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We propose a finite-difference algorithm for solving the time-dependent Ginzburg–
Landau (TDGL) equation coupled to the appropriate Maxwell equation. The time
derivatives are discretized using a second-order semi-implicit scheme which, for in-
termediate values of the Ginzburg–Landau parameter �, allows time steps two orders
of magnitude larger than commonly used in explicit schemes. We demonstrate the
use of the method by solving a fully three-dimensional problem of a current-carrying
wire with longitudinal and transverse magnetic fields. c© 2002 Elsevier Science (USA)
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1. GINZBURG–LANDAU MODEL

In the Ginzburg–Landau model, a superconductor is characterised by a complex order
parameter � . The local density of superconducting electrons is represented by |�|2. The
theory postulates that close to the critical temperature, the free energy can be expanded in
a series of the form

L(� , ∇� , A, ∇ × A) = a|�|2 + 1
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where a and b are phenomenological parameters that depend on external parameters such
as temperature, A denotes the vector potential, H is an external magnetic field, and es and
ms are the effective charge and the effective mass of the Cooper pairs. Below the transition
temperature Tc, a becomes negative, whereas b > 0 for all T .
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1.1. The Time-Dependent Ginzburg–Landau (TDGL) Equations

The equations of motion for the order parameter and the vector potential are the Euler–
Lagrange equations of the free energy functional,
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� + |a|� − b|�|2� , (2)
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�0
∇ × (∇ × A − �0H) = js + jn, (3)

js = h̄es

2ms i
(� ∗∇� − � ∇� ∗) − e2

s

ms
|�|2A, (4)

jn = �(−∇� − ∂t A), (5)

where D is a phenomenological diffusion constant and � is the electric potential, included
to retain the gauge invariance of the equations. Equation (3) is the Maxwell equation for the
magnetic field, where the displacement current �0Ė has been omitted, as it only becomes
significant for velocities close to the speed of light. The total current is given by the sum of
the supercurrent, js , and the normal current, jn , which obeys Ohm’s law.

1.2. Dimensionless Units

We scale length in multiples of the coherence length, � = h̄/
√

2m|a|, time in � = �2/D,
the wavefunction in �0 = √|a|/b, the vector potential in A0 = √

2�Hc� , where Hc =
�0|a|2/b, the electric potential in �0 = (�/�)A0, and resistivity in units of the normal
resistivity �0 = 1/�2 D�0. The so-called Ginzburg–Landau parameter is given by �2 =
2m2b/e2h̄2�0. The characteristic length scale for variations of the magnetic field is 	 = �� ,
and ∇ × A measures the magnetic field in units of

√
2�Hc = Hc2. In scaled units Eqs. (2)

and (3) become

(∂t + i�) � = (∇ − iA)2 � + � − |�|2� , (6)

�2∇ × ∇ × A = (∇S − A)|�|2︸ ︷︷ ︸
js

+ �(−∇� − ∂t A)︸ ︷︷ ︸
jn

+ �2∇ × H︸ ︷︷ ︸
jext

, (7)

where S denotes the phase of � . The last term in Eq. (7) can be understood as an external
current jext with ∇jext = 0. In the following, this term is omitted. However, it can be easily
included in the algorithm for instance to model magnetic impurities. In dimensionless
units, the dynamics of the superconductor depends on the dimensionless Ginzburg–Landau
parameter � only. For values � < 1/

√
2 one finds a behaviour characteristic of a type-I

superconductor whereas for � > 1/
√

2 a type-II superconductor is modelled.

1.3. Gauge Transformation

The dynamics of the measurable quantities E, B, |�|2, and j are invariant under the
transformation 


A → A + ∇


� → � ei


� → � − 
̇,

(8)

where 
 is an arbitrary scalar field. We choose the zero potential gauge, 
(r, t) = ∫
dt�
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(r, t); in other words, �(r) ≡ 0 at all times. For this choice, Eqs. (6) and (7) become

∂t � = (∇ − iA)2 � + � − |�|2� , (9)

�∂t A = (∇S − A)|�|2 − �2∇ × ∇ × A. (10)

In the following section, we suggest a fast and reliable numerical method to find an
approximate solution to these equations.

2. NUMERICAL METHODS

The most popular approach to the solution of the TDGL equations, (9) and (10), is a
gauge-invariant discretization that is second-order accurate in space and first order in time
[1–5]. In addition, a number of other finite-difference [6, 7] and finite-element methods [8, 9]
have been developed. For large values of �, the magnetic field is nearly homogeneous and
Eq. (10) can be dropped. This case is often referred to as the London limit. The remaining
equation has been solved by a semi-implicit Fourier spectral method which is second-order
accurate in time [10]. An equation very similar to Eq. (9), the Gross–Pitaevskii equation, is
used to model vortex dynamics in dilute Bose–Einstein condensates [11]. Here, we modify
the very robust and accurate semi-implicit Crank–Nicholson algorithm used in [11] to
include the equation for the vector potential.

2.1. The U–ψ Method

The widely used U–� method is described in detail by Gropp et al. [1]. As this method
forms the basis of our algorithm we briefly review the main points here. Complex link
variables U x , U y , and U z are introduced to preserve the gauge-invariant properties of the
discretized equations.

U x (x, y, z) = exp

(
−i

∫ x

x0

Ax (x ′, y, z) dx ′
)

,

U y(x, y, z) = exp

(
−i

∫ y

y0

Ay(x, y′, z) dy′
)

,

U z(x, y, z) = exp

(
−i

∫ z

z0

Az(x, y, z′) dz′
)

,

(11)

where (x0, y0, z0) is an arbitrary reference point. The TDGL equations can then be expressed
as functions of � and these link variables. Both the order parameter and the link variables
are discretized on a three-dimensional grid with grid spacing hx , hy , and hz , respectively.
The mesh points for the link variables are half way between the mesh points for the order
parameter (see Fig. 1). All spatial derivatives are approximated by finite differences to
second-order accuracy. Denoting the complex conjugate of U by Ū , the finite-difference
representations of the TDGL equations read

∂t � i, j,k = Ū x
i−1, j,k� i−1, j,k − 2� i, j,k + U x

i, j,k� i+1, j,k

h2
x

+ Ū y
i, j−1,k� i, j−1,k − 2� i, j,k + U y

i, j,k� i, j+1,k

h2
y

+ Ū z
i, j,k−1� i, j,k−1 − 2� i, j,k + U z

i, j,k� i, j,k+1

h2
z

+ (1 − |� i, j,k |2)� i, j,k, (12)
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FIG. 1. The evaluation points for the fields � and 
 in the x–y plane. A finite-difference approximation for
the magnetic field Bz is given in (36).

∂tU
x
i, j,k = −i Im

(
F x

i, j,k

)
U x

i, j,k, (13)

where

F x
i, j,k = �2 Ū x

i, j+1,kŪ y
i, j,kU x

i, j,kU y
i+1, j,k − Ū x

i, j,kŪ y
i, j−1,kU x

i, j−1,kU y
i+1, j−1,k

h2
y

+ �2 Ū z
i+1, j,k−1Ū x

i, j,k−1U z
i, j,k−1U x

i, j,k − Ū z
i+1, j,kŪ x

i, j,kU z
i, j,kU x

i, j,k+1

h2
z

+ U x
i, j,k �̄ i, j,k� i+1, j,k .

Analogous expressions for ∂tU
y
i, j,k and ∂tU z

i, j,k can be obtained by permutating the coordi-
nates and indices as follows:

(x, y, z; i, j, k) → (y, z, x; j, k, i) → (z, x, y; k, i, j) → (x, y, z; i, j, k). (14)

The time evolution is approximated by a simple Euler step,

� i, j,k(t + �t) = � i, j,k(t) + �t ∂t � i, j,k(t) + O(�t2), (15)

U x
i, j,k(t + �t) = U x

i, j,k(t) + �t ∂tU
x
i, j,k(t) + O(�t2). (16)

To keep U x
i, j,k unimodular, Eq. (16) is often modified to

U x
i, j,k(t + �t) = U x

i, j,k(t) exp
(− i�t ImF x

i, j,k

) + O(�t2). (17)

The Euler method is only first-order accurate in time, i.e., the truncation error made due to the
finite-difference approximation of the time derivative is proportional to �t2. However, the
main problem is that the code becomes unstable if long time steps are used. The cause of
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this instability is the diffusionlike character of the dynamics described by Eqs. (12) and
(13). Equation (12) can immediately be written as a diffusion equation with an additional
nonlinear term,

∂t � i, j,k = Lx � i, j,k + L y� i, j,k + Lz� i, j,k + f, (18)

where f stands for (1 − |� i, j,k |2)� i, j,k and Lx , L y , and Lz denote the weighted Laplacian
operators,

Lx � i, j,k ≡ ai−1� i−1, j,k − 2� i, j,k + ai+1� i+1, j,k

h2
x

, (19)

with |ai−1| = |ai+1| = 1 in our case. The diffusion constant is 1 in dimensionless units.
Equation (13) is also dominated by diffusive terms, as becomes evident in the next section.
Setting � = 1, the diffusion constant for the vector potential is �2. This can be seen by
taking the curl of Eq. (10), Ḃ = �2∇2B + ∇ × js . The one-step forward Euler method is
only stable as long as the time step is shorter than the diffusion time across a cell of width
h [13]. For example, using a grid spacing of h = 0.5� and � = 4, the theoretical limit for
the time step is

�t <
h2

2�2
= 0.52

2 · 42
≈ 0.0078. (20)

In practice, a time step of �t = 0.0025 is used to ensure stability [1]. In contrast, a semi-
implicit two-step algorithm is unconditionally stable for diffusive problems and enables
much larger time steps to be employed.

2.2. Semi-implicit Algorithm

We propose a spatial discretization of the equations very similar to the aboveU–� method.
The link variables are unimodular, |U x

i, j,k | = 1, and can be written as the exponential of a
phase, U x

i, j,k = exp(−i
x
i, j,k). We use the real-valued variable 
x instead of the complex-

valued U x . The fields � and 
 are represented on a three-dimensional grid. The mesh
points of the phase factors are placed between the mesh points of the order parameter (see
Fig. 1). For the field � i, j,k , the grid point indices are i = 1 . . . Nx + 1, j = 1 . . . Ny + 1,
and k = 1 . . . Nz + 1. For 
x

i, j,k , the indices in the x direction are in the range i = 1 . . . Nx

only, due to the relative displacement of the grids. Similarly, j = 1 . . . Ny for 

y
i, j,k and

k = 1 . . . Nz for 
z
i, j,k .

We now discretize the spatial derivatives in Eqs. (9) and (10) using the modified link
variables 
x , 
y , and 
z . For Eq. (9), we reuse the expansion (12) except that we replace
U x

i, j,k with exp(−i
x
i, j,k), and so forth:

∂t � i, j,k = exp
(
i
x

i−1, j,k

)
� i−1, j,k − 2� i, j,k + exp

(−i
x
i, j,k

)
� i+1, j,k

h2
x

+ exp
(
i
y

i, j−1,k

)
� i, j−1,k − 2� i, j,k + exp

(−i
y
i, j,k

)
� i, j+1,k

h2
y

+ exp
(
i
z

i, j,k−1

)
� i, j,k−1 − 2� i, j,k + exp

(−i
z
i, j,k

)
� i, j,k+1

h2
z

+ (1 − |� i, j,k |2)� i, j,k . (21)
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With the help of the relation −∇ × ∇ × A = ∇2A − ∇(∇A), the second-order-accurate
finite-difference representation of (10) is

∂t

x
i, j,k = �2

h2
y

(

x

i, j+1,k − 2
x
i, j,k + 
x

i, j−1,k

) + �2

h2
z

(

x

i, j,k+1 − 2
x
i, j,k + 
x

i, j,k−1

)

+ �2

h2
y

(−

y
i+1, j,k + 


y
i, j,k + 


y
i+1, j−1,k − 


y
i, j−1,k

)

+ �2

h2
z

(−
z
i+1, j,k + 
z

i, j,k + 
z
i+1, j,k−1 − 
z

i, j,k−1

)
+ Im

(
exp

(−i
x
i, j,k

)
�̄ i, j,k� i+1, j,k

)
. (22)

The expressions for ∂t

y
i, j,k and ∂t


z
i, j,k are given by cyclic permutation (14).

Note that the discretized equations are still invariant under the gauge transformation:




� i, j,k → � i, j,k exp(i
i, j,k)


x
i, j,k → 
x

i, j,k + (
i+1, j,k − 
i, j,k)



y
i, j,k → 


y
i, j,k + (
i, j+1,k − 
i, j,k)


z
i, j,k → 
z

i, j,k + (
i, j,k+1 − 
i, j,k).

(23)

Retaining the gauge invariance at the discrete level is often equivalent to preserving certain
conservation laws and physical principles. It is crucial that the numerical approximation
not depend on the particular choice of gauge. If, for example, one studies the motion of a
vortex lattice due to an applied electric field Ex , the measurable quantities B, |�|2, and j
oscillate in time [16]. The system is driven through a series of equivalent solutions and the
dynamics is roughly described by
 = Ex xt . This means that the phase gradients in the order
parameter build up in time and the phase difference between two neighbouring grid points
eventually exceeds 2�. This is normally a problem as the finite-difference approximation
becomes invalid. However, using the link variables U or 
 these phase gradients are exactly
cancelled by the change in the vector potential.

We now want to introduce a new scheme to update the wavefunction � (n)and the link
variables 
(n) from the nth to the (n + 1)th step. The idea is to treat the diffusive terms
semi-implicitly whereas all other terms are still treated explicitly. In this way we reduce
the stability constraints associated with the simple Euler method but avoid the expensive
solution of nonlinear equations. The technique is known as the method of fractional steps
[12]. A second-order accuracy in the time step can be achieved by a simple three-step
iteration.

As mentioned above, the diffusive character of Eq. (10) becomes apparent in the new
discretization and both Eq. (21) and Eq. (22) can be written as an initial value problem of
the form

∂t ui, j,k = D(Lx ui, j,k + L yui, j,k + Lzui, j,k) + f, (24)

where u stands for the fields � or 
x , 
y or 
z , respectively, D is the diffusion constant
with D = �2 in (22), and f indicates all the other terms: (1 − |� i, j,k |2)� i, j,k in (21) and
the last three lines in Eq. (22). Note that Lx ≡ 0 in (22).
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The second derivatives are approximated in the usual way by an expression involving three
neighbouring grid points. For any pair ( j, k) the action of Lx on the vector {ui, j,k}i = 2...Nx can
be represented by a tridiagonal matrix �2

x ,

Lx ui, j,k ≡ �2
x

h2
x

ui, j,k ≡ ai−1ui−1, j,k − 2ui, j,k + ai+1ui+1, j,k

h2
x

. (25)

As emphasized before, the instabilities of the Euler method have their origin in the explicit
treatment of the diffusive terms. We now discretize the time derivative in Eq. (24) in the
following way:

u(n+1) − u(n)

�t
= 1

2

D�2
x

h2
x

(
u(n+1) + u(n)

) + 1

2

D�2
y

h2
y

(
u(n+1) + u(n)

)

+ 1

2

D�2
z

h2
z

(
u(n+1) + u(n)

) + 1

2

(
f (n+1) + f (n)

) + O(�t2). (26)

This discretization is semi-implicit, as the right hand side of the equation depends on the
fields at the old and the new time level. This mixing leads to an improved accuracy and
prevents the algorithm from developing instabilities. After rearranging the equation we get

(
1 − D�t

2h2
x

�2
x − D�t

2h2
y

�2
y − D�t

2h2
z

�2
z

)
u(n+1)

=
(

1 + D�t

2h2
x

�2
x + D�t

2h2
y

�2
y + D�t

2h2
z

�2
z

)
u(n) + �t

2

(
f (n+1) + f (n)

) + O(�t3). (27)

We now employ an approximate factorisation [12],

(
1 − D�t

2h2
x

�2
x − D�t

2h2
y

�2
y − D�t

2h2
z

�2
z

)

=
(

1 − D�t

2h2
x

�2
x

)(
1 − D�t

2h2
y

�2
y

)(
1 − D�t

2h2
z

�2
z

)
+ O(�t2). (28)

The multidimensional operator is split into three operators that involve difference approxi-
mations in only one dimension. With the abbreviations

Ax =
(

1 − D�t

2h2
x

�2
x

)
, Bx =

(
1 + D�t

2h2
x

�2
x

)
, (29)

and considering (u(n+1) − u(n)) = O(�t) Eq. (27) becomes

Ax Ay Azu
(n+1) = Bx By Bzu

(n) + �t

2

(
f (n+1) + f (n)

) + O(�t3). (30)

The tridiagonal matrices A and B are actually time dependent because the differential
operators L in Eq. (21) depend on the link variables. In the above equation, A is a function
of
(n+1) whereas B depends on
(n). Consequently, the equations are solved in the stepwise
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manner

Ax u(n+1/3) = Bx By Bzu
(n) + �t

2

(
f (n+1) + f (n)

)
,

Ayu(n+2/3) = u(n+1/3),

Azu
(n+1) = u(n+2/3),

(31)

where the “fractional” time levels indicate intermediate results. The explicit term f (n+1)

as well as the matrix elements of A may depend on the values of the link variables at the
new time level and are unknown initially. We assume that u(n+1) = u(n) to start with. After
the first iteration of Eq. (31) for all variables � and 
, the updated values at the new time
level are used in the matrix elements of A for the second iteration, and so on. The product
Bx By Bzu(n) is a function of known values at the previous time level and can be stored in an
auxiliary variable for subsequent iterations. As the matrices A are tridiagonal, fast inversion
routines can be applied [13].

The entire algorithm relies on the convergence of this iteration technique. To test whether
the procedure converges, we calculate a total update, S(m), of the fields after m iterations
by comparing all values at the time level (n + 1) to all values at the previous time step, (n).

S(m) =
∑
i, j,k

((∣∣� (n+1,m)
i, j,k

∣∣2 − ∣∣� (n)
i, j,k

∣∣2)2 + (

x(n+1,m)

i, j,k − 
x(n)
i, j,k

)2 + · · · ), (32)

where the three dots indicate the corresponding terms for the fields 
y and 
z . Figure 2
shows a typical evolution of the update for a time step of �t = 0.5. After as few as five
iterations the approximated increment is very close to the exact value. For smaller time
steps, the procedure converges faster. We find an optimum trade-off between accuracy and
performance for three iterations. We further check to see if the correction between two
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FIG. 2. The modification to the solution after one time step (total update) versus the number of iterations. For
smaller time steps, the solution converges faster. We find an optimum of speed and accuracy for a combination of
three iterations and a time step of �t = 0.5. The correction between iterations, T (m), is shown in the inset.
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successive iterations,

T (m) =
∑
i, j,k

((∣∣� (n+1,m)
i, j,k

∣∣2 − ∣∣� (n+1,m−1)
i, j,k

∣∣2)2 + (

x(n+1,m)

i, j,k − 
x(n+1,m−1)
i, j,k

)2 + · · ·), (33)

converges to zero. Figure 2 (inset) confirms an exponential convergence.
The accuracy of the method is assessed by comparing the solution to simulations using the

Euler method with a much smaller time step, �t = 0.0025. Up to a time step of �t = 0.5,
no significant deviations could be observed. The program runs about 40 times faster than the
Euler method for these parameters. For the calculations below we use a finer grid (h = 0.4)
and a slightly larger Ginzburg–Landau parameter (� = 5). The speedup for these values is
about 100.

Our implicit method is less memory intensive than the standard U–� method because
it uses real-valued link variables rather than complex-valued ones that must be represented
by two real numbers. For a grid of N 3 points, the Euler method uses an equivalent of 22N 3

real-valued variables (the complex wavefunction and the three complex link variables at
two time levels plus three complex fields W ; see [1]) whereas the implicit method requires
the storage of a total of 19N 3 variables (the complex wavefunction and the three real link
variables at two time levels, the products Bx By Bzu(n) in (31) plus four auxiliary fields).

2.3. Boundary Conditions

The correct implementation of the boundary conditions requires great care because of the
relative displacement of the grids. The matrices Ax and Bx only act on the interior points,
i = 2 . . . Nx , of the vectors � i , 


y
i , and 
z

i for all j = 1 . . . Ny + 1, k = 1 . . . Nz + 1. Note
that Ax = Bx ≡ 1 in the case u = 
x . The endpoints i = 1 and i = Nx + 1 are computed
for bookkeeping purposes. Similarly, the operators By and Bz do not automatically include
information on the endpoints at j = 1, Ny + 1 and k = 1, Nz + 1, respectively. In addition,
there are different boundary conditions, namely periodic, Dirichlet, and Neumann, that
require an adaption of the matrix elements on the first and last rows [13].

Another complication is that the physical boundary conditions that apply for the vectors
u(n) and u(n+1) in Eq. (31) do not necessarily apply for the intermediate results u(n+1/3) and
u(n+2/3). For example, when solving the second equation of the system (31),

Ayu(n+2/3) = u(n+1/3), (31′)

a correct treatment of the boundary condition for u(n+2/3) = Azu(n+1) must be implemented
into Ay . It is advisable to solve (31) starting in the direction with the simplest bound-
ary condition. For a periodic boundary condition, for example, the relations u1 = uN and
uN+1 = u2 hold at all time levels, including “fractional” ones.

The boundary conditions depend on the geometry of the problem. We choose a system
with a periodic boundary condition in the z direction. At the interfaces in the x and the
y directions, boundary conditions for the magnetic field and the order parameter are applied.
For the order parameter � i, j,k , conditions are needed for all values at the faces of the three-
dimensional box. The grid representation of the periodic boundary condition reads

� i, j,1 = � i, j,Nz , � i, j,Nz+1 = � i, j,2,


x
i, j,1 = 
x

i, j,Nz
, 
x

i, j,Nz+1 = 
x
i, j,2.

(34)
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In the y and z directions we set the supercurrent across the boundary to zero [1], i.e.,

�1, j,k = �2, j,k exp
(−i
x

1, j,k

)
,

� Nx +1, j,k = � Nx , j,k exp
(+i
x

Nx , j,k

)
,

� i,1,k = � i,2,k exp
(−i
y

i,1,k

)
,

� i,Ny+1,k = � i,Ny ,k exp
(+i
y

i,Ny ,k

)
.

(35)

Expressions for the endpoints of the link variables can be found by incorporating information
about the magnetic field at the boundaries of the box. The three components of the magnetic
field are given by the following second-order finite-difference approximations:

Bx
i, j,k = 1

hyhz

(



y
i, j,k − 


y
i, j,k+1 − 
z

i, j,k + 
z
i, j+1,k

)
,

B y
i, j,k = 1

hzhx

(

z

i, j,k − 
z
i+1, j,k − 
x

i, j,k + 
x
i, j,k+1

)
, (36)

Bz
i, j,k = 1

hx hy

(

x

i, j,k − 
x
i, j+1,k − 


y
i, j,k + 


y
i+1, j,k

)
.

From these expressions, appropriate boundary conditions can be obtained. For example, the
field 
x

i, j,k is unknown at j = 1, and we use the last equation to relate the values of 
x
i,1,k to

known values


x
i,1,k = −Bz

i,1,khx hy + 
x
i,2,k + 


y
i,1,k − 


y
i+1,1,k . (37)

Equations (21), (22), and (31) combined with the boundary conditions (34), (35), and (37)
provide all the information needed to solve a three-dimensional problem.

3. EXAMPLE 1: WIRE WITH LONGITUDINAL FIELD

As an example, we model an infinite cylindrical wire in three dimensions with an external
magnetic field, Hz , applied along its axis. Such a configuration has been studied in [7, 14].
Experiments have shown that the magnetic field can increase the critical current down the
wire [15].

In a type-II superconductor, a sufficiently strong magnetic field, Hz , will enter the cylinder
and become trapped in vortex tubes aligned parallel to the axis of the cylinder. A current
I along the wire induces an additional circular field H
(r) such that I = 2���2 H
(�) at a
distance � from the axis of the wire. For H
(�) we assume a perfect 1/r field corresponding
to a constant current density in the cross section of the wire. The vortex tubes corresponding
to the current-induced H
 field are rings coaxial with the wire. Above a critical current,
these vortex rings enter at the edge of the cylinder and shrink until they annihilate on the axis
of the cylinder. This process repeats and leads to dissipation. There is no stable mixed state
associated with a H
 field unless the vortex rings are pinned by impurities in the material.
Blackburn et al. [7] have argued that by entangling the vortex rings with vortex lines due to
a strong longitudinal field, the rings can be prevented from shrinking and thereby increase
the critical current in the wire.

We model a cylindrical shape of the wire in a rectangular box by adding a potential
term V � with V = 5 to Eq. (9) at all grid points outside a cylindrical region with radius
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FIG. 3. Time-independent arrangement of spiral vortices in a cylinder of radius 12� , � = 5, � = 1. Five
vortex lines are entangled with two rings. The applied fields are Hz = 0.2 and H
 = 1.5/� , respectively. The
tubes show the density of the order at the level |�|2 = 0.3. The left slice shows the magnetic field component
parallel to the wire, Hz . Dark regions indicate a high field. The black lines mark the boundaries of the wire.

R = 12� . The density of the order parameter outside the cylinder decreases rapidly to zero.
An array of longitudinal vortex tubes is created by imposing boundary conditions for an
external magnetic parallel to the wire. A current is ramped up by slowly increasing a circular
field (Bx and By) around the box until vortices enter. The Bean–Livingston surface barrier
was lowered by adding a weak sinusoidal potential at the surface of the cylinder. Figure 3
shows a time-independent state that arises after two vortex rings have entered the cylinder
and entangled with the vortex lines. The critical current is dominated by the surface barrier,
as expected for small samples. Consequently, we do not observe any improvement in the
critical current due to the presence of a longitudinal field. However, the effect could become
more significant for larger sample sizes or if the surface effects are suppressed [16].

4. EXAMPLE 2: WIRE WITH TRANSVERSE FIELD

In superconducting magnets, the external magnetic field is typically aligned perpendic-
ular to the wire (Bx , for example). In the mixed state, an array of vortex lines fills up the
superconductor (see Fig. 4). Any current carried by the wire superimposes a circular field
onto this applied field. As a result, a gradient of the magnetic field develops that can be
associated with a Lorentz force on the vortices. In most applications, different pinning mech-
anisms balance this Lorentz force and freeze the flux lattice up to a critical current density.
For larger currents, the Lorentz force exceeds the pinning force and vortices start moving
[16]. The motion of the flux lattice coincides with the breakdown of superconductivity.

In this geometry the magnetic field at the boundary of the computational box strongly
depends on the currents inside unless the box size is much larger than the radius R of the
cylinder. In the Meissner state, for example, no flux lines penetrate the wire and supercurrents
in the surface of the superconductor cancel the external field in the bulk of the wire. The
field lines of these surface currents also extend outside the sample at length scales of order
R. In the mixed state, the induced field is smaller and can be regarded as a small correction.
To find a self-consistent solution, the fields induced by both the supercurrents and normal
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FIG. 4. Array of vortices in a wire exposed to a perpendicular magnetic field Bx = 0.4. The vortices tubes
enter and exit the surface of the superconductor normally. The Ginzburg–Landau parameter is � = 5; the radius
of the wire R = 8� ; and � = 1.

currents have to be added to the applied field and included in the boundary conditions at
each time step. We calculate the induced field Hind(r) using the Biot–Savart law, which in
our units has the form

Hind(r) = 1

4��2

∫
d3r ′j(r′) × r − r′

|r − r′|3 . (38)

This calculation is computationally expensive. The integral is approximated by summing
over all grid points for each boundary point requiring a total ofO(N 5) calculations, whereas
a time step takes O(N 3) calculations for a box of N 3 grid points. With periodic boundary
conditions, the integration must also be extended to regions outside the box. The effect of
including Hind is to bend the vortex lines, especially near the top and the bottom of the
sample, as is apparent in Fig. 4. To model the motion of flux lines, a fully self-consistent
time-dependent solution can be found by iterating the boundary conditions at each time
step. However, in practice the study of the motion of vortices above the critical current does
not seem to be feasible. Possible ways around this problem are to increase the box size so
that the induced currents can be neglected, to cutoff the integral in (38) at a certain distance
from the boundary, |r − r′| < R, or to update Hind(r) only in larger intervals rather than
at every time step. The latter approach is especially suitable for finding time-independent
solutions.

5. CONCLUDING REMARKS

In summary, we have demonstrated the use of a semi-implicit finite-difference scheme
to solve the three-dimensional time-dependent Ginzburg–Landau equations. The method
converges if a Crank–Nicholson scheme is applied to all Laplacian-type terms while all other
terms are treated explicitly. We iterate each time step to achieve second-order accuracy in
time. For intermediate values of the Ginzburg–Landau parameter �, the method is stable
and accurate for time steps two orders of magnitude larger than those used in the standard
explicit schemes. If the magnetic field at the surface of the computational box is partly
due to currents inside, a self-consistent solution can be found by iteration. However, a full
Biot–Savart calculation of the induced magnetic field remains computationally expensive.
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