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We revisit the contour dynamics (CD) simulation method which is applicable to large 
deformation of distribution function in the Vlasov-Poisson plasma with the periodic 
boundary, where contours of distribution function are traced without using spatial grids. 
Novelty of this study lies in application of CD to the one-dimensional Vlasov-Poisson 
plasma with the periodic boundary condition. A major difficulty in application of the 
periodic boundary is how to deal with contours when they cross the boundaries. It has 
been overcome by virtue of a periodic Green’s function, which effectively introduces the 
periodic boundary condition without cutting nor reallocating the contours. The simulation 
results are confirmed by comparing with an analytical solution for the piece-wise constant 
distribution function in the linear regime and a linear analysis of the Landau damping. Also, 
particle trapping by Langmuir wave is successfully reproduced in the nonlinear regime.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Kinetic equations for plasma dynamics describe many interesting physical phenomena, but are generally difficult to be 
solved analytically or numerically. For example, a long term nonlinear evolution of the distribution function is not yet fully 
understood even in the one-dimensional Vlasov-Poisson system. Three types of simulation methods for kinetic plasma are 
widely known, such as Lagrangian, semi-Lagrangian, and Eulerian methods. The Particle-In-Cell (Lagrangian) method has a 
problem of numerical noise, while resolution of the Vlasov method (Eulerian) is limited by the grid size. Indeed, it is shown 
that, in the Vlasov simulation of the nonlinear Landau damping, fine structures of the distribution function continue to grow 
in phase space and are stretched exponentially in time, increasing numerical errors (Ref. [1]).

The water-bag model, which assumes a piece-wise constant distribution function ( f ), has been studied for the Vlasov-
Poisson plasma (Refs. [2–4]) since 1960s, and successfully resolved stretching and strong deformation of f in the phase 
space (x, v). In 1979, as a generalization of the water-bag model, contour dynamics (CD) method is introduced by Zabusky, 
Hughes, and Roberts (Ref. [5]) for solving inviscid and incompressible fluid motions in the two-dimensional configuration 
space (x, y). The CD method employs nodes on each contour of which motion is given by calculating line integrals of the 
Green’s function along contours. Because CD employs no spatial grid but nodes on contours (Lagrangian), the numerical 
resolution is not limited by spatial grids, which makes the CD method tough against large deformation of vorticity (Ref. [6]).

In this paper, we revisit the CD method and apply it to the Vlasov-Poisson plasma with the periodic boundary condition. 
Although the basic idea of the CD method stems from the water-bag model, there has been a few applications to the 
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Fig. 1. In contour dynamics, motion of the contours are determined by solving the Hamilton equations of the node points.

Vlasov-Poisson plasma. The CD method differs from the water-bag model as no spatial grid is used in the former in solving 
Poisson equation (Ref. [2]). Although a modern implementation of the water-bag method by Colombi & Touma (Ref. [7]) 
did not use spatial grids, the application is limited to a system with no spatial boundary. Novelty of the present paper 
lies in application of the CD method to the Vlasov-Poisson plasma with the periodic boundary, where we consider time 
development of contours of the distribution function without using spatial grids. The simulation results are confirmed by 
comparing with an analytical solution for the piece-wise constant distribution function in the linear regime and a linear 
analysis of the Landau damping. Furthermore, the particle trapping by Langmuir waves is successfully reproduced in the 
nonlinear regime. Here, it should be remarked that no contour surgery (Ref. [8]) nor node redistributions (Ref. [9]) is 
employed in numerical simulations in this paper, because we focus on validity of our implementation for the periodic 
boundary condition.

This article is organized as follows. After a brief introduction to the CD in Section 2, application to the Vlasov-Poisson 
system with the periodic boundary is described in Section 3. Validity of the CD method is confirmed by comparing the 
simulation results with the analytical solution for the piece-wise constant distribution function in Section 4. A bench mark 
test for the linear Landau damping is described in Section 5.1. Application to the nonlinear Landau damping is shown in 
Section 5.2. Finally, we summarize the results in Section 6.

2. Contour dynamics

Zabusky, Hughes, and Roberts have proposed contour dynamics algorithm for the Euler equation of fluid dynamics in 
two dimensions (Ref. [5]). The governing equations are

Dω

Dt
= ∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂ y
= 0, (1)

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂ y2
= −ω, (2)

u = ∂ψ

∂ y
, v = −∂ψ

∂x
,

ω = − ∂u

∂ y
+ ∂v

∂x
, (3)

where ψ is the stream function and ω means the vorticity. Time development of the vorticity is calculated by tracing 
motions of contours of the piece-wise constant vorticity distribution. The flow velocity is given by the line integrals of the 
Green’s function on the contours, such that

(u, v) =
(

∂ψ

∂ y
,−∂ψ

∂x

)
=

∑
m

(�ωm)

∮
Cm

G(x, y; ξ,η)dr′
m, (4)

where m is a label of contours, Cm is the contour labeled by m, and �ωm is a jump of vorticity when crossing the contour 
Cm inward. The two-dimensional Green’s function, G(x, y; ξ, η), is given as

G(x, y; ξ,η) = − 1

2π
log

√
(x − ξ)2 + (y − η)2. (5)

The contours are discretized by nodes with label n, and motion of the contours is determined by solving the Hamilton 
equations of the node points (Fig. 1). Each contour represents a constant vorticity line, and is advected by an incompressible 
flow as given in Eq. (1). The incompressibility also guarantees conservation of volumes surrounded by each contour.
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3. Application to Vlasov-Poisson system

3.1. Basic scheme

Here, we consider application of the CD method to the Vlasov-Poisson system with the periodic boundary. The normal-
ized Vlasov-Poisson equations are

∂ f

∂τ
+ v

∂ f

∂x
+ a

∂ f

∂v
= 0, (6)

a = ∂φ

∂x
, (7)

− ∇2φ = 1 −
∞∫

−∞
f (x, v)dv =: F (x), (8)

where f is the distribution function of electrons, while stationary background ions are assumed. The particle density is 
normalized so that 

∫ L/2
−L/2 dx 

∫ ∞
−∞ dv f (x.v) = L, where L denotes the system length. The periodic boundary conditions at 

x = ±L/2 are given by

lim
ε→−0

φ

(
L

2
+ ε

)
= lim

ε′→+0
φ

(
− L

2
+ ε′

)
, (9)

lim
ε→−0

φ′
(

L

2
+ ε

)
= lim

ε′→+0
φ′

(
− L

2
+ ε′

)
(quasi neutrality). (10)

The Liouville’s theorem and Eq. (6) guarantee the volume conservation and df
dτ = 0, which are required for contour dynamics 

method. In order to implement the CD, we employ the Green’s function, G , that satisfies

∇2G (x; ξ) = 1

L
− δ (x − ξ) , (11)

lim
ε→−0

G

(
L

2
+ ε

)
= lim

ε′→+0
G

(
− L

2
+ ε′

)
, (12)

lim
ε→−0

G ′
(

L

2
+ ε

)
= lim

ε′→+0
G ′

(
− L

2
+ ε′

)
. (13)

Solving Eqs. (11), (12), and (13) to obtain G (Ref. [10]), one finds

G (x; ξ) = 1

2L

(
|x − ξ | − L

2

)2

. (14)

Therefore,

φ(x) =
L
2∫

− L
2

G (x; ξ) F (ξ)dξ + const for x ∈
(

− L

2
,

L

2

)
. (15)

The acceleration of each particle at x is given by the CD representation,

a (x) =
Nm∑
m

� fm

∮
cm

G (x; ξ)dv, (16)

where Nm is the number of contours, Cm is a contour labeled by m and � fm is the jump of distribution function when 
crossing the contour Cm inward. We discretize the contours with nodes labeled counterclockwise by n and connect nodes 
with straight line segments. Then, Eq. (16) breaks down into

a (x) =
Nm∑
m

� fm

∑
n

vn+1 − vn

2

(
w2

n(x)

L
+ δ2

n

12L
− In(x)

)
, (17)

where
3
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Fig. 2. Conventional implementation of the periodic boundary. Contours which get out of simulation box are cut and reallocated (A, B, A′ and B ′ are defined 
on Eqs. (21) and (22)).

In(x) =
{|wn(x)| for |wn(x)| ≥ δn

2
w2

n(x)
δn

+ δn
4 for |wn(x)| < δn

2

with wn(x) := x − xn+1 + xn

2
and δn := |xn+1 − xn|. (18)

Although n is a function of the label of contours (m), we use the notation of n = n(m) for simplicity. Equation of motion of 
each node point labeled by i is given by

d2xi

dτ 2
= a (x = xi) =

Nm∑
m

� fm

∑
n

vn+1 − vn

2

(
w2

n(xi)

L
+ δ2

n

12L
− In(xi)

)
. (19)

For the time integration, we use the leap-frog scheme with the time step size �τ = 0.01 in the all simulations shown below.

3.2. Implementation of the periodic boundary

A difficulty of implementation arises in the CD method with the periodic boundary, when a node (xn, vn) moves across 
the boundaries and comes into the simulation box from the another side. Straightforwardly, we may cut the contour at the 
boundary and reallocate a node point (xn, vn) as

xn /∈ (−L/2, L/2) ⇒
{

xn 
→ xn − L/2 ; if L/2 < xn

xn 
→ xn + L/2 ; if xn < −L/2
(20)

and make interpolation of points 
(
x̃s, ṽ s

)
and 

(
x̃t , ṽt

)
on the boundary between (xn+1, vn+1) /∈ (−L

2 , L
2

)
and (xn, vn) ∈(−L

2 , L
2

)
,

(
x̃s, ṽ s

) =
⎧⎨
⎩

(
L
2 ,

vn+1−vn
xn+1−xn

( L
2 − xn+1

) + vn+1

)
; if L/2 ≤ xn+1 · · · A(−L

2 ,
vn+1−vn
xn+1−xn

(−L
2 − xn+1

) + vn+1

)
; if xn+1 ≤ −L/2 · · · B

(21)

(
x̃t, ṽt

) =
⎧⎨
⎩

(−L
2 ,

vn+1−vn
xn+1−xn

( L
2 − xn+1

) + vn+1

)
; if L/2 ≤ xn+1 · · · A′(

L
2 ,

vn+1−vn
xn+1−xn

(−L
2 − xn+1

) + vn+1

)
; if xn+1 ≤ −L/2 · · · B ′ (22)

for calculation of the line integrals (See Fig. 2). Here, we call this method the reallocation scheme. Since we must know 
the sequence of the nodes for the CD method, the reallocated nodes complicate the computational algorithm. Actually, we 
need to count how many times each node moved across the boundaries and to use the counts every time in calculation of 
vn+1−vn

2

(
w2

n
L + δ2

n
12L − In

)
. However, it increases numerical costs and makes the code implementation complicated.

In the following, we propose a novel scheme to implement the periodic boundary in CD, which is named a periodic 
Green’s function method. Because we consider the periodic problem; f (a) = f (a + L), φ(a) = φ(a + L), and φ′(a) = φ′(a + L). 
Thus, it may be possible to eliminate the boundaries at x = ± L

2 , while extending the simulation box to (−∞, ∞) and 
imposing the periodicity to the Green’s function, that is,
4
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Fig. 3. Implementation of the periodic boundary using G ′ = G(Mod(ξ − (x − L/2), L) + (x − L/2); x). The periodic boundary is effectively introduced without 
cutting nor reallocating the contours.

∀x ∈ (−∞,∞), a(x) =
Nm∑

m=1

� fm

∮
cm

G ′ (x; ξ)dv ′, (23)

with

G ′ (x; ξ) = G (x; Mod (ξ − (x − L/2) , L) + (x − L/2)) , (24)

where

Mod (a,b) = Min {c (≥ 0) |∃r ∈Z,a = br + c} . (25)

In this way, we can avoid cutting or reallocation of the contours, but equivalently the contours feel the periodicity of the 
system through G ′ instead of G (See Fig. 3). If ∀n, |xn − xn−1| < L

2 is satisfied, then (17) becomes

a(x) =
Nm∑
m

� fm

∑
n

vn+1 − vn

2

(
w ′2

n

L
+ δ2

n

12L
− I ′n

)
, (26)

where

w ′
n(x) := x + r (xn, x) L − xn+1 + xn

2
, (27)

r (xn, x) := xn − (
x − L

2

) − Mod
(
xn − (

x − L
2

)
, L

)
L

= � xn − (
x − L

2

)
L

�,
and

δn := |xn+1 − xn|, I ′n(x) =
{|w ′

n(x)| for |w ′
n(x)| ≥ δn

2
w ′2

n (x)
δn

+ δn
4 for |w ′

n(x)| < δ
2

. (28)

Here, the periodicity is introduced not in Cm , but in G ′ . Therefore we do not need to count how many times each node 
moves across the boundaries, which makes a faster and simpler implementation. Our new implementation with the periodic 
Green’s function G ′ accelerate the computation speed about 1.5 faster than that of the reallocation scheme. It owes to no 
cutting nor reallocation, which makes the code avoid many “if” branches.

4. Benchmark test for piece-wise constant distribution function

In order to check validity of our application, we consider the initial distribution function given by

f (x, v, τ = 0) =
Nm∑

m=−Nm

bmU (v − vm(x,0)) , (29)

U (x) =
{

1 0 < x

0 x ≤ 0
, (30)
5
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Fig. 4. Benchmark test1: Time evolution of a = ∂φ/∂x. Red points are simulation results and green line is predicted by Eq. (32). Nm = 2, b1 = b2 =
−1/6, �v = 1.0, k = 1.0 and α = 0.01 are given for initial distribution function in Eq. (29).

where bm = −b−m < 0 and vm(x, 0) = v0
m + v1

m(x). Also v0
m = m�v and v1

m(x) = αeikx with �v ∈ R+ and kL/2π ∈ N , 
where α � 1 so that |v1

m| � |v0
m|. This function Eq. (29) was also used to study the water-bag model (Ref. [11]). As shown 

in Appendix, the linear dispersion relation is derived as

D(ω) = 1 +
∑
m>0

2bm v0
m

ω2 − (
kv0

m
)2

= 0. (31)

Solving the initial value problem analytically, the acceleration a(x, τ ) is determined by means of ωl which satisfies D(ωl) =
0 with kv0

l < ωl < kv0
l+1,

a(x, τ ) = Re

⎡
⎢⎢⎢⎢⎣

∑
j>0

∑
m>0

{
(−bm)αei(kx− π

2 )�n( �=m)>0

((
ω j

)2 −
(

kv0
n

)2
)}

k�n( �= j)>0

(
ω2

j − ω2
n

) 2 cosω jτ

⎤
⎥⎥⎥⎥⎦ . (32)

We make comparison of a simulation result with Eqs. (31) and (32).
For Nm = 2, b1 = b2 = −1/6, �v = 1.0, k = 1.0 and α = 0.01, Eqs. (31) and (32) lead a(x = −1.4π, τ ) = A1 cos(ω1τ ) +

A2 cos(ω2τ ) with A1 = 0.00226, A2 = 0.00409, ω1 = 1.13 and ω2 = 2.18. The numerical result of a(x = −1.4π, τ ) shown 
in Fig. 4 agrees well with the analytical prediction, Eq. (32). It shows validity of our implementation of the CD method for 
the Vlasov-Poisson system with the periodic boundary condition.

5. Benchmark test for the Landau damping

5.1. Linear Landau damping

We also verify our code for the linear Landau damping. We set the initial contour distribution as follows. The initial 
(continuous) distribution function f is given by

f (x, v, τ = 0) = 1√
2π

exp

(
− v2

2

)
(1 + α cos(kx)). (33)

By means of a sequence {� fm}NMax
m=1 : � fm ∈ R+ and 

NMax∑
m=1

� f m < Max
x,v∈R

{ f (x, v, τ = 0)}, we define f̃ , a piece-wise constant 

approximation of f ,

f̃ (x, v, τ = 0) :=
NMax∑
m=1

� fm I
[
�m

m′=1� fm′ < f (x, v, τ = 0)
]
, (34)

where
6
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Fig. 5. Time history of the quadratic integral of the electrostatic potential φ obtained from the simulation of the linear Landau damping. The damping rate 
γ = -0.153 is successfully confirmed by the contour dynamics method.

I [P (x, v, τ )] =
{

1 if P (x, v, τ ) is true

0 otherwise
(35)

with a propositional function P (x, v, τ ). However, Eq. (34) does not satisfy 
∫ L

2

− L
2

dx 
∫ ∞
−∞ f̃ (x, v, t = 0)dv = L because f̃ is a 

piece-wise constant function defined by means of contours of f . Therefore instead of f̃ , we use f̃ ′ normalized by (1 + ε),

f̃ ′ = (1 + ε) f̃ , where ε = L∫ L
2

− L
2

dx
∫ ∞
−∞ f̃ (x, v, t = 0)dv

− 1, (36)

and thus � f ′
m = (1 + ε)� fm .

The simplest way of giving {� fm} is � fm = constant. However, contour dynamics method does not require constant 
� fm , and non-uniform contour intervals have an advantage over the constant � fm in approximation of f . In case with 
� fm = constant, the contours are densely distributed where the velocity space gradient of f is steep around v ∼ ±vth (vth

means the thermal velocity), while no contour is found for |v| > 3vth when we use 40 contours. It means that there is no 
particle in |v| > 3vth , while the super thermal particles can be included in the case of � fm �= constant. From the linear 
theory, real and imaginary parts of the eigenfrequency for k = 0.5 are evaluated as ωr = 1.4156 and γ = −0.1533. Thus, 
the phase velocity is ωr/k ∼ 2.8vth . This is the reason why the high speed particle should be included in this application. 
Otherwise, many contours are necessary in the constant � fm case in order to introduce contributions of the super thermal 
particles. Thus, we employ the non-uniform contour intervals of � fm which is defined as

� fm :=
{

f (x = x0, v = Vm) m = 1

f (x = x0, v = Vm) − f (x = x0, v = Vm−1) 2 ≤ m ≤ NMax
, (37)

with dv ∈ R+, NMax ∈ N and Vm := (NMax + 1 − m)dv . Since Eq. (33) has the maximum at x = 0, we set x0 = 0. In this 
application, we used 40 contours with dv = 0.1, where the contour spacing in v is nearly constant covering the velocity 
space of |v| < 4vth .

A simulation result for the linear Landau damping is presented in Fig. 5, where the initial distribution function is given 
by Eq. (37) with α = 0.01 and k = 0.5. The simulation box size is L = 4π . We also used 2000 nodes/contour. One clearly 
finds the linear damping rate of γ = −0.153 successfully reproduced by the present CD method.

5.2. Nonlinear Landau damping

Next, we consider a benchmark test for the nonlinear Landau damping (Ref. [1]) with the initial distribution function in 
Eq. (33) where α = 0.5 and k = 0.5. We employ 40 contours (with NMax = 40 and dv = 0.1) and 8000 nodes/contour. It is 
noteworthy that intersections of contour lines are not observed till τ = 30 in the present simulation. It is, thus, appropriate 
not to use the node redistribution nor the contour surgery in the current test case. Fig. 6 shows a snapshot of contour 
distribution in the phase space at τ = 30, where the particle trapping by the Langmuir wave is successfully reproduced by 
the CD method.

Soundness of our implementation is also confirmed by conservation of energy, as shown in Fig. 7. Total energy, Et =
1 ∫∫

v2 f dxdv + 1 ∫ | ∂φ |2dx, is conserved with an error, εE(τ ) = |Et(τ ) − Et(0)|/E(0), less than 2.5 × 10−5 for τ ≤ 30.
2 2 ∂x

7
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Fig. 6. Phase space structure of nonlinear Landau damping at τ = 30. Particles trapped by waves are reproduced. The color bar represent the magnitude of 
f . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 7. Conservation of energy. Blue line represents energy of electric field, Eφ = 1
2

∫ | ∂φ
∂x |2dx, Green kinetic energy, Ek = 1

2

∫∫
v2 f dxdv , and Red Total energy, 

Et = Eφ + Ek .

Dependence of the numerical accuracy on the number of nodes per contour and the number of contours is investigated 
for conservation of the total energy and particles. Errors in the total energy conservation are shown in Figs. 8 (a) and (b) for 
cases with different numbers of nodes and contours, respectively. If the number of nodes per contour is decreased by 1/4
while using 40 contours, the total energy conservation significantly degrades after τ = 17, which would be attributed to the 
contour crossing. Total energy conservation for different numbers of contour lines (but with 8000 nodes per contour) is also 
presented in Fig. 8 (b), where the maximum of numerical error in the case with 10 contours (with NMax = 10 and dv = 0.4) 
is lower than that for the case of 2000 nodes/contour with 40 contours shown in Fig. 8 (a). Thus, the energy conservation 
is more sensitive to the number of nodes per contour than the number of contours.

Fig. 9 shows numerical errors found in the particle (or area) conservation, εN := |N(τ ) − N(0)|/N(0), for cases with 
different numbers of nodes and contours, where N(τ ) is a total integral of the particle density defined as

N(τ ) :=
∫∫

f̃ ′(x, v, τ )dxdv, (38)

where

f̃ ′(x, v, τ ) :=
NMax∑
m=1

� f ′
m I[(x, v) ∈ Sm(τ )] (39)

with Sm(τ ) denoting the closed polygonal region determined by nodes on the mth contour. Errors in the particle conser-
vation, εN , is less than 10−4 for the case with 40 contours with 8000 nodes per contour (blue curve) while increasing in 
time. Generally speaking, the CD method tends to fail in following the strong deformation of contours with large curvature, 
because the contours consist of finite straight segments connected by nodes. This is confirmed in comparison for the differ-
ent number of nodes shown in Fig. 9 (a), where the larger errors are found for the smaller number of nodes per contour. 
In comparison of Figs. 8 (b) and 9 (b), errors found in the energy and particle conservation for the case of 10 contours are 
correlated to each other, and are simultaneously improved by increasing the number of contours.
8
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Fig. 8. Errors found in the total energy conservation, εE (τ ) = |Et (τ ) − Et (0)|/E(0), for cases with different numbers of (a) nodes per a contour (that is, 2000, 
4000, and 8000 with 40 contours) or (b) contours (that is, NMax = 10, 20, and 40 with 8000 nodes per contour but dv = 0.4, 0.2, and 0.1, respectively). 
Blue curves in (a) and (b) represent the same result in the case with 40 contours and 8000 nodes per contour.

6. Summary and conclusion

We have newly implemented contour dynamics method for the Vlasov-Poisson system with the periodic boundary. The 
major difficulty in application of the periodic boundary is how to deal with contours when they cross the boundaries. It has 
been overcome by introducing periodic Green’s function defined on the infinite phase space, instead of the Green’s function 
derived for the bounded system with the periodic boundary condition. The new scheme enables implementation without 
cutting nor reallocating the contours and node points, and accelerates the computational speed.

Validity of the CD method for the Vlasov-Poisson system with the periodic boundary is confirmed by comparing the 
simulation results with the analytical solution for the piece-wise constant distribution function in the linear regime, and by 
the bench mark test for the linear Landau damping. Nonlinear Landau damping simulation using the CD method successfully 
reproduces the electron trapping by the Langmuir wave. Soundness of our method is also demonstrated by the energy and 
particle conservation with errors less than 2.5 × 10−5 and 10−4, respectively, when one used 40 contours with 8000 nodes 
per contour. Improvement of the CD method to reduce the conservation errors remains for future works.

Because this paper focused on the verification of our basic CD scheme for the periodic system, detailed analyses of the 
physics problem by means of the CD method are remained for future studies. Application of the CD method to a variety of 
issues in kinetic plasma physics is currently in progress, and will be reported elsewhere.
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Fig. 9. Errors found in the particle conservation, |N(τ ) − N(0)|/N(0), for cases with different numbers of (a) nodes per a contour (that is, 2000, 4000, and 
8000 with 40 contours) or (b) contours (that is, NMax = 10, 20, and 40 with 8000 nodes per contour but dv = 0.4, 0.2, and 0.1, respectively). Blue curves 
in (a) and (b) represent the same result in the case with 40 contours and 8000 nodes per a contour.
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Appendix A

Here, we calculate the analytical solution of a(x, τ ) = ∂φ/∂x for the initial distribution function in Eqs. (29) and (30). For 
a node with the index m, vm satisfies the equation

a(x, τ ) = dvm

dτ
= ∂vm

∂τ
+ vm

∂vm

∂x
. (40)

Eqs. (8) and (29) lead to

− ∂a

∂x
= 1 −

Nm∑
−Nm

(−bm) vm. (41)

For the zeroth order, the electron density is assumed to be the same as that of the uniform background ions, 
Nm∑

−Nm

(−bm) v0
m =

1 (namely, we choose �v to satisfy this relation). Therefore, Eq. (40) is linearized as

a = ∂v1
m

∂τ
+ v0

m
∂v1

m

∂x
, (42)

and Eq. (41) reads
10
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∂a

∂x
=

Nm∑
−Nm

(−bm) v1
m. (43)

Assuming a, v1
m ∝ eikx , the Laplace transform of Eqs. (42) and (43) give

L(a) = −v1
m(0) + sL

(
v1

m

) + v0
mikL

(
v1

m

)
, (44)

− ikL(a) =
Nm∑

−Nm

bm L
(

v1
m

)
, (45)

where L ( f (τ )) := ∫ ∞
0 f (τ )e−sτ dτ . Thus,

L(a) = 1

D(is)

Nm∑
−Nm

{
(−bm) v1

m(0)�l �=m

(
is − kv0

l

)}
, (46)

with

D(is) = k�
Nm
m=−Nm

(
is − kv0

m

)
+

Nm∑
m=−Nm

{
bm�l �=m

(
is − kv0

l

)}
. (47)

It is known that for a choice of bn < 0 (∀n ≥ 1), the solutions of D(is) = 0 are purely real (see Refs. [11] and [12]). We 
define ω := is and ωm : D(ωm) = 0 with kv0

m < ωm < kv0
m+1 so that D(ωm) is written as D = k�

Nm
m=−Nm

(ω − ωm). The 
inverse Laplace transform of Eq. (46) is

a =
Nm∑

j=−Nm

Res
(
L (a) (s) est,−iω j

)
(48)

=
Nm∑

j=−Nm

lim
s→−iω j

(
s + iω j

) 1

k

Nm∑
−Nm

{
(−bm) v1

m(0)�l �=m

(
is − kv0

l

)}

�
Nm
m=−Nm

(is − ωm)
est (49)

Since ωm = −ω−m, bm = −b−m and v0
m = −v0−m , one finds

a(x, τ ) = Re

⎡
⎢⎢⎢⎢⎣

∑
j>0

∑
m>0

{
(−bm)αei(kx− π

2 )�n( �=m)>0

((
ω j

)2 −
(

kv0
n

)2
)}

k�n( �= j)>0

(
ω2

j − ω2
n

) 2 cosω jτ

⎤
⎥⎥⎥⎥⎦ , (50)

where ω j satisfies the dispersion relation of

1 +
∑
m>0

2bm v0
m

ω2 − (
kv0

m
)2

= 0. (51)
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