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Fixman’s work in 1974 and the follow-up studies have developed a method that can 
factorize the inverse of mass matrix into an arithmetic combination of three sparse 
matrices—one of them is positive definite and needs to be further factorized by using 
the Cholesky decomposition or similar methods. When the molecule subjected to study 
is of serial chain structure, this method can achieve O (n) time complexity. However, for 
molecules with long branches, Cholesky decomposition about the corresponding positive 
definite matrix will introduce massive fill-in due to its nonzero structure. Although there 
are several methods can be used to reduce the number of fill-in, none of them could 
strictly guarantee for zero fill-in for all molecules according to our test, and thus cannot 
obtain O (n) time complexity by using these traditional methods. In this paper we present a 
new method that can guarantee for no fill-in in doing the Cholesky decomposition, which 
was developed based on the correlations between the mass matrix and the geometrical 
structure of molecules. As a result, the inverting of mass matrix will remain the O (n) time 
complexity, no matter the molecule structure has long branches or not.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Molecular dynamics simulation involves the calculation of the following equation of motion: q̇ =MMM−1p. Where q is the 
generalized coordinate, p is the conjugate momenta, and MMM is the mass matrix of the molecule. In Cartesian coordinate the 
mass matrix is diagonal and is easy to be inverted. For molecule models with geometrical constraints such as fixed angles 
and lengths, consideration of the molecular movements in the space of generalized internal coordinate rather than Cartesian 
coordinate is an efficient way to deal with the constraints. In this instance the fixed internal variables are directly excluded 
from the generalized coordinate, q, and the calculation of constraint forces [1–3] can be avoided. However, in this case the 
corresponding mass matrix is a dense matrix. For macromolecules such as DNA, RNA, proteins, polymers, etc., the inverting 
of mass matrix is a difficult job, the direct calculation of MMM and MMM−1 scaled as O (n3), where n is the number of atoms in 
the molecule.

In 1974, Fixman [4] developed a method for efficient calculation of the determinant of mass matrix for polymer chains. 
Lee et al. [5–7] extended this method to solve the equations of motion in O (n) calculation. They applied Fixman’s theorem 
to invert the mass matrix for structures of serial chain such as planar N-link manipulator, polymer chains, polypeptide 
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chain, and serial chain composed of rigid bodies. They found that the mass matrix inverse can be factorized as MMM−1 =
A − BC−1B� , where A,B and C are sparse matrices, the number of nonzero entries in the three matrices are all of O (n), also, 
C is positive definite. The solving process of the equation of motion can then be decomposed into a series of calculations 
involving the three sparse matrices. However, a Cholesky decomposition C = LL� is required due to the existence of C−1. 
If the molecule has serial chain structure, the nonzero entries of C will be clustered about its diagonal. In this case the 
calculation of Cholesky decomposition can be of order O (n). The equation of motion can therefore be solved in an O (n)

calculation.
While the above approaches are confined to serial chain structures, in this case the diagonal clustering property of C

makes the Cholesky decomposition easy and efficient. However, if the molecule structures have long branches, the nonzero 
entries will no longer cluster to the diagonal, even though C is still sparse. As a result, direct Cholesky decomposition from 
C to L will introduce a lot of fill-in. This means that L is no longer sparse.

There are two major categories of numerical methods in dealing with sparse positive definite matrices problem: iterative 
and direct methods. Iterative methods [8,9] start with an initial approximation of the solution, and the iteration continues 
until the desired accuracy being achieved. Typically the number of iterations grows with the size of the matrix. On the 
other hand, direct methods [10] obtain the solution in a finite and fixed number of steps. Generally, iterative methods 
give approximate solutions, while direct methods give solutions up to the machine precision. A typical direct method often 
associates with finding a permutation matrix P, and applying the Cholesky decomposition on the permuted PCP� , the 
target is to make the corresponding L being as sparse as possible. Since finding a permutation that results in the minimum 
fill-in is an NP-hard problem [11], people proposed several heuristic methods to find permutations that give low number 
of fill-in. Common methods in this category include minimum degree method [12–14], approximate minimum method (an 
approximate derivation of minimum degree method) [15], and nested dissection method [16], etc. Some of these heuristic 
methods are very efficient in reducing the nonzero fills; however, according to our test, none of them can guarantee no 
fill-in for all types of molecule structure. Time complexity evaluation of a heuristic method should take into account of 
both finding permutation P and performing matrix decomposition, which is also depending on the nonzero structure of the 
sparse matrix. Therefore, the time complexities of the above-mentioned heuristic methods are generally higher than O (n)

[17,18]. It is necessary to develop a new method to make efficient simulation of macromolecules with long branches.
The physical aspect of the nonzero structure of C shows that there are correlations between the nonzero entries and 

the geometrical structure of the molecule. Based on this observation we proposed a new method to efficiently factorize C, 
which is especially useful for long branch structures. This method is named as distance descending ordering method, for it is 
strongly associated with the distances between atoms. It is not a heuristic method, it directly gives an O (n) permutation 
strategy about the matrix C based on the structure of the molecule. This method has the following features: 1) absolutely 
no fill-in in doing Cholesky decomposition; 2) has O (n) magnitude of calculation; 3) suitable for molecules with complex 
structures such as branches, loops, etc., and also, constraints can be arbitrarily applied on angles and lengths; 4) simple, can 
easily be implemented with computer codes.

Although we will not discuss the detailed treatment of loop structure in this paper, a macromolecule in general contains 
not only branches, but also loop structures. The loop can be broken by simply cutting apart one bond inside the loop, and 
then the loop can be treated as two branches. By doing so we need to deal with the potentials associated with the broken 
bond. This will only have influence on the calculation of intramolecular forces, and the procedure of inverting mass matrix 
described in this paper will not be affected. It is expected, the distance descending ordering method can be applied to 
molecules with complex structures having both branches and loops.

In section 2, we will make a brief introduction about the Fixman’s theorem and elaborate the difficulties in applying it 
on molecules with long branches. In section 3, the distance descending ordering method will be presented with detailed 
proof. The mechanism why this method has no fill-in in doing the Cholesky decomposition will be explained. In section 4, 
we apply the method on molecules with 100, 1000 and 10000 atoms to show the no fill-in property. In addition, the O (n)

time complexity is demonstrated by giving the average calculation time versus the molecule’s number of atoms. Finally, 
in Appendix A we provide a complement to existing methods [19] about calculation of the relative change of internal 
coordinates with respect to the atoms’ position vectors, which is used to calculate the entries of A, B and C.

2. Fixman’s theorem

For a molecule composed by n + 1 atoms, the atoms are numbered from 0 to n. Where the 0-th atom is the base atom 
which we can choose arbitrarily. The position information of this molecule can either be represented by using the Cartesian 
coordinate as r = {�r0, �r1, · · · , �rn}, or by the generalized internal coordinate as g = {�g0, �g1, · · · , �gn}, where �ri = {xi, yi, zi}, 
�g0 = {x0, y0, z0}, �gi = {φi, θi, bi}, and φi, θi and bi are the torsional angle, bond angle and bond length corresponding to the 
i-th atom, respectively. Since some internal coordinate variables are constrained as constants, the internal coordinate vector 
g is partitioned into two parts as g = {q; c}: the soft variables q = {q1, q2, · · · , q f } and the hard variables c = {c1, c2, · · · , cr}, 
where f is the degrees of freedom of the molecule, r is the number of constraints, and f + r = 3(n + 1). Generally f and r
are of the same magnitude as n for real molecules, thus there is O (n) = O ( f ) = O (r).

Since r and g are of the same length, and also the variables in r are mutually independent with each other (also 
applicable to g), therefore, the two square Jacobians ∂r and ∂g are inverse of each other:
∂g ∂r
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In the above equations, ∂r
∂g is a dense matrix, while ∂g

∂r is a very sparse matrix. It can be seen in Eq. (A.4) in appendix 
that φi, θi and bi are only affected by 4, 3 and 2 atoms, respectively, and thus most of the entries in ∂g

∂r are zero. We want 
to use Eq. (1) together with the sparse property of ∂g

∂r to efficiently invert the mass matrix.
Define matrix G as follows:
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By comparing G and G−1 [5–7], we have:

MMM−1 = A − BC−1B� (5)

The favorable feature is that A, B and C are all sparse matrices, the number of nonzero entries in these three matrices are 
all of order O (n). Also, both A( f by f ) and C(r by r) are positive definite matrices.

The inverting of mass matrix problem q̇ =MMM−1p can then be solved as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1 = Ap (a)

y2 = B�p (b)

y3 = C−1y2 (c)

y4 = By3 (d)

q̇ = y1 − y4 (e)

(6)

where calculation of Eq. (6a) can be further decomposed as y1 = ∂q
∂r · {D−1 · [(∂q/∂r)� · p

]}
, and the calculation of Eqs. (6b), 

(6d) is similar. Because the number of nonzero entries in A and B are of the order of O (n), the complexity of calculation of 
these three equations will also have the order of O (n).
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Fig. 1. A numbered molecule (left), the nonzero structures of C (middle) and L (right).

Since C is positive definite, we can use Cholesky decomposition to factorize it as C = LL� , and the solving of Eq. (6c)
becomes L 

(
L�y3

) = y2 which is backward stable. Here the critical issue is that even though C is a sparse matrix, the 
corresponding L may not necessarily be. If a molecule has long branches, the Cholesky decomposition from C to L may 
introduce fill-in, namely, L has nonzero entries in the positions which are zero in C. Take the molecule shown in Fig. 1
for demonstration, the hard variables are set as c = {φ3, φ4, · · · , φ18}, the nonzero structures of the corresponding C and L
are also shown. It could be found that L introduces some fill-in when compared to C. As a result, the computation of the 
Cholesky decomposition will not retain to O (r) time complexity, where O (r) = O (n).

3. Descending distance ordering method

The most optimum condition is that no fill-in will be introduced in the Cholesky decomposition, in this situation L has 
the same nonzero structure as that of the lower diagonal part of C. In this section, the distance descending ordering method
will be proposed, it can strictly guarantee no fill-in, and thus gives the O (r) time complexity. Unlike most of the direct 
methods in dealing with sparse matrices, this method does not need to explicitly do row and column permutations to 
find P, instead it directly gives an ordering strategy about the hard variable list c, based on the structure of the molecule. It 
is especially powerful for molecules with long branches. In addition, geometrical constraints can be arbitrarily applied. This 
method is also very simple, making it easy to be integrated into computer codes.

In the following, we start the discussion with 2 definitions:
Correlation: For the matrix C defined in Eq. (4), if its i j-th entry is nonzero, we call that the two hard variables ci and c j

are correlated, or ci has correlation with c j , where ci and c j are the i-th and j-th elements in hard variable vector c.
Distance: The distance of the i-th atom is defined as the number of bonds between itself and the 0-th atom, which has a 
unique value if there is no loops.

The following three points about the structure of C,L and the permutation operation should be noted:

1. The number of nonzero entries in matrix C is of order O (r), since each hard variable ci only correlates with very few 
number of other hard variables. In other words, the nonzero entries in each line or column is finite and is the order of 
O (10). This is because Ci j = ∑n

k=0
1

mk

∂ci
∂�rk

· ∂c j

∂�rk
�= 0 requires both ci and c j being affected by at least one same �rk , and 

from Eq. (A.4) we see that the internal variables are only related to atoms that are close or nearby.
2. If no fill-in, the number of nonzero entries in matrix L is of the order of O (r). Also, the time complexity in applying 

Cholesky decomposition and calculation of L 
(
L�y3

)= y2 are both of the order of O (r).
3. A permutation on matrix C is actually a permutation on the hard variable list c, or P applied a reordering operation on 

vector c, which could be seen as follows:
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where c′ = Pc is the reordered hard variable vector. Instead of directly permuting matrix C, we are going to find an ordering 
strategy about hard variable vector c, to make sure that there is no fill-in in the procedure of Cholesky decomposition.
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Fig. 2. Correlation determines fill-in, red boxes in C′
r−1 indicate fill-in introduced in a basic factorization step. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)

Consider a basic factorization step of Cholesky decomposition:
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(
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)
=
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)
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1
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)
L�

1

(8)

Set C′
r−1 = Cr−1 − v1v�

1 /C11, C′
r−1 is positive definite and the above basic step is recursively applied. The no fill-in requires 

that C′
r−1 has the same nonzero structure as Cr−1. Three observations can be made about the factorization step:

1. For each nonzero entry of v1v�
1 /C11, if the corresponding entry of Cr−1 is also nonzero, then C′

r−1 will have the same 
nonzero structure as Cr−1.

2. The i j-th entry in v1v�
1 /C11 is nonzero, which requires the two hard variables ci and c j being both correlated with the 

eliminating hard variable c1.
3. The i j-th entry in C is nonzero, which implies that the two hard variables ci and c j are correlated.

Therefore, in order to guarantee for no fill-in, the hard variables which have correlation with the eliminating hard variable 
should be mutually correlated with each other.

This statement can be demonstrated by Fig. 2, where hard variables c2, c3 and c8 are correlated with c1. The requirement 
of no fill-in demands that c2, c3 and c8 should be mutually correlated with each other. However, c3 is not correlated with 
c2 and c8, nonzero elements are introduced in the (2, 3), (3, 8) entries as well as their symmetric entries.

Thus the correlation between hard variables plays a critical role in determining if fill-in would happen or not. Three 
points may be noted about the correlation between hard variables:

1. The correlation between ci and c j implies that these two hard variables are affected by at least one identical atom.
2. Different types of hard variables are affected by different number of atoms. As shown in Eq. (A.4), φi, θi and bi are 

affected by 4, 3 and 2 atoms, respectively.
3. Hard variables in different branches may also have correlation. For the molecule shown in Fig. 1, φ4 and φ16 are 

correlated since both are affected by the 1st and 2nd atoms. And this is the reason long branches may introduce fill-in.

Point 2 suggested that the correlation depends on the types of the hard variables. To make the discussion clear, in 
Sec. 3.1 we will propose the distance descending ordering method for the case that only torsional angles are allowed to be 
hard variable. In this case each hard variable is affected by 4 atoms, making the discussion be simplified. In Sec. 3.2, the 
method is extended to allow all internal variables being arbitrarily constrained. Indeed, the first case is a special situation 
of the second one.

3.1. Only torsional angles are allowed to be hard variable

Theorem 1. In the case that only torsional angles are allowed to be constrained, if the hard variables in vector c are arranged in the 
descending order according to the distances to the 0-th atom, then the Cholesky decomposition on matrix C will have no fill-in.

Proof.
1. If c1 is the eliminating hard variable and it has the largest distance to 0-th atom, then c1 will only correlate with 

hard variables which have less or equal distances. The distance differences between c1 and these hard variables are 
less than or equal to 4 (a limit on the difference of distance if two torsional angles need to be correlated). As a result, 
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Fig. 3. Distance descending ordering method has no fill-in: C (left); L (right).

the distance differences between these hard variables are also less than or equal to 4, and all these hard variables will 
mutually correlate with each other. Thus the elimination of c1 guarantees no fill-in.

2. After the elimination of c1, its corresponding atom can be eliminated from the molecule structure, and its correlations 
with the remaining hard variables will no longer have influence on the following basic factorization steps. The largest 
distance torsional angles among the remaining are now considered as the next eliminating hard variables. The above 
logic is again applied, this guarantees that each basic factorization step has no fill-in. �

Theorem 1 can be best elaborated by using the molecule shown in Fig. 1 as an example. Suppose all torsional angles are 
constrained except φ1 and φ2, then the hard variable vector c should be ordered as c = {φ9, φ11, φ8, φ10, φ7, φ6, φ13, φ18, φ5,

φ12, φ17, φ4, φ15, φ16, φ3, φ14}. The corresponding C and L are shown in Fig. 3, it is seen that there is no fill-in introduced.
It is noted that since the values of distances are consecutive integers, the ordering of the distances takes O (n) computa-

tion. As has been proven in the beginning of Sec. 3, if there is no fill-in, the time complexities of Cholesky decomposition of 
C and calculation of L 

(
L�y

) = x should be both of the order of O (n). Thus, the procedures of finding ordering and matrix 
inverting are both of linear time complexity, which indicates an O (n) algorithm of distance descending ordering method.

3.2. Any internal coordinate variable can be constrained

In the case of arbitrarily constrained internal variables, because different types of internal coordinate variables are in-
fluenced by different number of atoms, the correlation between hard variables varies according to their types. As a result, 
simply ordering the hard variables in the descending order of distances will introduce nonzero fill-in, since it can not guar-
antee that the hard variables which have correlations with the eliminating hard variable are mutually correlated with each 
other.

In fact, the descending ordering strategy should still be applied, but with a slight modification, which can thus avoid the 
introducing of fill-in:

Theorem 2. In the case that any internal variables can be considered as hard variable, the hard variables should first be ordered within 
the distance level l (collection of atoms have distance l to the base atom) as: [b(l)

1 , b(l)
2 , · · · , b(l)

nl
; φ

(l+1)
1 , φ(l+1)

2 , · · · , φ(l+1)
nl+1

; θ
(l)
1 , θ(l)

2 ,

· · · , θ(l)
nl

]. And then the distance levels are still arranged in a descending order. The corresponding Cholesky decomposition on matrix C
will have no fill-in.

The terms nl and nl+1 are the number of atoms having distances l and l + 1 to the base atom, the superscripts (l) and 
(l + 1) denote that these hard variables belong to atoms that have distances l and l + 1, respectively. It is the rule that if 
any internal variable is non-constant, it should be excluded from the hard variable vector c.

Again, take the molecule shown in Fig. 1 as an example, the hard variables should be ordered as follows: c =
{[b9, b11; θ9, θ11], [b8, b10; φ9, φ11; θ8, θ10], · · · , [b2; φ3, φ14; θ2], [b1]}, where x0, y0, z0 and φ1, θ1, φ2 are excluded from c
because they represent the translational and rotational movements of the molecule and must be non-constant. Also, non-
constant hard variables should be removed from this list.

This ordering strategy takes into account the fact that bi, φi and θi are affected by different number of atoms. It can be 
verified that in applying this ordering method, hard variables which correlate with the eliminating hard variable are also 
mutually correlated with each other. As a result, the Cholesky decomposition will have no fill-in.
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Fig. 4. Nonzero structures of C and L from algorithms with and without descending ordering, molecule with n = 100, r = 98.

4. Numerical validations

In section 3, we have proven that if no fill-in in Cholesky decomposition about matrix C, then the calculation complexity 
of Eq. (6c) will be of the order of O (r). Correspondingly, the solving of the equation q̇ =MMM−1p will obtain the O (n) time 
complexity.

In this section, three “artificial” molecules with number of atoms n = 100, 1000 and 10000 are used to show the no 
fill-in effectiveness of the distance descending ordering method. For comparison, the results calculated using direct Cholesky 
decomposition are also listed, in which the ordering of hard variables are made according to the numbering of atoms. Since 
the sparsity of matrix C is mainly affected by two factors: the type of the hard variables and the number of branches. To 
make the comparison be consistent, the hard variables are chosen by randomly fixing one third of φi , one third of θi , and 
one third of bi for all the three molecules. Also the ratio of number of branches to number of atoms is fixed as 0.25. The 
nonzero structures of all the C and L are shown in Figs. 4, 5, 6. Three conclusions can be made by comparing the results:

1. For C and L obtained from the distance descending ordering method, the nonzero structure of L is exactly the same as 
that of the lower diagonal part of C. The number of nonzero entries in lower diagonal part of C is (nzC − r)/2 + r, which 
equals to nzL for all the three cases. Where nzC and nzL are numbers of nonzero entries in C and L.

2. The numbers of nonzero entries are the same for both the two matrices C obtained from algorithms with and without 
the descending ordering, a permutation can convert one to another.

3. With the application of the distance descending ordering method, the number of nonzero entries in L is roughly linearly 
scaled with the number of atoms: nzL = 480 for n = 100, nzL = 4960 for n = 1000, and nzL = 50775 for n = 10000. This 
implies that the solving of the equation q̇ =MMM−1p will also have this linear scaling. On the other hand, without the 
descending ordering, the number of nonzero entries in L grows with a power function in the manner of n(1<x≤3) .

The linear time complexity can also be demonstrated by the average calculation time versus the number of atoms. The 
number of atoms in a molecule is varied with values n = 1000, 10000, 30000, 50000, 80000 and 100000 to show the O (n)

performance. Furthermore, since the type of hard variables have influence on the denseness of C, 4 strategies in choosing 
the hard variables are used to study this influence. These 4 constraint strategies are:

1. All torsional angles except φ1 and φ2 are chosen as hard variables, r = n − 2.
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Fig. 5. Nonzero structures of C and L from algorithms with and without descending ordering, molecule with n = 1000, r = 998.

2. All bond angles except θ1 are chosen as hard variables, r = n − 1.
3. All bond lengths are chosen as hard variables, r = n.
4. Randomly fixing one third of φi , one third of θi and one third of bi , leave φ1, φ2, θ1 being free, r ≈ n − 1.

Also, the ratio of number of branches to number of atoms is fixed as 0.25 for all the four molecules. At the beginning of 
each calculation, the values of internal coordinates are initialized with random numbers, then the equations in Appendix A
are adopted to calculate ∂φi

∂�rk
, ∂θi

∂�rk
and ∂bi

∂�rk
, and the nonzero entries in C can be calculated, followed by the Cholesky de-

composition from C to L. Finally, Eqs. (6a)–(6e) are solved sequentially. This procedure is repeated 1000 times to give the 
average calculation time for each n and each constraint strategy. Fig. 7 shows the linear scaling of the distance descending 
ordering method, as well as the influence of the type of hard variables on the average calculation time. It could be found 
that all φi fixed constraint strategy has the largest average calculation time, while all bi fixed constraint strategy has the 
smallest average calculation time, and the all θi fixed constraint strategy has the medium average calculation time. This 
agrees with the fact that φi, θi and bi are affected by 4, 3 and 2 atoms, hence φi will correlate with more hard variables 
than θi and bi . This indicates the more unfixed torsional angles, the faster calculation for real molecular simulations.

We also compared the time complexities between the distance descending ordering method and a conventional O (n3)

method. The conventional method involves direct calculation and decomposition of the dense mass matrix MMM. In each 
molecule we randomly constrain every one third of the internal variables, thus the degrees of freedom f ≈ 2n + 4 and 
number of constraints r ≈ n − 1. Fig. 8 shows the averaged calculation time for each time step. When n = 10, the calculation 
time for the conventional method is lower than that of descending distance ordering method (7.7e-5 seconds vs 8.7e-5 
seconds). However, the computation time of conventional method increases very fast as n gets larger, and the method 
quickly becomes impractical when n is over the magnitude of 100. On the contrary, the distance descending ordering 
method always keeps O (n) time complexity.

5. Conclusions

The Fixman’s theorem factorizes the inverse of mass matrix as MMM−1 = A − BC−1B� , from which the equation of motion 
q̇ =MMM−1p can be decomposed into a series of O (n) calculations, given that C can be efficiently factorized. For molecules 
with serial chain structure, the nonzero entries of C will be clustered about its diagonal, giving linear time complexity to the 
factorization about C. However, for structures with long branches, nonzero entries of C will no longer clustered about the 
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Fig. 6. Nonzero structures of C and L from algorithms with and without descending ordering, molecule with n = 10000, r = 9999.

Fig. 7. Average calculation time versus number of atoms.

diagonal, and therefore direct Cholesky decomposition will have O (n3) time complexity. Although several methods may be 
applied in factorizing positive definite sparse matrices, none of them can strictly guarantee no fill-in for all molecule models 
according to our test. The distance descending ordering method considers the problem from a different perspective: it does 
not do direct row and column permutations about the matrix C, instead it applies a reordering about the hard variables. 
The reordering strategy is developed based on the properties of Cholesky decomposition and the geometrical structure of 
molecules. By applying the distance descending ordering method, the nonzero structure of L will be exactly the same as that 
of the lower diagonal part of C. As a result, the O (n) time complexity can be remained, no matter the molecule structure 
has long branches or not.
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Fig. 8. Comparison with a conventional O (n3) method.

The distance descending ordering method was proposed with proper proof. The numerical validations have shown 
its effectiveness. The no fill-in property was demonstrated by using three molecules with number of atoms n =
100, 1000 and 10000. The difference between algorithms with and without applying the distance descending ordering 
method is huge. For results obtained from distance descending ordering method, the number of nonzero entries in L is 
roughly linearly scaled with n, this implies the O (n) scaling in solving the equation of motion. However, for algorithm with-
out distance descending ordering method, the order of calculation grows with the increase of n in the manner of n(1<x≤3) . 
.

The O (n) time complexity of this method has also been demonstrated by the average calculation time versus the 
molecule’s number of atoms. The authors found that the types of internal coordinates have significant influence on the 
average calculation time. Fixed torsional angles tend to have more calculation time than fixed bond angles and bond lengths.
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Appendix A. Calculation of ∂q
∂r and ∂c

∂r

As shown in section 2, the values of ∂q
∂r and ∂c

∂r are required for the calculation. In other words, we need to calculate 
∂φi
∂�rk

, ∂θi
∂�rk

and ∂bi
∂�rk

. The classical book [19] has given ∇�rk
φi = ∇�rk

cosφi/(− sin φi) and ∇�rk
θi = ∇�rk

cos θi/(− sin θi). However, this 
procedure becomes invalid when sin φi and sin θi approach zero. Under this condition we need to switch to the alternative 
approach as ∇�rk

φi = ∇�rk
sin φi/(cosφi) and ∇�rk

θi = ∇�rk
sin θi/(cos θi).

Same as that in [19], two variables are defined to simplify the formulae:

Cij = C ji = �bi · �b j

Dij = D ji =
∣∣∣�bi × �b j

∣∣∣2 = CiiC j j − C2
i j

(A.1)

where �bi = �ri −�ri−1 is the bond vector. The sines can be obtained as follows:

sinφi =
�bi−1 ×

(�bi−2 × �bi−1

)
∣∣∣�bi−1

∣∣∣ ∣∣∣�bi−2 × �bi−1

∣∣∣ ·
�bi−1 × �bi∣∣∣�bi−1 × �bi

∣∣∣
= �bi−2 ·

(�bi−1 × �bi

)√ Ci−1i−1

Di−2i−1 Dii−1

(A.2)

and

sin θi =
�bi ×

(�bi−1 × �bi

)
∣∣∣�bi

∣∣∣ ∣∣∣�bi−1 × �bi

∣∣∣ ·
�bi−1∣∣∣�bi−1

∣∣∣ =
√

Dii−1

CiiCi−1i−1
(A.3)
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It is easy to verify that⎧⎪⎪⎨
⎪⎪⎩

∂φi
∂�rk

�= 0 only if k = i, i − 1, i − 2, i − 3
∂θi
∂�rk

�= 0 only if k = i, i − 1, i − 2
∂bi
∂�rk

�= 0 only if k = i, i − 1

(A.4)

In the following the nonzero terms of ∇�rk
sin φi, ∇�rk

sin θi and ∇�rk
bi are given:

∇�ri
sinφi = C1/2

i−1i−1 (Di−2i−1 Di−1i)
−1/2

{(
Cii−1�bi−1 − Ci−1i−1�bi

)[�bi−2 ·
(�bi−1 × �bi

)]
/Dii−1�bi−2 × �bi−1

}
∇�ri

sinφi+1 = C1/2
ii (Dii−1 Dii+1)

−1/2
{�bi−2 ·

(�bi−1 × �bi

)[�bi/Cii −
(

Ci−1i−1�bi − Cii−1�bi−1

)
/Dii−1

− (Cii + Cii+1) �bi+1/Dii+1 + (Ci+1i+1 + Cii+1) �bi/Dii+1

]
+
(�bi+1 + �bi

)
× �bi−1

}
∇�ri

sinφi+2 = C1/2
i+1i+1 (Dii+1 Di+1i+2)

−1/2
{�bi ·

(�bi+1 × �bi+2

)[(
Ci+2i+2�bi+1 − Ci+1i+2�bi+2

)
/Di+1i+2

+ (Cii + Cii+1) �bi+1/Dii+1 − (Ci+1i+1 + Cii+1) �bi/Dii+1 − �bi+1/Ci+1i+1

]
+
(�bi+1 + �bi

)
× �bi+2

}
∇�ri

sinφi+3 = C1/2
i+2i+2 (Di+1i+2 Di+2i+3)

−1/2
[�bi+1 ·

(�bi+2 × �bi+3

)(
Ci+2i+2�bi+1 − Ci+1i+2�bi+2

)
/Di+1i+2

+ �bi+3 × �bi+2

]
(A.5)

and

∇�ri
sin θi = D1/2

i−1i (Ci−1i−1Cii)
−1/2

[
(Ci−1i−1/Di−1i − 1/Cii) �bi − Ci−1i/Di−1i�bi−1

]
∇�ri

sin θi+1 = D1/2
ii+1 (CiiCi+1i+1)

−1/2
{[

(Ci+1i+1 + Cii+1) �bi − (Cii + Cii+1) �bi+1

]
/Dii+1

+ �bi+1/Ci+1i+1 − �bi/Cii

}
∇�ri

sin θi+2 = D1/2
i+1i+2 (Ci+1i+1Ci+2i+2)

−1/2
[(

Ci+1i+2�bi+2 − Ci+2i+2�bi+1

)
/Di+1i+2 + �bi+1/Ci+1i+1

]
(A.6)

also,

∇�ri
bi = �bi/bi

∇�ri
bi+1 = −�bi+1/bi+1

(A.7)
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