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Highlights

• We consider a multidimensional time-dependent space-fractional advection-diffusion equation to model solute transport in heterogeneous
porous media and related applications. The equation involves all directions in its fractional derivative rather than only x and y directions.

• We derive the fast control-volume schemes combined with upwind or Eulerian-Lagrangian methods to solve the target FPDE. These
schemes naturally have second order accuracy in space without referring to any artificial shift in the numerical discretization and
conserve mass locally that is crucial in these applications.

• A fast Krylov subspace iterative solver for both the upwind and Eulerian-Lagrangian control volume schemes is proposed. Numerical
experiments show the utility of the method.
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Abstract

We develop control volume methods for two-dimensional time-dependent
advection-dominated directional space-fractional advection-dispersion equa-
tions with the directional space-fractional derivative weighted in all the di-
rections by a probability measure in the unit circle, which are used to model
the anisotropic superdiffusive transport of solutes in groundwater moving
through subsurface heterogeneous porous media.

We develop a fast upwind control volume method for the governing equa-
tion to eliminate the spurious numerical oscillations that often occur in
space-centered numerical discretizations of advection term, which are rela-
tively straightforward to implement. We also develop a Eulerian-Lagrangian
control-volume method for the governing equation, which symmetrizes the
governing equation by combining the time-derivative term and the advection
term into a material derivative term along characteristic curves. Both meth-
ods are locally mass-conservative, which are essential in these applications.

Due to the nonlocal nature of the directional space-fractional differen-
tial operators, corresponding numerical discretizations usually generate full
stiffness matrices. Conventional direct solvers tend to require O(N2) mem-
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ory requirement and have O(N3) computational complexity per time step,
where N is the number of spatial unknowns, which is computationally signif-
icantly more expensive than the numerical approximations of integer-order
advection-diffusion equations. Based on the analysis of the structure of
stiffness matrix, we propose a fast Krylov subspace iterative solver to ac-
celerate the numerical approximations of both the upwind and Eulerian-
Lagrangian control volume methods, which reduce computational complexity
from O(N3) by a direct solver to O(N logN) per Krylov subspace iteration
per time step and a memory requirement from O(N2) to O(N). Numerical
results are presented to show the utility of the methods.

Keywords: directional space-fractional advection-dispersion equation,
superdiffusive solute transport, Krylov subspace iterative solver, control
volume method
2010 MSC: 35R11, 60J60, 65F10, 65F30, 65M06, 65T50

1. Introduction

Traditional second-order time-dependent advection-dispersion equations
(ADEs) were derived under the assumptions that underlying particle move-
ments have (i) a mean free path and (ii) a mean waiting time [3, 19]. However,
these assumptions hold only for diffusive transport in homogeneous porous
media, when solute plumes are observed to have Gaussian type symmetric
and exponentially decaying tails [2]. However, field tests showed that solute
transport in heterogeneous porous media often exhibits highly skewed and
power-law decaying tails, and so cannot be described accurately by integer-
order ADEs [3]. Fractional advection-dispersion (FADEs) were constructed
so that their solutions are characterized by highly skewed and power-law
decaying tails, and so can accurately model the anisotropic superdiffusive
transport of solutes in heterogeneous porous media [3, 18, 19, 33].

Nevertheless, numerical discretizations of space-fractional partial differ-
ential equations generate dense or full stiffness matrices [7, 8, 15, 16, 17,
18, 20], for which direct solvers require O(N2) memory and O(N3) com-
putational complexity per time step that represents significantly increased
memory requirement and computational complexity than numerical meth-
ods for integer-order ADEs do, especially in multiple space dimensions. It
was proved in [29] that the Meerschaert-Tadjeran finite difference method
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for one-dimensional space-fractional diffusion equation has a Toeplitz like
structure, based on which a Krylov subspace iterative method was developed
that reduces significantly the memory requirement from O(N2) to O(N) and
computational complexity from O(N3) to O(N logN) per Krylov subspace
iteration per time step. It was then proved in [23, 25] that the stiffness
matrices of finite difference methods for multi-dimensional space-fractional
diffusion equations in coordinate forms have a block-Toeplitz-circulant-block
like structure utilizing the tensor-product structure of the stiffness matrices,
and corresponding fast solvers were developed. It was proved subsequently
in [6] that the stiffness matrix of a finite element method for two-dimensional
directional space-fractional diffusion equations in which the directional space-
fractional derivative is weighted in all the directions by a probability measure
in the unit circle, in which the stiffness matrix of a finite element method was
proved to have a block-Toeplitz-Toeplitz-block (BTTB) structure by utiliz-
ing the tranlation-invariance property of the numerical scheme. Related fast
solution methods also include [13], [31], and [32].

In this paper we consider the time-dependent directional space-fractional
advection-dispersion equations in two space dimensions [8, 18, 33]

∂u

∂t
+∇ · (�vu)−

∫ 2π

0

(
Dθ K Iβθ Dθu

)
P (dθ) = f, (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.

(1)

Here Ω is a rectangular domain in R
2 that is assumed to be the unit square

(0, 1)2 for simplicity of notations, �v = (vx, vy)
T is the fluid velocity, ∇ =

( ∂
∂x
, ∂
∂y
)T , f is the source and sink term, K is a positive diffusivity coefficient,

P (dθ) is a probability measure on [0, 2π), Dθ is the differential operator in

the direction of �dθ := (cos θ, sin θ)T

Dθu := �dθ · ∇u =
∂u

∂x
cos θ +

∂u

∂y
sin θ, (2)

Iβθ is the βth order fractional integral operator in the direction of �dθ [8]

Iβθ u(x, y, t) :=

∫ γb(θ;x,y)

0

γβ−1

Γ(β)
u(x− γ cos θ, y − γ sin θ, t)dγ, 0 < β < 1 (3)

where γb(θ; x, y) refers to the instant that the ray emanating from (x, y) in

the direction of −�dθ encounters the boundary ∂Ω.
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We may close problem (1) by the homogeneous Dirichlet boundary condi-
tion or an Ω-periodical boundary condition. These types of boundary condi-
tions often arise in such applications as miscible displacement or solute trans-
port in subsurface porous medium fluid flow problems [1, 2, 9, 11, 26, 27, 28].

Problem (1) is used to model such applications as the anisotropic superdif-
fusive transport of solutes in groundwater moving through subsurface het-
erogeneous porous media, in which the probability measure P (dθ) describes
the preferential flow directions in the porous media. In these applications lo-
cal mass conservation is of fundamental importance, as even very little mass
error of toxic solutes may have severe consequences. Therefore, an accurate
and mass conservative approximation to problem (1) is desired [2, 9], which
motivates the development of control volume methods for problem (1).

Due to the hyperbolic nature of problem (1), the traditional space-centered
discretizations to the advection term tend to generate numerical solutions
with spurious oscillations unless the mesh Peclet number is impractically
small [11, 14, 21, 24, 26]. We develop an upwind control volume method in
which the arithmetic mean of the advective fluxes at both cell interfaces in
each coordinate direction is replaced by a one-sided cell interface flux depend-
ing on the sign of the component of the velocity field at the cell. The method
generates stable numerical approximations to problem (1) independent of the
size of the mesh Peclet number, and is straightforward to implement.

We also develop a Eulerian-Lagranrian control volume method, in which
we combine the time derivative term and the advection term to formulate
a material derivative and discretize this term in the Lagrangian coordinate
but discretize the directional space-fractional dispersion term on the fixed
spatial mesh. This method symmetrizes the FADE in (1) and stabilizes
its numerical approximations [1, 5, 10, 14, 22, 24, 26, 27, 28]. It generates
accurate numerical solutions and significantly reduces the numerical diffusion
and grid-orientation effect present in many Eulerian methods even if large
time steps and coarse spatial meshes are used, and is very competitive in
terms of accuracy and efficiency [30]. Consequently, the method significantly
reduces the size of the discrete linear algebraic systems and the number of
time steps.

Finally, because of the nonlocal nature of the directional space-fractional
differential operators, corresponding numerical discretizations generate full
stiffness matrices. Conventional direct solvers require O(N2) memory re-
quirement and have O(N3) computational complexity per time step, which is
computationally significantly more expensive than the numerical discretiza-
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tions of integer-order advection-diffusion equations. Based on the analysis
of the structure of stiffness matrix, we propose a fast Krylov subspace iter-
ative solver to accelerate the numerical simulations of both the upwind and
Eulerian-Lagrangian control volume methods, which reduces computational
complexity from O(N3) by a direct solver to O(N logN) per Krylov subspace
iteration per time step and a memory requirement from O(N2) to O(N).

The rest of the present paper is organized as follows. In Sections 2 and
3 we derive an upwind control volume scheme and a Eulerian-Lagrangian
control volume scheme, respectively. In Section 5 we explore the translation
invariance properties of fractional directional derivatives and study the struc-
ture of the stiffness matrices. In Section 6 we develop a fast Krylov subspace
iterative solver for both the upwind and Eulerian-Lagrangian control volume
schemes, based on the structure of the stiffness matrix. Several numerical
experiments are carried out to investigate the performance of the proposed
methods in Section 7. Some concluding remarks are given in the last section.

2. An upwind control-volume scheme

Let Nx, Ny, and Nt be positive integers. We define a uniform temporal
partition on [0, T ] by tk := kΔt for k = 0, 1, . . . , Nt with Δt := T/Nt, and a
uniform spatial partition xi := ihx and yj := jhy for i = 0, 1, · · · , Nx+1 and
j = 0, 1, · · · , Ny + 1 on Ω with hx := 1/(Nx + 1) and hy := 1/(Ny + 1). Let
xi− 1

2
:= (xi−1 + xi)/2 and yj− 1

2
:= (yj−1 + yj)/2 for i = 1, 2, · · · , Nx + 1 and

j = 1, 2, · · · , Ny + 1, and

Ωi,j := (xi−1, xi+1)× (yj−1, yj+1), Ω̂i,j := (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
). (4)

We integrate the governing equation (1) on Ω̂i,j × [tk−1, tk] to obtain

∫ tk

tk−1

∫
Ω̂i,j

[∂u
∂t

+∇ · (�vu)−
∫ 2π

0

(
Dθ K Iβθ Dθu

)
P (dθ)

]
dxdydt

=

∫ tk

tk−1

∫
Ω̂i,j

f(x, y, t)dxdydt.

(5)

We evaluate the first term on the left-hand side by

∫ tk

tk−1

∫
Ω̂i,j

∂u

∂t
dxdydt =

∫
Ω̂i,j

u(x, y, tk)dxdy −
∫
Ω̂i,j

u(x, y, tk−1)dxdy. (6)
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We use a backward Euler quadrature and the divergence theorem to evaluate
the second term on the left-hand side of (5)

∫ tk

tk−1

∫
Ω̂i,j

∇ · (�vu)dxdydt = Δt

∫
Ω̂i,j

∇ · (�vu(x, y, tk)dxdy +O(Δt2)

= Δt

∮
∂Ω̂i,j

�v · �nu(x, y, tk)ds+O(Δt2).

(7)

Here, �n denotes the unit vector normal to ∂Ω̂i,j. We use (2) to rewrite the
directional fractional derivative in a conservative form for each fixed θ

Dθ K Iβθ Dθu = ∇ · (K Iβθ Dθu �dθ), (8)

and evaluate the dispersion term in a similar manner to (7) to arrive at

−
∫ tk

tk−1

∫
Ω̂i,j

[ ∫ 2π

0

(
Dθ K Iβθ Dθu

)
P (dθ)

]
dxdydt

= −Δt

∫
Ω̂i,j

[ ∫ 2π

0

(
Dθ K Iβθ Dθu(x, y, tk)

)
P (dθ)

]
dxdy +O(Δt2)

= −Δt

∫ 2π

0

[ ∫
Ω̂i,j

(
Dθ K Iβθ Dθu(x, y, tk)

)
dxdy

]
P (dθ) +O(Δt2)

= −Δt

∫ 2π

0

[ ∮
∂Ω̂i,j

K Iβθ Dθu(x, y, tk)�dθ · �nds
]
P (dθ) +O(Δt2).

(9)

We approximate the source and sink term as follows

∫ tk

tk−1

∫
Ω̂i,j

f(x, y, t)dxdydt = Δt

∫
Ω̂i,j

f(x, y, tk)dxdy +O(Δt2). (10)

We substitute equations (6), (7), (9), and (10) into (5) and drop the local
truncation error terms to obtain a control volume scheme∫

Ω̂i,j

u(x, y, tk)dxdy +Δt

∮
∂Ω̂i,j

�v · �nu(x, y, tk)ds

−Δt

∫ 2π

0

[ ∮
∂Ω̂i,j

K Iβθ Dθu(x, y, tk)�dθ · �nds
]
P (dθ)

=

∫
Ω̂i,j

u(x, y, tk−1)dxdy +Δt

∫
Ω̂i,j

f(x, y, tk)dxdy.

(11)
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Let ψ(ξ) := 1−|ξ| for ξ ∈ [−1, 1] and 0 elsewhere. Let {φi,j}1≤i≤Nx,1≤j≤Ny

be the nodal basis functions defined by

φi,j(x, y) := ψ

(
x− xi

hx

)
ψ

(
y − yj
hy

)
, 1 ≤ i ≤ Nx, 2 ≤ j ≤ Ny. (12)

Then at each time step tk, the finite volume approximation uh(x, y, tk) of
u(x, y, tk) can be expressed as

uh(x, y, tk) =

Ny∑
j′=1

Nx∑
i′=1

uk
i′,j′φi′,j′(x, y), (x, y) ∈ Ω. (13)

Let uk and f k be the N -dimensional vectors with N := NxNy

uk :=
[
uk
1,1, . . . , u

k
Nx,1

, uk
1,2, . . . , u

k
Nx,2

, . . . , uk
1,Ny

, . . . , uk
Nx,Ny

]T
,

f k :=
[
fk
1,1, . . . , f

k
Nx,1

, fk
1,2, . . . , f

k
Nx,2

, . . . , fk
1,Ny

, . . . , fk
Nx,Ny

]T
.

(14)

We shall use the global indices m and n, which are related to the two-
dimensional nodal indices (i, j) and (i′, j′) in Ω respectively by

m = (j − 1)Nx + i, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

n = (j′ − 1)Nx + i′, 1 ≤ i′ ≤ Nx, 1 ≤ j′ ≤ Ny.
(15)

Then f km are given as

f km := fk
i,j =

∫
Ω̂i,j

f(x, y, tk)dxdy. (16)

TheN -by-N mass matrixM =
[
Mm,n

]N
m,n=1

and stiffness matrixA =
[
Am,n

]N
m,n=1

are defined by

Mm,n :=

∫
Ω̂i,j

φi′,j′(x, y)dxdy,

Am,n := −
∫ 2π

0

[ ∮
∂Ω̂i,j

K D−β
θ Dθφi′,j′ �dθ · �nds

]
P (dθ),

(17)

A key issue here is how to evaluate the advective flux
∮
∂Ω̂i,j

�v·�nu(x, y, tk)ds
in the control volume scheme (11). A straightforward evaluation as above
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will lead to a spatially symmetric discretization of the advective flux that
involves the advective flux in all the four sides of the cell boundary ∂Ω̂i,j. It
is very known that the space-centered approximation to the advective term
leads to nonphysical numerical oscillations [1, 10, 11, 14, 21, 24]. In contrast,
upstream weighting techniques were shown to generate stable numerical ap-
proximations to advection-dominated transport equations independent of the
size of mesh Peclet number [11, 21]. Hence, we adopt an upwind approxima-
tion to the advective flux flux

∮
∂Ω̂i,j

�v ·�nu(x, y, tk)ds, in which the approxima-

tion to the advective flux is biased in the upstream direction of the velocity
field. More precisely, let Bk denote the N -by-N matrix that results from the
advection term. We approximate the advective flux by the following
∮
∂Ω̂i,j

�v · �nu(x, y, tk)ds = (Bk)j,ji,i u
k
i,j + (Bk)j,ji,i−1u

k
i−1,j + (Bk)j,ji,i+1u

k
i+1,j

+(Bk)j,j−1
i,i uk

i,j−1 + (Bk)j,j+1
i,i uk

i,j+1,
(18)

where
(Bk)j,ji,i = |vx|Δy + |vy|Δx,

(Bk)j,ji,i−1 = −v+x Δy, (Bk)j,ji,i+1 = v−x Δy,

(Bk)j,j−1
i,i = −v+y Δx, (Bk)j,j+1

i,i = v−y Δx

(19)

with

v+x = max{vx, 0}, v−x = min{vx, 0}, v+y = max{vy, 0}, v−y = min{vy, 0}. (20)

We take the discretization in the x direction as an example. When the
vx > 0, the advective flux from the x direction is evaluated by vx(u

k
i,j −

uk
i−1,j)Δy. Otherwise, it is evaluated by vx(u

k
i+1,j − uk

i,j)Δy. Then we use

(15) to reformulate (Bk)j,j
′

i,i′ into its global Bk
m,n. It follows from (18)-(20)

that each row of Bk has at most three nonzero entries. Hence, Bk is a (often
strongly) nonsymmetric sparse matrix.

We substitute uh(x, y, tk) for u(x, y, tk) in (11) to obtain an upwind control-
volume scheme in a matrix form

(
M+ΔtA+ΔtBk

)
uk = Muk−1 +Δtf k. (21)

The upwind control volume scheme (11) is defined on a fixed mesh and is
straightforward to implement. Furthermore, it is well known that an upwind
scheme provides a stable numerical approximation to canonical second-order
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advection-dispersion equations. However, the presence of the matrix Bk in
(21) often introduces strong nonsymmetry in the discrete algebraic system,
which often reduces efficiency of an iterative solver.

A major difference of the scheme (21) from its second-order analogue is
that the stiffness matrix A is a full matrix. Consequently, it requires O(N 2)
memory. A direct solver would require O(N3) computations per time step
while a Krylov subspace iterative solver would require O(N2) computations
per iteration.

3. A Eulerian-Lagrangian control volume scheme

Instead of using a Eulerian space-time control volume Ω̂i,j × [tk−1, tk] as
in the previous section, we define a Eulerian-Lagrangian space-time prism as
Rk

i,j by extending the spatial control volume Ω̂i,j backward in time from tk
to tk−1 along the characteristics [1, 11, 24, 26]

dx

dt
= vx(x, y, t),

dy

dt
= vy(x, y, t). (22)

We then integrate the governing equation (1) on the Eulerian-Lagrangian
space-time prism Rk

i,j to get

∫
Rk

i,j

[∂u
∂t

+∇ · (�vu)−
∫ 2π

0

(
Dθ K Iβθ Dθu

)
P (dθ)

]
dxdydt

=

∫
Rk

i,j

f(x, y, t)dxdydt.
(23)

Applying the divergence theorem to the first two terms on the left-hand side,
we obtain ∫

Rk
i,j

[∂u
∂t

+∇ · (�vu)
]
dxdydt

=

∫
Ω̂i,j

u(x, y, tk)dxdy −
∫
Ω̂k−1,∗

i,j

u(x, y, tk−1)dxdy

+

∫
∂Rk

i,j

u[�v, 1]T · �nRk
i,j
dS.

(24)

Here ∂Rk
i,j refers to the lateral boundary of the prism Rk

i,j, Ω̂k−1,∗
i,j is the

backtracked image of Ω̂i,j at time step tk−1 along the characteristics defined
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by (22). Recall that a directional vector of the characteristics defined by (22)
is [�v, 1]T . That is, [�v, 1]T is a tangential vector of the lateral boundary ∂Rk

i,j.
Hence, the last term on the right-hand side vanishes.

We utilize the Lagrangian nature of problem (1) to use the backward Eu-
ler quadrature along the characteristics to approximate the space-fractional
dispersion term. We then evaluate the dispersion term at the time step tk as
in (9) to obtain

−
∫
Rk

i,j

[ ∫ 2π

0

(
Dθ K Iβθ Dθu

)
P (dθ)

]
dxdydt

= −Δt

∫
Ω̂i,j

[ ∫ 2π

0

(
Dθ K Iβθ Dθu(x, y, tk)

)
P (dθ)

]
dxdy +O(Δt2)

= −Δt

∫ 2π

0

[ ∮
∂Ω̂i,j

K Iβθ Dθu(x, y, tk)�dθ · �nds
]
P (dθ) +O(Δt2).

(25)
Note that in the current context, the coefficient in the local truncation error
term O(Δt2) involves the derivative of the unknown solution along the char-
acteristics, instead of that in the time direction as in (9). Hence, it tends
to introduce much smaller approximation error, which is an advantage of a
Eulerian-Lagrangian formulation.

Substituting (24)–(25) and (10) into (23) and dropping the local trunca-
tion errors, we obtain a Eulerian-Lagrangian control-volume formulation

∫
Ω̂i,j

u(x, y, tk)dxdy −Δt

∫ 2π

0

[ ∮
∂Ω̂i,j

K Iβθ Dθu �dθ · �nds
]
P (dθ)

=

∫
Ω̂k−1,∗

i,j

u(x, y, tk−1)dxdy +Δt

∫
Ω̂i,j

f(x, y, tk)dxdy.
(26)

The Eulerian-Lagrangian formulation (26) combines the advection and
accumulation terms in the governing fractional advection-dispersion equa-
tion (1) to carry out the temporal discretization in a Lagrangian coordinate.
It naturally eliminates the presence of the advection term in the coefficient
matrix, and so significantly reduces the nonsymmetry of the stiffness matrix
for strongly advection-dominated problems that often present the most dif-
ficulties in the numerical simulation of advection-dispersion equations. The
Eulerian-Lagrangian formulation (26) discretizes the space-fractional disper-
sion term on a fixed mesh. In fact, only the first term on the right-hand side
is defined on the backtracked image Ω̂k−1,∗

i,j of the control volume Ω̂i,j. All the
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other terms in (26) are defined on the fixed mesh as in the upwind control
volume formulation (11). Let

uk−1,∗ :=
[
uk−1,∗
1,1 , . . . , uk−1,∗

Nx,1
, uk−1,∗

1,2 , . . . , uk−1,∗
Nx,2

, . . . , uk−1,∗
1,Ny

, . . . , uk−1,∗
Nx,Ny

]T
,

uk−1,∗
m := uk−1,∗

i,j =

∫
Ω̂k−1,∗

i,j

uh(x, y, tk−1)dxdy,
(27)

where m and i, j are related by (15). Then the Eulerian-Lagranian control-
volume scheme can be formulated in the following matrix form(

M+ΔtA
)
uk = uk−1,∗ +Δtf k. (28)

In the Eulerian-Lagrangian control-volume scheme (28), the mass matrix
M is a well-conditioned, symmetric and positive-definite 9-banded sparse ma-
trix. In fact, the only difference of the Eulerian-Lagrangian control-volume
scheme (28) from its well-studied integer-order analogue is the presence of the
space-fractional dispersion term on the fixed mesh. The Eulerian-Lagrangian
control-volume scheme (28) naturally eliminates the matrix due to advection
term and so greatly symmetrizes the discrete algebraic system. The price
is that it has to evaluate the numerical solution on a deformed mesh at the
previous time step tk−1.

4. Structure of the stiffness matrix

We observe from the upwind and Eulerian-Lagrangian control volume
schemes (21) and (28) that the major computational issue is an effificient
storage of A and a fast matrix-vector multiplication by A. We will focus on
these issues in the rest of this paper. We begin with the evaluation of the
directional derivative of the trial function for any fixed direction θ ∈ [0, 2π)

Dθφi′,j′(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos θ
sgn(x− xi′)

hx

(∣∣∣y − yj′

hy

∣∣∣− 1
)

+sin θ
sgn(y − yj′)

hy

(∣∣∣x− xi′

hx

∣∣∣− 1
)
, (x, y) ∈ Ωi′,j′ ,

0, (x, y) /∈ Ωi′,j′ .

(29)

Subsequently, we use (3) to evaluate the fractional directional derivative. We
note that

Iβθ Dθφi′,j′(x, y) =

∫ γ(θ)

γ(θ)

sβ−1

Γ(β)
Dθφi′,j′(x− γ cos θ, x− γ sin θ)dγ, (30)
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where [γ(θ), γ(θ)] represents the maximal interval such that (x− γ cos θ, y−
γ sin θ) ∈ Ωi′,j′ for all γ ∈ [γ(θ), γ(θ)]. Hence, the evaluation of fractional

directional derivative Iβθ Dθφi′,j′(x, y) relies on the determination of γ(θ) and
γ(θ). To do so, we partition the domain Ω into nine subdomains that consist
of the current Ωi′,j′ and its eight neighbors as shown in Figure 1(a). We
then subdivide the four corner regions into two subregions a and b by the
corresponding diagonal lines. We show that in all the cases the γ(θ) and
γ(θ) can be well determined, no matter which subdomain the point (x, y)
falls into.

Ω
i′,j′

I II

III−a

III−bIV
V−a

V−b

VI

VII−a

VII−b VIII
IX−a

IX−b

(a) Partition by means of Ωi′,j′

θ
1

θ
2

θ
3

θ
4

(x,y)

(b) (x, y) ∈ III-a

Figure 1: Illustration of partition and a representative case for determining γ(θ), γ(θ)

We consider a representative case in Figure 1(b) that the point (x, y)
falls into the upper-right corner subdomain and below the diagonal (Region
III-a), and all other scenarios can be determined similarly. We connect the
point (x, y) to the four vertices of Ωi′,j′ and set the corresponding directional
angles

θ1 := arctan
y − yj′+1

x− xi′−1

, θ2 := arctan
y − yj′+1

x− xi′+1

,

θ3 := arctan
y − yj′−1

x− xi′−1

, θ4 = arctan
y − yj′−1

x− xi′+1

,

12



as shown in Figure 1(b). We then set

γ(θ) := 0, γ(θ) := 0, if 0 ≤ θ < θ1 or θ4 ≤ θ < 2π,

γ(θ) :=
y − yj′+1

sin θ
, γ(θ) :=

x− xi′−1

cos θ
, if θ1 ≤ θ < θ2,

γ(θ) :=
x− xi′+1

cos θ
, γ(θ) :=

x− xi′−1

cos θ
, if θ2 ≤ θ < θ3,

γ(θ) :=
x− xi′+1

cos θ
, γ(θ) :=

y − yj′−1

sin θ
, if θ3 ≤ θ < θ4.

We next study the structure of the stiffness matrix A.

Theorem 1. The stiffness matrix A is a BTTB matrix.

Proof. We express the stiffness matrix A as a Ny-by-Ny block matrix

A =

⎛
⎜⎜⎜⎝

A1,1 A1,2 . . . A1,Ny

A2,1 A2,2 . . . A2,Ny

...
. . . . . .

...
ANy ,1 ANy ,2 . . . ANy ,Ny

⎞
⎟⎟⎟⎠ , (31)

with each entry Aj,j′ being an Nx-by-Nx matrix block of the form

Aj,j′ =

⎛
⎜⎜⎜⎝

bj,j
′

1,1 bj,j
′

1,2 . . . bj,j
′

1,Nx

bj,j
′

2,1 bj,j
′

2,2 . . . bj,j
′

2,Nx

...
. . . . . .

...

bj,j
′

Nx,1
bj,j

′
Nx,2

. . . bj,j
′

Nx,Nx

⎞
⎟⎟⎟⎠ . (32)

Let the row index m and the column index n of the entry Am,n in the
stiffness matrix A be related to (i, j) and (i′, j′) by (15). Here the index
j corresponds to the row number of the block matrices in (31) while the
index i refers to the row number in the matrix blocks in the jth row in (31).
Similarly, the index j ′ gives the column number of the block matrices in (31)
while the index i′ indicates the column number in the block matrices in the
j′th column in (31). Hence,

Am,n = (Aj,j′)i,i′ = bj,j
′

i,i′ , 1 ≤ i, i′ ≤ Nx, 1 ≤ j, j′ ≤ Ny. (33)

To prove A is block-Toeplitz, we need to prove that for j′1 − j1 = j′2 − j2

Aj1,j′1 = Aj2,j′2 , 1 ≤ j1, j
′
1, j2, j

′
2 ≤ Ny. (34)

13



Namely, the following entrywise equalities hold

b
j1,j′1
i,i′ = b

j2,j′2
i,i′ , 1 ≤ i, i′ ≤ Nx, 1 ≤ j1, j

′
1, j2, j

′
2 ≤ Ny. (35)

Similarly, to prove that each matrix block Aj,j′ in (31) is Toeplitz, we need
to prove that for i′1 − i1 = i′2 − i2

bj,j
′

i1,i′1
= bj,j

′
i2,i′2

, 1 ≤ i1, i
′
1, i2, i

′
2 ≤ Nx, 1 ≤ j, j′ ≤ Ny. (36)

�dθ

�n

�dθ

�n

Ω̂i1,j1

Ω̂i2,j2

Ωi′1,j′1

Ωi′2,j′2

(ξ , η)

(x, y)
(ξ ′, η′)

(x′, y ′)

s1

s2

s1

s2

Figure 2: Illustration of the translation invariance

Let the indices (i1, j1), (i
′
1, j

′
1), (i2, j2), and (i′2, j

′
2) be related by

i′1 − i1 = i′2 − i2, j′1 − j1 = j′2 − j2, (37)

as in Figure 2. We prove that the following relation holds for any θ ∈ [0, 2π)∮
∂Ω̂i1,j1

K Iβθ Dθφi′1,j
′
1

�dθ · �nds =
∮
∂Ω̂i2,j2

K Iβθ Dθφi′2,j
′
2

�dθ · �nds. (38)

For any point (x, y) ∈ ∂Ω̂i2,j2 , we have either |x− xi2 | = hx/2 or |y − yj2 | =
hy/2. Hence, the point (ξ, η), defined by

ξ := xi1 + (x− xi2), η := yj1 + (y − yj2), (39)

satisfies either |ξ−xi1 | = hx/2 or |η−yj1| = hy/2. In other words, (ξ, η) falls

into ∂Ω̂i1,j1 . Furthermore, �n(x, y) = �n(ξ, η).

14



Let γ
1
(θ) and γ1(θ), with 0 ≤ γ

1
(θ) ≤ γ1(θ), be the values of the parame-

ter γ at which the ray extending from (ξ, η) in the direction of −�dθ intersects
∂Ωi′1,j

′
1
, while γ

2
(θ) and γ2(θ), with 0 ≤ γ

2
(θ) ≤ γ2(θ), be the values at

which the ray extending from (x, y) in the same direction intersects ∂Ωi′2,j
′
2
.

Without loss of generality, we consider the representative case in Figure 1 to
show that γ

1
(θ) = γ

2
(θ), which we denote by γ(θ), and γ1(θ) = γ2(θ), which

we denote by γ(θ). As a matter of fact, we use (37) and (39) to get

γ
1
(θ) =

ξ − xi′1+1

cos θ
=

(ξ − xi1) + (xi1 − xi′1+1)

cos θ

=
(x− xi2) + (xi2 − xi′2+1)

cos θ
=

(x− xi′2+1)

cos θ
= γ

2
(θ).

The identity γ1(θ) = γ2(θ) can be shown in a similar way.
Next, for any (x, y) ∈ Ωi2,j2 , the ray x′ = x − γ cos θ, y′ = x − γ sin θ

extending from (x, y) falls into the region Ωi′2,j
′
2
for γ(θ) ≤ s ≤ γ(θ). Corre-

spondingly, the ray ξ′ = ξ− γ cos θ, η′ = η− γ sin θ falls into the region Ωi′1,j
′
1

for γ(θ) ≤ γ ≤ γ(θ), since

x′ − xi′2 = (x− xi2) + (xi2 − xi′2)− γ cos θ

= (ξ − xi1) + (xi1 − xi′1)− γ cos θ = ξ′ − xi′1 ,

y′ − yj′2 = (y − yj2) + (yj2 − yj′2)− γ sin θ

= (η − yj1) + (yj1 − yj′1)− γ sin θ = η′ − yj′1 .

It then follows from (29) that

Dθφi′2,j
′
2
(x′, y′) = cos θ

sgn(x′ − xi′2)

hx

(∣∣∣y′ − yj′2
hy

∣∣∣− 1

)

+sin θ
sgn(y′ − yj′2)

hy

(∣∣∣x′ − xi′2
hx

∣∣∣− 1

)

= cos θ
sgn(ξ′ − xi′1)

hx

(∣∣∣η′ − yj′1
hy

∣∣∣− 1

)

+sin θ
sgn(η′ − yj′1)

hy

(∣∣∣ξ′ − xi′1
hx

∣∣∣− 1

)
= Dθφi′1,j

′
1
(ξ′, η′).

15



Thus,

Iβθ Dθφi′2,j
′
2
(x, y) =

∫ γ(θ)

γ(θ)

γβ−1

Γ(β)
Dθφi′2,j

′
2
(x− γ cos θ, x− γ sin θ)dγ

=

∫ γ(θ)

γ(θ)

γβ−1

Γ(β)
Dθφi′2,j

′
2
(x′, y′)dγ =

∫ γ(θ)

γ(θ)

γβ−1

Γ(β)
Dθφi′1,j

′
1
(ξ′, η′)dγ

=

∫ γ(θ)

γ(θ)

γβ−1

Γ(β)
Dθφi′1,j

′
1
(ξ − γ cos θ, η − γ sin θ)dγ

= Iβθ Dθφi′1,j
′
1
(ξ, η).

We thus prove (38) and so the theorem.

5. Fast implementation of matrix-vector multiplication

The main result in this section is the following theorem.

Theorem 2. Both the upwind control volume scheme (21) and the Eulerian-
Lagrangian control volume scheme (28) require only O(N) memory. More-
over, both schemes can be carried out with a computational complexity of
O(N logN) per Krylov subspace iteration per time step.

Proof. Note that the mass matrixM and the upwind matrix Bk in the upwind
scheme (21) and the mass matrix M in the Eulerian-Lagrangian scheme (28)
are sparse matrices, hence they have O(N) memory requirement and com-
putational complexity per Krylov subspace iteration per time step. Hence,
we need only focus on the storage and computational complexity of A.

By Theorem 1, A is BTTB. Namely, in (31) Aj,j′ = Tj′−j for 1 ≤ j, j′ ≤ Ny

and each Tj is Toeplitz for 1−Ny ≤ j ≤ Ny − 1. Hence, the stiffness matrix
A can be stored in O(N) memory. Moreover, each Toeplitz matrix Tj can
be embedded into a 2Nx-by-2Nx circulant matrix Cj

Cj =

(
Tj T̃j

T̃j Tj

)

with T̃j determined from Tj [4]. Then the block-Toeplitz-circulant-block
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(BTCB) matrix C is defined by

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C0 C1 . . . CNy−2 CNy−1

C−1 C0 C1
. . . CNy−2

...
. . . . . . . . .

...

C2−Ny

. . . C−1 C0 C1

C1−Ny C2−Ny . . . C−1 C0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then C can be embedded into an 2Ny-by-2Ny block-circulant-circulant-block
(BCCB) matrix D as follows

D =

(
C C̃

C̃ C

)
(40)

with C̃j defined from Cj [4].
Let F2Ny⊗F2Nx be the two-dimensional discrete Fourier transform matrix.

Thus, for any vector v(4N) ∈ R
4N the matrix-vector multiplication (F2Ny ⊗

F2Nx)v
(4N) can be carried out in O(4N log(4N)) = O(N logN) operations

via the fast Fourier transform (FFT).
Let d be the first column vector of D and

d̂ = (F2Ny ⊗ F2Nx)d. (41)

It is known that D can be diagonalized by [4]

D =
(
F2Ny ⊗ F2Nx

)−1
diag(d̂)

(
F2Ny ⊗ F2Nx

)
. (42)

We now prove that the matrix-vector multiplication Av for any vector v =
[vT1 , v

T
2 , . . . , v

T
Ny
]T ∈ R

N can be carried out in O(N logN) operations. First,

we expand v into v(2N) = (vT1 , 0
T , vT2 , 0

T , . . . , vTNy
, 0T )T ∈ R

2N with each 0

being an Nx-dimensional zero vector. We further augment the vector v(2N)

by zero vector into a vector v(4N) ∈ R
4N .

We use the fast Fourier transform to evaluate w1 = (F2Ny ⊗F2Nx)v
(4N) in

O(N logN) operations. Then evaluate the Hadamard product w2 = d̂ ∗ w1

in O(N) operations, and w3 = (F2Ny ⊗ F2Nx)
−1w2 in O(N logN) operations,

respectively. Finally we remove the filled zero vectors to obtain a vector
w4 ∈ R

N that yields Av = w4.
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The application of the fast matrix-vector multiplication algorithm to any
Krylov subspace iterative solver naturally improves the computational effi-
ciency of the solver, which reduces the computational cost from O(N2) to
O(N logN) per iteration. This also reduces the round-off errors and enhances
the convergence behavior of the underlying Krylov sub-space method at the
same time.

6. Numerical Experiments

To examine the performance of the fast upwind control-volume scheme
(21) and the Eulerian-Lagrangian control-volume scheme (28) we run several
numerical experiments.

We simulate the sourceless (f = 0) transport of a cross which is originally
centered at (0.25,0.25) and is 45◦ rotated from the x direction, with

Case 1: a horizontal velocity field �v = (1, 0);
Case 2: a diagonal velocity field �v = (1, 1).

In each case we simulate the problem with different orders of β. The maxi-
mum simulating time T = 0.5. In all these simulations, the probability mea-
sure P (dθ) is assumed to be atomic with atoms {θi = iπ/8, i = 0, 1, . . . , 15},
i.e., the numbers of fractional derivative directions are taken 16. The advec-
tive and anomalously dispersive transport is then evaluated by the upwind
control volume scheme (21) and the Eulerian-Lagrangian control-volume
scheme (28). In the numerical experiments, both schemes are solved by Gaus-
sian elimination (Gauss), the conjugate gradient squared method (CGS), and
the fast conjugate gradient squared (FCGS) method. We investigate the effi-
ciencies of these methods by comparing their consumed CPU time in solving
the same equations. These methods were implemented using Intel Visual
Fortran 2013 on a ThinkPad T440p Laptop.

As an example to compare the efficiencies, we list the CPU time of the
three solvers for simulating Case 2 by the Eulerian-Lagrangian control-
volume scheme in Table 1. The fractional derivative order is 1.5, the isotropic
diffusivity coefficient K = 0.001. It is clearly that the FCGS solver has the
highest efficiency, as shown in [25].

Next we show the variations of the cross in the advective and anomalously
dispersive transport process. We simulate Case 1 and 2 by the upwind
control volume scheme and the Eulerian-Lagrangian control-volume scheme
and use the FCGS solver in the numerical computation. In each case, we
simulate the problem with different orders of β = 0.1, 0.5, 0.9, which represent
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Table 1: The consumed CPU time of the Gauss, CGS, and FCGS solvers in the numerical
experiment of Case 2

Gauss CGS FCGS
Nx=Ny=Nt CPU CPU CPU

23 0.00 s 0.00 s 0.00 s
24 0.72 s 0.03 s 0.05 s
25 221.97 s 0.76 s 0.36 s
26 N/A 18.55 s 2.89 s
27 N/A 487.13 s 20.36 s
28 N/A N/A 171.34 s

the different orders of fractional derivatives 1.9, 1.5, and 1.1, respectively.
The isotropic diffusivity coefficient K = 0.001. The contours of the cross
for the Eulerian-Lagrangian control-volume scheme are illustrated in Figure
3, and for the upwind control volume scheme are in Figure 4. We have the
following observations:

• Figure 3 shows that the cross has very different appearances for variant
values of β. It keeps its shape for β = 0.9 and diffuses gradually when
β decreases, and its contours become rounded rectangles for β = 0.1.
This is reasonable from the macro diffusion point of view: when β tends
to 0, the anomalously dispersive transport tends to the normal second-
order Fickian diffusion; when β is near 1, the anomalously dispersive
transport performs more like the first-order advection. Another obser-
vation is that the contours of Case 1 and 2 are mainly the same, which
shows the advantage of the Eulerian-Lagrangian control-volume scheme
for remaining the physical isotropic property in different velocity fields.

• Figure 4 also shows the different appearances of the cross for variant
values of β. Particularly, it cannot keep its shape for β = 0.9 due
to the extra diffusivity introduced by the upwind scheme. The more
serious problem is, it shows great directionality and anisotropy in the
transport process for different velocity fields. The diffusion along the
advective direction becomes dominative than that of the vertical direc-
tion. This non-physical anisotropic property shows the disadvantages
of the upwind scheme comparing with the Eulerian-Lagrangian scheme
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in dealing with the problem of advective and anomalously dispersive
transport.

Finally we present examples to show the effects of anisotropic diffusive co-
efficients. Since the Eulerian-Lagrangian scheme is superior than the upwind
scheme and the FCGS solver is the most efficient, we use them in simulating
the advective and anomalously dispersive transport of the cross for both Case
1 and Case 2. In the numerical experiments, we choose anisotropic diffusive
coefficients for different directions: For Case 1, let the diffusive coefficients
K1 = 0.001 for the directions θi, i = 6, . . . , 12, K2 = 0.01 for the other,
and vice versa. For Case 2, let the diffusive coefficients K1 = 0.001 for the
directions θi, i = 8, . . . , 14, K2 = 0.01 for the other, and vice versa. Such
kinds of choice can ensure the symmetry of the diffusive coefficients along
the advective direction in both Case 1 and 2. The fractional order β = 0.5.
The contours each cases are illustrated in Figure 5, which clearly represents
the effect of anisotropic diffusivity in the transport process.

7. Conclusion

In this work we consider a time-dependent space-fractional advection-
dispersion equation, which is used in modelling solute transport in ground-
water. The control volume methods are proposed to numerically solve the
two-dimensional problem, and the advection term is dealt with two dis-
tinct methods, the upwind and Eulerian-Lagrangian methods. The upwind
schemes are easy to implement and have been widely used in practice. While,
the Eulerian-Lagrangian schemes, as one of the characteristic methods, have
strength in solving time-dependent advection-dispersion equations, they can
provide sufficiently accurate solution with relatively fewer grids and can pre-
serve the rotational invariance. Based on the analysis of the structure of
stiffness matrix, a fast Krylov subspace iterative solver for both the upwind
and Eulerian-Lagrangian control volume schemes. Several numerical exper-
iments are provided to examine the performance of both methods. It has
been shown that the Eulerian-Lagrangian control-volume scheme has the ad-
vantages for remaining the physical isotropic property in different velocity
fields compared to the upwind scheme.
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(f) Case 2: β = 0.9

Figure 3: The contours of the cross at t = 0 and t = T solved by the Eulerian-Lagrangian
control-volume scheme for Case 1, 2 with different values of β
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(f) Case 2: β = 0.9

Figure 4: The contours of the cross at t = 0 and t = T solved by the upwind control-volume
scheme for Case 1, 2 with different values of β
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(a) Case 1: K1 = 0.001, K2 = 0.01
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(c) Case 1: K1 = 0.01, K2 = 0.001
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Figure 5: The contours of the cross at t = 0 and t = T solved by the Eulerian-Lagrangian
control-volume scheme for Case 1, 2 with anisotropic diffusivity
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