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We present new numerical methods for constructing approximate solutions to
the Cauchy problem for Hamilton–Jacobi equations of the form ut + H (Dx u) = 0.
The methods are based on dimensional splitting and front tracking for solving the
associated (non-strictly hyperbolic) system of conservation laws pt + Dx H (p) = 0,
where p = Dx u. In particular, our methods depend heavily on a front tracking method
for one-dimensional scalar conservation laws with discontinuous coefficients. The
proposed methods are unconditionally stable in the sense that the time step is not
limited by the space discretization and they can be viewed as “large-time-step”
Godunov-type (or front tracking) methods. We present several numerical examples
illustrating the main features of the proposed methods. We also compare our methods
with several methods from the literature. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper we present unconditionally stable numerical methods for the Cauchy problem
for multidimensional Hamilton–Jacobi equations

{
ut + H (Dx u) = 0, in Rd × {t > 0},
u = u0, on Rd × {t = 0}.. (1)

In (1), u = u(x, t) is the scalar unknown function that is sought, u0 = u0(x) is a Lipschitz
continuous initial function, H is a Lipschitz continuous Hamiltonian, and Dx denotes the
gradient with respect to x = (x1, . . . , xd ) defined by Dx u = (ux1 , . . . , uxd ). Hamilton–Jacobi
equations arise in a variety of applications, ranging from image processing, via mathematical
finance, to the description of evolving interfaces (front propagation problems).
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It is well-known that solutions of (1) generically develop discontinuous derivatives in
finite time even with a smooth initial condition. Moreover, generalized solutions (i.e., locally
Lipschitz continuous functions satisfying the equation almost everywhere) are not uniquely
determined by their initial data and an additional selection principle—a so-called entropy
condition—is needed to single out a physically relevant generalized solution. The most
commonly used entropy condition is the vanishing viscosity condition which requires that
the (correct) solution of (1) to be the vanishing viscosity limit of smooth solutions of
corresponding viscous problems.

The vanishing viscosity entropy condition gives raise to the notion of viscosity solutions
introduced by Crandall and Lions [7]. In particular, these authors established the existence,
uniqueness, and stability of a viscosity solution of (1). Since then the theory of viscosity
solutions has been intensively studied and even extended to large class of fully nonlinear
second-order partial differential equations. We refer to Bardi et al. [2] for recent references to
the theory of viscosity solutions and applications. In passing, we mention that Kruz̆kov has
developed an alternative (equivalent) theory for Hamilton–Jacobi equations with a convex
Hamiltonian (see, e.g., [29]).

It is known that the Hamilton–Jacobi equations are closely related to (scalar) conservation
laws {

vt + ∑d
i=1 fi (v)xi = 0, in Rd × {t > 0},

v(x, 0) = v0(x) on Rd × {t = 0}.
(2)

Here v = v(x, t) is the scalar unknown, v0 = v0(x) is a bounded initial function, and
f1, . . . , fd are Lipschitz continuous flux functions. In contrast to the Hamilton–Jacobi
equations, which possess at least continuous solutions, solutions to (2) develop disconti-
nuities (shock waves) in finite time and therefore one has to consider solutions to (2) in
the sense of distributions. However, distributional solutions are not uniquely determined
by their initial data and one needs also here the vanishing viscosity entropy condition to
pick out the correct solution. In the context of scalar conservation laws (2), the vanishing
viscosity condition gives rise to the notion of entropy solutions in the sense of Kruz̆kov.
Kruz̆kov [31] proved that the well posedness of (2) is ensured within the framework of
entropy solutions.

In the one-dimensional case (d = 1), it is well-known that the existence of viscosity
solutions of (1) is equivalent to the existence of entropy solutions of (2) (see [6, 22, 24, 29,
36]). More precisely, if u = u(x, t) is the unique viscosity solution of (1), then v = Dx u is
the unique entropy solution of (2). Conversely, if v = v(x, t) is the unique entropy solution
of (2), then u defined via u(x, t) = ∫ x

−∞ v(�, t) d� is the unique viscosity solution (1). In the
multidimensional case (d > 1), this one-to-one correspondence no longer exists. Instead the
gradient p = (p1, . . . , pd ) = Dx u satisfies (at least formally) a d × d system of conservation
laws [22, 29, 36]. 


(p1)t + H (p1, . . . , pd )x1 = 0,

. . .
(pd )t + H (pd , . . . , pd )xd = 0.

(3)

If p is known, one may recover u from p by integrating the ordinary differential equation

ut + H (p1, . . . , pd ) = 0. (4)
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One should notice that (3) is only weakly hyperbolic. Nevertheless, in [22, 29, 36] it is
proved that the vanishing viscosity limit solutions of (1) and (3) (when such exist for both
problems!) are equivalent. Roughly speaking, one may therefore in the multidimensional
case also think of viscosity solutions to (1) as primitives of (vanishing viscosity) solutions
to (3).

Equipped with this view, it becomes natural to exploit some of the numerical con-
cepts developed for hyperbolic conservation laws when developing numerical methods
for Hamilton–Jacobi equations. Indeed, many well-known shock-capturing methods for
conservation laws have been extended to Hamilton–Jacobi equations (see [8, 37] for finite
difference schemes of upwind type (see also [30]); and see [1, 28] for finite volume schemes,
[40, 41, 21] for (W)ENO schemes, [35, 32] for central schemes, [3, 19] for finite element
methods, and [22] for relaxation schemes).

In contrast to the shock-capturing schemes just cited, we will in this paper be concerned
with extending to Hamilton–Jacobi equations (1) a so-called front tracking method for
conservation laws. The front tracking method was introduced by Dafermos [9] as a (math-
ematical) tool for constructing entropy solutions to one-dimensional scalar conservation
laws. Holden and co-workers, [15, 16] later proved that Dafermos’ construction procedure
was well defined and developed it into an L1 linearly(!) convergent numerical method.
Front tracking was later extended to systems of equations by Bressan [4] and Risebro [43],
who used the method to give an alternative proof of Glimm’s famous existence result for
hyperbolic systems. Very recently a modification of the front tracking method was used
by Bressan et al. [5] to prove stability and uniqueness of weak solutions of strictly hyper-
bolic systems of conservation laws. The front tracking method was used by Risebro and
Tveito [44, 45] to numerically solve the Euler equations of gas dynamics and a non-strictly
hyperbolic system modeling polymer flow.

Holden and Risebro [18] extended the scalar front tracking method to multidimensional
scalar conservation laws by means of dimensional splitting. These authors also proved that
the method converges to the unique entropy solution of the governing problem. An L1-error
estimate of order 1/2 was proved in [23]. Although the convergence rate drops from 1 in the
one-dimensional case to 1/2 in the multidimensional case, it should be noted that no CFL
condition is associated with the multidimensional numerical method, which implies that the
method is fast compared with conventional difference methods. Computations using CFL
numbers as high as 10–20 (with satisfactory results) have been reported (see Lie et al. [34]).
Computational results for multidimensional hyperbolic systems can be found in [14, 17]
and in Haugse et al. [13].

The purpose of this paper is to device front tracking methods for Hamilton–Jacobi equa-
tions. In the one-dimensional case (see [24]), we simply rely on the equivalence between
(1) and (2) and define a numerical method for (1) by “integrating” the front tracking method
[15, 16]. The resulting numerical method for (1) is well defined and L∞ linearly convergent
toward the unique viscosity solution of the governing problem. The linear convergence rate
follows from the results in [15, 16] or [38] (see also [24]).

The multidimensional case is much more difficult and is the main focus of this paper.
The basis for our numerical methods is the (formal) relation between (1) and the weakly
hyperbolic system (3). The methods that we present can all be written as explicit marching
schemes of the type

un+1
J = un

J − �tHJ , (5)
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where J = ( j1, . . . , jd ) ∈ Zd is a multiindex and HJ is the numerical Hamiltonian that has
to be determined. Typically, HJ is a convex combination of one-dimensional numerical
Hamiltonians H1

J , . . . ,Hd
J .

To construct the numerical HamiltoniansH1
J , . . . ,Hd

J , we first apply a sort of dimensional
splitting to reduce the d × d system of conservation laws (3) to a sequence of (decoupled)
one-dimensional scalar conservation laws of the form

(pi )t + H (p1, . . . , pi , . . . , pd )xi = 0, i = 1, . . . , d, (6)

where p j = p j (x), j �= i , are fixed, possibly discontinuous coefficients. These equations
can all be viewed as one-dimensional scalar conservation laws of the type

vt + f (a, v)x = 0, x ∈ R, t > 0,

where f is some flux function and a = a(x, t) is a given, possibly discontinuous coefficient.
The fact that a(x, t) can be discontinuous makes analysis of numerical methods for such
conservation laws rather difficult. Front tracking for conservation laws with a flux function
that depends discontinuously on the space variable is analyzed in Gimse and Risebro [12],
Klingenberg and Risebro [26, 27], and Klausen and Risebro [25]. Recently some differ-
ence schemes for such conservation laws were proved to be convergent by Towers [47].
Roughly speaking, we shall in this paper build our numerical Hamiltonians H1

J , . . . ,Hd
J

(to be used in (5)) by applying the front tracking method to the scalar conservation laws
in (6).

The rest of this paper is organized as follows: In the next section, we describe the front
tracking algorithm for one-dimensional scalar conservation laws with discontinuous co-
efficients; in particular, we discuss the solution of the Riemann problem. Section 3 first
describes a front tracking method for Hamilton–Jacobi equations in one dimension, then
it details the various numerical methods for multidimensional Hamilton–Jacobi equations
which can be build from the front tracking method. These schemes are then tested on several
problems in Section 4. Finally, we draw some conclusions in Section 5.

2. FRONT TRACKING IN ONE DIMENSION

In this section we describe the front tracking algorithm for one-dimensional conservation
laws in some detail. Therefore we consider the one-dimensional scalar conservation law

vt + f (a(x), v)x = 0, v(x, 0) = v0(x). (7)

Here the unknown v = v(x, t) is a scalar and the “coefficient” a(x) is assumed to be a
bounded, piecewise differentiable function, but not necessarily continuous. We shall always
assume that f is a Lipschitz continuous function.

Front tracking is a method to compute approximate weak solutions to (7). Let first � be
a parameter indicating the accuracy of the approximation, and let v�

0 and a� be piecewise
constant approximations to v0 and a, respectively, such that

v�
0 → v0 and a� → a in L1

loc as � → 0.
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The Riemann problem for (7) is the initial value problem where v0 and a take the form

v0(x) =
{

vl for x ≤ 0,

vr for x > 0,
a(x) =

{
al for x ≤ 0,

ar for x > 0.
(8)

Hence, v�
0 and a� defines a series of Riemann problems located at their discontinuities. If

∂ f/∂v is bounded, then (7) has finite speed of propagation, and the solutions of neighboring
Riemann problems will not interact for small t . Therefore, we can compute the entropy
solutions to the initial Riemann problems, and thereby the solution of (7), with v0 = v�

0,
for sufficiently small t . However, being able to compute the solution of Riemann problems
does not help us to compute the solution past the time where waves from different Riemann
problems interact. Generally, the solution of the Riemann problem (7)–(8) is a function of
x/t and is not always piecewise constant.

Front tracking is a strategy to remedy this. We choose a piecewise constant (in x/t)
approximation v�(x, t) to the solution of the Riemann problem such that

v�( · , t) → v( · , t) in L1 as � → 0.

If we approximate all the initial Riemann problems defined by v�
0 and a� in this manner,

the resulting function will be piecewise constant in x , with discontinuities emanating in
fans from each initial discontinuity. Collisions between these discontinuities will define
new Riemann problems (since v� is piecewise constant). We can approximately solve these
Riemann problems in the same way (giving new discontinuities that move in straight lines)
and thereby continuing the approximation beyond the interaction time. We call the function
defined in this way v� and the discontinuities in v� fronts. The approximation process we
call front tracking.

Note that it is not clear whether we are able to continue the front tracking approximation
up to any prescribed time t (this depends on how we construct the approximate Riemann
solution). Moreover, we must be able to construct an approximate solution of any Riemann
problem arising from collisions.

2.1. The Riemann Problem

When constructing a front tracking algorithm for (7), we must solve two types of Riemann
problems depending on whether al = ar or not. If al = ar , then we have a Riemann problem
for a scalar conservation law. This can be solved by taking envelopes (see e.g., Holden and
Holden [15] for a description of the solution procedure). Note that if f is piecewise linear
and continuous in v, the solution of the Riemann problem will be a piecewise constant
function of x/t .

If al �= ar , the solution of (7)–(8) is more complicated. We need to determine those v

values that can be connected to vl via a Riemann solution containing only waves of negative
speed, and those v values that can be connected to vr via waves of positive speed, and to
determine the limits limx↑0 v(x/t) and limx↓0 v(x/t). We now follow [11] and describe how
the solution can be found.

First we define the functions

hl(v; vl) =




sup

{
g | g continuous and nonincreasing,

g(v) ≤ f (al , v), g(vl) = f (al , vl)

}
for v ≥ vl ,

inf

{
g | g continuous and nonincreasing,

g(v) ≥ f (al , v), g(vl) = f (al , vl)

}
for v ≤ vl

(9)
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FIG. 1. (Left) hl (v, vl ); (right) hr (v; vr ).

and

hr (v; vr ) =




inf

{
g | g continuous and nondecreasing,

g(v) ≥ f (ar , v), g(vr ) = f (ar , vr )

}
for v ≥ vr ,

sup

{
g | g continuous and nondecreasing,

g(v) ≤ f (ar , v), g(vr ) = f (ar , vr )

}
for v ≤ vr .

(10)

Note that hl is nonincreasing and hr nondecreasing. In Fig. 1 we show an example of these
functions, the flux function f is shown in a thin line, and the functions hl,r are shown in a
thicker gray line. Next we define

Hl = {v | f (al , v) = hl(v; vl)},
Hr = {v | f (ar , v) = hr (v; vr )}.

For any ṽr ∈ Hl the Riemann problem

vt + f (al , v)x = 0, v0(x) =
{

vl x < 0,

ṽr x ≥ 0,
(11)

has a solution that consists only of waves of nonpositive speed. Similarly for any ṽl ∈ Hr

the Riemann problem

vt + f (ar , v)x = 0, v0(x) =
{

ṽl x < 0,

vr x ≥ 0,
(12)

has a solution with waves of nonnegative speed only. Next, we observe that the Rankine–
Hugoniot condition implies that, for the solution of (7)–(8),

lim
x↑0

f (al , v(x/t)) = lim
x↓0

f (ar , v(x/t)),

i.e., the flux is continuous across discontinuities in a. This means that the flux value at x = 0
must be given by

hl(·; vl) = hr (·; vr ). (13)
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If the graphs of hl and hr do not intersect, then the Riemann problem has no bounded
solution, and if these graphs intersect, then the flux value determined by (13) is unique. For
the flux functions considered in this paper, we always have an intersection. Once the flux
value at x = 0 has been determined, we choose a ṽr ∈ Hl and a ṽl ∈ Hr such that

hl(ṽr ; vl) = hr (ṽl ; vr ) and |ṽr − ṽl | is minimized. (14)

This is the minimal jump condition taken from [11] (see also Diehl [10]). Note that although
ṽr,l may not be unique (there may be two choices both minimizing the jump), the resulting
solution v(x/t) will be unique almost everywhere. If we also demand, among the possible
solutions to (14), that

|vl − ṽr | and |ṽl − vr | (15)

are minimal, then ṽr and ṽl are unique. Now the solution to the Riemann (7)–(8) can be
found by piecing together the solutions to (11) and (12). Precisely, let v̄l(x/t) denote the
solution to (11) and v̄r (x/t) the solution to (12) where ṽr and ṽl are chosen according to
(14) and (15). Then the solution of (7)–(8) is

v(x/t) =
{

v̄l(x/t) x < 0,

v̄r (x/t) x > 0.

2.1.1. Convex f . If f (a, v) is uniformly convex in v and monotone in a, the above
construction simplifies considerably. Also the front tracking algorithm can be proved to be
well defined. More precisely, from [25] we have the following theorem:

THEOREM 2.1. Assume that a is in L1 ∩ BV and is piecewise C1 with a finite number of
discontinuities. Assume also that v0(x) is such that f (a, v0) is of bounded variation. Then
there exists a unique weak solution u to (7) such that vε → u in L1, where vε solves the
“regularized” problem

{
vε

t + f (aε, vε)x = 0 in R × {t > 0},
vε = v0 ∗ �ε on R × {t = 0}, (16)

where aε = a ∗ �ε and �ε is the usual mollifying kernel with radius ε. Furthermore, u
satisfies the wave entropy condition

sign( fvv)∂x ( fv(a, v)) ≥ K

(
1

t
+ |a′|

)
(17)

in each interval where a′ exists. The constant K depends on f , ‖a‖∞, and v0, but not on
a′. Furthermore if v� denotes the front tracking approximation to v, then

lim
�→0

v� = v in L1
loc.

Also, there are only a finite number of collisions between fronts in v� for all t ∈ [0, ∞〉.
The proof of this theorem can be found in [25]. Here we detail the approximate solution

of the Riemann problem. The assumptions on f imply that for each a there is a unique vT
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such that

fv(a, vT ) = 0.

For simplicity we set vT = 0. Let z(v, a) and b(a) be defined as

z = z(a, v) = sign(v − vT )( f (a, v) − f (a, vT )),

b(a) = f (a, vT ). (18)

Note that since fa �= 0, the mapping b(a) is one to one. Hence, the mapping

(a, v) �→ w = (b, z)

is injective and regular everywhere except for z = 0. Thus the Riemann problem is deter-
mined by two states, wl and wr .

In the following we use the notation fl for f (al , vl), and similarly for other functions
of the left and right states. We say that two states, wl and wr , are connected by an a-wave
if sign(zl) = sign(zr ) and fl = fr ; similarly we say that they are connected by a z wave
if al = ar . The solution of the Riemann problem in the (z, b) plane is depicted in Fig. 2.
To find a particular solution, pick a right state vr and follow the arrows from vl to vr . This
traces out a series of waves, e.g., zaz, and the solution is then a found by connecting the
vl to the state to the right of the first z wave and so on. This diagram is entirely similar to
the corresponding diagrams in [27, 46]. The actual waves occurring in a z wave is found by
solving the scalar Riemann problem with constant a (either al or ar ) and vl and vr given by
the endpoints of the curve. If the solution is determined by a zaz sequence, the first z wave
will have nonpositive speed, a waves will always have zero speed (they are discontinuities
in a(x)), and the second z wave will have nonnegative speed. Note in particular that in the
(z, b) plane, all waves trace curves which are either horizontal lines (z waves) or straight
lines at an angle of 45◦ slope (a waves). Hence if we fix a grid (z, b) = (i�, j�) (for i, j ∈ Z
and some small number � > 0) in the (z, b) plane and if the initial states wl and wr are
points on the grid, then all intermediate states will also be points on the grid. Furthermore,
if we interpolate f (a, v) linearly between grid points, the solution of the scalar Riemann
problems determined by the z waves will consist of piecewise constant functions in x/t

b

vl

za

zaz

b

vl

za

az

zaz

FIG. 2. The solution of the Riemann problem.
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(see, e.g., [16]). Let this interpolation of f be denoted f �. Then the above construction
yields an entropy weak solution to the initial value problem

v�
t + f �(a(x), v�)x = 0, v�(x, 0) =

{
w−1(i�, b(al)), x ≤ 0,

w−1( j�, b(ar )), x > 0,
(19)

for any integers i and j . This solution will be piecewise constant in x/t where w(v�(x, t),
a(x)) will be on the grid for all x and t .

We can also construct the approximation of the initial function v�
0 and the “coefficient”

a� such that

w
(
v�

0(x), a�(x)
)

is on the grid in the (z, b) plane. For a fixed �, we can then solve the initial value
problem

v�
t + f �(a�, v�)x = 0, v�(x, 0) = v�

0(x) (20)

exactly using front tracking (see, e.g., [27]). To do this we must also solve the Riemann
problems where al = ar . This is not difficult, since f is convex in u. Concretely, the solution
of the Riemann problem

ut + f (al , u)x = 0, u0(x) =
{
w−1(i�, b(al)), x ≤ 0,

w−1( j�, b(al)), x > 0,

is straightforward to find: For i �= j set

s(i, j) = f (ak, w
−1(i�, b(al))) − f (ak, w

−1( j�, b(al)))

w−1(i�, b(al)) − w−1( j�, b(al))
.

If i < j , then

u(x, t) =




w−1(i�, b(al)), x ≤ ts(i, i + 1),

w−1(k�, b(al)), ts(k − 1, k) < x ≤ ts(k, k + 1) for k = i + 1, . . . , j − 1,

w−1( j�, b(al)), ts( j − 1, j) ≤ x,

while for i > j the solution is given by

u(x, t) =
{
w−1(i�, b(al)), x < s(i, j)t,

w−1( j�, b(al)), x ≥ s(i, j)t.

This corresponds to taking the lower convex envelope of the flux function between ul and
ur if ul < ur , and the upper concave envelope if ul > ur . When computing, we do not need
to compute w−1, etc., but merely to associate with each front a left and a right state that are
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-5.1

-1.7

1.7

5.1

  0.00  0.33  0.67  1.00

Initial values
Coefficient

-2.8

-0.93

 0.93

2.8
  0.00  0.33  0.67  1.00

Final

  0.00

 0.33

 0.67

 1.00
  0.00  0.33  0.67  1.00

Fronts

FIG. 3. An example of front tracking.

pairs of integers representing the grid coordinates of the state. The conversion to u can then
be done at the end of the computation.

In [27], it is shown that front tracking can be continued up to any predefined time, and
that for each � there will only be a finite number of collisions between fronts in v�.

In Fig. 3 we show the fronts and the initial and final states for the initial value problem
(20) with

f (a, v) =
√

1 + a2 + v2, v0(x) = �2

2
sin(2�x), a(x) = �(1 − cos(2�x)), (21)

and periodic boundary data. In this example we used � = 0.25. Figure 3 shows v�
0 and

a in the lower left corner, and v�(x, 1) in the upper left corner. To the right we see the
fronts in the (x, t) plane. The z waves are shown as solid lines and the a waves as broken
lines.

3. NUMERICAL ALGORITHMS

3.1. One-Dimensional Algorithm

In this section, we recast the front tracking method from the previous section as a method
for solving one-dimensional Hamilton–Jacobi equations with a discontinuous coefficient.
This method will be used as an important building block in the multidimensional algorithm
presented in the next section.
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The relevant initial value problem reads

ut + H (a, ux ) = 0, u(x, 0) = u0(x), (22)

where H (a, p) is assumed to be differentiable.
Setting p = ux and formally differentiating the above problem, we find that p satisfies

the scalar conservation law

pt + H (a, p)x = 0, p(x, 0) = p0(x) := u0x (x). (23)

When a is Lipschitz continuous, we recall that the viscosity solution of (22) is equiva-
lent to the entropy solution of (23). However, when a(·) is discontinuous, the classical
viscosity and entropy solution theories do not apply. Instead, we will rely on the solu-
tion theory developed in [25–27] for scalar conservation laws with discontinuous coef-
ficients. The relevant results from this theory are summed up in Section 2. In particu-
lar, if H is convex, we know that the problem (23) has a unique solution—the so-called
entropy solution—that is the limit of the corresponding regularized solutions. Further-
more, according to recent results of Ostrov [42], if p �→ H (a, p) is convex, we can define
“viscosity solutions” of (22) even when a has a finite number of jump discontinuities.
These are defined as the (unique!) limit of viscosity solutions of the “smoothed”
equations

uε
t + H

(
aε, uε

x

) = 0, aε = a ∗ �ε.

Let p� be the front tracking approximation of (23). This algorithm is viable also as an
algorithm for (22) almost without alterations. To define front tracking for (22), we need to
keep track of the value of the approximate solution u� along each front in p�. Since p� is
piecewise constant, u� will be continuous and piecewise linear between fronts. All fronts
in p� will move with constant speed between collision points, so the position of a front is
given by

x(t) = x0 + s(t − t0),

where (x0, t0) is the starting point of the front. Let (pl , al) and (pr , ar ) denote the left and
right states of the front. Then

u�(x(t), t) = u�(x0, t0) + (t − t0)(spl − H (al , pl))

= u�(x0, t0) + (t − t0)(spr − H (ar , pr )), (24)

because of the Rankine–Hugoniot condition

s(pl − pr ) = H (al , pl) − H (ar , pr ).

In pseudocode, this algorithm is shown in Algorithm 1.
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ALGORITHM 1 (Front Tracking Algorithm for Hamilton–Jacobi Equations).

function [u, x]=fthj1d(u,x ,a,T ,�)
% u: piecewise linear approximation to u0.
% x : the locations of the breakpoints in u0

% and of the discontinuities in a.
% a: piecewise constant approximation to a(x).
%

Find the grid in (z, b) space defined by u, a and �

Solve the initial Riemann problem problems

Find the smallest collision time: tcoll

while (tcoll < T )
Find the u-value at the collision point by (24)
Solve the Riemann problem defined by the collision

Find the smallest collision time: tcoll

end while

Move all fronts x and update the u-values by (24)

Figure 4 shows the front tracking approximation to the “Hamilton–Jacobi version” of
(21), with H (a, p) = f (a, p) and u0(x) = ∫ x

0 v0(�) d�, i.e.,

u0(x) = �

4
(1 − cos(2�x)).

In Fig. 4, to the left we see the initial approximation, in the middle u�(x, 0.5), and to the
right u�(x, 1).

We can modify this algorithm slightly by requesting that the input/output values u be on
a fixed grid xi rather than the u values on the fronts. To do this we define the grid in the
(z, b) plane by combining the grid defined by � by the grid defined by the initial values. This
slight extension, Algorithm 2, is the one we will use in the dimensional splitting algorithm.

3.2. A Godunov-Type Formulation

The method just described is a good method for the one-dimensional problem (22). We
now present a formulation which is easy to use as a building block in the multidimensional

ALGORITHM 2 (Front Tracking Algorithm for Hamilton–Jacobi Equations with a Fixed
Grid {xi }).

function u=grid fthj1d(u,x ,a,T ,�)
% u: piecewise linear approximation to u0.
% a: piecewise constant approximation to a(x).
% x : the grid points.
%

y = x
[u, y]=fthj1d(u,y,a,T ,�)
Find u(xi ) for all i
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FIG. 4. Front tracking for Hamilton–Jacobi equations.

algorithms described in the next section. Namely, we would like to rewrite the method as
an explicit marching scheme of the form

u(·, (n + 1)�t) = u(·, n�t) − �tH(a, u(·, n�t)), n = 0, 1, 2, . . . , (25)

for some numerical Hamiltonian H and time step �t > 0.
Although the front tracking approximation did not use any predefined time step �t , we

can restart the front tracking algorithm at tn = n�t , n = 1, 2, 3, . . . . To this end, let �x be
given and set

pn
j = 1

�x

(
un

(
x j+1/2

) − un
(
x j−1/2

))
,

a j = 1

�x

∫ x j+1/2

x j−1/2

a(x) dx,

a�x (x) = a j , and pn
�x (x) = pn

j for x ∈ [
x j−1/2, x j+1/2

〉
,

where x j = j�x . Let � be some small parameter and define a grid in the (z, b) plane by
combining a regular grid of size � with the grid determined by the points w(p0

j , a j ), as in
Algorithm 2. This grid is the one we use to interpolate H (see Section 2), giving a function
we label H�. For tn ≤ t < tn+1, let un be the front tracking solution of

un
t + H�

(
a�x , un

x

) = 0, un(x, n�t) = un
(
x1/2

) +
∫ x

x1/2

pn
�x (�) d�. (26)

Finally set

pn+1
j = 1

�x

(
un

(
x j+1/2, tn+1 −) − un

(
x j−1/2, tn+1 −))

.

We start this process by setting u0(x) = u0(x). Note that un(x, tn+1) is a piecewise linear
continuous function in x , with break points located at {x j+1/2}. By (24), we directly read
off the value of un+1

j+1/2 from the front located at x j+1/2. Since this is a point of discontinuity
for a�x there will be a front present at this location. If by chance a�x is continuous here,
we can easily add an extra front in the front tracking process.

Remark. Although we have (re)formulated the front tracking method as an explicit
marching scheme (25) and thereby introduced a time step into the method, one should note
that there is no CFL condition associated with (25), i.e., large time steps are allowed.
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3.3. Multidimensional Algorithms

Now we use the Godunov-type method (25) to formulate “large-time-step” methods for
the multidimensional problem (1). For ease of presentation, we shall restrict ourselves to two
space dimensions, but the generalization to three or more dimensions is obvious. Therefore
we study problems of the form{

ut + H (ux , uy) = 0 in R2 × {t > 0},
u = u0 on R2 × {t = 0}, (27)

where the Hamiltonian H is of the types discussed in the previous sections. We can write
(27) as a 2 × 2 system conservation law formally obtained by differentiating (27),

pt + H (p, q)x = 0,
(28)

qt + H (p, q)y = 0,

where (p, q) = (ux , uy) and

(p, q)(x, y, 0) = ((u0)x , (u0)y)(x, y).

As already mentioned, in [36, 22] it is shown that the vanishing viscosity limit solution of
(27) is equivalent to the vanishing viscosity limit solution of (28).

In order to define our scheme, we let � > 0 be some small number. All our computed
quantities will depend on this number, but for simplicity our notation does not always
indicate this dependency. We use a computational grid x j = j�x , yk = k�y, and tn = n�t
for small numbers �x, �y, �t , and integers j, k ∈ Z, n = 0, . . . , N , where N�t = T . To
integrate (28) numerically, we can use dimensional splitting or a direct approach.

3.3.1. Dimensional splitting. Dimensional splitting for (27) is based on the sequential
solution of the two conservation laws in (28) for a time step �t , using the result for one
equation as coefficients in the other. Concretely, this gives the following scheme. First set,

U 0
j+1/2,k = u0

(
x j+1/2, yk

)
, (29)

V 0
j,k+1/2 = u0

(
x j , yk+1/2

)
, (30)

p0
j,k = 1

�x

(
U 0

j+1/2,k − U 0
j−1/2,k

)
, (31)

q0
j,k = 1

�y

(
V 0

j,k+1/2 − V 0
j,k−1/2

)
. (32)

For n ≥ 0, for t in the interval [tn, tn+1〉, and for each k, we let U n
k (t) be the front tracking

solution to (
U n

k

)
t + H�

((
U n

k

)
x , qn

k

) = 0,
(33)

U n
k (x, tn) = U n

j−1/2,k + pn
j,k

(
x − x j−1/2

)
for x ∈ [

x j−1/2, x j+1/2
〉
,

where the functions pn
k and qn

k are defined as

qn
k (x) = qn

j,k

pn
k (x) = pn

j,k

}
for x ∈ [

x j−1/2, x j+1/2
〉
.
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Then we can define

U n+1
j+1/2,k = lim

t↑tn+1

U n
k

(
x j+1/2, t

)
. (34)

Next we set

pn+1
j,k = 1

�x

(
U n+1

j+1/2,k − U n+1
j−1/2,k

)
. (35)

This finishes the first part of the splitting step. As U n was the solution of the first equation
in (28), we let V n denote the solution of the second. Precisely, for t in the interval [tn, tn+1〉
and for each j , define V n

j as the front tracking solution of(
V n

j

)
t + H�

(
pn+1

j ,
(
V n

j

)
y

) = 0,
(36)

V n
j (y, tn) = V n

j,k−1/2 + qn
j,k

(
y − yk−1/2

)
for y ∈ [

yk−1/2, yk+1/2
〉
,

where

pn+1
j (y) = pn+1

j,k

qn
j (y) = qn

j,k

}
for y ∈ [

yk−1/2, yk+1/2
〉
.

Similarly to (34), we now can define V n+1
j,k+1/2 by

V n+1
j,k+1/2 = lim

t↑tn+1

V n
j

(
y j+1/2, t

)
. (37)

To start the next time step, we define

qn+1
j,k = 1

�y

(
V n+1

j,k+1/2 − V n+1
j,k−1/2

)
. (38)

This process is then continued for n = 0, 1, 2, . . . , N − 1, where T = N�t . Now we have
two approximations to the solution of (27), namely U n

j+1/2,k and V n
j,k+1/2. Note that these

are defined on spatial grids which are staggered with respect to each other. In pseudocode
this algorithm is shown in Algorithm 3. We can define the final approximation by nearest-
neighbor linear interpolation between these two grids to the grid defined by the points
(x j , yk). This corresponds to using the update formula

un+1
j,k = 1

4

(
U n+1

j+1/2,k + U n+1
j−1/2,k + V n+1

j,k+1/2 + V n+1
j,k−1/2

)
, (39)

if �x = �y. If we are primarily interested in the solution at T = t , this update formula
does not have to be used at each time step, and we can merely interpolate at the end of the
splitting process where n + 1 = N .

A variant of this method is to update un+1 before setting pn+1 and qn+1 to be used in the
next time step. These are then defined by

pn+1
j,k = 1

�x

(
U n+1

j+1/2,k − U n+1
j−1/2,k

)
,

(40)

qn+1
j,k = 1

�y

(
V n+1

j,k+1/2 − V n+1
j,k−1/2

)
,

where we now set U n
j+1/2,k and V n

j,k+1/2 to be the values of the approximation un
j,k found by
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ALGORITHM 3 (Dimensional Splitting/Front Tracking Algorithm Hamilton–Jacobi
Equations).

function [U, V ]=dimsplit(U ,V ,x ,y,T ,�t ,�)
% U ,V : the initial values, cf.,(29), (30).
% (x j , yk): the grid points, 1 ≤ j ≤ N , 1 ≤ k ≤ M .
% �t : the time step.
%

t = 0
while t < T ,

for j = 1 : N ,
for i = 1 : M ,

ai = (
Vj,i+1/2 − Vj,i−1/2

)
/�y

ui = U j+1/2, j

end for

U·, j = grid fthj1d
(
u,a,x·+1/2,�t ,�

)
end for

for k = 1 : M ,
for i = 1 : N ,

ai = (
Uk+1/2,i − Uk−1/2,i

)
/�x

ui = Vk,i+1/2

end for

Vk,· = grid fthj1d
(
u,a,y·+1/2,�t ,�

)
end for

t = t + �t
end while

nearest-neighbor linear interpolation, i.e.,

U n
j+1/2,k = 1

2

(
un

j,k + un
j+1,k

)
,

(41)

V n
j,k+1/2 = 1

2

(
un

j,k + un
j,k+1

)
.

We remark that this interpolation is quite simplistic and can probably be improved upon. We
call this method dimensional splitting with restarting, and it is summarized in Algorithm 4.
In this algorithm, the interpolation steps can be done in a variety of ways. For simplicity, we
have used a linear interpolation between nearest neighbors (cf., (40)), but it would probably
be better to use a (W)ENO-type interpolation.

3.3.2. A direct method. Rather than solve the p equation and the q equation sequentially,
we can solve both for U n

k and V n
j using the values from the previous time step as coefficients.

This we call a direct method. The initial values are defined as before, (31), (32). For
t ∈ [tn, tn+1〉, we define U n

k and V n
j to be the front tracking solutions of(

U n
k

)
t
+ H�

((
U n

k

)
x
, qn

k

) = 0,
(42)

U n
k (x, tn) = U n

j−1/2,k + pn
j,k

(
x − x j−1/2

)
for x ∈ [

x j−1/2, x j+1/2
〉
,
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ALGORITHM 4 (Dimensional Splitting/Front Tracking with Restarting).

function u=dimsplit restart(u,x ,y,T ,�t ,�)
% u: the initial values at (x j , yk).
% (x j , yk): the grid points, 1 ≤ j ≤ N , 1 ≤ k ≤ M .
% �t : the time step.
%

t = 0
while t < T ,

Find U and V from u by interpolation, cf., (41)
for j = 1 : N ,

for i = 1 : M ,
ai = (Vj,i+1/2 − Vj,i−1/2)/�y
vi = Ui+1/2, j

end for
U·, j = grid fthj1d(v,a,x·+1/2,�t ,�)

end for

for k = 1 : M ,
for i = 1 : N ,

ai = (Uk+1/2,i − Uk−1/2,i )/�x
vi = Vk,i+1/2

end for

Vk,· = grid fthj1d(v,a,y·+1/2,�t ,�)
end for

Find u from U and V by interpolation, cf., (39)
t = t + �t

end while

(
V n

j

)
t + H�

(
pn

j ,
(
V n

j

)
y

) = 0,
(43)

V n
j (y, tn) = V n

j,k−1/2 + qn
j,k

(
y − yk−1/2

)
, for y ∈ [

yk−1/2, yk+1/2
〉
.

We can use either U n or V n as an approximation to u, or use the interpolation defined by
(39). We can define pn+1 and qn+1 using (40). This method is then called a direct method
with restarting.

Remark. The reader should be cautioned that in order to keep the presentation simple,
our notation is somewhat misleading. The functions denoted “H�” in, e.g., (43) and (42)
are not the same function! But rather two different piecewise linear approximations of H .
Remember that when doing front tracking for, e.g., (43), we use a piecewise linear (in q)
and piecewise constant (in x) approximation to H (p(x), q). This approximation depends
on �, so that the distance between the interpolation points tends to zero as � → 0, as well
as on the initial values q(x, 0) and the coefficients p(x). Since only � is the same for (43)
and (42), H� in (43) and (42) are not the same, nor are they the same for different j and k.
The same also applies to the dimensional splitting equations (33) and (36).

Note that none of the methods we present are monotone. This makes a convergence
analysis complicated, and we have not been able to prove that the methods produce a
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sequence of approximate solutions that converges to the unique viscosity solution. However,
the numerical experiments indicate that the approximations all converge to the viscosity
solution.

4. NUMERICAL EXAMPLES

To test the above methods, we have compared them with several other methods: the Lax–
Friedrichs method, the Engquist–Osher scheme, and the relaxation method by Jin and Xin
[22], more precisely the method called Scheme III. This method is based on replacing (28)
with the system

pt + wx = 0,

qt + wy = 0,

wt + a(px + qy) = −1

ε
(w − H (p, q)), (44)

ut + w = 0,

w(x, 0) = H (p0, q0),

where ε is a (very) small parameter. For the implementation of Scheme III, we followed the
recipe in [22]. The Lax–Friedrichs scheme we used is given by

un+1
j,k = 1

4

(
un

j−1,k + un
j+1,k + un

j,k−1 + un
j,k+1

) − �t H

(
un

j+1,k − un
j−1,k

2�x
,

un
j,k+1 − un

j,k−1

2�y

)
.

(45)

Finally the Engquist–Osher scheme reads

p1 = 1

�x

(
un

j,k − un
j−1,k

)
, p2 = 1

�x

(
un

j+1,k − un
j,k

)
,

q1 = 1

�y

(
un

j,k − un
j,k−1

)
, q2 = 1

�y

(
un

j,k+1 − un
j,k

)
,

(46)

un+1
j,k = un

i, j − �t


H (p1, q1) +

p2∫
p1

min

(
∂ H

∂p
(p, q1), 0

)
dp

+
q2∫

q1

min

(
∂ H

∂q
(p1, q), 0

)
dq


.

Details on the implementation of front tracking for one-dimensional Hamilton–Jacobi equa-
tions can be found in [24], and for details of implementation of front tracking and dimen-
sional splitting, see [17, 18, 44]. In the numerical examples we use all our methods: (39)
and (34)–(37), as well as the method with restarting (40) and (42)–(43). Furthermore, when
applicable, we used Strang splitting, i.e., we start and finish with (34) using a time step
�t/2.

In our first two examples we use the convex Hamiltonian

H (p, q) =
√

1 + p2 + q2. (47)
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FIG. 5. (Left) Scheme III; (right) dimensional splitting.

EXAMPLE 1. Our first example is taken from [22]. The initial data is given by

u0(x, y) = 1

4
(cos(2�x) − 1)(cos(2�y) − 1) + 1, (48)

for x and y in the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and we use periodic boundary data. The
exact solution is unknown, and as a reference solution we used an approximation computed
by the Engquist–Osher scheme with �x = �y = 1/1024. We calculated1 the approximate
solutions until t = 0.6, at this time the surface had moved down and a sharp peak had
formed. In Fig. 5 we show solutions computed on a 50 × 50 grid by Scheme III and by
dimensional splitting using CFL = 5. When doing dimensional splitting, both the quality
of the solution and the CPU time depend on the parameter �. In order to avoid too many
parameters, we set � = 2

√
min(�x, �y).

In Table I we show the supremum errors and the CPU time (in seconds) for dimensional
splitting as well as for Scheme III, the Engquist–Osher scheme, and the Lax–Friedrichs
scheme on several grid sizes (indicated by N in the table). The most salient feature of this
table is that the error and the CPU time for dimensional splitting seem to be independent
of the CFL number. The Lax–Friedrichs scheme was very fast but produced much larger
errors than the other schemes. We also remark that the CPU time does not decrease much
by choosing larger CFL numbers. The reason for this is that although we take larger time
steps, the number of Riemann problems to solve during each time step grows with the time
step.

Figure 6 shows (the logarithms of) the supremum errors for the various methods as a
function of grid size, as well as the straight lines obtained by a least-squares linear fit.
From this table we see that for this problem, all the methods have numerical convergence
rates between 1/2 and 1. On a given grid, the front tracking/dimensional splitting approach
compares favorably with the three other schemes, and we note that the error is not very
sensitive to the choice of CFL number.

EXAMPLE 2. The errors produced by dimensional splitting seem to be quite insensitive
to the choice of �t . Our next example investigates this feature closer. We use the same

1 All computations were done on a PowerBook G3, 500 MHz, and the CPU times reported include only the
computations, not the time used for initializations and memory allocations. All algorithms were coded in the “C”
programming language and compiled with Metrowerks CodeWarrior 6.0 with optimization level 2.
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TABLE I

100 × l∞ Error and CPU Time for Example 1

Dimensional splitting–front tracking

CFL = 5 CFL = 10 CFL = 15 Scheme III Lax–Friedrichs Engquist–Osher

N l∞-error Time l∞-error Time l∞-error Time l∞-error Time l∞-error Time l∞-error Time

16 1.83 0.05 5.01 0.03 31.48 0.02 4.13 0.43 7.06 0.01 4.43 0.10
32 0.82 0.28 1.38 0.18 2.47 0.15 2.66 1.88 3.80 0.01 3.06 0.27
64 0.53 2.0 0.53 1.37 1.13 1.08 1.09 13.17 2.31 0.30 1.78 7.62

128 0.25 14.75 0.29 10.20 0.35 8.67 0.74 93.28 0.99 2.00 0.91 51.50
256 0.16 112.75 0.16 80.92 0.22 70.38 0.53 654.57 0.41 15.73 0.40 416.37

Hamiltonian as before (see (47)), but the initial function is now given by

u0(x, y) =
{

r − 0.4, r ≤ 0.4,

0.4 − r, r ≥ 0.4,
r =

√
x2 + 0.4y2, (49)

and we use periodic boundary data on [−1, 1] × [−1, 1]. Figure 7 shows the initial data and
the approximate solution at t = 1 produced by dimensional splitting on a 64 × 64 grid with
CFL number 2. Figure 8 shows contour plots of the corresponding p and q produced by the
dimensional splitting algorithm on a 64 × 64 grid with CFL number 5. Notice that these
are somewhat oscillatory in the vicinity of the singularities. Fortunately, these oscillations
are not as prominent in u. To check the errors produced by dimensional splitting, we used a
reference solution computed by the Engquist–Osher scheme on a 1024 × 1024 grid. Table II
shows the l∞ errors made by dimensional splitting on various grids with CFL numbers 2, 5,
and 25. This table also shows errors produced by dimensional splitting with restarting (see
(40)), as well as those produced by the Lax–Friedrichs scheme and by the Engquist–Osher
scheme. We remark that the errors produced by dimensional splitting in this example were
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FIG. 6. A log–log plot of the supremum errors versus grid size for Example 1.
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FIG. 7. Example 2. Dimensional splitting on a 64 × 64 grid with CFL = 2. (Left) u0(x, y); (right) u(x, y, 1).

of roughly the same order as those produced by the Lax–Friedrichs scheme and larger than
those produced by the Engquist–Osher scheme. We see, however, that the error is not very
sensitive to the choice of CFL number. With CFL number 25, dimensional splitting still
produces acceptable results. If we were interested in the derivatives, we would perhaps
not find the accuracy in p and q quite satisfactory for this large CFL number (see Fig. 8).
Perhaps the most pertinent feature of Table II is that dimensional splitting with restarting
does not seem to converge for large CFL numbers. We think that this is caused by the simple
linear interpolation we use and suspect that restarting would work better if we had used a
ENO-type interpolation, i.e., avoided smearing the front in the coefficients. See [22] for a
discussion of a similar phenomenon.

EXAMPLE 3. To test dimensional splitting on a nonconvex case, we chose an example
taken from Osher and Shu [41]. The relevant Hamiltonian reads

H (p, q) = sin(p + q). (50)

The initial function is given by

u0(x, y) = �(|y| − |x |). (51)

We compute approximations in the square [−1, 1] × [−1, 1] and impose periodic boundary

FIG. 8. Dimensional splitting on a 64 × 64 with CFL = 5. (Left) p(x, y, 1); (right) q(x, y, 1).
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TABLE II

100 × l∞ Error for the Initial Value Problem (49)

CFL = 2 CFL = 5 CFL = 25

N Dimsplit Restart Dimsplit Restart Dimsplit Restart LF EO

16 5.26 9.87 5.25 5.32 5.67 5.63 17.36 5.17
32 4.80 6.68 3.46 3.67 6.05 6.05 10.98 3.44
64 4.89 4.08 4.22 2.41 4.45 5.17 6.53 2.13

128 3.12 2.38 2.62 1.36 3.38 13.21 3.82 1.24
256 1.45 1.32 1.08 0.75 2.89 771.43 2.20 0.64
512 1.08 0.78 0.92 0.57 2.42 † 1.25 0.25

conditions. A version (without periodic boundary conditions) of this example was tested on
the Lax–Friedrichs scheme and on a number of ENO-type schemes in [41]. This problem is
inherently one dimensional; if we introduce coordinates (�,�) by x = � + � and y = � − �,
(27) and (51) reads

ut + sin(u� ) = 0,
(52)

u(�,�, 0) = �(|� − �| − |� + �|),

and the periodic boundary condition says that u(� + 4,�, t) = u(�,�, t) for all t . There-
fore, to compute a reference solution we used one-dimensional front tracking for (52),
Algorithm 2, using � = 2�/

√
1024 and 1024 grid points in the interval [0, 4], for � =

0, 4/1024, 8/1024, . . . , 4. In Fig. 9 we show the reference solution, as well as the approxi-
mation computed by the direct method with a CFL number 2 on a 32 × 32 grid. We show the
results of this comparison in Table III. Our results clearly show that this example was more
challenging for all the methods. Of our methods, the dimensional splitting with restarting
and the direct method seem to produce the smallest errors, and these methods are compara-
ble to the Engquist–Osher method, both of which regard errors and CPU time. We note that
in this case, a CFL number of 5 was “too large” for the front tracking methods, and other
experiments indicated that for nonconvex Hamiltonians, the large-step methods converged
very slowly for CFL numbers larger than 2–3.

FIG. 9. (Left) The reference solution; (right) an approximation computed by the direct method.
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TABLE III

100 × l∞ Error for the Initial Value Problem (51)

CFL = 2 CFL = 5

N Dimsplit Restart Direct Dimsplit Restart Direct LF EO

16 131.14 70.80 63.53 68.45 58.41 64.73 125.40 74.94
32 98.06 45.11 40.63 84.65 53.66 49.90 86.01 51.71
64 88.40 29.29 26.89 85.13 45.04 51.60 58.60 34.64

128 88.36 18.96 17.66 68.89 43.82 60.95 39.72 23.16
256 85.64 12.42 13.87 67.03 46.05 51.97 26.76 15.44

5. CONCLUSIONS

We have devised and implemented a family of numerical methods for solving the initial
value problem for the Hamilton–Jacobi equation

ut + H (Dx u) = 0.

The methods are all based on solving the d conservation laws (with discontinuous coeffi-
cients)

(p1)t + H (p1, p2, . . . , pd )x1 = 0
. . .

(pd )t + H (p1, p2, . . . , pd )xd = 0

using a front tracking method. This can be done sequentially, in which case we label the
method dimensional splitting, or “in parallel,” i.e., use of the same coefficients for all
equations. The pertinent feature of our methods is that there is no intrinsic CFL condition
associated with the time step, so we can choose our time step independently of other
parameters.

We found that these method all produce results comparable to standard methods. We
have not been able to show theoretical convergence of these types of methods, except in
the (trivial) one-dimensional case (see [24]), but our examples indicate that the methods
all converge to the viscosity solutions. Moreover, the errors were found to be largely in-
dependent of the CFL number, something also found for dimensional splitting for scalar
conservation laws (see [34]).

The numerical methods developed herein can be easily extended to yield large time-step
methods for Hamilton–Jacobi equations with a zeroth order term

ut + H (Dx u) = G(x, t, u)

by solving sequentially the equations

ut + H (Dx u) = 0 and ut = G(x, t, u)

using the methods presented here for the first equation. In Jakobsen et al. [20], it was shown
that the temporal error associated with the above “source term” splitting is linear in the
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splitting (time) step, and as such the splitting can be used in conjunction with the methods
proposed herein without loss of accuracy.

It seems to be very difficult to generalize methods based on dimensional splitting to
unstructured meshes. For non-Cartesian structured meshes, e.g., curvilinear, a generalization
is possible. Then one would have to solve one-dimensional Hamilton–Jacobi equations of
the type

ut + H (x, ux ) = 0

by front tracking. Here the x dependency in H comes from geometrical properties of the
mesh and makes front tracking more complicated, though by no means impossible (see Lie
[33]).
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