured in units of Debye length, is discretized
with both uniform and non-uniform meshes. We test the solver performance by varying the timestep, the electron–ion-
mass-ratio, the domain length, the number of particles, and the number of cells, with and without preconditioning. We also

562 G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567
Fig. 2. The performance of the JFNK solver against the timestep, with L = 100, Nx = 128, N pc = 1000, and mi/me = 1836. The number of function evalua-
tions are well controlled by the preconditioner over a large range of �t .

compare the solver performance against explicit PIC simulations. In all cases, the nonlinear tolerances of implicit JFNK solver
are set to εr = 1 × 10−8 and εa = 0. The number of function evaluations (NFE), given by the number of Newton–Raphson
and GMRES iterations, is monitored and averaged over 20 timesteps. With the proposed linear preconditioner, the perfor-
mance gain will stem mainly from reducing the GMRES iteration count. The Newton iteration count remains nearly constant
(at about 4 to 5 iterations, unless otherwise stated) regardless of preconditioning.

We initialize the calculation with the following ion distribution function:

f (x, v, t = 0) = f M(v)

[
1 + a cos

(
2π

L
x

)]
(36)

where f M(v) is the Maxwellian distribution, a is the perturbation level, L is the domain size. The spatial distribution is
approximated by first putting ions randomly with a constant distribution, e.g. x0 ∈ [0, L]. The electrons are distributed in
pairs with ions according to the Debye distribution [26]. Specifically, in each e–i pair, the electron is situated away from
the ion by a small distance, dx = ln(R) where R ∈ (0,1) is a uniform random number (note that we normalize all lengths
with the electron Debye length). We then shift the particle position by a small amount such that x = x0 + a cos(2π

L x0), with
a = 0.2.

For testing the solver performance with non-uniform meshes, the mesh adaptation in the periodic domain is provided
by the map [21]:

x(ξ) = ξ + L

2π

(
1 − N�xL/2

L

)
sin

(
2πξ

L

)
, (37)

which has the property that the Jacobian is also periodic. Here, N is the number of mesh points, and �xL/2 is the physical
mesh resolution at x = ξ = L/2.

Before we begin the convergence studies, it is informative to look at the condition number of the Jacobian system, which
can be estimated as the number of times we step over the explicit CFL:

σ ∝ ωpe�t = 0.1
ωpe

ωpi
= 0.1

√
mi

me
, (38)

where we have used that �t ∼ 0.1ω−1
pi , and we have assumed kλD < 1. The first important observation is that, as expected,

the Jacobian system will become harder to solve as we increase the ion-to-electron mass ratio. Secondly, the condition
number does not depend on kλD . The latter, while surprising, is a consequence of our chosen implicit time step upper
bound. Dependence of σ with kλD is recovered for kλD > 1, but in this regime Langmuir waves are highly Landau-damped
[23], and do not survive in the system.

We demonstrate the performance of the fluid preconditioner by varying several relevant parameters, namely, the implicit
timestep �t , the mass ratio mi/me , the domain length L, the mesh size Nx , and the number of particles per cell Npc . We
begin with the implicit timestep, which we vary from 0.01ω−1

pi to 0.25ω−1
pi . For this test, we choose L = 100, Nx = 128,

Npc = 1000, and mi/me = 1836. As shown in Fig. 2, the performance for preconditioned and unpreconditioned solvers is
about the same for small time steps, where the Jacobian system is not stiff. However, significant differences in performance
develop for larger timesteps, reaching a factor of 2 to 3 as the timestep approaches 0.2ω−1

pi . Overall, the preconditioner is
able to keep the linear and nonlinear iteration count fairly well bounded as the timestep increases.

G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567 563
Fig. 3. Overall CPU performance as a function of timestep, comparing the unpreconditioned and preconditioned solvers in terms of the average particle
pushing time (obtained by the total CPU time divided by the average number of iterations) (left) and wall clock CPU time (right). L = 100, Nx = 128,
mi/me = 1836, and the time-span is fixed at 4.67ω−1

pi for all computations.

Table 1
Solver performance with and without the fluid preconditioner for the IAW case with L = 100, Nx = 512, and N pc = 1000 on a
uniform mesh. For all the test cases, �t = 0.1ω−1

pi . The Newton and GMRES iteration numbers are obtained by an average over 20
timesteps. For all the runs, we have kept the ion and electron temperature constant.

mi/me No preconditioner With preconditioner

Newton GMRES Newton GMRES

100 4 8 4 7
1600 5 21.2 4 10.1

10 000 5.8 50.1 5.5 13.5

Table 2
Solver performance with and without the fluid preconditioner for the IAW case with the non-uniform mesh (Nx = 64 and the
smallest mesh size 0.2).

mi/me No preconditioner With preconditioner

Newton GMRES Newton GMRES

100 4 7.6 4 7
1600 5 21.3 5.1 12.1

10 000 5.8 48.6 5.3 16.5

For bounded NFE , Eq. (18) predicts that the actual CPU time should be largely insensitive to the timestep size. This
is confirmed in Fig. 3, which shows the CPU performance of a series of computations with a fixed simulation time-span.
Clearly, the total CPU time is essentially independent of �t with preconditioning (but not without). Also, both with and
without preconditioning, the average particle pushing time (which is defined as the CPU time employed in particle pushing
per nonlinear function evaluation), saturates for large enough time steps (e.g. vthe�t > 1 ∼ 10�x), indicating that we have
reached an asymptotically large time step. Even though the CPU performance of the preconditioned solver is independent
of �t , the use of larger timesteps is beneficial for the following reasons. Firstly, the orbit-averaging performed to obtain
the plasma current density helps with noise reduction, as it provides the time-average of many samplings per particle [27].
Secondly, the operational intensity (computations per memory operation) per particle orbit increases with the timestep,
which helps enhance the computing performance (or efficiency) and offset communication latencies in the simulation [18].

The performance of the preconditioner vs. the electron–ion mass ratio for both uniform and non-uniform meshes is
shown in Tables 1 and 2. To make a fair comparison, both uniform and non-uniform meshes have the same finest mesh
resolution, which locally resolves the Debye length. From the tables it is clear that similar performance gains of the precon-
ditioned solver vs. the unpreconditioned one are obtained for both uniform and non-uniform meshes. The dependence of
the GMRES performance on the mass ratio is much weaker with the preconditioner: as the mass ratio increases by a factor
of 100, the GMRES iteration count increases by a factor of 5 without the preconditioner, vs. a factor of 2 with the pre-
conditioner. Although not completely independent of the mass ratio, the solver behavior is consistent with the asymptotic
analysis made in Section 5.4.

The impact of the domain length in the solver performance is shown in Fig. 4. Clearly, the solver performance remains
fairly insensitive to the domain length both with and without the preconditioner, even though the domain length varies

564 G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567
Fig. 4. Solver performance as a function of the domain size, with Nx = 64, Npc = 1000, �t = 0.1ω−1
pi .

Fig. 5. NFE of GMRES and Newton iterations as a function of average number of particles per cell for a domain size L = 100 with Nx = 128 uniformly
distributed cells.

from 10 to 1000 Debye lengths. This is consistent with the condition number analysis in Eq. (38). The impact of the
preconditioner in the number of GMRES iterations is expected for the time step chosen.

The impact of the number of particles in the performance of the solver is shown in Fig. 5, which depicts the iteration
count of both Newton and GMRES vs. the number of particles. The timestep is varied by a factor of two, corresponding
to about one-tenth and one-fifth of the inverse ion plasma frequency (ω−1

pi). As expected, the solver performs better with
smaller timesteps and with larger number of particles. The number of linear and nonlinear iterations increases as the
number of particles decreases. This behavior is likely caused by the increased interpolation noise associated with fewer
particles: the noise in charge density results in fluctuations in the self-consistent electric field, making the Jacobian-related
calculations less accurate, thus delaying convergence. The preconditioner seems to ameliorate the impact of having too few
particles on the performance of the algorithm, thus robustifying the nonlinear solver.

The impact of the number of grid-points on the solver performance is shown in Fig. 6 for ωpi�t = 0.093, L = 100λD ,
and Npc = 1000. We see that the linear and nonlinear iteration count remains fairly constant with respect to Nx , with
and without preconditioning. This is consistent with the condition number result in Eq. (38) (which is independent of the

G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567 565
Fig. 6. Solver performance vs. the number of grid-points Nx for ωpi�t = 0.093, L = 100λD , and N pc = 1000.

Fig. 7. The performance of the JFNK solver against the number of grid-points, with Npc = 1000. The average particle pushing time is shown on the left and
total CPU time for a total time-span 80 is shown on the right. Both particle pushing time and total CPU time scale as N2

x for large enough Nx .

wavenumber). However, despite the fact that the number of iterations is virtually independent of the number of grid-points,
the CPU time grows significantly with it. Fig. 7 shows that the computational cost scales as N2

x for Nx large enough. The
reason is two-fold. On the one hand, since we keep the number of particles per cell fixed, the computational cost of pushing
particles increases proportionally with the number of grid-points. On the other hand, as we refine the grid, the cost per
particle increases because particles have to cross more cells (for a given timestep). In multiple dimensions, the particle orbit
will sample N1/d cells on average, for large enough N (or �t), with N and d denoting the total number of grid points and
dimensions, respectively. Hence, the cost of particle crossing will scale as N1/d , and the computational cost will scale as
N1+1/d . In this sense, the 1D configuration is the least favorable.

The performance of the implicit PIC solver vs. the explicit PIC one is compared in Fig. 8, which depicts the CPU speedup
vs. kλD . For this test, we choose mi/me = 1836, �t = 0.1ω−1

pi , and Npc = 1000. In the implicit tests, the number of grid-
points is kept fixed at Nx = 32 as L increases with k = 2π/L. In the explicit computations, �x � 0.3λD is kept constant
for stability, and therefore the number of grid-points increases with L. Both implicit and explicit tests employ a uniform
mesh. We monitor the scaling power index of Eq. (18) with and without the preconditioner. We test the performance with a
large implicit timestep (about 40 times larger than the explicit timestep). The scaling index is found to be ∼ 1.86 for small
domain sizes, close to the expected value of 2. As L increases, the scaling index becomes ∼ 1. The scaling index turns at
kλD ∼ √

me/mi ∼ 0.025, as predicted by Eq. (18). The estimated scaling index of 2 would be recovered if one increased the
timestep proportionally to L, but this would result in timesteps too large with respect to ω−1

pi . Overall, these results are in
very good agreement with our simple estimates. The preconditioned solver gains about a factor of two compared to the un-
preconditioned one, insensitively to kλD , which is consistent with the results depicted in Fig. 4. We see that for kλD < 10−3,

566 G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567
Fig. 8. The implicit PIC solver performance compared with the explicit scheme. The performance gain increases with the domain size. For the parameters
used, the performance gain of the implicit solver is enhanced by the preconditioner by about a factor of 2.

the implicit scheme delivers speedups of about three orders of magnitude vs. the explicit approach, while remaining exactly
energy- and charge-conserving.

The setup in Fig. 8 employs a uniform mesh. However, sometimes it is necessary to resolve the Debye length locally, e.g.
at a shock front or a boundary layer near a wall. In this case, using a non-uniform mesh is advantageous [21]. We test the
performance of the preconditioner on a non-uniform mesh for a nonlinear ion acoustic shock wave, as setup in Ref. [21].
Specifically, we use L = 100λD , Npc = 2000, Nx = 64, and �t = 0.1ω−1

pi for 20 timesteps. We perform the simulation in
the reference frame of the shock. The minimum resolution is �x = 0.5λD at the shock location. With a nonlinear tolerance
εr = 2×10−4, we have found that, with preconditioning, the average number of Newton and GMRES iterations is 3 and 10.1,
respectively, compared to 3.6 and 23 without preconditioning. The performance gain in the linear solve is about factor of
two, comparable to that obtained for a uniform mesh with similar problem parameters. Similar performance gains are found
with tighter nonlinear tolerances: for εr = 10−8, we find 5.1 Newton and 46.6 GMRES iterations without preconditioning,
vs. 5 and 20.5 with it.

7. Conclusions

This study has focused on the development of a preconditioner for a recently proposed fully implicit, JFNK-based, charge-
and energy-conserving particle-in-cell electrostatic kinetic model [9]. In the reference, it was found that, for large enough
implicit time steps �t , the potential implicit-to-explicit CPU speedup scaled as 1

NFE(kλD)d , with NFE the number of function

evaluations per time step, and kλD ∝ λD/L. Thus, large speedups are expected when kλD
 1 provided that NFE is kept
bounded. While the CPU speedup does not scale directly with �t , the use of large �t is advantageous to maximize opera-
tional intensity [18] (i.e., to maximize floating-point operations per byte communicated), and to control numerical noise via
orbit averaging [27].

We have targeted a preconditioner based on an electron fluid model, which is sufficient to capture the stiffest time
scales, and thus enable the use of large implicit time steps while keeping the number of function evaluations bounded. The
performance of the preconditioned kinetic JFNK solver has been analyzed with various parametric studies, including time
step, mass ratio, domain length, number of particles, and mesh size. The number of function evaluations is found to be
insensitive against changes in all of these, delivering a robust nonlinear solver. The CPU time of the implicit PIC solver is
found to be insensitive to the time step (upto ω−1

pi �t ∼ 0.1, as expected), but to scale with the square of the number of
mesh points in 1D. This scaling is due to the number of particles per cell being kept constant, and to the number of particle
crossings increasing linearly with the mesh resolution. The latter scaling will be more benign in multiple dimensions, as
particle orbits remain one-dimensional. Speedups of about three orders of magnitude vs. explicit PIC are demonstrated when
λD
 L (i.e., in the quasineutral regime). Based on the speedup prediction in [9], more dramatic speedups are expected in
multiple dimensions.

Future work will focus on extending the preconditioning approach to 1D non-radiative fully implicit electromagnetic
simulations (recently formulated in Ref. [11]), and to multiple dimensions.

Acknowledgements

This work was partially sponsored by the Office of Fusion Energy Sciences at Oak Ridge National Laboratory, and by the
Los Alamos National Laboratory (LANL) Directed Research and Development Program. This work was performed under the
auspices of the US Department of Energy at Oak Ridge National Laboratory, managed by UT-Battelle, LLC under contract

G. Chen et al. / Journal of Computational Physics 258 (2014) 555–567 567
DE-AC05-00OR22725, and the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos
National Laboratory, managed by LANS, LLC under contract DE-AC52-06NA25396.

References

[1] C. Birdsall, A. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985.
[2] R. Hockney, J. Eastwood, Computer Simulation Using Particles, Taylor & Francis, Inc., Bristol, UK, 1988.
[3] R.J. Mason, Implicit moment particle simulation of plasmas, J. Comput. Phys. 41 (2) (1981) 233–244.
[4] J. Brackbill, D. Forslund, An implicit method for electromagnetic plasma simulation in two dimensions, J. Comput. Phys. 46 (1982) 271.
[5] A. Friedman, A.B. Langdon, B.I. Cohen, A direct method for implicit particle-in-cell simulation, Comments Plasma Phys. Control. Fusion 6 (6) (1981)

225–236.
[6] A. Friedman, S. Parker, S. Ray, C. Birdsall, Multi-scale particle-in-cell plasma simulation, J. Comput. Phys. 96 (1) (1991) 54–70.
[7] B.I. Cohen, A.B. Langdon, D.W. Hewett, R.J. Procassini, Performance and optimization of direct implicit particle simulation, J. Comput. Phys. 81 (1)

(1989) 151–168.
[8] W. Taitano, D. Knoll, L. Chacón, G. Chen, Development of a consistent and stable fully implicit moment method for Vlasov–Ampère particle-in-cell (PIC)

system, SIAM J. Sci. Comput. (2013), in press.
[9] G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm, J. Comput. Phys. 230 (2011)

7018–7036.
[10] S. Markidis, G. Lapenta, The energy conserving particle-in-cell method, J. Comput. Phys. 230 (18) (2011) 7037–7052.
[11] G. Chen, L. Chacón, An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1d–3v Vlasov–Darwin particle-in-cell algorithm,

arXiv:1310.0930, 2013.
[12] D.A. Knoll, D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2) (2004) 357–397.
[13] P. Degond, F. Deluzet, L. Navoret, A.-B. Sun, M.-H. Vignal, Asymptotic-preserving particle-in-cell method for the Vlasov–Poisson system near quasineu-

trality, J. Comput. Phys. 229 (2010) 5630–5652.
[14] O. Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering, Birkhauser, 2010.
[15] S.E. Parker, A. Friedman, S.L. Ray, C.K. Birdsall, Bounded multi-scale plasma simulation: Application to sheath problems, J. Comput. Phys. 107 (1993)

388–402.
[16] A.B. Langdon, Analysis of the time integration in plasma simulation, J. Comput. Phys. 30 (2) (1979) 202–221.
[17] G. Chen, L. Chacón, An analytical particle mover for the charge-and energy-conserving, nonlinearly implicit, electrostatic particle-in-cell algorithm,

J. Comput. Phys. 247 (15) (2013) 79–87.
[18] G. Chen, L. Chacón, D.C. Barnes, An efficient mixed-precision, hybrid CPU–GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell

algorithm, J. Comput. Phys. 231 (16) (2012) 5374–5388.
[19] C.T. Kelley, Iterative Methods for Optimization, vol. 18, Society for Industrial and Applied Mathematics, 1987.
[20] R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (2) (1982) 400.
[21] L. Chacón, G. Chen, D.C. Barnes, A charge and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes,

J. Comput. Phys. 233 (2013) 1–9.
[22] F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York, 1984.
[23] J. Jackson, Longitudinal plasma oscillations, J. Nucl. Energy, Part C Plasma Phys. Accel. Thermonucl. Res. 1 (4) (1960) 171.
[24] N. Krall, What do we really know about collisionless shocks?, Adv. Space Res. 20 (4) (1997) 715–724.
[25] R. Fernsler, S. Slinker, G. Joyce, Quasineutral plasma models, Phys. Rev. E 71 (2) (2005) 026401.
[26] J. Williamson, Initial particle distributions for simulated plasma, J. Comput. Phys. 8 (2) (1971) 258–267.
[27] B.I. Cohen, R.P. Freis, V. Thomas, Orbit-averaged implicit particle codes, J. Comput. Phys. 45 (3) (1982) 345–366.

http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6269726473616C6C2D6C616E67646F6Es1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib686F636B6E657965617374776F6F64s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6D61736F6E2D6A63702D38312D696D5F706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib627261636B62696C6C2D666F72736C756E64s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib66726965646D616E2D63707063662D38312D64695F706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib66726965646D616E2D63707063662D38312D64695F706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib66726965646D616E313939316D756C7469s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib636F68656E2D6A63702D38392D64695F706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib636F68656E2D6A63702D38392D64695F706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib74616974616E6F2D736973632D31332D69706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib74616974616E6F2D736973632D31332D69706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6368656E2D6A63702D31312D69706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6368656E2D6A63702D31312D69706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6D61726B6964697332303131656E65726779s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6368656E3230313344617277696E2D706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6368656E3230313344617277696E2D706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6B6E6F6C6C323030346A61636F6269616Es1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6465676F6E642D6A63702D31302D61705F706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6465676F6E642D6A63702D31302D61705F706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib636872697374656E73656E3230313066756E6374696F6E73s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib5061726B65722D6A63702D39332D626F756E6465642D6D756C74697363616C652D706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib5061726B65722D6A63702D39332D626F756E6465642D6D756C74697363616C652D706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6C616E67646F6E2D6A63702D37392D7069635F7473s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6368656E32303133616E616C79746963616Cs1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6368656E32303133616E616C79746963616Cs1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6368656E2D6A63702D31322D697069635F677075s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6368656E2D6A63702D31322D697069635F677075s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6B656C6C657931393837697465726174697665s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib696E65786163742D6E6577746F6Es1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib636861636F6E2D6A63702D31332D63757276706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib636861636F6E2D6A63702D31332D63757276706963s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib464368656E626F6F6Bs1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6A61636B736F6E313936306C6F6E6769747564696E616Cs1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6B72616C6C313939377765s1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib6665726E736C65723230303571756173696E65757472616Cs1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib77696C6C69616D736F6E31393731696E697469616Cs1
http://refhub.elsevier.com/S0021-9991(13)00728-6/bib636F68656E2D6A63702D38322D6F726269745F617665726167696E67s1

	Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations
	1 Introduction
	2 Kinetically enslaved implicit PIC
	3 The JFNK solver
	4 Performance limits of implicit PIC
	5 Fluid preconditioning the electrostatic implicit PIC kinetic system
	5.1 Formulation of the ﬂuid preconditioner
	5.2 Extension to curvilinear meshes
	5.3 Electrostatic wave dispersion relations
	5.4 Asymptotic behavior of the implicit PIC formulation in the quasineutral limit

	6 Numerical experiments
	7 Conclusions
	Acknowledgements
	References

