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In this paper, it is shown that three-dimensional stochastic Maxwell equations with 
multiplicative noise are stochastic Hamiltonian partial differential equations possessing a 
geometric structure (i.e. stochastic multi-symplectic conservation law), and the energy of 
system is a conservative quantity almost surely. We propose a stochastic multi-symplectic 
energy-conserving method for the equations by using the wavelet collocation method in 
space and stochastic symplectic method in time. Numerical experiments are performed 
to verify the excellent abilities of the proposed method in providing accurate solution 
and preserving energy. The mean square convergence result of the method in temporal 
direction is tested numerically, and numerical comparisons with finite difference method 
are also investigated.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider three-dimensional (3D) stochastic Maxwell equations with multiplicative noise [18]

dE(t,x,y, z) = ∇ × H(t,x,y, z)dt − λH(t,x,y, z) ◦ dW (t),

dH(t,x,y, z) = −∇ × E(t,x,y, z)dt + λE(t,x,y, z) ◦ dW (t),
(1.1)

where t ∈ [0, T ], (x, y, z) ∈ � ⊂ R
3, and � is a bounded and simply connected domain with smooth boundary ∂�. We 

employ the perfectly electric conducting (PEC) boundary condition

E × n = 0 (1.2)

on (0, T ] × ∂�, where n is the unit outward normal of ∂�. The above system is understood in the Stratonovich set-
ting and the symbol ◦ stands for the Stratonovich product. Here, λ ≥ 0 measures the size of the noise and W is a 
Q -Wiener process defined on a given probability space (�, F , P , {Ft}t∈[0,T ]), with values in the Hilbert space L2(�), 
which is a space of square integrable real-valued functions. Let {em}m∈N be an orthonormal basis of L2(�) consist-
ing of eigenvectors of a symmetric, nonnegative and finite trace operator Q , i.e., T r(Q ) = ∑

m∈N
〈Q em, em〉L2 = ∑

m∈N
ηm < ∞
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and Q em = ηmem . Then there exists a sequence of independent real-valued Brownian motions {βm}m∈N such that 

W (t, x, y, z, ω) =
∞∑

m=0

√
ηmβm(t, ω)em(x, y, z), t ≥ 0, (x, y, z) ∈ �, ω ∈ �.

3D stochastic Maxwell equations with multiplicative noise play an important role in many scientific fields, especially 
in stochastic electromagnetism and statistical radiophysics [2,8,13,18]. We refer interested readers to [15] for the well-
posedness of equations (1.1). By using infinite dimensional Itô formula, it is straightforward to show that the L2(�)-norm 
of the solution is a constant almost surely (a.s.) (for more details see Theorem 2.2), i.e.,∫

�

(|E(x, y, z, t)|2 + |H(x, y, z, t)|2)dxdydz = Constant, a.s. (1.3)

There have been a lot of ongoing research activities in energy-conserving numerical methods for deterministic Maxwell 
equations, and various methods have been proposed in the literatures [4,5,14,19]. However, in the stochastic setting, we 
are only aware of the numerical schemes proposed in [6,9,10,16] for stochastic Hamiltonian ODEs. The authors in [3,11]
proposed stochastic multi-symplectic methods for stochastic Maxwell equations with additive noise, which have the merits 
of preserving the discrete stochastic multi-symplectic conservation law and stochastic energy dissipative properties.

To the best of our knowledge, there has been no reference considering this aspect for stochastic Maxwell equations with 
multiplicative noise till now. In addition, numerical methods preserving the structure characteristics of equations should be 
much better in preservation of physical properties and have better stability in numerical computation. Generally speaking, 
this kind of numerical methods constructed by finite difference techniques is completely implicit for non-separable stochas-
tic system, and demands substantial computational cost. In this paper, we use the idea of wavelet collocation method to 
get an efficient, multi-symplectic and energy-conserving numerical method. By using this method, we obtain a system of 
algebraic equations with a sparse differentiation matrix, leading to a numerical algorithm of reduced computational cost. 
Several numerical examples are presented to show the good behaviors of the proposed method by making comparison with 
a standard finite difference method. Particularly, numerical experiments demonstrate the mean square convergence order of 
the proposed numerical method in temporal direction.

The rest of this paper is organized as follows. In section 2, we present some geometric and physical properties of 3D 
stochastic Maxwell equations with multiplicative noise. It is shown that the phase flow of equations preserves the stochastic 
multi-symplectic structure of phase space, and the equations possess energy conservation law. In section 3, we propose 
a numerical method and show that the method preserves discrete energy conservation law and the discrete stochastic 
multi-symplectic conservation law. In section 4, numerical experiments are performed to testify the effectiveness of the 
method. Concluding remarks are presented in section 5.

2. Stochastic Maxwell equations

In this section, we will present some preliminary results of 3D stochastic Maxwell equations (1.1). For simplicity in 
notations, we just consider the case that Wiener process W (t, x, y, z, ω) is applied in one dimensional spatial direction. 
Throughout this paper, us (s = t, x, y, z) denotes the partial derivative of function u with respect to s, i.e., us = ∂u

∂s . dt u

denotes the partial differential of u with respect to t , i.e., dt u = ∂u
∂t dt .

2.1. Stochastic multi-symplectic structure

A stochastic partial differential equation is called a stochastic Hamiltonian partial differential equation if it can be written 
in the form [12]

Mdt u + K uxdt = ∇ S1(u)dt + ∇ S2(u) ◦ dW (t), u ∈ R
d, (2.1)

where M and K are skew-symmetric matrices, and S1 and S2 are real smooth functions of variable u. Stochastic Maxwell 
equations with multiplicative noise (1.1) can be written as follows

Mdt u + K1uxdt + K2u ydt + K3uzdt = ∇u S(u) ◦ dW , u ∈ R
6. (2.2)

Here,

u =(
H1, H2, H3, E1, E2, E3

)T
,

S(u) =λ

2

(
|E1|2 + |E2|2 + |E3|2 + |H1|2 + |H2|2 + |H3|2

)
and

M =
(

0 −I3×3

I3×3 0

)
, Ki =

(
Di 0

0 Di

)
, i = 1,2,3.
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The sub-matrix I3×3 is a 3 × 3 identity matrix and

D1 =
⎛
⎜⎝

0 0 0

0 0 −1

0 1 0

⎞
⎟⎠ ,D2 =

⎛
⎜⎝

0 0 1

0 0 0

−1 0 0

⎞
⎟⎠ ,D3 =

⎛
⎜⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎠ .

Similarly to the proof of Theorem 2.2 in [12], we have the following result.

Theorem 2.1. System (2.2) possesses the stochastic multi-symplectic conservation law locally

dtω + ∂xκ1dt + ∂yκ2dt + ∂zκ3dt = 0, a.s.,

i.e.,

z1∫
z0

y1∫
y0

x1∫
x0

ω(t1, x, y, z)dxdydz +
z1∫

z0

y1∫
y0

t1∫
t0

κ1(t, x1, y, z)dtdydz

+
z1∫

z0

x1∫
x0

t1∫
t0

κ2(t, x, y1, z)dtdxdz +
y1∫

y0

x1∫
x0

t1∫
t0

κ3(t, x, y, z1)dtdxdy

=
z1∫

z0

y1∫
y0

x1∫
x0

ω(t0, x, y, z)dxdydz +
z1∫

z0

y1∫
y0

t1∫
t0

κ1(t, x0, y, z)dtdydz

+
z1∫

z0

x1∫
x0

t1∫
t0

κ2(t, x, y0, z)dtdxdz +
y1∫

y0

x1∫
x0

t1∫
t0

κ3(t, x, y, z0)dtdxdy,

where ω(t, x, y, z) = 1
2 du ∧ Mdu, κi(t, x, y, z) = 1

2 du ∧ Kidu are the differential 2-forms associated with the skew-symmetric ma-
trices M and Ki (i = 1, 2, 3), respectively, and (t0, t1) × (x0, x1) × (y0, y1) × (z0, z1) is the local definition domain of u(t, x, y, z).

Remark 1. To avoid confusion, we note that the differentials in equation (2.1) and differential 2-forms ω, κ have different 
meanings. In (2.1), u are treated as functions of time and the initial value u(0, x, y, z) is fixed parameters, while differenti-
ations in ω and κ are made with respect to the initial data u(0, x, y, z).

2.2. Energy conservation law

As is well known, the deterministic Maxwell equations have the following invariant [4]∫
�

(|E(x, y, z, t)|2 + |H(x, y, z, t)|2)dxdydz = Constant. (2.3)

This invariant is also called Poynting theorem in electromagnetism and can be easily verified. Similarly, based on the 
infinite dimensional Itô formula [17], we can also obtain the energy conservation law for system (1.1). This result shows 
that the electromagnetic energy is still invariant under the multiplicative noise. This is stated in the following Theorem.

Theorem 2.2. Let (E, H)T be the solution of (1.1) under PEC boundary condition (1.2). Then for any t ∈ [0, T ],

ϒ(t) =
∫
�

(|E(x, y, z, t)|2 + |H(x, y, z, t)|2)dxdydz

=
∫
�

(|E(x, y, z, t0)|2 + |H(x, y, z, t0)|2)dxdydz

= ϒ(t0), a.s.

(2.4)

Proof. In order to prove the result (2.4), we will use an equivalent Itô form of (1.1). Define a function

�(x) =
∞∑

m=0

(
√

ηmem(x))2, x ∈R, (2.5)
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which is independent of the basis {em}m∈N . Then this equivalent Itô equation can be rewritten as

dE = (∇ × H − 1

2
λ2�E)dt − λHdW ,

dH = (−∇ × E − 1

2
λ2�H)dt + λEdW .

(2.6)

Introducing the following functionals

F1(E) =
∫
�

|E(x, y, z, t)|2dxdydz,

F2(H) =
∫
�

|H(x, y, z, t)|2dxdydz.

It is easy to verify that E and H satisfy the following first and second Fréchet derivative

D F1(E)(ϕ) = 2
∫
�

〈E,ϕ〉dxdydz, D2 F1(E)(ϕ,ψ) = 2
∫
�

〈ψ,ϕ〉dxdydz,

D F2(H)(ϕ) = 2
∫
�

〈H,ϕ〉dxdydz, D2 F2(H)(ϕ,ψ) = 2
∫
�

〈ψ,ϕ〉dxdydz,
(2.7)

where ϕ, ψ ∈ L2(�)3, and 〈·, ·〉 denotes the Euclidean inner product.
Based on the system (2.6), the infinite dimensional Itô formula for F1(E(t)) leads to

F1(E(t)) =F1(E(0)) + 2
∫
�

t∫
0

〈E(s),−λH(s)dW (s)〉dxdydz

+ 2
∫
�

t∫
0

〈E(s),∇ × H(s) − 1

2
λ2�E(s)〉dsdxdydz

+ λ2
∫
�

t∫
0

T r[〈H(s),H(s)〉Q
1
2 (Q

1
2 )∗]dsdxdydz.

(2.8)

Similarly, we apply Itô formula to F2(H(t)) and obtain

F2(H(t)) =F2(H(0)) + 2
∫
�

t∫
0

〈H(s), λE(s)dW (s)〉dxdydz

− 2
∫
�

t∫
0

〈H(s),∇ × E(s) + 1

2
λ2�H(s)〉dsdxdydz

+ λ2
∫
�

t∫
0

T r[〈E(s),E(s)〉Q
1
2 (Q

1
2 )∗]dsdxdydz.

(2.9)

Summing (2.8) and (2.9), then we have∫
�

(|E(t)|2 + |H(t)|2)dxdydz =
∫
�

(|E(0)|2 + |H(0)|2)dxdydz

+ 2
∫
�

t∫
0

〈E(s),∇ × H(s)〉 − 〈H(s),∇ × E(s)〉dsdxdydz

︸ ︷︷ ︸

C
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+
∫
�

t∫
0

〈E(s),−λ2�E(s)〉 + 〈H(s),−λ2�H(s)〉dsdxdydz

︸ ︷︷ ︸
D

+
∫
�

t∫
0

λ2〈H(s),H(s)〉T r(Q ) + λ2〈E(s),E(s)〉T r(Q )dsdxdydz

︸ ︷︷ ︸
P

.

Here T r(Q ) denotes the trace of operate Q . By Green’s formula and PEC boundary condition (1.2), the term C satisfies the 
following equality

C = −
t∫

0

∫
�

∇ · (E × H)dxdydzds

= −
t∫

0

∫
∂�

(E × H) · ndxdydzds

= 0.

It follows from the definition of � that D + P = 0. Thus, we can get the energy conservation law (2.4). �
Remark 2. Equality (2.4) is an important criterion in constructing efficient numerical methods for computing the propagation 
of electromagnetic wave and in measuring whether a numerical simulation method is good or not.

Remark 3. From the expression (2.4), it seems same as the deterministic case. However, the energy of stochastic Maxwell 
equation is conserved in sense of almost surely, that is to say, it holds for any ω outside a set of measure 0.

3. Energy-conserving method

In this section, we propose an energy-conserving numerical method for (1.1). It is a combination of midpoint method in 
time and wavelet collocation method in space.

3.1. Discretization in time and space

Applying the midpoint method to equation (1.1) in temporal direction, we get

Hn+1
1 = Hn

1 + �t
( ∂

∂z
En+1/2

2 − ∂

∂ y
En+1/2

3

)
+ λEn+1/2

1 �W n,

Hn+1
2 = Hn

2 + �t
( ∂

∂x
En+1/2

3 − ∂

∂z
En+1/2

1

)
+ λEn+1/2

2 �W n,

Hn+1
3 = Hn

3 + �t
( ∂

∂ y
En+1/2

1 − ∂

∂x
En+1/2

2

)
+ λEn+1/2

3 �W n,

En+1
1 = En

1 − �t
( ∂

∂z
Hn+1/2

2 − ∂

∂ y
Hn+1/2

3

)
− λHn+1/2

1 �W n,

En+1
2 = En

2 − �t
( ∂

∂x
Hn+1/2

3 − ∂

∂z
Hn+1/2

1

)
− λHn+1/2

2 �W n,

En+1
3 = En

3 − �t
( ∂

∂ y
Hn+1/2

1 − ∂

∂x
Hn+1/2

2

)
− λHn+1/2

3 �W n,

(3.1)

where �t is the temporal step-size and un+1/2 = 1
2 (un + un+1). In the sequel,

�W n = W (tn+1) − W (tn) =
M∑

m=1

√
ηm(βm(tn+1) − βm(tn))em, (3.2)

where M is a positive integer.
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Now, we apply wavelet collocation method to discretize (3.1) in spatial direction and obtain the full-discrete stochastic 
multi-symplectic wavelet collocation method. Firstly, we give some preliminary results of wavelet collocation method.

In [7], Daubechies introduced compactly supported wavelets which proved to be very useful in numerical analysis. In 
this paper, the autocorrelation functions of Daubechies scaling functions will be used as trial functions, which make the 
first-order differentiation matrix be skew-symmetric and sparse. A Daubechies scaling function φ(x) of order γ satisfies 
(see [1])

φ(x) =
γ −1∑
k=0

hkφ(2x − k), (3.3)

where γ is a positive even integer and {hk}γ −1
k=0 are γ non-vanishing “filter coefficients”. Define the autocorrelation function 

θ(x) of φ(x) as

θ(x) =
∫

φ(x)φ(t − x)dt. (3.4)

Such autocorrelation function θ verifies trivially the equality θ(n) = δ0n . Suppose that V j is the linear span of {θ jk(x) =
2 j/2θ(2 j x − k), k ∈ Z}. It can be proved that (V j) j∈Z forms a multiresolution analysis.

Consider E1(x, y, z, t) defined on spatial domain [0, L1] × [0, L2] × [0, L3] with N1 × N2 × N3 grid points, where N1 =
L1 · 2 J1 , N2 = L2 · 2 J2 , N3 = L3 · 2 J3 . Interpolating it at collocation points (xi, y j, zk) = (i/2 J1 , j/2 J2 , k/2 J3 ), i = 1, ..., N1, 
j = 1, ..., N2, k = 1, ..., N3 gives

I E1(x, y, z, t) =
N1∑

i=1

N2∑
j=1

N3∑
k=1

E1i, j,k θ(2 J1 x − i)θ(2 J2 y − j)θ(2 J3 z − k), (3.5)

where I E1 stands for the interpolation of E1 using the basis functions. Making partial differential with respect to y and 
evaluating the resulting expression at collocation points, we obtain

∂ I E1(xi, y j, zk, t)

∂ y
=

N1∑
i′=1

N2∑
j′=1

N3∑
k′=1

E1i′, j′,k′ θ(2 J1 xi − i′)θ(2 J3 zk − k′)dθ(2 J2 y − j′)
dy

|y j

=
N2∑

j′=1

E1i, j′,k (2 J2θ ′( j − j′)) =
j+(γ −1)∑

j′= j−(γ −1)

E1i, j′,k (B y) j, j′

= ((IN1 ⊗ B y ⊗ IN3)E1)i, j,k,

where ⊗ means Kronecker inner product and IN1 is the N1 × N1 identity matrix. E1 = ((E1)1,1,1, (E1)2,1,1, (E1)N1,1,1, · · · ,

(E1)1,N2,1, · · · , (E1)N1,N2,N3)
T . The differential matrix B y for the first-order partial differential operator ∂y is an N2 × N2

sparse skew-symmetric circulant matrix with entries

(B y)m,m′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2 J2θ ′(m − m′), m − (γ − 1) ≤ m′ ≤ m + (γ − 1);
2 J2θ ′(−l), m − m′ = N2 − l, 1 ≤ l ≤ γ − 1;
2 J2θ ′(l), m′ − m = N2 − l, 1 ≤ l ≤ γ − 1;

0, otherwise.

Using the similar manner, we can obtain the discrete differential matrices Bx ⊗ IN2 ⊗ IN3 and IN1 ⊗ IN2 ⊗ Bz corresponding 
to ∂x and ∂z , respectively. Now we have a full-discrete method for stochastic Maxwell equations as

(E1)
n+1 − (E1)

n = �t
(

A2(H3)
n+1/2 − A3(H2)

n+1/2
)

− λ(H1)
n+1/2Wn,

(E2)
n+1 − (E2)

n = �t
(

A3(H1)
n+1/2 − A1(H3)

n+1/2
)

− λ(H2)
n+1/2Wn,

(E3)
n+1 − (E3)

n = �t
(

A1(H2)
n+1/2 − A2(H1)

n+1/2
)

− λ(H3)
n+1/2Wn,

(H1)
n+1 − (H1)

n = �t
(

A3(E2)
n+1/2 − A2(E3)

n+1/2
)

+ λ(E1)
n+1/2Wn,

(H2)
n+1 − (H2)

n = �t
(

A1(E3)
n+1/2 − A3(E1)

n+1/2
)

+ λ(E2)
n+1/2Wn,

(H3)
n+1 − (H3)

n = �t
(

A2(E1)
n+1/2 − A1(E2)

n+1/2
)

+ λ(E3)
n+1/2Wn,

(3.6)
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where A1 = Bx ⊗ IN2 ⊗ IN3 , A2 = IN1 ⊗ B y ⊗ IN3 and A3 = IN1 ⊗ IN2 ⊗ Bz are skew-symmetric, Wn = e ⊗ (�W n
1 , · · · , �W n

N1
)T , 

e = (1, 1, · · · , 1, 1)T
N2×N3

, �W n
i is an approximation of �W n in spatial direction with respect to x. And (H1)

n+1/2Wn denotes 
the components multiplication between (H1)n+1/2 and Wn , respectively.

3.2. Properties of the method

In this section, we show that the method (3.6) preserves the discrete stochastic multi-symplectic conservation law and 
discrete energy conservation law.

3.2.1. Stochastic multi-symplecticity
The discrete stochastic multi-symplectic conservation law is stated as follows.

Theorem 3.1. The method (3.6) has the following discrete stochastic multi-symplectic conservation law

ωn+1
i, j,k − ωn

i, j,k

�t
+

i+(γ −1)∑
i′=i−(γ −1)

(Bx)i,i′(κx)
n+1/2
i′, j,k (3.7)

+
j+(γ −1)∑

j′= j−(γ −1)

(B y) j, j′(κy)
n+1/2
i, j′,k +

k+(γ −1)∑
k′=k−(γ −1)

(Bz)k,k′(κz)
n+1/2
i, j,k′ = 0,

where

ωn
i, j,k = 1

2
dun

i, j,k ∧ Mdun
i, j,k, (κx)

n+1/2
i′, j,k = dun+1/2

i, j,k ∧ K1dun+1/2
i′, j,k ,

(κy)
n+1/2
i, j′,k = dun+1/2

i, j,k ∧ K2dun+1/2
i, j′,k , (κz)

n+1/2
i, j,k′ = dun+1/2

i, j,k ∧ K3dun+1/2
i, j,k′ .

Proof. Let u = (H1, H2, H3, E1, E2, E3)
T . (3.6) can be rewritten as

M
un+1

i, j,k − un
i, j,k

�t
+

i+(γ −1)∑
i′=i−(γ −1)

(Bx)i,i′(K1un+1/2
i′, j,k ) +

j+(γ −1)∑
j′= j−(γ −1)

(B y) j, j′(K2un+1/2
i, j′,k )

+
k+(γ −1)∑

k′=k−(γ −1)

(Bz)k,k′(K3un+1/2
i, j,k′ ) = ∇u S(un+1/2

i, j,k )
�W n

i

�t
.

The variational form associated with the above equation is

M
dun+1

i, j,k − dun
i, j,k

�t
+

i+(γ −1)∑
i′=i−(γ −1)

(Bx)i,i′(K1dun+1/2
i′, j,k ) +

j+(γ −1)∑
j′= j−(γ −1)

(B y) j, j′(K2dun+1/2
i, j′,k )

+
k+(γ −1)∑

k′=k−(γ −1)

(Bz)k,k′(K3dun+1/2
i, j,k′ ) = ∇2 S(un+1/2

i, j,k )dun+1/2
i, j,k

�W n
i

�t
.

Taking the wedge product with dun+1/2
i, j,k on both sides of the above equation, we can get the stochastic multi-symplectic 

conservation law (3.7). �
3.2.2. Energy preservation

In this subsection, we will state the discrete energy conservation law.

Theorem 3.2. Under periodic boundary conditions, the stochastic multi-symplectic wavelet collocation method (3.6) has the following 
discrete energy conservation law

‖En‖2 + ‖Hn‖2 = Constant, a.s., (3.8)

where

‖En‖2 = �x�y�z
N1∑ N2∑ N3∑(

(En
1i, j,k

)2 + (En
2i, j,k

)2 + (En
3i, j,k

)2
)
,

i=1 j=1 k=1
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‖Hn‖2 = �x�y�z
N1∑

i=1

N2∑
j=1

N3∑
k=1

(
(Hn

1i, j,k
)2 + (Hn

2i, j,k
)2 + (Hn

3i, j,k
)2

)
.

Proof. We make inner product of (3.6) with En+1/2
1 , En+1/2

2 , En+1/2
3 , Hn+1/2

1 , Hn+1/2
2 , Hn+1/2

3 , respectively, it yields

‖En+1
1 ‖2 − ‖En

1‖2

2
= 〈(A2Hn+1/2

3 − A3Hn+1/2
2 ),En+1/2

1 〉�t − λ〈Hn+1/2
1 Wn,En+1/2

1 〉,

‖En+1
2 ‖2 − ‖En

2‖2

2
= 〈(A3Hn+1/2

1 − A1Hn+1/2
3 ),En+1/2

2 〉�t − λ〈Hn+1/2
2 Wn,En+1/2

2 〉,

‖En+1
3 ‖2 − ‖En

3‖2

2
= 〈(A1Hn+1/2

2 − A2Hn+1/2
1 ),En+1/2

3 〉�t − λ〈Hn+1/2
3 Wn,En+1/2

3 〉,

‖Hn+1
1 ‖2 − ‖Hn

1‖2

2
= 〈(A3En+1/2

2 − A2En+1/2
3 ),Hn+1/2

1 〉�t + λ〈En+1/2
1 Wn,Hn+1/2

1 〉,

‖Hn+1
2 ‖2 − ‖Hn

2‖2

2
= 〈(A1En+1/2

3 − A3En+1/2
1 ),Hn+1/2

2 〉�t + λ〈En+1/2
2 Wn,Hn+1/2

2 〉,

‖Hn+1
3 ‖2 − ‖Hn

3‖2

2
= 〈(A2En+1/2

1 − A1En+1/2
2 ),Hn+1/2

3 〉�t + λ〈En+1/2
3 Wn,Hn+1/2

3 〉.
In addition, noticing that A1, A2, A3 are skew-symmetric matrices, we sum all terms in the above equations and obtain

1

2

[
(‖En+1‖2 + ‖Hn+1‖2) − (‖En‖2 + ‖Hn‖2)

]
= 0,

which leads to the energy conservation law (3.8). �
The result of this theorem is evidently consistent with (2.4), which means that the energy can be preserved by the 

proposed stochastic multi-symplectic wavelet collocation method. In the next section, we will verify this conservation law 
numerically.

4. Numerical results

In this section we provide four numerical experiments to illustrate the accuracy and capability of the method devel-
oped in the previous sections. We investigate the good performance of the stochastic multi-symplectic wavelet collocation 
method, compared with a central finite difference method. Furthermore, we check the temporal accuracy by fixing the space 
step sufficiently small such that errors stemming from the spatial approximation are negligible.

When we take no account of the noise term, i.e., λ = 0, (1.1) reduces to 3D deterministic Maxwell equations. In our 
numerical calculations, initial values

E10 = cos(2π(x + y + z)), E20 = −2E10 , E30 = E10 ,

H10 = √
3E10 , H20 = 0, H30 = −√

3E10

(4.1)

on � = [0, 1]3 and periodic boundary conditions are considered. In the following numerical experiments, we use the order 
of the Daubechies scaling function γ = 4 and the uniform spatial stepsize �x = �y = �z = h to solve the problem. And we 
take the orthonormal basis {em}m∈N and eigenvalue (ηm)m∈N as

em(x) = √
2 sin(mπx), ηm = 1

m2
, (4.2)

then �W n
i can be regarded as an approximation of integral

�W n
i = 1

�x

(i+1)�x∫
i�x

tn+1∫
tn

∞∑
m=1

√
ηmem(x)dβm(s)dx. (4.3)

Substituting (4.2) into (4.3) yields

�W n
i = 1

�x

∞∑
m=1

√
2ηm

mπ

[
cos(mπ i�x) − cos(mπ(i + 1)�x)

][
βm(tn+1) − βm(tn)

]
,
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Fig. 1. Evolution of the energy over one trajectory until T = 20 with �t = 0.1,h = 1/24 as λ = 0, λ = 0.5, λ = 1 and λ = 5, respectively.

Fig. 2. Evolution of average discrete energy along 100 trajectories and discrete energy over one trajectory as λ = 0.5,�t = 0.1,h = 1/24.

where (βm(tn+1) − βm(tn))/
√

�t is a sequence of independent and N (0, 1) distributed random variables. In the sequel, we 
truncate the infinite series of real-valued Wiener process till M = 200.

Example 1. Energy conservation law.

As is stated in Theorem 3.2, the stochastic multi-symplectic wavelet collocation method (3.6) could preserve the discrete 
energy conservation law almost surely. We consider this phenomenon numerically in Fig. 1, where it shows the evolution of 
the discrete energy conservation law in the case of λ = 0, 0.5, 1.0 and 5. Although different sizes of noise are chosen, the 
figures of the discrete energy conservation law remain to be horizontal lines approximately. We observe a good agreement 
with the theoretical result.

Meanwhile, we also interested in the behavior of average energy. Thus, in Fig. 2, we plot the energy evolution of one 
trajectory, and the average energy evolution over 100 trajectories till T = 20 with λ = 0.5, �t = 0.1, h = 1/24, where the 
blue lines represent three samples of the profiles, and the red line denotes the evolution of the average discrete energy over 
100 trajectories, respectively. From this figure, it can be seen that the averaged energy is nearly horizontal line with respect 
to time, which coincides with the continuous case.

In order to further investigate the energy conservative property under various cases, we define the following energy 
error form

Energy error := ϒn − ϒ0,

where ϒn denotes the discrete energy at time-step tn . Figs. 3, 4, 5 and 6 show the global energy error with various time 
steps �t , spatial resolutions h and sizes of noise λ till T = 20, respectively. It can be seen that, the global residuals of the 
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Fig. 3. The global errors of discrete energy over 10 trajectories until T = 20 with �t = 0.1,h = 1/24, respectively.

Fig. 4. The global errors of discrete energy over 10 trajectories until T = 20 with �t = 0.1,h = 1/25, respectively.

discrete energy conservation law all reach the magnitude of 10−11 for various parameters. Due to the existence of rounding 
error and the application of iteration method in solver, it leads to the error of energy can not reach the ideal machine 
accuracy and the energy error increases linearly. Therefore, it is reasonable to say that the proposed method preserves the 
discrete energy conservation law.

Example 2. Energy boundedness and long-time behavior.

Firstly, we focus on the behavior of maximum modules of discrete energy, i.e., maxn(‖En‖2 +‖Hn‖2). Fig. 7 displayed the 
probability density function of maximum energy over 100 trajectories with λ = 0.5, �t = 0.1, h = 1/25. From this figure, we 
may observe that the averaged energy is bounded. This result can be easily obtained from energy conservation law.

We are also interested in the long-time behavior of the proposed stochastic multi-symplectic wavelet collocation method. 
In Fig. 8, we plot the global energy error until T = 1000 over one trajectory for different sizes of noise λ = 0, 0.5, 1, 5 with 
large time step �t = 0.1 and low spatial resolution h = 1/24. From this figure, we observe that the discrete energy error can 
be controlled in the scale of 10−10 and it seems to be getting bigger than the one at T = 20. This phenomena is due to the 
long time accumulation of rounding errors. Therefore, we can say that our method owns long-time computational stability.
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Fig. 5. The global errors of discrete energy over 10 trajectories until T = 20 with �t = 0.005,h = 1/24, respectively.

Fig. 6. The global errors of discrete energy over 10 trajectories until T = 20 with �t = 0.005,h = 1/25, respectively.

Example 3. Comparison with finite difference method.

To compare the stochastic multi-symplectic wavelet collocation method in terms of solution behavior, we apply the 
central finite difference method to discrete stochastic Maxwell equations (1.1). And we define the following normalized 
energy

Normalized energy := (ϒn − ϒ0) × 107,

where ϒn and ϒ0 denote the discrete energy at tn and t0, respectively. Fig. 9 exhibits the discrete averaged normalized 
energy over 100 trajectories till T = 10 with λ = √

2. We observe that the wavelet collocation method preserves the energy 
very well. However, the discrete averaged normalized energy obtained by finite difference method shows a rapid growth as 
time evolves. Furthermore, we plot the energy errors of the two methods in Fig. 10. From the figure, it can be seen that the 
proposed method is more accurate than the finite difference method in the preservation of energy.

Example 4. Convergence order.
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Fig. 7. The probability density function of maxn(‖En‖2 + ‖Hn‖2) in the sense of L2.

Fig. 8. The global energy errors over one trajectory until T = 1000 with �t = 0.1,h = 1/24.

Fig. 9. Evolution of the energy averaged over 100 trajectories with �t = 1/64,h = 1/24.
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Fig. 10. Evolution of the averaged energy error over 100 trajectories with �t = 1/64, h = 1/24. Top: finite difference method; Bottom: wavelet collocation 
method.

Table 1
Accuracy test for stochastic Maxwell equations (1.1).

�t L2 error Order

1/26 6.39E-2 –

1/27 1.60E-2 1.99

1/28 4.00E-3 2.02

1/29 9.00E-4 2.07

1/210 2.00E-4 2.32

Table 2
Accuracy test for stochastic Maxwell equations (1.1).

�t L2 error Order L2 error Order L2 error Order

M = 1 M = 4 M = 8

1/26 3.03E-1 – 4.63E-1 – 6.51E-1 –

1/27 1.32E-1 1.19 1.95E-1 1.25 2.67E-1 1.29

1/28 5.78E-2 1.20 8.43E-2 1.21 1.11E-1 1.26

1/29 2.41E-2 1.26 3.50E-2 1.27 4.48E-2 1.31

1/210 8.20E-3 1.56 1.19E-2 1.56 1.53E-2 1.55

We investigate the convergence order in temporal direction of the proposed stochastic multi-symplectic wavelet colloca-
tion method in this experiment. Define

estrong
�t :=

(
E‖u(·, T ) − uT (·)‖2

) 1
2
,

with u = (E, H)T . Let h = 1/25, T = 0.1 and plot estrong
�t against �t on a log-log scale for the truncated number of Wiener 

process 1 ≤ M ≤ 8. Although we do not know the explicit form of the solution to (1.1), we take the stochastic multi-
symplectic wavelet collocation method with small time stepsize �t = 2−11 as the reference solution.

We consider λ = 0 first: The estrong
�t and the convergence orders of the wavelet collocation method in time are listed in 

Table 1. We can see that the method gives a uniform second order of accuracy for deterministic Maxwell equations.
The observations are different in the stochastic case (λ = √

2) where different sorts of Wiener processes depending on 
M are used. Table 2 presents the mean-square convergence order for the L2-error estrong

�t . And 100 realizations are chosen 
to approximate the expectations. As is displayed in Table 2, the strong order of convergence estrong

�t is approximately 1 for 
values 1 to 8 of various sizes of M . It is an interesting and open problem to investigate theoretically the convergence order 
of the proposed stochastic multi-symplectic wavelet collocation method.
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5. Conclusions

In this paper, we design an energy-conserving numerical method for 3D stochastic Maxwell equations with multiplicative 
noise. The method not only solves equations efficiently, but also preserves exactly the discrete stochastic multi-symplectic 
conservation law and the discrete energy conservation law. Numerical experiments show the good performance of the pro-
posed method. In addition, the mean square convergence order in time is studied numerically. Since the theoretical analysis 
of the convergence is difficult, we will devote to study it rigorously in the future work. Certainly, it is also very interesting 
to extend the method to other equations, such as 3D stochastic nonlinear Schrödinger equation with multiplicative noise.
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