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Estimating failure probabilities of engineering systems is an important problem in many 
engineering fields. In this work we consider such problems where the failure probability is 
extremely small (e.g. ≤ 10−10). In this case, standard Monte Carlo methods are not feasible 
due to the extraordinarily large number of samples required. To address these problems, we 
propose an algorithm that combines the main ideas of two very powerful failure probability 
estimation approaches: the subset simulation (SS) and the multicanonical Monte Carlo 
(MMC) methods. Unlike the standard MMC which samples in the entire domain of the 
input parameter in each iteration, the proposed subset MMC algorithm adaptively performs 
MMC simulations in a subset of the state space, which improves the sampling efficiency. 
With numerical examples we demonstrate that the proposed method is significantly more 
efficient than both of the SS and the MMC methods. Moreover, like the standard MMC, the 
proposed algorithm can reconstruct the complete distribution function of the parameter of 
interest and thus can provide more information than just the failure probabilities of the 
systems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Real-world engineering systems are unavoidably subject to various uncertainties such as material properties, geomet-
ric parameters, boundary conditions and applied loadings. These uncertainties may cause undesired events, in particular, 
system failures or malfunctions, to occur. Accurate evaluation of failure probability of a given system is essential in many 
engineering fields such as risk management [1], structural safety [2], reliability-based design and optimization [3], and thus 
is a central task of uncertainty quantification.

Conventionally, the failure probability is often computed by constructing linear or quadratic expansions of the sys-
tem model around the so-called most probable point or β-point [4], which is known as the first/second order reliability 
method (FORM/SORM); see e.g., [5] and the references therein. It is well known that FORM/SORM may fail for systems with 
nonlinearity or multiple failure modes. The Monte Carlo (MC) simulation, which estimates the failure probability by repeat-
edly simulating the underlying system, provides an alternative to the FORM/SORM methods. The MC method does not make 
any reduction to the underlying models, and so it can be applied to any systems. On the other hand, it is well known that 
the MC method suffers from slow convergence, and can become prohibitively expensive when the system failures are rare 
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(for example, around 10−10). To this end, many advanced sampling schemes have been developed to reduce the estimation 
variance and improve the computational efficiency. Among these schemes, the subset simulation (SS) method proposed by 
Au and Beck [6,7], is one of the most popular sampling strategies for estimating rare failure probabilities. Simply speaking, 
SS successively constructs a sequence of nested events with the very last one being the event of interest, and the proba-
bility of each event is estimated conditionally upon the previous one. Another attractive approach for estimating the failure 
probability is the multicanonical Monte Carlo (MMC) method [11,12], which was first developed to simulate rare events in 
physical systems. Later the method was used to estimate rare failure events in optical communication systems [13,14]. More 
recently, a surrogate accelerated MMC method was developed in [15] for uncertainty quantification applications. The main 
idea of the MMC method is to partition the state space of the parameter of interest (which is usually a scalar and will be 
referred to the performance parameter in what follows) into a set of small bins, and then iteratively construct a so-called 
flat-histogram distribution that can assign equal probabilities into each of the bins. Note that a major advantage of the MMC 
method is that it can reconstruct the entire distribution function of the parameter of interest, thus can provide with more 
information than just estimating the probability of a single event. Other small probability estimation methods include, the 
cross entropy method [8,9], and the population Monte Carlo [10], just to name a few.

In this work, we propose a new algorithm that combines the key ideas of the SS and the MMC methods. Specifically, the 
new algorithm also constructs a sequence of nested subdomains of the performance parameter, and then performs the MMC 
scheme in each subdomain. The algorithm preserves some key properties of the standard MMC algorithm, while using the 
subset idea to accelerate the computation. We thus refer to the proposed algorithm as the subset MMC (SMMC) method in 
the rest of the work. Like the MMC method, the proposed SMMC algorithm can also compute the entire distribution function 
of the parameter of interest. Using several examples, we compare the performance of the proposed SMMC algorithm with 
that of the SS and the MMC methods, and the numerical results show that the new algorithm can significantly outperform 
both of the original ones.

The rest of the work is organized as the following. In Section 2 we describe the mathematical formulation of the failure 
probability estimation problem. We then introduce the SS method in Section 3 and the MMC method in Section 4 respec-
tively. The proposed SMMC algorithm is presented in Section 5 and several numerical examples are provided in Section 6. 
Finally some closing remarks will be given in Section 7.

2. Failure probability estimation

In this section, we shall describe the failure probability estimation problem in a general setting. Consider a probabilistic 
model where x is a d-dimensional random variable that represents the uncertainty in the model and the system failure is 
defined by a real-valued function

y = f (x), (2.1)

which is known as the perform function. For simplification, we shall assume that the state space of x is Rd . The event of 
system failure is defined as that y exceeds a certain threshold value y∗:

F = {x ∈ Rd | y = f (x) > y∗}, (2.2)

and as a result the failure probability is

P F = P(F ) =
∫

{x∈Rd | f (x)>y∗}
π(x)dx =

∫
x∈Rd

I F (x)π(x)dx, (2.3)

where I A(x) is defined as an indicator function of a set A:

I A(x) =
{

1 if x ∈ A,

0 if x /∈ A;
and π(x) is the probability density function (PDF) of x. In what follows we shall omit the integration domain when it 
is simply Rd . This is a general definition for failure probability, which is widely used in many disciplines involving with 
reliability analysis and risk management. Ideally, P F can be computed by using the standard MC estimation:

P F ≈ 1

N

N∑
j=1

I F (x j), (2.4)

where samples x1, ..., xN are drawn from the distribution π(x). However, as has been discussed in Section 1, most engi-
neering systems require high reliability, namely the failure probability P F � 1. In this case, MC requires a large number of 
samples to produce a reliable estimate of P F . On the other hand, in almost all practical cases, the performance function f (x)

does not admit analytical expression and has to be evaluated through expensive computer simulations, which makes the 
MC estimation of the failure probability prohibitive. Many advanced sampling schemes have been developed to compute the 
failure probability P F , and in what follows, we shall introduce two popular choices of them: the SS and the MMC methods.
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3. The subset simulation method

A brief introduction of the SS method, largely following [6], will be provided in this section. Note that we shall only 
outline the basic idea of the SS algorithm, and readers who are interested in the implementing details are referred to [6,16,
17] and the references therein.

The idea of the SS method is to decompose the rare event F into a sequence of “less-rare” nested events,

F = F K ⊂ F K−1 ⊂ · · · ⊂ F1 ⊂ F0,

where Fk is a more frequent event than Fk+1 for k = 1, · · · , K − 1 and F0 = Rd . Hence, the failure probability P F of the 
event F can be computed by

P F = P(F ) = P(F K ) = P(F1)
P(F2)

P(F1)

P(F3)

P(F2)
· · · P(F K )

P(F K−1)

= P(F1|F0)P(F2|F1) · · ·P(F K |F K−1), (3.1)

where P(Fk|Fk−1) is the conditional probability of event Fk given the occurrence of event Fk−1. Note that P(F1|F0) = P(F1).
Before looking deeper into the algorithm, we will set up some new notations first. Given an intermediate threshold value 

yk , define Fk = {x ∈ Rd | f (x) > yk} as a corresponding intermediate event. In addition, we choose y0 = −∞ so that F0 = Rd . 
The failure probability P F is now evaluated in a sequential manner. In short words, starting from stage k = 0, the algorithm 
generates a number of samples x1, · · · , xN from the distribution with PDF

πk(x) = π(x|Fk) ∝ π(x)I Fk (x), (3.2)

where it should be noted that π0(x) = π(x). It is worth noticing that drawing samples from πk(·) is done with the Markov 
Chain Monte Carlo (MCMC) methods, which do not require the knowledge of the unavailable normalization constant in 
Eq. (3.2). Afterward, one chooses an intermediate threshold value yk+1 and compute the conditional probability P(Fk+1|Fk)

with standard MC, getting

P(Fk+1|Fk) ≈ 1

N

N∑
j=1

I Fk+1(x j). (3.3)

The crucial point here is to pick yk+1 so that the resulting conditional probability P(Fk+1|Fk) is not too small. A commonly 
used approach is to let yk+1 be the (1 − γ )-th percentile of samples {y1 = f (x1), · · · , yN = f (xN )} for some not too small 
positive number γ (e.g., = 0.1). The algorithm proceeds until yk+1 reaches y∗ . Therefore, one obtains the estimates of all 
the conditional probabilities P(F1|F0), · · · , P(F K |F K−1) (assuming the algorithm reaches y∗ at the (K −1)-th iteration), and 
substituting the results into Eq. (3.1) yields an estimate of the sought failure probability P F . We reinstate that the complete 
description of SS method is well documented in several works [6,16–18].

4. The multicanonical Monte Carlo method

We will now succinctly present the scheme of the MMC method, which is another effective algorithm used to estimate 
small failure probabilities. Unlike the SS method, MMC solves the problem by constructing the distribution of the output 
parameter y. Namely, let πy(·) be the PDF of y, and then the failure probability can be obtained by

P F =
b∫

y∗
πy(y)dy, (4.1)

where b is in principle the maximum value of y. In practice, however, it is often not necessary to let b be the maximum 
value of y, especially when y is not bounded from above. It is easy to see that, for our purposes, it is sufficient to choose b
such that P(y > b) � P(y > y∗). Hence, in order to find the failure probability of the system, one only needs the PDF of y. 
To be more precise, we only need the PDF of y in the interval [y∗, b]. This is not a simple task, however, because the failure 
region is typically located in the tail of y.

A popular strategy applied to estimate the PDF of a continuous random variable y with simulation is to approximate the 
PDF with histograms. Suppose we are interested in the PDF of y in the interval B = [a, b], and we first equally decompose 
B into m bins of width �, whose centers are the discrete values {b1, ..., bm}. We define the i-th bin as the interval Bi =
[bi − �/2, bi + �//2] and the probability for y to be in Bi is Pi = P{y ∈ Bi}. Note that the width of each bin needs not to 
be identical in principle, and here we use identical bin width just for the simplicity of notations. In fact the choice of bins 
is critical to the performance of the MMC method, and in this respect, one possible guideline is that the bins should be 
chosen such that adjacent bins have probabilities within one order of magnitude of one other [19]. The PDF of y at point 
bi then can be approximated by
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Fig. 1. Schematic illustration of the connection between Bi and Di .

p(bi) ≈ Pi/�,

if � is sufficiently small. This binning implicitly defines a partition of the input space X into m domains {Di}m
i=1, where

Di = {x ∈ Rd : f (x) ∈ Bi}
is the domain in X that is mapped into the i-th bin Bi by f (·) (see Fig. 1). Note that, while Bi are simple intervals, the 
domains Di are multidimensional regions with possibly tortuous topologies. As a result, the probability Pi can be re-written 
as an integral in the input space:

Pi =
∫
Di

π(x)dx =
∫

I Di (x)π(x)dx = E[I Di (x)]. (4.2)

Now suppose that N samples {x1, . . . , xN } are drawn from the distribution π(x), possibly with MCMC, Pi can be estimated 
with the MC estimator:

P̂ MC
i = 1

N

N∑
j=1

I Di (x j) = Ni

N
, (4.3)

where Ni is the number of samples that fall in the domain Di .
As is mentioned earlier, standard MC simulations have difficulty in reliably estimating the probabilities in the tail bins. 

The technique of importance sampling (IS) can be effectively used to address the issue. The principle idea of IS is to choose 
a biasing distribution q(x) and rewrite Eq. (4.2) as

Pi =
∫

I Di (x)

[
π(x)

q(x)

]
q(x)dx = E

∗[I Di (X)w(X)] (4.4)

where w(x) = π(x)/q(x) is called the IS weight, and E∗ indicates the expectation with respect to the biasing distribution 
q(x). It follows that the IS estimator of Pi becomes

P̂ I S
i =

(
N∗

i

N

)⎡
⎣ 1

N∗
i

N∑
j=1

I Di (x j)w(x j)

⎤
⎦, (4.5)

where the samples {x1, . . . , xN } are now generated from the biasing distribution q(x), and N∗
i is the number of samples 

falling in the region Di .
One can easily see that the key of IS is to choose an appropriate biasing distribution q(x) that can help to achieve 

the objective of the simulation. While regular IS usually aims to estimate the probability in a given region, the goal of 
our simulation is to have a good estimate of Pi for all i = 1 . . .m, and in this respect, it is reasonable to seek a biasing 
distribution that assigns equal probability to each bin and zero probability for any region outside D = ∪m

i=1 Di , which implies 
that

P∗
1 = P∗

2 = ...P∗
m = 1/m, (4.6a)

where

P∗
i =

∫
d

I Di (x)q(x)dx = E∗[I Di (X)], for i = 1, · · · ,m. (4.6b)
R
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We refer to the biasing distribution which satisfies Eqs. (4.6) to be flat-histogram (FH). One should be noted that the FH 
distributions are not unique, and among them there is one which assigns a constant weight to all x ∈ Di , i.e. w(x) = wi for 
x ∈ Di where wi = Pi/P∗

i . In this case, the biasing distribution q(x) is called to be uniform-weight (UW).
In particular, we assume that the biasing distribution q(x) is given in the form of

q(x) =
⎧⎨
⎩

π(x)

c��(x)
x ∈ D;

0 x /∈ D,

(4.7)

where �(x) = �i > 0 for all x ∈ Di, i = 1, ..., m, satisfying

m∑
i=1

�i = 1, (4.8)

and c� being a normalized constant.
It is easy to show that q(x) given in Eq. (4.7) is UW with wi = c��i for i = 1, . . . , m. Next we shall impose the constraint 

so that q(x) given in Eq. (4.7) is FH. Since

P∗
i =

∫
Di

q(x)dx =
∫

Di
π(x)dx

c��i
= Pi

c��i
, (4.9)

and by setting the left hand side of Eq. (4.9) to be equal to 1/m, we obtain

�i = m

c�

Pi . (4.10)

Substituting Eq. (4.10) into Eq. (4.8) results in c� = mρ , where ρ = ∑m
i=1 Pi , and it follows immediately that �i = Pi/ρ . 

Note that in general the probability ρ = P[y ∈ B] ≤ 1 and is unknown in advance. A conventional solution is to take a 
sufficiently large interval B so that ρ ≈ 1, and we adopt this choice in this work.

However, for the reason that �i , i = 1, · · · , m, depend on the sought after unknown Pi , the actual UW–FH distribution 
just derived above can not be utilized directly to achieve the goal of sampling equally in each bin.

The MMC method uses an adaptive scheme to address this issue. Briefly speaking, MMC adaptively constructs a sequence 
of distributions

qk(x) =
⎧⎨
⎩

π(x)

ck�k(x)
, x ∈ D;

0, x /∈ D,

(4.11)

where �k(x) = �k,i for x ∈ Di , converging to the actual UW–FH distribution. Before proceeding to the MMC algorithm, we 
derive an alternative representation of �i from Eq. (4.10):

�i = P∗
i wi/ρ, for i = 1, · · · ,m. (4.12)

Typically, the MMC method starts from the original PDF q0(x) = π(x), where the associated parameter values are c0 = 1
and �0,i = 1 for all i = 1, . . . , m. In the k-th iteration, one first draws N samples {x j}N

j=1 from the current distribution qk(x), 
and then updates {�k+1,i}m

i=1 using the following formulas derived from Eq. (4.12):

Ĥk,i = N∗
k,i

N
, (4.13a)

wk,i = ck�k,i, (4.13b)

�k+1,i = Ĥk,i wk,i/ρ, (4.13c)

where N∗
k,i is the number of samples falling into region Di in the k-th iteration. It should be noted that, MMC usually 

employs MCMC to draw samples from qk(x), thanks to which we do not need to estimate ck during the iterations (i.e., just 
to take ck = 1 in each iteration). However, the constant is needed when one wants to compute Pi for i = 1, · · · , m, using 
the IS estimator (4.5), in the final stage. To circumvent the obstacle, we estimate Pi by

Pi ≈ �K ,i∑m
i=1 �K ,i

ρ, for i = 1, · · · ,m,

where K is the index of the final iteration. Formal convergence analysis, as well as possible improvements of the MMC 
method are not discussed in this work, and readers who are interested may consult, e.g., [20–23], and the references 
therein.
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5. The subset MMC method

As it’s been described in the previous section, the conventional MMC method uses a sufficiently large interval B such that 
ρ = 1, which, unfortunately, is not an efficient approach for our purposes because the failure region that we are interested 
in, [y∗, b], is typically a small subinterval of B . As a result, only a very small portion of the samples will be used to estimate 
the density in the region of interest. To address the issue, we propose a subset MMC algorithm, which combines the key 
ideas of the SS and the MMC methods.

Consider the case where ρ is unknown. Similar to the SS method, we now construct a sequence of nested intervals 
B0 ⊃ ... ⊃ B J , where B0 = B and B J = [y∗, b] is the interval of interest. It should be easy to see that the corresponding 
domains in the input space are also nested. Let ρ j = P(y ∈ B j) for j = 1, · · · , J , and as it’s explained before, the failure 
probability P F ≈ ρ J .

Let the bins B1, ..., Bm be predetermined as the previous section and will not be changed as the algorithm proceeds. 
Moreover, for the sake of simplicity, we assume that the threshold value y∗ coincides with the left boundary of one of the 
bins, i.e. bm∗ − �/2 = y∗ for some integer 1 ≤ m∗ ≤ m. In this case, it will be natural to construct each interval B j as a 
union of bins: B j = ∪m

i=m j
Bi for some integer 1 ≤ m j ≤ m∗ . It can be easily seen that m1 ≤ m2 ≤ · · · . Starting from B0 (with 

ρ0 = 1 and m0 = 1), we now perform a standard MMC within the interval B j and compute the probabilities of bins from 
m j to m: Pm j , ..., Pm . An m j+1 is chosen such that m j ≤ m j+1 ≤ m, which indicates that the choice of m j+1 determines 
the next interval B j+1 (the criterion that we use to determine m j will be provided later). The basic thought is that we can 
gradually concentrate the samples toward the region of interest. It follows immediately that the associated probability ρ j+1
can be estimated by

ρ j+1 =
m∑

i=m j+1

Pi .

The algorithm proceeds until m j+1 = m∗ . The complete scheme is described in Algorithm 1. Some remarks regarding the 
implementation of the algorithm of SMMC are listed in order.

• In each iteration, m j+1 is determined according to the following. First, a not-too-small positive number α < 1 (e.g. 
= 0.2) is chosen. Then we select an m j+1 such that (approximately) 100α% of the samples fall in the interval B j =
∪m

i=m j+1
Bi .

• In line 18, the samples are drawn from qk(·) using the MCMC methods. In particular, we implement a multiple chain 
MCMC algorithm specifically tailored for this problem. The details of the algorithm are given in Appendix A.

• The terminating condition used here is m j = m∗ , i.e., when the interval in which we perform MMC reaches the area of 
interest.

So far, although we have presented the SMMC algorithm as a variant of the standard MMC method, the key idea is also 
inspired by the SS method. Namely, in the SMMC algorithm, a sequence of subsets are first constructed and in each subset a 
MMC iteration rather than plain MC is performed in order to drive samples towards the failure region. It is also interesting 
to notice that, just like the standard MMC method, one of the significant advantages of the SMMC method is that, if desired, 
it can construct the entire PDF of y without any additional cost, as we obtain the estimates of Pi for i = 1, · · · , m during 
the iteration. We shall illustrate this advantage with numerical examples in Section 6.

Finally we shall provide a simple analysis of the estimator error of the SMMC algorithm. Two simplifications are made 
for the sake of convenience. One is that the samples drawn are independent while noting that this is certainly not the case 
when the samples are drawn with the MCMC method. The other assumption is that the biasing distribution is “perfectly 
flat” in the last iteration; namely, the biasing distribution is given by Eq. (4.7), where {�i}m

i=m∗ are defined in Eq. (4.10) and

c� = (m − m∗)ρ,

where (m − m∗) is the number of bins in the last iteration. Now for any m∗ ≤ i ≤ m, the estimator of Pi is

P̂ i =
N∑

j=1

I Di (x j)w(x j), (5.1)

where the samples are drawn from distribution Eq. (4.7) with

w(x) = (m − m∗)ρ ′�(x). (5.2)

Note that ρ ′ in Eq. (5.2) is an estimate of ρ as the actual value of ρ is unknown in our problem.
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Algorithm 1 The subset MMC algorithm.
Require: π(x), {Bi}m

i=1, m∗ , N , K , α.
Ensure: P F .

1: procedure P F = SMMC(π(x), {Bi}m
i=1, m∗ , N , α)

2: Initialization: j = 0, �0 = (1, · · · ,1), m0 = 1, ρ0 = 1;
3: while m j < m∗ do
4: [� j+1, m j+1] = MMC(� j , m j , π(x), {Bi}m

i=m j
, m∗, N, K , α);

5: for i = m j ...m do

6: Pi = � j+1,i∑m
i′=m j

� j+1,i′
ρ j ;

7: end for
8: ρ j+1 = ∑m

i=m j+1
Pi ;

9: j = j + 1;
10: end while
11: P F = ρ j ;
12: end procedure
13: procedure [�+, m+] = MMC(�−, m−, π(x), {Bi}m

i=1, m∗, N, K , α)
14: �0 = �−;
15: D = {x ∈ Rd | g(x) ∈ ∪m

i=m− Bi};
16: for k = 0...K do
17: Let qk be given by Eq. (4.11) with �k ;
18: Draw N samples {x1, ..., xN } from qk;
19: Evaluate Sk = { f (x1), ..., f (xN )};
20: Compute {�k+1,m− , ..., �k+1,m} using Eqs. (4.13);
21: end for
22: Let yα be the (1 − α)-th quantile of set S K ;
23: Let m+ be the index of the bin such that yα ∈ Bm+ ;
24: m+ = min{m+, m∗};
25: �+ = �K+1;
26: end procedure

The mean square error (MSE) of Eq. (5.1) is computed as

MSE[ P̂ j] = VAR[ P̂ j] + (E[ P̂ j] − P j)
2,

= 1

n

((
ρ ′

ρ

)2

(m − m∗)P 2
j −

(
ρ ′

ρ

)2

P 2
j

)
+

((
ρ ′

ρ

)
− 1

)2

P 2
j ,

= (m − m∗ − 1)

N
φ2 P 2

j + (φ − 1)2 P 2
j ,

where φ = ρ ′/ρ . It is not difficult to see that the optimal value of φ that minimizes the MSE is φ = N/(N + m − m∗ − 1), 
and the resulting minimal MSE is

MSEmin = m − m∗ − 1

m − m∗ − 1 + N
P 2

j .

It is interesting to see from the results that for the MSE to be minimal, one should choose

ρ ′ = N

(N + m − m∗ − 1)
ρ,

rather than ρ ′ = ρ . However, when m − m∗ � N which is the usual case, N
(N+m−m∗−1)

≈ 1, and thus we choose not to 
include the factor N

(N+m−m∗−1)
in the estimate of ρ in Algorithm 1.

6. Numerical examples

6.1. A two-dimensional mathematical example

The first example is a two-dimensional mathematical problem. Suppose that x = (x1, x2) is a two-dimensional random 
variable where x1 and x2 both follow standard normal distribution and are independent to each other. The event of failure 
is defined as

min{‖x − xr‖2,‖x − xl‖2} < 1,

where xr = (8, 2) and xl = (−8, 2). On the one hand, it is clear that the problem has two disjoint failure domains: {x ∈
R2|‖x − xr‖2 < 1} and {x ∈ R2|‖x − xl‖2 < 1}, which poses challenges for many standard IS methods. On the other hand, for 
this two-dimensional example, the failure probability can be accurately estimated by performing a numerical integration, 
yielding P F = 1.41 × 10−13.
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Table 1
Example 1: performance comparison of the three methods with 
different sample sizes.

SS MMC SMMC

n 2.54 × 104 2.0 × 104 1.70 × 104

RMSE 49 25.9 0.49

n 1.14 × 105 1.0 × 105 0.98 × 105

RMSE 2.69 2.56 0.078

n 3.34 × 105 3.0 × 105 2.99 × 105

RMSE 0.16 2.13 0.017

Fig. 2. Example 1: the sample distributions in one test trial for SMMC.

We estimate the probability with three methods: SS, standard MMC and SMMC. As for the SS method, we largely follow 
the implementation described in [18] and set γ = 0.1 as it’s suggested in [18]. For both of the standard MMC and proposed 
SMMC methods, the entire region of interest of the output is taken to be [0, 100] and is equally divided into 100 bins. For 
the SMMC method, we take α = 0.2 to generate the nested intervals.

We compare the three methods using three different numbers of samples: 2 × 104, 1 × 105 and 3 × 105. It should be 
noted that, while for the MMC algorithm we can choose the exact sample size by fixing the total number of iterations and 
the number of samples used in each iteration, we can not precisely control it in the SS and the SMMC methods, and so 
we can only adjust the algorithms so that the total amounts of samples are close to the aforementioned numbers. Also, 
during all the computations, we manage to ensure that the sample size of the SMMC is smaller than those in the other two 
algorithms. For each of the three methods, we repeatedly perform the simulations for 100 times and computed the average 
number of samples as well as the relative mean square errors (RMSE):

RMSE =
1
L

∑L
l=1 | P̂ l − P F |2

P 2
F

,

where L = 100 is the total number of experiments and P̂ l is the estimated probability at the l-th test. The test results 
are presented in Table 1. We have found that, in the SMMC method, most tests terminate within three iterations. We also 
show the sample distributions in one test trial in Fig. 2. One can see from the figure that, the SMMC method is capable of 
directing samples toward the failure region in a rather efficient manner. More information can be learned from the results in 
Table 1. In particular, we can see that in all the cases, the SMMC performs substantially better than the other two methods, 
even with less samples.

6.2. A high dimensional mathematical example

This one is also a mathematical problem, but of a higher dimensionality than the previous one. Specifically, we let x be 
a d-dimensional random variable following standard Gaussian distribution: x ∼ N(0, I) where I is the d × d identity matrix. 
The failure event is defined as f (x) > y∗ with

f (x) = ‖x‖2
2. (6.1)

In our numerical tests, we choose d = 10 and y∗ = 75. In this setting, the failure probability can be computed analytically 
as P F = 4.76 × 10−12.
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Table 2
Example 2: performance comparison of the three methods with 
different sample sizes.

SS MMC SMMC

n 2.5 × 104 2.0 × 104 1.7 × 104

RMSE 6.3 7.1 0.5

n 1.09 × 105 1.0 × 105 1.07 × 105

RMSE 2.6 2.7 0.2

n 3.27 × 105 3.0 × 105 2.90 × 105

RMSE 0.15 2.4 0.02

Fig. 3. Example 2: the CCDF computed by the SMMC method compared to the exact results, both are plotted on a logarithmic scale. Inset: the same plots 
but on a linear scale.

Fig. 4. Example 3: a cantilever beam subject to horizontal and vertical loads.

We test all the three methods on this example as well. The specifications of the implementations of all the three methods 
are kept the same as those in the first example. Like the first example, we test each method with three different sample 
sizes: 2 ×104, 1 ×105 and 3 ×105, and repeatedly perform the simulations 100 times for each sample size. The RMSE results 
are available in Table 2. The results indicate that, in this example, the SMMC method also substantially outperformed the 
other two methods. Besides, as it is mentioned earlier, another advantage of the SMMC method over SS method is that it 
can also be used to construct the complete distribution of the output y. To show this, we plot in Fig. 3 the complement 
cumulative distribution function (CCDF) of y obtained by the SMMC method, which is defined as

CCDF(y) = 1 − CDF(y),

where CDF(y) is the cumulative distribution function (CDF) of y. As a comparison, we also show the exact CCDF function 
of y, and one can see that the result of SMMC agrees very well with the exact one.

6.3. Cantilever beam

We now consider a real-world example: a cantilever beam problem studied in [24,25]. The beam is illustrated in Fig. 4, 
with width w , height t , length L, and subject to transverse load Y and horizontal load X . This is a popular benchmark 
problem in the reliability analysis literature. The quantity of interest in this problem is the maximum deflection of the 
beam, which can be computed as,

y = 4L3

E wt

√(
Y

t2

)2

+
(

X

w2

)2

.
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Table 3
Example 3: the mean and variance of the random parameters.

Parameter w t X Y E

Mean 4 4 500 1000 2.9 × 106

Variance 0.001 0.0001 100 100 1.45 × 106

Table 4
Example 3: performance comparison of the three methods with 
different sample sizes.

SS MMC SMMC

n 2 × 104 2.0 × 104 2.05 × 104

RMSE 1.5 – 1.6

n 1.09 × 105 1.0 × 105 1.07 × 105

RMSE 0.13 0.1 0.08

n 3.0 × 105 3.0 × 105 2.88 × 105

RMSE 0.05 0.05 0.04

Fig. 5. Example 3: the CCDF computed by the SMMC method with two different sample sizes: 104 (circles) and 5 × 104 (crosses). As a comparison, we also 
plot in the figure the result of standard MC with 106 samples (dashed line). All are plotted on a logarithmic scale. Inset: the same plots but on a linear 
scale.

In particular, we assume that the beam length is fixed L = 100, and the beam width w , the height t , the applied loads 
X and Y , as well as the elastic modulus E of the material, are random parameters. We further assume that these random 
parameters are all independently distributed, with each following a normal distribution. The means and the variances of 
these parameters are provided in Table 3. We define the event of failure as that the deflection y exceeds a threshold value 
y∗ = 6.7.

We first evaluate the resulting failure probability with the SS method of 106 samples, yielding an estimate 9.7 × 10−12, 
and we regard this estimate as the true failure probability. We then estimate the failure probability using the SS, the 
MMC, and the SMMC methods with three different sample sizes: 2 × 104, 1 × 105 and 3 × 105; we repeatedly perform 
the simulations 100 times for each sample size. The RMSE results are available in Table 4. We note that, the MMC method 
can not yield a stable a estimate of the failure probability with 2 × 104 samples, and thus its RMSE result is omitted in 
Table 4. We can see from the results that the SS and the SMMC methods have quite similar performance for this example. 
Nevertheless, as is discussed earlier, the SMMC method can compute the complete distribution of y, which is illustrated by 
the CCDF of y computed by the SMMC method in Fig. 5.

6.4. Quarter car model

The last example is the quarter car model for vehicle suspension systems [26]. The schematic illustration of the model 
is shown in Fig. 6, where the sprung mass ms and the unsprung mass mu are connected by a nonlinear spring and a linear 
damper. The stiffness of the nonlinear spring is ks and the damping coefficient of the linear damper is c. The displacement of 
the wheel z(t) represents the interaction of the quarter car system with the terrain. Mathematically, the model is described 
by a two-degree-of-freedom ODE system [26]:
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Fig. 6. Example 4: the quarter car model.

Table 5
Example 4: the parameter values of the quarter car model.

ms mu ks ku c

20 40 400 2000 600

ms
d2x1

dt2
= − ks(x1 − x2)

3 − c

(
dx1

dt
− dx2

dt

)
, (6.2a)

mu
d2x2

dt2
= ks(x1 − x2)

3 + c

(
dx1

dt
− dx2

dt

)
+ ku(z(t) − x2), (6.2b)

where x1 and x2 are the displacements of the sprung and the unsprung masses respectively. In our example, we assume 
that the uncertainty in the system arises from the random road profile, and as a result the wheel displacement z(t) is 
modeled as a zero-mean white Gaussian random force with standard deviation σ = 0.05. The other model parameters are 
all taken to be fixed and the values of them are shown in Table 5. The quantity of interest is the maximum difference 
between displacements of the sprung and the unsprung springs in a given interval [0, T ],

y = max
0≤t≤T

{|x1(t) − x2(t)|},
and we want to reconstruct the CCDF of y. With the CCDF, we can estimate directly the probability P(y > y∗) for any y∗ in 
the range of interest.

In the numerical simulations, we take T = 1, and the initial conditions of Eqs. (6.2) to be

x1(0) = dx1

dt
(0) = 0, x2(0) = dx2

dt
(0) = 0.

Eqs. (6.2) are numerically solved with the classical Runge–Kutta method where the step size is taken to be �t = T /100, 
which means that the random variable in this problem is effectively of 100 dimensions.

Also, the CCDF of y using a standard MC method with 106 samples is constructed. We perform the SMMC method with 
three sample sizes 104, 5 × 104 and 105 respectively, and present all the results in Fig. 7. One can see from the figure that, 
the results of the SMMC agree largely with those of the standard MC. Without surprise, the MC method can only obtain 
the CCDF at the order of 10−6, while the SMMC method can compute the CCDF down to 10−12 and smaller with much 
less samples than the MC method. One can also see that the result of the SMMC of 104 samples departs evidently from 
those of 5 × 104 and 105, indicating that the sample size of 104 may not be sufficient for this problem. With around 105

samples, we can compute the probability as small as 10−12 using the SMMC method. Note that the CCDF computed with 
the SMMC method can also provide us with other important information such as the extreme quantiles. For instance, we 
can see directly from the CCDF that the (1–10−8)-th quantile is 0.0198 and the (1–10−10)-th is 0.0224. Such information 
can not be easily obtained with the SS method.

7. Conclusions

In summary, we propose an efficient algorithm for estimating failure probabilities of complex engineering systems, which 
combines the central ideas of the SS and the MMC methods. The new algorithm constructs a sequence of subdomains of 
the performance parameter y and performs regular MMC iterations within each subdomain only. We demonstrate that the 
proposed SMMC method can significantly outperform the two original methods, and moreover, like the MMC method, it can 
be used to reconstruct the entire distribution function of the performance parameter. We believe that the SMMC method 
can be a useful tool for many practical engineering problems that involve small failure probability estimations.
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Fig. 7. Example 4: the CCDF computed by the SMMC method with three different sample sizes: 104 (circles), 5 × 104 (crosses) and 105 (asterisks). As a 
comparison, we also plot in the figure the result of standard MC with 106 samples (dashed line). All are plotted on a logarithmic scale. Inset: the same 
plots but on a linear scale.

Several improvements and extensions of the proposed algorithm are possible. First, for systems with highly intensive 
computer models, even with the SMMC method, the total computational cost is still unaffordable. In such problems, a pos-
sible solution is to construct computationally inexpensive surrogate models and use them in the simulations (see, e.g. [24,
27,28]). To this end, surrogates have been used to accelerate the simulations in both the SS [29] and the MMC [15] meth-
ods. Thus we hope to develop surrogate based methods to reduce the computational cost of the SMMC algorithm. Secondly, 
in many practical problems, one often has computer models with different fidelities for the system. In this case, a very 
interesting question is how to incorporate the multi-fidelity models with the SMMC algorithm and further improve the 
computational efficiency. Finally we think the proposed method can also be applied to problems beyond failure probability 
estimations. In particular, we hope to apply the SMMC algorithm with necessary modifications to evaluate the evidence 
(normalization constant of the posterior distribution) in Bayesian inference problems. We plan to study these problems in 
future works.
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Appendix A. A specialized MCMC algorithm for the SMMC simulations

Here we present a specialized MCMC algorithm, largely following the modified Metropolis algorithm used in the SS 
method [6]. First, unlike the standard MMC algorithm which employs only one MCMC chain at each cycle, we use a multi-
chain MCMC algorithm. In particular, in each cycle we randomly select a sample from each D1, D2, · · · , Dm if there are 
any, and then we use the obtained m′ ≤ m samples as the seeds to perform m′ chains parallely. Note that here m′ is au-
tomatically determined by the algorithm and for this reason, we can not strictly specify the number of samples drawn in 
each MMC iteration.

Next we adopt the dimension by dimension proposal used in [6]. To do so, we need to assume that in the original 
distribution π(x) all the components of x are independent; namely, π(x) can be written as,

π(x) =
d∏

i=1

φi(xi).

We use the following algorithm to generate another sample x∗ from the MMC biasing distribution f (·).

(1) For i = 1, · · · , d, sample ξi ∼ qi(·|xi), where qi(·) is a univariate PDF for ξi centered at xi with the symmetry property 
qi(ξi |xi) = qk(xi |ξi).

(2) Compute the acceptance probability ri = min{1, φi(ξi)/φi(xi)} for i = 1, · · · , d, and then determine the i-th coordinate 
of the candidate sample by accepting or rejecting ξi according to,

ζi =
{

ξi, with probability ri;
xi, with probability 1 − ri .

(A.1)
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(3) Compute the final acceptance probability r∗ = min{1, �(x)/�(ζ )}, and accept or reject the possible sample ζ according 
to

x∗ =
{

ζ , with probability r∗;
x, with probability 1 − r∗. (A.2)

The ergodicity of the modified MCMC algorithm can be proved using the same arguments of [6] and so is omitted here.
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