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We consider computing the k-th eigenvalue and its corresponding eigenvector of a 
generalized Hermitian eigenvalue problem of n × n large sparse matrices. In electronic 
structure calculations, several properties of materials, such as those of optoelectronic 
device materials, are governed by the eigenpair with a material-specific index k. We 
present a three-stage algorithm for computing the k-th eigenpair with validation of its 
index. In the first stage of the algorithm, we propose an efficient way of finding an interval 
containing the k-th eigenvalue (1 � k � n) with a non-standard application of the Lanczos 
method. In the second stage, spectral bisection for large-scale problems is realized using 
a sparse direct linear solver to narrow down the interval of the k-th eigenvalue. In the 
third stage, we switch to a modified shift-and-invert Lanczos method to reduce bisection 
iterations and compute the k-th eigenpair with validation. Numerical results with problem 
sizes up to 1.5 million are reported, and the results demonstrate the accuracy and efficiency 
of the three-stage algorithm.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the solution of the k-th eigenvalue problem with n × n large sparse Hermitian A, B and 
positive definite B:

Axk = λk Bxk, xk �= 0, (1)

where λ1 ≤ · · · ≤ λk ≤ · · · ≤ λn . Here, we assume that the problem-specific target index k satisfies 1 � k � n such that λk is 
not at either end of [λ1, λn].

The k-th eigenvalue problem (1) differs from other problems to compute part of the spectrum and the corresponding 
eigenvectors. Some eigenvalues at the ends of [λ1, λn] and their corresponding eigenvectors can be computed by the Lanczos 
[1] and LOBPCG [2] methods, and some eigenvalues near a given target point and their eigenvectors are computed by the 
shift-and-invert Lanczos (SI Lanczos) [3] and Jacobi–Davidson [4] methods. In addition, eigenvalues in a given target interval 
and their eigenvectors are computed by the Sakurai–Sugiura method [5], FEAST method [6], and filtering methods [7]. 
However, none of these methods aim at computing the eigenpair of a given target index k with 1 � k � n.
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The k-th eigenvalue problem (1) arises from large-scale electronic structure calculations [8], where eigenvalues corre-
spond to the energy of an electron and eigenvectors represent an electronic wave function. Here, λk and xk are referred to 
as the highest occupied (HO) energy and state, respectively. The target index k is a material-specific value and is approxi-
mately 10–50% of the matrix size [9], thereby satisfying 1 � k � n. The index of the eigenpair must be validated because 
several of the physical properties of materials, such as those of optoelectronic device materials, are governed by the eigen-
pair with the material-specific target index k. Detailed explanation of physical origin and background of the k-th eigenvalue 
problem can be found in Appendices A and B.

Typical electronic structure calculations require the computation of many eigenpairs. Eigenpairs of practical interest are 
generally (λ1, x1) through (λk, xk). A standard approach is to utilize a dense eigensolver in a massively parallel environment 
[9–11]. Recently, a one-million-dimensional generalized eigenvalue problem was solved by a dense eigensolver [12] using 
the full K computer. The elapsed time was 5516 seconds to compute all eigenpairs [13], indicating the practical size limit 
of eigenpair computation by a dense eigensolver. Therefore, a strong need for methodologies that can be applied to larger 
materials and matrices has become apparent.

A promising approach to large-scale electronic structure calculations is to construct purpose-specific methods with which 
one can bypass computation of many eigenpairs to obtain several physical quantities of practical interest. Several methods 
have been proposed to calculate the total energy of materials and the force on nuclei in order to realize quantum molecular 
dynamics simulations without computation of each individual eigenpair [14]. Such methods are referred to as linear-scaling 
methods.

Our previous paper [15] presented the k-th eigenvalue problem (1) as a purpose-specific methodology for large-scale 
calculations that can be considered complementary to linear-scaling methods. In our previous paper, as a preliminary study 
of the problem, spectral bisection and its variants were applied to computing the k-th eigenvalue and validating its index. 
As explained in Section 2.1, the main idea behind bisection is to locate λk based on the number of eigenvalues that are less 
than a given real number σ , denoted νσ (A, B).

Using our previous paper as a foundation, this paper presents a three-stage algorithm for solving the k-th eigenvalue 
problem with the following features.

1. Efficient initial interval for bisection
Setting an initial interval containing λk is necessary to begin bisection. A standard approach is to utilize some 
Gershgorin-type theorem so that the interval includes the entire spectrum and thus contains λk . In the first stage of the 
algorithm, we propose an efficient way of finding a narrow initial interval. The proposed approach iteratively generates 
a sequence of disjoint intervals until an interval validated as containing λk is obtained. For our problem with the target 
index 1 � k � n, the numerical results show that information conventionally considered useless in the Lanczos method, 
i.e., Ritz values of the first few steps of the method, is of paramount importance to generate a narrow initial interval.

2. Computation of the k-th eigenvector with validation
Mistakenly computing another eigenvector, e.g., xk−1 or xk+1, rather than xk leads to a completely unreliable result 
because eigenvectors are B-orthogonal to each other. In the third stage, as will be shown in Proposition 3, the index is 
validated by utilizing an eigenvalue error bound that can be evaluated from the residual vector at negligible cost.

3. Application to large-scale problems
Each bisection iteration requires computation of νσ (A, B), which is based on LDLH factorization of a shifted matrix 
A − σ B and thus requires O (n2) memory in general. In the second stage, νσ (A, B) is computed by utilizing a sparse 
direct linear solver to save memory to realize bisection for large-scale problems. Once a fill-reducing ordering and 
symbolic factorization are obtained for some A − σ B , they can be recycled for other shifted matrices because they 
depend on only the sparsity structure of a matrix.

The remainder of this paper is organized as follows. Section 2 explains the preliminaries of this paper. In Section 3, after 
explaining our approach to set an initial interval and compute the k-th eigenvector, we present the three-stage algorithm 
for the k-th eigenvalue problem. Numerical results of several real research problems and a comparison of the three-stage 
algorithm and dense eigensolvers are reported in Section 4. Concluding remarks are given in Section 5.

Throughout this paper, AT and AH denote the transpose and conjugate transpose of matrix A, respectively. I denotes the 
identity matrix. For Hermitian positive definite B , ‖x‖B denotes the B-norm of vector x, defined as ‖x‖B = √

xH Bx.

2. Preliminaries

Section 2.1 explains spectral bisection for computing the k-th eigenvalue. Sections 2.2 and 2.3 provide the preliminaries 
of the Lanczos and SI Lanczos methods.

2.1. Spectral bisection for the k-th eigenvalue

In spectral bisection, νσ (A, B) is computed to determine whether λk is located to the left or right of σ . Specifically, 
k ≤ νσ (A, B) implies that λk < σ , while k > νσ (A, B) implies that λk ≥ σ . This idea dates back to the work of Givens [16].
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Algorithm 1 shows the spectral bisection for the k-th eigenvalue, which was employed but not clearly presented in our 
previous paper [15]. When an interval [σlower, σupper) containing λk is set, the midpoint σ of the interval is calculated in 
line 2, and then νσ (A, B) is computed by utilizing LDLH factorization of the shifted matrix A − σ B in lines 3–4. Here, 
A − σ B is indefinite; thus, permutation P is necessary for numerically stable factorization [17], and L and D are a unit 
lower triangular matrix and a block diagonal matrix of block size one or two, respectively. Due to Sylvester’s law of inertia, 
ν0(D, I) equals νσ (A, B). Depending on νσ (A, B), either the left or right half-interval is selected as the next interval in 
line 5. 	log2[(σupper −σlower)/τ ]
 iterations are required until the interval becomes narrower than a given tolerance τ . Thus, 
a narrower initial interval will result in fewer required iterations to locate λk .

Algorithm 1: Spectral bisection for the k-th eigenvalue [15].
Input : matrices A, B of generalized eigenvalue problem (1), target index k,

initial interval [σlower, σupper) containing the k-th eigenvalue, tolerance τ .
Output : approximate eigenvalue λ̂k := (σlower + σupper)/2, where |λ̂k − λk| < τ/2.

1 repeat until σupper − σlower < τ
2 σ := (σlower + σupper)/2,
3 LDLH ← P (A − σ B)P T, � P : permutation for numerical stability
4 ν := ν0(D, I), � ν0(D, I): number of negative eigenvalues of block diagonal D
5 if k ≤ ν then σupper := σ else σlower := σ .

Rather than bisection, it is possible to apply other root-finding algorithms to line 2 of Algorithm 1 to achieve faster con-
vergence. By considering eigenvalues as the roots of a characteristic polynomial det(A −σ B), several root-finding algorithms 
are applied to select point σ to compute νσ (A, B) [18]. Generally, such variants can be applied only after the interval is 
narrowed down sufficiently to contain only one eigenvalue [19, Chapter 3.5]. Our previous paper [15] took another perspec-
tive and considered νσ (A, B) as a function of σ , which is non-decreasing, integer-valued, and discontinuous at σ = λi for 
1 ≤ i ≤ n. This perspective enabled the application of a certain type of root-finding algorithms to select σ before λk was 
isolated from the other eigenvalues by the interval. To date, a thorough comparison of bisection and its variants has not 
been made for the k-th eigenvalue problem, and, in this paper, we utilize bisection for the sake of stable performance.

2.2. Lanczos method

The Lanczos method [1] is a projection method in which approximate solutions are constructed within a Krylov subspace 
and are determined to be optimal in the sense of the Galerkin condition. The subspace and its orthonormal basis are 
generated by the Lanczos process, which can be expressed in the matrix form:

AV j = B V j T j + B v j+1β je
T
j . (2)

Here, V j is an n × j matrix whose columns span a Krylov subspace and are B-orthonormal. T j is real symmetric tridiagonal 
and has non-zero off-diagonal elements (irreducible). v j+1 is B-orthogonal to the columns of V j and is normalized with 
respect to the B-norm by scale factor β j . e j is the last column of the identity matrix of size j. In this paper, we refer to (2)
as j-step Lanczos decomposition.

From the Galerkin condition, the standard eigenvalue problem of T j is derived:

T j y( j)
i = θ

( j)
i y( j)

i , y( j)
i �= 0. (3)

Since T j is irreducible, eigenvalues θ( j)
i are distinct from each other [20, Chapter 1.3] and can be indexed in increasing 

order, i.e., θ( j)
1 < θ

( j)
2 < · · · < θ

( j)
j . The Lanczos method can be considered a Rayleigh–Ritz procedure, and eigenvalues θ( j)

i
are referred to as Ritz values.

2.3. Shift-and-invert Lanczos method

A small number of eigenvalues near a target point (or in a target interval) and their associated eigenvectors can be 
computed by the SI Lanczos method [3]. The SI Lanczos method applied to the original problem (1) can be considered as 
applying the original Lanczos method (Section 2.2) to the SI problem:

(A − σ B)−1x̃ = λ̃B−1x̃, x̃ �= 0. (4)

Here, it is assumed that shift σ does not coincide with an eigenvalue of (1), i.e., σ �= λi . The eigenvalues of the original 
and SI problems have the relationship λ̃ = (λ − σ)−1, while eigenvectors satisfy both x̃ = Bx and x̃ = (A − σ B)x because Bx
and (A −σ B)x are collinear. Based on these relationships, approximate eigenpairs for the SI problem (4) are transformed to 
those for the original problem (1).
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The matrix form of j-step SI Lanczos decomposition is given as follows:

(A − σ B)−1 Ṽ j = B−1 Ṽ j T̃ j + B−1 ṽ j+1β̃ je
T
j . (5)

Here, Ṽ j is an n × j matrix whose columns span a Krylov subspace and are B−1-orthonormal, and T̃ j is real symmetric 
tridiagonal and irreducible. ṽ j+1 is B−1-orthogonal to the columns of Ṽ j and is normalized with respect to the B−1-norm 
by scale factor β̃ j .

From the Galerkin condition, the standard eigenvalue problem of T̃ j is derived:

T̃ j ỹ( j)
i = θ̃

( j)
i ỹ( j)

i , ỹ( j)
i �= 0. (6)

Here, eigenvalues θ̃ ( j)
i are indexed in increasing order, and, in the remainder of this paper, eigenvectors ỹ( j)

i are assumed to 
be normalized with respect to the 2-norm. Using the i-th eigenpair (θ̃ ( j)

i , ỹ( j)
i ) of T̃ j , the approximate eigenvalues for (1)

are expressed as follows:

λ
( j)
i = σ + 1/θ̃

( j)
i . (7)

Approximate eigenvectors can be expressed in two different ways.

1. Using the first relationship x̃ = Bx, approximate eigenvectors are given as:

x( j)
i,1 = B−1 Ṽ j ỹ( j)

i . (8)

2. From the second relationship x̃ = (A − σ B)x, we have:

x( j)
i,2 = (A − σ B)−1 Ṽ j ỹ( j)

i . (9)

In this paper, we utilize x( j)
i,2 in (9) as an approximate eigenvector, although it is common to use x( j)

i,1 in (8). This is 
because, as will be shown in Proposition 3, x( j)

i,2 allows economical evaluation of an eigenvalue error bound that can be 
utilized to validate the index of approximate eigenpairs. Other perspectives on approximate eigenvectors and their further 
treatment can be found in the literature [3] and [21, Chapter 7.6.8], in which x( j)

i,2 is considered a modification of x( j)
i,1 .

The remainder of this subsection provides theoretical results that support the utilization of x( j)
i,2 as an approximate 

eigenvector. In Proposition 1, we show that x( j)
i,2 converges to the same eigenvector of (1) at the same iteration of the SI 

Lanczos method as x( j)
i,1 . Then, in Proposition 2, we show that x( j)

i,2 with 1 ≤ i ≤ j become B-orthogonal to each other as the 
SI Lanczos method proceeds.

Proposition 1. Approximate eigenvectors x( j)
i,1 in (8) and x( j)

i,2 in (9) are collinear if and only if ṽ j+1 = 0.

Proof. We first prove the sufficiency. By post-multiplying (5) by ỹ( j)
i and from the sufficient condition ṽ j+1 = 0, we have:

x( j)
i,2 = (A − σ B)−1 Ṽ j ỹ( j)

i = B−1 Ṽ j T̃ j ỹ( j)
i = θ̃

( j)
i x( j)

i,1 .

The third equality follows from (6). This proves the sufficiency. Now, we prove the necessity. By post-multiplying (5) by ỹ( j)
i , 

we have:

x( j)
i,2 = θ̃

( j)
i x( j)

i,1 + B−1 ṽ j+1(β̃ je
T
j ỹ( j)

i ).

Here, x( j)
i,1 and x( j)

i,2 are collinear from the necessary condition; thus, the last term B−1 ṽ j+1(β̃ jeT
j ỹ( j)

i ) must be collinear with 

x( j)
i,1 and x( j)

i,2 . In addition, the last term is B-orthogonal to x( j)
i,1 because ṽ j+1 is B−1-orthogonal to the columns of Ṽ j :

(x( j)
i,1)H B

[
B−1 ṽ j+1(β̃ je

T
j ỹ( j)

i )
]

= ( ỹ( j)
i )H Ṽ H

j B−1 ṽ j+1(β̃ je
T
j ỹ( j)

i ) = 0.

Due to this B-orthogonality and the positive-definiteness of B , the last term can never be collinear with x( j)
i,1 unless it is the 

zero vector. Therefore, ṽ j+1 = 0 (thus, β̃ j = 0) or eT
j ỹ( j)

i = 0. However, eT
j ỹ( j)

i is non-zero because it is the last element of 
an eigenvector of an irreducible tridiagonal matrix [19, Theorem 7.9.3]. This proves the necessity. �

Note that x( j)
i,2 with 1 ≤ i ≤ j do not have exact B-orthogonality. Their B-orthogonality can be measured by (10) in 

Proposition 2, which is the cosine similarity of two approximate eigenvectors in the B-inner product.
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Proposition 2. The following holds for 1 ≤ l < m ≤ j:

|(x( j)
l,2 )H Bx( j)

m,2|
‖x( j)

l,2 ‖B · ‖x( j)
m,2‖B

= |β̃ jeT
j ỹ( j)

l /θ̃
( j)
l |√

1 + |β̃ jeT
j ỹ( j)

l /θ̃
( j)
l |2

· |β̃ jeT
j ỹ( j)

m /θ̃
( j)
m |√

1 + |β̃ jeT
j ỹ( j)

m /θ̃
( j)
m |2

. (10)

Proof. For 1 ≤ l ≤ m ≤ j,

(x( j)
l,2 )H Bx( j)

m,2 =
[
(A − σ B)−1 Ṽ j ỹ( j)

l

]H
B

[
(A − σ B)−1 Ṽ j ỹ( j)

m

]

=
(

Ṽ j T̃ j ỹ( j)
l + ṽ j+1β̃ je

T
j ỹ( j)

l

)H
B−1 B B−1

(
Ṽ j T̃ j ỹ( j)

m + ṽ j+1β̃ je
T
j ỹ( j)

m

)

=
(

Ṽ j T̃ j ỹ( j)
l

)H
B−1

(
Ṽ j T̃ j ỹ( j)

m

)
+

(
ṽ j+1β̃ je

T
j ỹ( j)

l

)H
B−1

(
ṽ j+1β̃ je

T
j ỹ( j)

m

)

= θ̃
( j)
l θ̃

( j)
m

[
δlm + (β̃ je

T
j ỹ( j)

l /θ̃
( j)
l )(β̃ je

T
j ỹ( j)

m /θ̃
( j)
m )

]
. (11)

Here, δlm denotes the Kronecker delta. The second equality follows from (5), and the third and fourth are due to the 
B−1-orthonormality of the columns of Ṽ j and ṽ j+1. (10) is an immediate result of (11) with l �= m. �

Scalars |β̃ jeT
j ỹ( j)

i /θ̃
( j)
i | in (10) are simply the B−1-norm of the residual vectors:

r( j)
i,2 ≡ (A − λ

( j)
i B)x( j)

i,2 =
[

A − (σ + 1/θ̃
( j)
i )B

]
(A − σ B)−1 Ṽ j ỹ( j)

i = −ṽ j+1(β̃ je
T
j ỹ( j)

i /θ̃
( j)
i ). (12)

Since the residual norm |β̃ jeT
j ỹ( j)

i /θ̃
( j)
i | � 1 as the SI Lanczos method proceeds, (10) converges to zero and approximate 

eigenvectors x( j)
i,2 become B-orthogonal to each other. Therefore, we can say that x( j)

i,2 have B-orthogonality in a practical 
sense.

3. A three-stage algorithm for the k-th eigenvalue problem

3.1. Efficient initial interval for bisection

To utilize spectral bisection, it is necessary to set an initial interval that contains the k-th eigenvalue. A common approach 
is to set an interval that includes the entire spectrum, which necessarily contains λk . For standard eigenvalue problems, one 
of the most economical ways to set such an interval is to use the Gershgorin circle theorem. Several Gershgorin-type 
theorems have been proposed for generalized eigenvalue problems [22–24]. These theorems provide an inclusion set of the 
spectrum that is guaranteed to be bounded only when at least one of A and B is diagonally dominant for each row [24]. 
Unfortunately, such diagonal dominance of the matrices is not always assumed to be the case for problems in electronic 
structure calculations. The remainder of this subsection presents a systematic way to set an initial interval based on an 
application of the Lanczos method.

Ritz values by the Lanczos method become more accurate by expanding the subspace, exhibiting the interlacing property 
[20, Chapter 1.3]. By denoting the i-th Ritz value at the j-th iteration of the method as θ( j)

i (Section 2.2), the interlacing 
property can be formally expressed as follows: θ( j+1)

i < θ
( j)
i < θ

( j+1)

i+1 for i ≤ j < n. The monotonic convergence follows from 
this property, which states that the i-th smallest (resp. largest) Ritz value decreases (resp. increases) monotonically and 
converges to the i-th smallest (resp. largest) eigenvalue. We utilize this monotonicity of Ritz values to set an initial interval.

Algorithm 2 shows how we set an interval containing λk by utilizing Ritz values, and this process is illustrated in Fig. 1. 
Here, we utilize either the smallest θ( j)

1 or largest Ritz values θ( j)
j with j ≥ 1. We begin by computing θ(1)

1 , which is equal 
to the generalized Rayleigh quotient vH

1 Av1/vH
1 B v1 of a random starting vector v1. The quotient is expected to be the 

average of the eigenvalues of (1). It is advantageous to begin from approximately the middle of the eigenvalue distribution 
when the target index satisfies 1 � k � n. We then compute ν(1) = ν

θ
(1)
1

(A, B). If k ≤ ν(1) , it follows that λk < θ
(1)
1 < θ

( j)
j for 

j > 1. Therefore, in the subsequent iterations, the smallest Ritz values θ( j)
1 are utilized as the points for setting an interval 

containing λk . On the other hand, if k > ν(1) , the largest Ritz values are selected as the endpoints of an interval. Accordingly, 
a sequence of disjoint intervals, i.e., either [θ( j)

1 , θ( j−1)
1 ) or [θ( j−1)

j−1 , θ( j)
j ) with j > 1, is generated until an interval validated 

as containing λk is obtained.
An advantage of utilizing Ritz values is that an initial interval is necessarily included in and can be much narrower than 

[λ1, λn], which leads to a reduction of the number of bisection iterations. However, we must consider the cost of setting the 
interval, i.e., j iterations of the Lanczos method and j LDLH factorizations. The interlacing property provides a theoretical 
upper bound of the iteration count required to set an interval. Here, since θ(n−k+1)

< λk < θ
(k) , at most n − k + 1 iterations 
1 k
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Algorithm 2: Setting an interval containing the k-th eigenvalue.
Input : matrices A, B of generalized eigenvalue problem (1), target index k.
Output : interval [σlower, σupper) containing the k-th eigenvalue,

νlower = νσlower (A, B), νupper = νσupper (A, B).

1 set a random starting vector v1, v1 := v1/‖v1‖B , ν(0) := 0,
2 for j = 1, 2, . . . do
3 compute j-step Lanczos decomposition (2),
4 solve standard eigenvalue problem (3),

5 if k ≤ ν( j−1) then σ ( j) := θ
( j)
1 else σ ( j) := θ

( j)
j ,

6 LDLH ← P (A − σ ( j) B)P T, � P : permutation for numerical stability

7 ν( j) := ν0(D, I), � ν0(D, I): number of negative eigenvalues of block diagonal D

8 if j �= 1 and (ν( j) < k ≤ ν( j−1) or ν( j−1) < k ≤ ν( j)) then break,

9 σlower := min{σ ( j−1), σ ( j)}, σupper := max{σ ( j−1), σ ( j)},

10 νlower := min{ν( j−1), ν( j)}, νupper := max{ν( j−1), ν( j)}.

Fig. 1. Illustration of Algorithm 2. [θ(2)
1 , θ

(1)
1 ) does not contain λk but [θ(3)

1 , θ
(2)
1 ) does (hatched).

are required for the k ≤ ν(1) case, and k iterations are required for the k > ν(1) case. In practice, j can be very small because 
eigenvalues at the ends of [λ1, λn] are rapidly approximated by the Lanczos method and the target index k is approximately 
10–50% of the matrix size n, thereby satisfying 1 � k � n. In the numerical results presented in Section 4.3.1, the iteration 
count j is two for all experiments.

3.2. Computation of the k-th eigenpair with validation

Once an initial interval is set for bisection (Section 3.1), it is narrowed down until it contains the k-th eigenvalue and 
some nearby eigenvalues. We then compute the k-th eigenpair along with the other eigenpairs of the interval while validat-
ing their index. The eigenpairs of the interval can be computed by a variety of methods (Section 1). We utilize a modified 
SI Lanczos method (Section 2.3), where approximate eigenvectors x( j)

i,2 are computed based on (9) and have B-orthogonality, 
as shown in Proposition 2.

In Proposition 3, we explain that an eigenvalue error bound for validating the index of the eigenpairs can be evaluated 
from the residual vector of the SI Lanczos method at negligible cost.

Proposition 3. With the same notation as (5)–(7) in Section 2.3, there is an eigenvalue λ
l( j)
i

of problem (1) such that:

λ
l( j)
i

∈ 	
( j)
i ≡ [λ( j)

i − η
( j)
i , λ

( j)
i + η

( j)
i ], η

( j)
i ≡ 1

|θ̃ ( j)
i |

· |β̃ jeT
j ỹ( j)

i /θ̃
( j)
i |√

1 + |β̃ jeT
j ỹ( j)

i /θ̃
( j)
i |2

. (13)

Proof. According to a classical result of the perturbation theory [19, Theorem 15.9.1], there is an eigenvalue λl of problem 
(1) for a scalar μ and non-zero vector u such that:

|λl − μ| ≤ ‖(A − μB)u‖B−1

‖Bu‖B−1
. (14)

By substituting (μ, u) in (14) with an approximate eigenpair (λ( j)
i , x( j)

i,2) obtained by the SI Lanczos method, we have from 
(11) and residual (12) that:

|λ
l( j)
i

− λ
( j)
i | ≤ ‖(A − λ

( j)
i B)x( j)

i,2‖B−1

‖Bx( j)
i,2‖B−1

= ‖r( j)
i,2‖B−1

‖x( j)
i,2‖B

= 1

|θ̃ ( j)
i |

· |β̃ jeT
j ỹ( j)

i /θ̃
( j)
i |√

1 + |β̃ jeT
j ỹ( j)

i /θ̃
( j)
i |2

. (15)

By rewriting inequality (15), we have an eigenvalue error bound 	( j)
i for λ( j)

i that includes an eigenvalue λ
l( j)
i

of prob-

lem (1). �



624 D. Lee et al. / Journal of Computational Physics 371 (2018) 618–632
Fig. 2. Error bounds (13) for m = 5.

When bound (13) becomes sufficiently narrow, we can associate λ( j)
i with an eigenvalue of problem (1) and thus validate 

the index of the approximate eigenpairs. Here, assume that an interval [σlower, σupper) contains m eigenvalues. If there are 
m error bounds in the interval that are mutually disjoint, as illustrated in Fig. 2(b), then each bound contains only one of 
the m eigenvalues of the interval. When the approximate eigenpairs have one-to-one correspondence with the eigenvalues 
of the interval, the index of each approximate eigenpair can be validated readily because we already know the index range 
of the eigenpairs of the interval from the bisection.

Algorithm 3 shows an implementation example, where the midpoint σ = (σlower + σupper)/2 of the interval is selected 
as the shift for the SI Lanczos method. In line 8, we sort the approximate eigenpairs (λ( j)

i , x( j)
i,2) of the method and re-index 

them for simplicity:

|λ( j)
1 − σ | ≤ |λ( j)

2 − σ | ≤ · · · ≤ |λ( j)
j − σ |, or equivalently |θ̃ ( j)

1 | ≥ |θ̃ ( j)
2 | ≥ · · · ≥ |θ̃ ( j)

j |. (16)

Then, if the following two conditions hold, each λ( j)
i best approximates a distinct eigenvalue of the interval:

inclusion: 	
( j)
i ⊂ [σlower,σupper) for 1 ≤ i ≤ m. (17)

disjointness: 	
( j)
i1

∩ 	
( j)
i2

= ∅ for 1 ≤ i1 < i2 ≤ m. (18)

When (17) and (18) hold, we test for convergence in line 10. The algorithm is assumed to reach convergence when the 
relative residual 2-norm of each approximate eigenpair of the interval becomes less than a given tolerance τres. We also 
utilize the following criterion for the convergence test, which we refer to as the relative difference 2-norm between the 
approximate eigenvectors at the ( j − 1)-th and j-th iterations:

‖x( j)
i,2 − x( j−1)

i,2 ‖2/‖x( j−1)

i,2 ‖2 < τdiff for 1 ≤ i ≤ m. (19)

Here, x( j−1)

i,2 and x( j)
i,2 are normalized to satisfy ‖x( j−1)

i,2 ‖2 = ‖x( j)
i,2‖2. As discussed in Section 4.3.3, criterion (19) is required 

because a small relative residual 2-norm does not necessarily imply that an approximate eigenvector is close to convergence. 
After the convergence test, we sort the approximate eigenpairs of the interval to the original order in line 11 to obtain the 
k-th eigenpair in line 12.

Algorithm 3: Computation of the k-th eigenpair.
Input : matrices A, B of generalized eigenvalue problem (1), target index k,

interval [σlower, σupper) containing the k-th eigenvalue,
νlower = νσlower (A, B), νupper = νσupper (A, B),
tolerance τres for relative residual 2-norm, tolerance τdiff for relative difference 2-norm.

Output : approximate eigenpair (λ̂k, ̂xk), where ‖(A − λ̂k B)x̂k‖2/‖x̂k‖2 < τres .
1 l := k − νlower, m := νupper − νlower, σ := (σlower + σupper)/2,
2 set a random starting vector ṽ1, ṽ1 := ṽ1/‖ṽ1‖B−1 ,
3 for j = 1, 2, . . . do
4 compute j-step SI Lanczos decomposition (5) with reorthogonalization,
5 if j ≥ m then
6 solve standard eigenvalue problem (6),

7 for i = 1 to j do compute approximate eigenpairs (λ( j)
i , x( j)

i,2) as (7) and (9),

8 sort (λ( j)
i , x( j)

i,2) with 1 ≤ i ≤ j to index as (16),

9 for i = 1 to m do compute the i-th eigenvalue error bound (13),

10 if (17) and (18) and (‖(A − λ
( j)
i B)x( j)

i,2‖2/‖x( j)
i,2‖2 < τres for 1 ≤ i ≤ m) and (19) then break,

11 sort (λ( j)
i , x( j)

i,2) with 1 ≤ i ≤ m to index in increasing order λ( j)
1 < λ

( j)
2 < · · · < λ

( j)
m ,

12 (λ̂k, ̂xk) := (λ
( j)
l , x( j)

l,2 ).



D. Lee et al. / Journal of Computational Physics 371 (2018) 618–632 625
3.3. Application to large-scale problems

We utilize a sparse direct linear solver for computing νσ (A, B) of large sparse A, B . Algorithm 1′ shows a modification of 
Algorithm 1 to narrow down an initial interval. The main difference can be found in line 3, where a fill-reducing ordering Q
is utilized to handle large sparse matrices, in addition to permutation P for numerical stability. In contrast to P , ordering Q
is independent from shift σ because it depends on only the sparsity structure of A − σ B . Thus, once ordering and symbolic 
factorization are obtained for some shifted matrix, they can be recycled for other shifted matrices with varying shifts in the 
subsequent iterations. Computation of νσ (A, B) in Algorithm 2 can be performed in the same manner by utilizing a sparse 
direct linear solver. If shifted matrices are known to have a data-sparse (hierarchical low-rank) structure, their factorization 
can be done fast in a recursive manner [25–27].

Algorithm 1′: Spectral bisection for the k-th eigenvalue problem.
Input : matrices A, B of generalized eigenvalue problem (1), target index k,

initial interval [σlower, σupper) containing the k-th eigenvalue,
νlower = νσlower (A, B), νupper = νσupper (A, B), stopping criterion mmax.

Output : interval [σlower, σupper), νlower, νupper .
1 repeat until νupper − νlower ≤ mmax � νupper − νlower: number of eigenvalues in the interval
2 σ := (σlower + σupper)/2,
3 LDLH ← P Q (A − σ B)Q T P T, � Q : fill-reducing ordering for sparse matrices
4 ν := ν0(D, I),
5 if k ≤ ν then σupper := σ , νupper := ν else σlower := σ , νlower := ν .

3.4. Overview of the three-stage algorithm

Algorithm 4 presents a three-stage algorithm for solving the k-th eigenvalue problem. We first run Algorithm 2 to set an 
interval [σlower, σupper) containing the k-th eigenvalue. We then run Algorithm 1′ to narrow down the interval until it con-
tains less than or equal to mmax eigenvalues that include λk . Compared with further narrowing down the interval to isolate 
λk from the other eigenvalues, approximately log2 mmax bisection iterations can be reduced. Finally, we run Algorithm 3 to 
compute the k-th eigenpair along with the other eigenpairs of the interval while validating their index.

Algorithm 4: Three-stage algorithm for solving the k-th eigenvalue problem.
Input : matrices A, B of generalized eigenvalue problem (1), target index k,

stopping criterion mmax for spectral bisection,
tolerance τres for relative residual 2-norm, tolerance τdiff for relative difference 2-norm.

Output : approximate eigenpair (λ̂k, ̂xk).
1 run Algorithm 2 to set an interval [σlower, σupper) containing λk and obtain νlower = νσlower (A, B) and νupper = νσupper (A, B),
2 run Algorithm 1′ to narrow down the interval [σlower, σupper) until it contains less than or equal to mmax eigenvalues that include λk ,

3 run Algorithm 3 to obtain the k-th eigenpair (λ̂k, ̂xk) with its relative residual and difference 2-norms less than τres and τdiff , respectively.

Here, mmax is an important parameter that influences the overall performance of the three-stage algorithm because 
there is a trade-off between the second and third stages (Algorithms 1′ and 3), i.e., greater mmax results in fewer required 
bisection iterations, while more iterations are required for the SI Lanczos method. mmax was set the same for each problem 
in the numerical experiments. Tuning this parameter will be the focus of future work.

In the presence of multiple eigenvalues or a cluster of eigenvalues around λk , modification to Algorithm 4 is necessary 
because the algorithm is ineffective in detecting them and may end up in misconvergence; the stopping criterion (line 1 of 
Algorithm 1′) for bisection and a convergence criterion (18) for the SI Lanczos method may not be satisfied. In addition, from 
the SI Lanczos method, only a one dimensional representation is obtained for the eigenspace corresponding to a multiple 
eigenvalue. To detect multiple or a cluster of eigenvalues during bisection, the length of the interval can be used along with 
the current stopping criterion. If detected, they and their corresponding eigenspace can be computed by, e.g., a block SI 
Lanczos method [28] whose block size can be determined from the number of eigenvalues in the interval. When a block 
eigensolver is used, the convergence criteria (line 10 of Algorithm 3) need to be modified accordingly to take account of the 
multiplicity or the cluster. Further investigation of the modification will be future work.

4. Numerical experiments

This section reports the numerical results of several real research problems from electronic structure calculations and 
a comparison of the proposed three-stage algorithm (Algorithm 4) and dense eigensolvers. In Section 4.1, we describe the 
matrix data used in the numerical experiments. Section 4.2 provides implementation details of dense eigensolvers and the 
three-stage algorithm. The numerical results are reported in Section 4.3.
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Table 1
Matrix data.

Data n #nz k [λ1, λn] Material

APF4686 4686 53950 2343 [−1.157, 5.581] amorphous-like conjugated polymer, poly(9,9-dioctyl-fluorene) [8]
AUNW9180 9180 1783313 5610 [−0.210, 0.883] helical multishell gold nanowire with defects [29]
CPPE32346 32346 861764 16173 [−1.169, 7.953] condensed polymer systems, poly(phenylene-ethynylene) [13,30]
NCCS430080 430080 10696416 215040 [−1.195,13.602] sp2–sp3 nano-composite carbon solid [31]
VCNT1512000 1512000 294953351 336000 [−1.098, 0.475] vibrating carbon nanotube within a supercell with spd orbitals [32]

Fig. 3. Sparsity structures of matrix data.

4.1. Matrix data

Table 1 shows the matrix data used in the numerical experiments, which were generated by the ELSES quantum me-
chanical nanomaterial simulator [8] and obtained from the ELSES Matrix Library (http://www.elses .jp /matrix/). Here, the 
two n ×n matrices A and B of each matrix data are real symmetric and real symmetric positive definite, respectively. A and 
B have the same sparsity structure shown in Fig. 3 with #nz non-zero elements (in their lower triangular part) in Table 1. 
The target index k is associated with the HO state. The entire spectrum is included in the interval [λ1, λn]. The last column 
of Table 1 describes the origin of the matrix data.

4.2. Implementation details

As dense eigensolvers, we used the LAPACK [33] and ScaLAPACK [10] routines. Specifically, the LAPACK dsygvd routine 
was used to solve APF4686 and AUNW9180. In dsygvd, a generalized eigenvalue problem is transformed to a standard 
eigenvalue problem of a tridiagonal matrix, and then eigenpairs of the tridiagonal matrix are computed by the divide and 
conquer method [34–36]. To date, there is no single ScaLAPACK routine to perform the same task as dsygvd in parallel. 
Therefore, to solve CPPE32346 and NCCS430080, the ScaLAPACK pdpotrf, pdsygst, pdsytrd, pdstedc, and pdormtr
routines were utilized through EigenKernel (https://github .com /eigenkernel/) [12]. Note that the results for VCNT1512000 
are not provided in the present paper because the problem size prevents it from being solved by a dense eigensolver in 
practical time.

In the three-stage algorithm (Algorithm 4), νσ (A, B) and solution of linear systems in the Lanczos and SI Lanczos 
methods were computed based on LDLH factorization by the MUMPS sparse direct linear solver [37,38] with the METIS 
fill-reducing ordering [39]. The bisection narrowed down the initial interval until the number of eigenvalues in the inter-
val became less than or equal to mmax = 20. Tolerances for the relative residual and difference 2-norms in the SI Lanczos 
method were set to τres = 10−10 and τdiff = 10−10, respectively. All codes were written in Fortran 90, and the numerical 
experiments were performed in double-precision.

4.3. Results

In this subsection, we first compare the k-th eigenpair computed by Algorithm 4 with that obtained by the dense eigen-
solvers described in Section 4.2 and report the computation time with some details about the computational environment 
and implementation. Then, in Sections 4.3.1 to 4.3.3, we present the detailed results of each algorithm (i.e., Algorithms 1′ , 
2, and 3) of the three-stage algorithm.

Table 2 compares the k-th eigenpair of the three-stage algorithm (λ̂k, ̂xk) and that of the dense eigensolvers (λ(d)

k , x(d)

k ). 
As can be seen, at least 15 digits were the same for λ̂k and λ(d)

k . The last column shows the relative error 2-norm, where x̂k

and x(d)

k were normalized to satisfy ‖x̂k‖2 = ‖x(d)

k ‖2. The error norm had an order of magnitude less than −10, indicating 
that the k-th eigenvector of the three-stage algorithm agrees well with that of the dense eigensolvers.

Table 3 shows the total computation time and computational resources consumed by Algorithm 4 (Alg. 4), its variant 
(Ger.), and the dense eigensolvers (Dense). In the variant, line 1 of Algorithm 4 was changed to set an interval including the 

http://www.elses.jp/matrix/
https://github.com/eigenkernel/
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Table 2
k-th eigenpair.

Data k λ̂k λ
(d)

k
|λ̂k−λ

(d)

k |
|λ(d)

k |
‖x̂k−x(d)

k ‖2

‖x(d)
k ‖2

APF4686 2343 −0.4258775547956963 −0.4258775547956963 0 4 × 10−14

AUNW9180 5610 0.1305388835941175 0.1305388835941177 2 × 10−15 1 × 10−12

CPPE32346 16173 −0.4332412034185730 −0.4332412034185731 2 × 10−16 7 × 10−14

NCCS430080 215040 −0.3689638375042860 −0.3689638375042869 2 × 10−15 4 × 10−11

VCNT1512000 336000 −0.5517499297808635 n/a n/a n/a

Table 3
Computation time and computational resources consumed by Algorithm 4, its variant, and dense eigensolvers.

Data Time (s) #Core Memory (MB)

Alg. 4 Ger. Dense Alg. 4 Ger. Dense Alg. 4 Ger. Dense

APF4686 0.3 0.8 82.1 1(w) 1(w) 1(w) 13 12 629
AUNW9180 19.4 69.0 655.2 1(w) 267 245 2836
CPPE32346 4.4 194.0 1366.8 32(K) 121 116 33480
NCCS430080 2024 109597 10586 180000(K) 5069 5055 5919002
VCNT1512000 5132 602525 n/a n/a 38242 31618 n/a

(w) workstation with Xeon E5-2690 (2.90 GHz).
(K) K computer with SPARC64 VIIIfx (2.00 GHz) and Tofu interconnect.

Fig. 4. Computation time of algorithms and computational tasks.

entire spectrum based on the Gershgorin circle theorem.1 Here, #Core is the number of cores used in the experiments, and 
superscripts (w) and (K) represent a workstation and the K computer, respectively. Memory indicates peak memory usage. 
Actual measurement of the memory usage was performed using the GNU time command. Estimation (in italics) shows 
the memory required to store 4n2 double-precision numbers, which is based on the memory requirement of the LAPACK
dsygvd routine.

Details about the computation time and implementation of the three-stage algorithm are shown in Fig. 4, where the 
total time is scaled to one. As described in the figure legend, the three-stage algorithm consists of Algorithms 1′–3, and 
our implementation can be divided into the following seven major computational tasks. (i) B is preprocessed in a symbolic 
manner to produce a fill-reducing ordering and an elimination tree for its LDLH factorization. The ordering is recycled 
for the LDLH factorization of shifted matrices A − σ B because matrices A and B have the same sparsity structure in our 
numerical experiments. (ii) Based on the symbolic factorization, the numerical factorization of B is computed to solve linear 
systems in the Lanczos method. (iii) Ritz values are computed to set an initial interval. (iv–vi) Numerical factorization of 
shifted matrices is computed to set an initial interval, bisect the interval, and solve the linear systems in the SI Lanczos 
method. (vii) The k-th eigenpair is computed.

As can be seen in Fig. 4, Algorithm 1′ dominates computation time as the problem size increases. This is because, as the 
problem size increases, more bisection iterations are expected to be required to narrow down an initial interval in order to 
make the number of eigenvalues in the interval less than or equal to mmax = 20, which is the same value regardless of the 
problem size.

Fig. 5 shows the relationship between total computation time and the number of non-zero elements in factors L and 
D of LDLH factorization, denoted #nzf, in log–log scale. Here, #nzf is the average of the factorizations of B and shifted 

1 Instead of some Gershgorin-type theorem, an inclusion set of the spectrum of B−1 A was computed based on the original theorem because the diagonal 
dominance of A and B (described in Section 3.1) does not hold for all matrix data. To compute the inclusion set, columns of B−1 A were obtained by solving 
linear systems with MUMPS, and then Gershgorin disks were calculated from the columns. In the VCNT1512000 case, the linear systems were solved in 
single-precision to reduce the time to solution.
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Fig. 5. Computation time vs. number of non-zero elements in factors L and D of LDLH factorization.

Table 4
Initial interval.

Data k [σlower, σupper) Length [ilower, iupper] m Gap Ratio

APF4686 2343 [−0.777, 0.475) 1.252 [751,3458] 2708 5 × 10−4 5.4
AUNW9180 5610 [−0.079, 0.186) 0.265 [877,5853] 4977 5 × 10−5 4.1
CPPE32346 16173 [−0.731, 1.023) 1.754 [5586,26409] 20824 8 × 10−5 5.2
NCCS430080 215040 [−0.777,−0.275) 0.502 [64252,224635] 160384 3 × 10−6 29.5
VCNT1512000 336000 [−0.920,−0.429) 0.491 [84320,422420] 338101 1 × 10−6 3.2

matrices A − σ B with varying σ . The dotted line in the figure is of slope one, which corresponds to the linear scaling 
O (#nzf). As can be seen, computation time is proportional to #nzf (the slope for linear least squares fitting of the data 
points is 1.06). This is because the most time-consuming tasks in the three-stage algorithm, i.e., computation of νσ (A, B)

and solving linear systems in the Lanczos and SI Lanczos methods, are performed based on factorizations by a sparse direct 
linear solver. Generally, the estimation of #nzf can be obtained in the symbolic factorization stage, which can be utilized to 
predict total computation time.

4.3.1. Initial interval
Table 4 shows the initial interval [σlower, σupper) obtained by Algorithm 2. The fourth column shows the length σupper −

σlower of the interval, which contains m eigenvalues with their index ranging from ilower to iupper. The seventh column 
shows the average gap between the eigenvalues in the interval defined as Length/m. In the last column, we compare the 
length of the initial interval with that of [λ1, λn] in Table 1 by calculating the ratio of (λn − λ1)/Length. The initial intervals 
were 3.2 to 29.5 times narrower than [λ1, λn], i.e., the tightest interval that can be obtained from some Gershgorin-type 
theorem in general. Note that all problems required two iterations of Algorithm 2 (thus, two LDLH factorizations) to set the 
interval, which is the minimum required iterations to obtain an interval validated as containing λk .

4.3.2. Bisection
The initial interval in Table 4 was narrowed down to the interval [σlower, σupper) in Table 5 based on Algorithm 1′ . 

Fig. 6 shows the number of eigenvalues in the interval after each bisection iteration in log scale. The horizontal dotted line 
in the figure indicates the stopping criterion mmax = 20 for the bisection. In most cases, the number of eigenvalues was 
approximately halved after each iteration. However, the number remained unchanged after the fifth iteration of APF4686 
and the sixth iteration of CPPE32346. In addition, there was a sharp decrease in the number of eigenvalues at the final 
iteration of CPPE32346, in which the number decreased by more than an order of magnitude. This convergence behavior 
implies that eigenvalues are distributed in a highly non-uniform manner and that there are clusters of eigenvalues or large 
gaps between eigenvalues. Indeed, in the CPPE32346 case, Gap in Table 5 is approximately 40 times greater than that shown 
in Table 4.

Here, we note that the straightforward bisection2 required 47 to 49 iterations, which were roughly 4 to 8 times greater 
than those required for the three-stage algorithm shown in Fig. 6 (6 to 12 iterations), to compute the k-th eigenvalue to the 
accuracy very similar to that in Table 2.

2 In the straightforward bisection, line 1 of Algorithm 1′ was changed to use the length of the interval as a stopping criterion. Specifically, the stopping 
criterion was set to (σupper − σlower)/ max{|σlower|, |σupper|} < 10−14. The k-th eigenvalue was computed using only bisection and from the equation λ̂k =
(σlower + σupper)/2.
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Table 5
Interval narrowed down by bisection.

Data k [σlower, σupper) Length [ilower, iupper] m Gap

APF4686 2343 [−0.44450,−0.42494) 0.01956 [2334,2343] 10 2 × 10−3

AUNW9180 5610 [ 0.12826, 0.13240) 0.00414 [5601,5615] 15 3 × 10−4

CPPE32346 16173 [−0.43657,−0.42971) 0.00685 [16172,16173] 2 3 × 10−3

NCCS430080 215040 [−0.36897,−0.36884) 0.00013 [215040,215049] 10 1 × 10−5

VCNT1512000 336000 [−0.55178,−0.55166) 0.00012 [335995,336010] 16 8 × 10−6

Fig. 6. Number of eigenvalues in an interval after each bisection iteration.

Table 6
Iteration counts of the SI Lanczos method.

Data m Iteration

Bound Residual Difference

APF4686 10 24 33 37
AUNW9180 15 26 42 48
CPPE32346 2 7 19 23
NCCS430080 10 23 31 41
VCNT1512000 16 27 39 50

Fig. 7. Convergence history of the k-th eigenpair (k = 215040) of NCCS430080.

4.3.3. Computation of the k-th eigenpair
In Table 6, we show the iteration counts of Algorithm 3 for computing m eigenvalues in the interval [σlower, σupper)

of Table 5. The third column is the iteration count required for (17) and (18) to be satisfied such that the index of each 
approximate eigenpair of the interval is validated. The fourth and fifth columns represent the iteration counts required for 
the relative 2-norm of the residual and difference (19) of each approximate eigenpair of the interval to become less than 
τres = 10−10 and τdiff = 10−10, respectively.

Fig. 7 shows the convergence history of the k-th eigenpair (k = 215040) of NCCS430080. (λ̂( j)
k , ̂x( j)

k ) in the figure legend 
denotes the k-th eigenpair computed at the j-th iteration of Algorithm 3. x(d)

k represents the k-th eigenvector computed by 
the dense eigensolver. As described in the legend, the figure shows the relative 2-norm history of (i) the residual, (ii) the 
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difference between the ( j −1)-th and j-th iterations defined in (19), and (iii) the error compared with the dense eigensolver. 
The figure also shows (iv) the pairwise B-orthogonality (10) between the k-th eigenvector and the other m − 1 eigenvectors 
of the interval in Table 5. Here, the three vertical dotted lines indicate the iteration counts of Bound, Residual, and Difference 
in Table 6. The horizontal dotted line indicates the convergence criteria τres = 10−10 and τdiff = 10−10.

As can be seen in Fig. 7, a small residual norm does not necessarily imply that eigenvector x̂( j)
k is close to convergence. 

Indeed, the residual norm converged first, and convergence of the error and difference norms followed. Since the error norm 
cannot be measured in general, the difference norm (19) is utilized in Algorithm 3 to test for convergence.

5. Concluding remarks

The proposed three-stage algorithm obtained the validated k-th eigenpair (λk, xk) for large sparse generalized Hermitian 
eigenvalue problems in electronic structure calculations with accuracy comparable with dense eigensolvers under limited 
computational resources. The three-stage algorithm (Algorithm 4) consists of Algorithms 1′ , 2, and 3, each of which has 
been found to be effective for computation of the eigenpair and validation of its index. In particular, from the numerical 
experiments, we have learned the following.

1. Algorithm 2 can set a narrow interval containing λk . The resulting intervals were 3 to 29 times narrower than [λ1, λn], 
i.e., the tightest interval that can be obtained from some Gershgorin-type theorem in general. In all experiments, only 
two iterations of Algorithm 2 were required, i.e., the minimum required iterations to obtain an interval validated as 
containing λk .

2. Algorithm 3 can compute the k-th eigenpair with high accuracy. The eigenpairs computed by Algorithm 3 agreed well 
with the results of dense eigensolvers, including a result obtained by a massively parallel eigenpair computation on 
the K computer. Specifically, the eigenvalues were the same to at least 15 digits, and the relative error norms of the 
eigenvectors were less than 10−10.

3. By utilizing a sparse direct linear solver, large sparse matrices can be handled with efficiency. For example, a nano-
composite carbon solid problem of size n = 430080 was solved in 0.6 hours using one core and 5.1 GB of memory on a 
workstation (a dense eigensolver required 2.9 hours using 180000 cores and an estimated 5.9 TB of memory on the K 
computer).

Fortran codes for the three-stage algorithm are available on GitHub (https://github .com /lee -djl /k-ep).
In future, we plan to examine parameter mmax. As explained in Section 3.4, this parameter influences the overall perfor-

mance of the three-stage algorithm because there is a trade-off between the second and third stages (Algorithms 1′ and 3). 
In addition, we plan to compare spectral bisection with its variants. As discussed in Section 2.1, it is possible to apply other 
root-finding algorithms to the second stage rather than bisection. As long as the algorithms are derivative-free and a root is 
bracketed in the algorithms, they can be readily applied to the second stage and can locate λk . Brent’s method [40] is one 
such example. Finally, we plan to modify the three-stage algorithm to deal with the presence of multiple eigenvalues or a 
cluster of eigenvalues. Some possible modifications are described in Section 3.4.
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Appendix A. Physical origin of the matrix eigenvalue problem

Practical electronic structure calculations use effective independent-electron theories, such as density functional theory 
[41–43], that are formulated with an effective Schrödinger-type equation for electronic wave functions {ψi(r)}i≥1:

Heffψi(r) = εiψi(r)

with the following Hamiltonian operator Heff:

Heff ≡ − h̄2

2me

 + V eff(r).

Here, me is the electron mass, and h̄ denotes the Planck constant. The scalar function V eff(r) is the potential function for 
electrons at the coordinate r and varies among materials. The eigenvalues {εi} are real and can be indexed in increasing 
order.

https://github.com/lee-djl/k-ep
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Independent-electron systems can be discretized by the Ritz variational method or the Galerkin method and can be 
formulated as a matrix eigenvalue problem. When an electronic wave function ψi(r) is expanded (more accurately, approx-
imated) by the linear combination of n non-orthogonal basis functions {χ j(r)}n

j=1,

ψi(r) =
n∑

j=1

x(i)
j χ j(r), (A.1)

generalized eigenvalue problem (1) appears with the n × n Hermitian matrices A and B whose i, j elements are defined as 
follows:

Aij ≡
∫

χ∗
i (r)Heffχ j(r)dr, Bij ≡

∫
χ∗

i (r)χ j(r)dr. (A.2)

Here, the asterisk (∗) denotes the complex conjugate of a function. Matrix B is positive definite from the definition, and its 
diagonal elements all equal one provided that the basis functions are normalized.

The size and structure of these matrices depend on the construction of the Hamiltonian operator Heff and the choice of 
the basis set {χ j(r)}. This paper is based on a first-principle-based modeled (transferable tight-binding) theory [8] in which 
basis functions, referred to as atomic orbitals, are localized in real space with their localization center being the position of 
an atom in a material. The index j of the basis functions χ j can then be expressed as a composite of two indices l and m
that represent a localization center, or an atom, and the shape of an orbital, respectively. Using indices l and m, we obtain 
an alternative expression for the expansion of wave functions (A.1):

ψi(r) =
natom∑
l=1

nl∑
m=1

x(i)
lmχlm(r).

Here, natom denotes the number of atoms in a material. nl is the number of orbitals centered at the atom l and differs 
depending on the given atomic species. Therefore, the matrix size n is roughly proportional to the number of atoms natom
in a material. Since orbitals are localized in real space, the matrix elements (A.2) decay rapidly as the distance between the 
localization centers of the orbitals increases. Thus, the matrices become sparse. Further details about the physical origin of 
the problem can be found in the literature [13].

Appendix B. Physical background of the k-th eigenvalue problem

The k-th eigenpair is associated with the HO state, which is in close relationship with several material properties, such 
as electronic transport and optical spectra [44, Chapter 2]. The target index k is a material-specific value that is uniquely 
determined by the number of electrons nelec in a material. In para-spin materials calculations, which represent a typical case, 
the index is defined as one-half the number of electrons, or k ≡ 	nelec/2
. The difference between the k-th and (k + 1)-th 
eigenvalues, or εk+1 −εk , is referred to as the energy gap, which is crucial for electronic properties because the value is zero 
in metallic materials and non-zero in semiconducting or insulating materials. Therefore, the k-th and (k + 1)-th eigenvalues 
should be rigorously distinguished.

One of our recent motivations to address the k-th eigenvalue problem is electronic transport calculations of organic 
device materials using a quantum wave (wave packet) dynamics method [13,30]. In this method, an exited electronic wave 
(of an excited electron or a hole) is simulated by real-time dynamics with an effective time-dependent Schrödinger-type 
equation, and the wave function of the HO state or states near the HO state is set as the initial state of the wave.

References

[1] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand. 45 (4) 
(1950) 255–282.

[2] A.V. Knyazev, Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput. 
23 (2) (2001) 517–541.

[3] T. Ericsson, A. Ruhe, The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, 
Math. Comput. 35 (152) (1980) 1251–1268.

[4] G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi–Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (2) (1996) 
401–425.

[5] T. Sakurai, H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Appl. Math. 159 (1) (2003) 
119–128.

[6] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B 79 (2009) 115112.
[7] R. Li, Y. Xi, E. Vecharynski, C. Yang, Y. Saad, A thick-restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems, SIAM J. Sci. 

Comput. 38 (4) (2016) A2512–A2534.
[8] T. Hoshi, S. Yamamoto, T. Fujiwara, T. Sogabe, S.-L. Zhang, An order-N electronic structure theory with generalized eigenvalue equations and its appli-

cation to a ten-million-atom system, J. Phys. Condens. Matter 24 (16) (2012) 165502.
[9] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H.-J. Bungartz, H. Lederer, The ELPA library: scalable parallel eigenvalue 

solutions for electronic structure theory and computational science, J. Phys. Condens. Matter 26 (21) (2014) 213201.

http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6C616E637A6F7331393530697465726174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6C616E637A6F7331393530697465726174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6B6E79617A657632303031746F77617264s1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6B6E79617A657632303031746F77617264s1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6572696373736F6E31393830737065637472616Cs1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6572696373736F6E31393830737065637472616Cs1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib736C65696A70656E313939366A61636F6269s1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib736C65696A70656E313939366A61636F6269s1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib73616B757261693230303370726F6A656374696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib73616B757261693230303370726F6A656374696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib50687973526576422E37392E313135313132s1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6C6932303136746869636Bs1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6C6932303136746869636Bs1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib686F736869323031326F72646572s1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib686F736869323031326F72646572s1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6D6172656B32303134656C7061s1
http://refhub.elsevier.com/S0021-9991(18)30379-6/bib6D6172656B32303134656C7061s1


632 D. Lee et al. / Journal of Computational Physics 371 (2018) 618–632
[10] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley, 
ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1997.

[11] T. Imamura, S. Yamada, M. Machida, Development of a high-performance eigensolver on a peta-scale next-generation supercomputer system, Prog. 
Nucl. Sci. Technol. 2 (2011) 643–650.

[12] H. Imachi, T. Hoshi, Hybrid numerical solvers for massively parallel eigenvalue computations and their benchmark with electronic structure calculations, 
J. Inf. Process. 24 (1) (2016) 164–172.

[13] T. Hoshi, H. Imachi, K. Kumahata, M. Terai, K. Miyamoto, K. Minami, F. Shoji, Extremely scalable algorithm for 108-atom quantum material simulation 
on the full system of the K computer, in: Proceedings of the 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, 2016, 
pp. 33–40.

[14] D.R. Bowler, T. Miyazaki, O (N) methods in electronic structure calculations, Rep. Prog. Phys. 75 (3) (2012) 036503.
[15] D. Lee, T. Miyata, T. Sogabe, T. Hoshi, S.-L. Zhang, An interior eigenvalue problem from electronic structure calculations, Jpn. J. Ind. Appl. Math. 30 (3) 

(2013) 625–633.
[16] W. Givens, Numerical Computation of the Characteristic Values of a Real Symmetric Matrix, Tech. Rep. ORNL-1574, Oak Ridge National Laboratory, 

1954.
[17] J.R. Bunch, L. Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Math. Comput. 31 (137) (1977) 163–179.
[18] G. Peters, J.H. Wilkinson, Eigenvalues of Ax = λBx with band symmetric A and B , Comput. J. 12 (4) (1969) 398–404.
[19] B.N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Applied Mathematics, Philadelphia, 1998; First published by Prentice-Hall, 

Englewood Cliffs, 1980.
[20] G. Meurant, The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations, Society for Industrial and Applied Mathe-

matics, Philadelphia, 2006.
[21] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Society for 

Industrial and Applied Mathematics, Philadelphia, 2000.
[22] G.W. Stewart, Gershgorin theory for the generalized eigenvalue problem Ax = λBx, Math. Comput. 29 (130) (1975) 600–606.
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