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Explicit filtering has the effect of reducing numerical or aliasing errors near the grid scale 
in large eddy simulation (LES). We use a differential filter, namely the inverse Helmholtz 
operator, which is readily applied to unstructured meshes. The filter is invertible, which 
allows the sub-filter scale (SFS) stresses to be exactly reconstructed in terms of the filtered 
solution. Unlike eddy viscosity models, the method of filtering and reconstruction avoids 
making any physical assumptions and is therefore valid in any flow regime. The sub-
grid scale (SGS) stresses are not recoverable by reconstruction, but the second-order finite 
element method used here is an adequate source of numerical dissipation in lieu of an SGS 
model. Results for incompressible turbulent channel flow at Reτ = 180 are presented which 
show that explicit filtering and exact SFS reconstruction is a significant improvement over 
the standard LES approach of implicit filtering and eddy-viscosity SGS modelling.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

LES is a widely-used technique for high-fidelity numerical simulation of turbulent flows. By resolving large-scale flow 
features and modelling the effects of smaller scales, detailed studies of flows can be carried out without the extreme 
computational cost of direct numerical simulation (DNS). The separation of large and small scales is achieved by filtering 
the Navier–Stokes equations with a spatial filter operator, resulting in the appearance of a closure term representing the 
divergence of the unresolved stresses. This closure term is unknown and must be modelled somehow using information from 
the resolved scales. Considerable efforts have been expended on the ‘closure problem’ as surveyed by, for example, [1–3]. 
This paper is not concerned with model development or assessment, but with the reduction of numerical errors in solutions 
of the filtered Navier–Stokes equations.

Before proceeding we must distinguish between two types of filtering in LES. Firstly, the numerical discretisation and 
mesh truncate the unknown exact solution, acting like an implicit filter with a cutoff lengthscale (denoted �) determined 
by the mesh resolution, resulting in a closure term representing scales below the grid scale: i.e., the sub-grid scale (SGS) 
stresses, denoted τSGS . Generally the exact form of the implicit filter operator is not known (although some have explored 
this topic [4–6]). Secondly, a filter operator with a cutoff lengthscale or ‘width’ �̃ > � may be explicitly applied to the 
discrete equations. The filter is usually an integral operator with a specified kernel such as a Gaussian function. Then an 
additional closure term appears, representing grid-resolvable scales below the filter width �̃. These are called the sub-filter-
scale (SFS) stresses, denoted τSFS (resolved SFS (RSFS) is sometimes used in the literature [7]).
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It may seem that additional modelling difficulties are introduced by explicit filtering, since both τSFS and τSGS have to 
be modelled. However, it is possible to exactly reconstruct τSFS in terms of the well-resolved wavenumbers by means of 
an invertible filter. Germano [8] proposed using a differential filter, namely the inverse Helmholtz operator, for which an 
exact inverse (defiltering) operator exists, enabling the SFS stresses to be exactly reconstructed. Exactly invertible filters 
were also investigated by Carati et al. [9], who proved that for any symmetric filter in one dimension, an exact expression 
could be derived as an infinite series expansion. They extended the idea to three dimensions by means of tensor products. 
Jameson also derived an exact expression for the SFS stresses in the compressible Navier–Stokes equations by using a 
generic invertible filter in the definition of the Favre-averaged variables [10]. Closely related methods are the approximate 
deconvolution (AD) [11] and velocity estimation techniques [12], whereby the filter is approximately inverted to generate a 
closure model for LES. These approaches have been successfully applied in a range of test cases [5,13,14].

A criticism leveled at exact reconstruction is that nothing is changed by explicitly filtering and adding back in exactly 
what was removed [5,9,15,16]. Certainly, this is true for the continuous system of PDEs. However, the discretised system has 
a distinct difference related to resolution of the turbulence spectrum. Typical numerical schemes exhibit increased dissipa-
tive and dispersive errors at the smaller scales close to �. Explicit filtering is useful as a means of reducing the errors [17,
18]. If the explicit filter width/cutoff frequency is chosen such that poorly resolved small scales/high frequencies (dependent 
on the numerical scheme [19]) are filtered out, then the remaining spectrum contains only well-resolved wavenumbers. The 
reconstructed SFS stress term only contains well-resolved wavenumbers [5,11]. Thus the procedure is akin to dealiasing and 
other filter-based stabilisation techniques. Furthermore, grid-converged LES solutions can be obtained by holding �̃ constant 
and refining �, such that the modelling error is constant while the discretisation error is converged [20,21].

The inverse Helmholtz filter has been used by several researchers for LES [21–25]. Implementation of the filter in complex 
domains and on unstructured meshes is trivial because one simply needs to discretise and solve an elliptic equation using 
the existing numerical architecture. By contrast, integral filters, which essentially perform a weighted average over a patch 
of cells surrounding a node, are somewhat complicated to construct on unstructured meshes and in parallelised codes. 
Methods for constructing integral filters on unstructured meshes rely on complicated logic [26,27].

Exact reconstruction of the SFS stresses does not account for the SGS stresses, which are not directly recoverable from the 
resolved scales [9,28]. Additional modelling is required, for example with an eddy viscosity model [9,16]. We do not employ 
a model, but rely on numerical dissipation contributed by the second-order accurate stabilised finite element method used 
to discretise the equations. Approximation of the SGS stresses by numerical dissipation is broadly known as implicit LES 
(ILES). There is no guarantee that numerical dissipation represents the SGS dynamics [28], although it is an attractive 
approach for its simplicity and avoidance of the eddy-viscosity assumption.

In this paper, we apply explicit filtering and exact SFS reconstruction to LES of incompressible turbulent channel flow 
at Reτ = 180. Results show that the method leads to significantly improved predictions of bulk quantities (including skin 
friction) and first- and second-order flow quantities compared to the dynamic Smagorinsky model, no model, and explicit 
filtering only. The method does not rely on restrictive or inaccurate assumptions, such as the Boussinesq hypothesis or 
having the filter width sufficiently far down the inertial range, so it can be applied to any flow. It is formulated for arbitrary 
unstructured meshes and has the potential to improve the accuracy of LES of complex flows.

This paper is organised as follows. Section 2 introduces the filtering and reconstruction techniques. The exact reconstruc-
tion is derived and the commutation error is examined. Boundary conditions and similarities to other models are described. 
In Section 3, the stabilised finite element method is outlined and the numerical discretisation of the filter is presented. 
Section 4 presents the results of the turbulent channel flow validation case. Finally, Section 5 contains a discussion of the 
findings, conclusions and future work.

2. Explicit filtering and exact reconstruction of the SFS stresses

2.1. Filtered Navier–Stokes equations

We consider the incompressible Navier–Stokes equations for velocity u = {u, v, w} and pressure p in a domain � ∈ R3

with a boundary �, at a sufficiently high Reynolds number Re that a turbulent energy cascade is present in the flow. Let us 
assume that the equations are discretised on a mesh that does not resolve the smallest scales of motion in the turbulent 
cascade, i.e. the computation is an LES rather than a DNS. The smallest scales are implicitly filtered out, and we denote the 
implicitly filtered solution by u. The implicitly filtered Navier–Stokes equations are

∂u

∂t
+ ∇ · (uuT ) + 1

ρ
∇p − ν∇2u = 0,

∇ · u = 0. (1)

The unknown closure term uuT is replaced by

uuT = u uT + τSGS, (2)
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Fig. 1. Energy spectrum in LES with implicit filtering only.

where τSGS is the sub-grid scale (SGS) stress tensor. Therefore, in implicitly filtered LES we are solving

∂u

∂t
+ ∇.(u uT ) + 1

ρ
∇p − ν∇2u = ∇ · τSGS. (3)

The energy spectrum in an LES is schematically represented in Fig. 1. All numerical schemes exhibit an increase in 
dissipative and dispersive errors near the grid cutoff wavenumber kC (marked by a vertical dashed line). The presence of 
these errors causes the LES spectrum (fine dashed line) to fall off more sharply than the true spectrum (solid line) before 
the cutoff wavenumber. The region marked ‘num. error’ represents the missing energy that could theoretically be resolved 
on the grid by a ‘perfect’ scheme. The effect of the subgrid scales (the region marked SGS) on the resolved scales is usually 
approximated by a model, e.g. an eddy viscosity model to provide dissipation. If they a numerical source of dissipation is 
used in place of a model, such as a monotone upwind scheme, the term implicit LES (ILES) is often employed [29].

Now we consider the effect of applying an explicit filter to the discretised equations. Adopting the standard notation, an 
integral filter operator G is applied to u:

ũ = G[u] =
∫
�

G(x0 − x)u(x, t)dx. (4)

The filter kernel G is essentially a weighted average function over a local region characterised by a filter width, denoted �̃. 
Common examples are Gaussian and box (top-hat) functions. Applying the filter to the governing equations (1):

∂ũ

∂t
+ ∇.(˜u uT ) + 1

ρ
∇ p̃ − ν∇2ũ = ∇ · τ̃SGS,

∇ · ũ = 0, (5)

where for simplicity it is assumed that filtering commutes with derivative operators. By making the substitution u = ũ + u′ , 
the closure term ˜u uT can be expanded as:

˜u uT = ˜

ũ ũ
T + ˜ũ u′ T + ˜

u′ ũ
T + ˜u′ u′ T . (6)

We can define a sub-filter-scale (SFS) stress tensor by the double decomposition:

τSFS = ũuT − ˜

ũ ũ
T

= ˜ũ u′ T + ˜

u′ ũ
T + ˜u′ u′ T . (7)

The first two terms are the cross terms and the last is the SGS Reynolds stress term. With this definition, the filtered 
momentum equation is

∂ũ

∂t
+ ∇.(

˜

ũ ũ
T
) + 1

ρ
∇ p̃ − ν∇2ũ = ∇ · τ̃SGS + ∇ · τSFS. (8)

This form has the advantage that the advection term does not contain frequencies above the cutoff of the filter. However, 
it precludes the use of splitting schemes for the advection term. It also prevents the use of energy-stable skew-symmetric 
schemes, as noted by various authors [20,30], due to the fact that∫

ũi
∂

˜ũi ũ j

∂x j
d� �= 0. (9)
�
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Fig. 2. Energy spectrum in LES with implicit and explicit filtering and SFS stress reconstruction.

When using the differential filter (see below), energy stability can be proven for constant filter width [31] and (in a non-
standard Sobolev norm) spatially varying filter with a restriction on the second derivative of �̃ [30].

To avoid these difficulties, we employ the Leonard decomposition:

τSFS = ˜u uT − ũ ũ
T
. (10)

Now the filtered momentum equation reads

∂ũ

∂t
+ ∇.(̃u ũ

T
) + 1

ρ
∇ p̃ − ν∇2ũ = ∇ · τ̃SGS + ∇ · τSFS, (11)

and the advection term can be discretised with a split or skew-symmetric scheme. Although the explicitly filtered velocity 
contains only frequencies up to kF , the advection term can have higher frequencies. However, if the filter cutoff frequency 
satisfies kF ≤ kC /2 (equivalently �̃ ≥ 2�) then the whole spectrum of the advection term is resolvable on the mesh.

Unlike the SGS stresses, the resolved SFS stresses – those lying between the grid and filter cutoff frequencies kC and kF
– are recoverable from u, either by exact or AD procedures. The advantage of doing so is that this crucial portion of the 
turbulent energy spectrum is transferred to lower wavenumbers which are less affected by numerical errors. Fig. 2 shows 
an improved spectrum (dotted line) obtained by explicit filtering and reconstruction of the SFS stresses (so-called soft 
deconvolution [1]). Note that the energy in the resolved wavenumbers close to kF is closer to the true turbulent spectrum.

There is a growing literature on the benefits of explicit filtering on error control in LES [7,17,18,21,32–34], although 
crossover into practical applications has been limited thus far. By refining the mesh resolution and holding �̃ (resp. kF ) 
constant, it is possible to demonstrate grid convergence of LES solutions. In theory, the greater the ratio γ = kC /kF (γ =
�̃/� in the physical domain), the smaller the effect of numerical errors on the resolved scales. Nevertheless, by setting γ
large, one reduces the richness of information in the ‘usable’ solution. Guidance on the optimal ratio between kC and kF can 
be found by looking at the departure of the numerical wavenumber from the true wavenumber for the numerical scheme 
under consideration. One can also observe the effect on the accuracy of LES results, as is done in this paper.

Aside from these considerations, the grid cutoff is still required to be sufficiently far down in the inertial range that the 
SGS stresses can be well-approximated by a subgrid model or numerical dissipation. However, it is worth noting that the 
SGS stresses contain wavenumbers no lower than kC . Thus, if the explicit filter transfer function is close to zero at kC :

τ̃SGS = ũuT − ˜u uT ≈ 0. (12)

2.2. Invertible filter

For simplicity of notation, we now drop the double-filtered notation ũ and denote the implicitly and explicitly filtered 
solutions by u and ũ = G[u] respectively. The filter operator (4) was of integral type. However, in this paper we consider a 
differential filter, namely the inverse Helmholtz differential operator:

ũ = G[u] = (1 − α2∇2)−1u. (13)

The filter can equivalently be expressed as an integral (convolution) operator with the kernel

G(x − x′) = 1

4π�̃2

exp(−|x − x′|/�̃)

|x − x′| . (14)

Fig. 3 shows the filter kernel function for r = |x − x′| ∈ [−1.5, 1.5] (note the singularity at r = 0 is differentiable). The 
smoothing parameter α is related to the filter width �̃. Note that α can be chosen freely and any positive value of α has 
a smoothing effect. For example, a value of α2 = �̃2

/40 can be derived by equating the second moment of the filter kernel 
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Fig. 3. Kernel function of the inverse Helmholtz filter.

Fig. 4. Transfer function of the inverse Helmholtz filter.

to the second moment of the spherical top-hat kernel [26]. In this paper we use the definition α2 = �̃2
/24 so that (13)

approximates the Gaussian filter of width �̃. The filter width is defined as a positive constant multiplied by the element 
size: �̃ = C�. As a consequence of the freedom of choice of α, C can be less than one. This stands in contrast to integral 
filters, where C ≥ 2 because of the Nyquist theorem. We use Deardorff’s [35] general definition of element size in three 
dimensions: � = 3

√
Vol.

The Fourier transform of the differential filter (13) is defined by

˜̂u(k) = Ĝ(k)û(k) = 1

1 + α2k2
û(k), (15)

which is plotted in Fig. 4 for positive k. Also shown (vertical dashed line) is the cutoff frequency kF , defined as the 
wavenumber satisfying Ĝ(kF ) = 0.5. Clearly the filter has a broadband effect but is stronger at higher wavenumbers.

The existence of an inverse (defiltering) operator is evident from (13):

Q = G−1 =
(

1 − α2∇2
)

. (16)

It was noted by Germano [36] that (13) and (16) could be used to derive an exact expression for the resolved SFS stress 
tensor (10). The derivation begins by expressing velocity products in terms of filtered velocities:

uuT = (̃u − α2∇2ũ)(̃u − α2∇2ũ)T , (17)

ũ ũT = G [̃u ũT ] − α2∇2(G [̃u ũT ]). (18)
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Applying the filter to (17):

G[uuT ] = G[(̃u − α2∇2ũ)(̃u − α2∇2ũ)T ]
= G [̃u ũT − α2(̃u ∇2ũT + ũT ∇2ũ) + α4∇2ũ ∇2ũT ]. (19)

Now the SFS stress tensor is

τSFS = G[−α2(̃u ∇2ũT + ũT ∇2ũ) + α4∇2ũ ∇2ũT ] + α2∇2(G [̃u ũT ]). (20)

If we assume that α is constant and that filtering commutes with differentiation (these are in fact the same criterion), then 
the last term in (20) can be rewritten:

τSFS = G[−α2(̃u ∇2ũT + ũT ∇2ũ) + α4∇2ũ ∇2ũT + α2∇2(̃u ũT )]. (21)

The product rule of differentiation leads to the following identity:

∇(a(x)b(x)) = a∇b + b∇a ∴ ∇2(a(x)b(x)) = 2∇a∇b + a∇2b + b∇2a. (22)

Using this identity allows (21) to be simplified:

τSFS = G[2α2∇ũ ∇ũT + α4∇2ũ∇2ũT ]. (23)

Therefore, the exact SFS stress is obtained by solving the elliptic equation

QτSFS = (1 − α2∇2)τSFS = 2α2∇ũ ∇ũT + α4∇2ũ ∇2ũT , (24)

which is in fact six scalar equations for the six independent components of τSFS . Equation (24) requires boundary conditions 
to be specified; this is dealt with in Section 2.5. Note that, by inspection, τSFS is non-negative. Therefore, no backscattering 
of energy from the SFS to the resolved scales is permitted: the method acts only to drain energy from the resolved scales.

Although (24) is somewhat expensive to solve, so are some AD models, which use repeated filtering to obtain approxi-
mations to the inverse operation via the van Cittert procedure. For example, Stolz et al. [11] proposed using five levels of 
filtering; for three velocity components that requires 15 applications of the filter. The issue is compounded if the compress-
ible Navier–Stokes equations are being solved, with five variables to contend with.

2.3. Commutation error

In the derivation of (24), it was assumed that α was constant. In general, the computational mesh will have spatially 
varying resolution, so it is desirable to allow the filter width to vary, rather than specifying a single filter width across 
the entire mesh. However, a commutation error is introduced because filtering does not commute with derivative operators 
when the filter width varies. For example,

∇(G[u]) �= G[∇u], (25)

and the difference is the commutation error between the filter and gradient operators.
Adding G[α2∇2 (̃u ũT )] to the first term in (20) and applying the identity (22), then subtracting G[α2∇2 (̃u ũT )] from the 

final term in (20), leads to an expression for the SFS stresses without assuming α = constant:

τSFS = G[2α2∇ũ ∇ũT + α4∇2ũ ∇2ũT ] + ε,

ε = α2∇2(G [̃u ũT ]) − G[α2∇2(̃u ũT )]. (26)

The term ε is recognised as the commutation error between filtering and the operator α2∇2. The error is O(�̃2
), and could 

thus be neglected when using a second-order accurate numerical method, except for the fact that the second term is also 
O(∇2(α2)). If the mesh size is varied linearly in the domain interior, i.e. �̃ = O(x) away from boundaries, then ∇2(α2) =
O(1) and ε = O(α2). At the boundary the mesh size is discontinuous and a boundary commutation error is committed. 
This order-of-magnitude analysis of the commutation error suggests that by carefully constructing the mesh so that element 
size varies smoothly and no faster than linearly, then the interior error might be safely ignored. Alternatively, the full 
expression for the SFS stresses including commutation error terms (26) could be included in the flow solver. However, the 
computational expense of additional filter operations is unattractive.

2.4. Similarities to other models

The second-order term in (24) is similar to the gradient model [37]:

τSFS = 2α2∇ũ ∇ũT . (27)

The gradient model has the tendency to amplify high wavenumbers and increase the kinetic energy of solutions of the 
filtered Navier–Stokes equations [38]. Upon applying the inverse Helmholtz filter to the gradient model one obtains the 
rational LES (RLES) model [38]:
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τSFS = (1 − α2∇2)−1
(

2α2∇ũ ∇ũT
)

. (28)

This model was found to damp high-frequency oscillations and make good predictions of turbulent channel flow [39]. The 
only difference between the exact SFS and RLES models is a fourth-order term; the influence of this term on simulations of 
turbulent channel flow is assessed in Section 4.

2.5. Boundary conditions

There are several possibilities to consider when setting boundary conditions on the inverse Helmholtz-filtered velocity 
and SFS stresses. The simplest option is based on the argument that the filter width should vanish at the wall, making (13)
singular and enforcing ũ = u at the wall. This amounts to a no-slip condition on u for wall-bounded flows. By the same 
argument and for consistency, the exact SFS reconstruction must satisfy τSFS = 0 at the wall. Thus, homogeneous Dirichlet 
boundary conditions are imposed on (24).

However, an argument going back to Navier in 1827 states that a moving fluid should satisfy zero-penetration and 
slip-with-friction boundary conditions [38]. Serrin [40] presented experimental justification for this in high Reynolds number 
gaseous flows. Layton [41] suggested that the no-slip condition on a discrete velocity field could also be relaxed, either by 
a Lagrange multiplier formulation, a penalty term or a slip-with-friction condition. Galdi and Layton [38] proposed the 
following zero-penetration, slip-with-friction (Robin) boundary conditions for the filtered velocity:

ũ · n = 0, (29)

u · t = ũ · t − β
∂

∂n
(̃u · t) = 0, (30)

where n is the normal to the wall, t = (t1, t2) is the system of orthogonal tangents to the surface and β is a slip (friction) 
coefficient to be determined. Bose and Moin [42] showed that a limited-slip condition can be derived by considering a 
variant of the inverse Helmholtz filter:

ũ − ∂

∂xk

(
lp

∂ũ

∂xk

)
= u, (31)

where lp is related to the filter width variation. Expanding (31) and evaluating at the wall gives

ũ − ∂lp

∂xk

∂ũ

∂xk
= 0. (32)

Assuming that lp does not vary in directions parallel to the wall, this simplifies to

ũ − ∂lp

∂n

∂ũ

∂n
= 0. (33)

For dimensional consistency, ∂lp
∂n must represent a lengthscale and can be related to the filter width. By comparison with 

(29), it also represents a friction coefficient:

β = ∂lp

∂n
. (34)

It can be argued that as the filter width becomes very small (as in a wall-resolved LES or DNS), (33) converges to the no-slip 
condition. In the context of wall-modelled LES, we are free to specify β . However, it is not obvious how to do so without 
introducing new assumptions or tunable parameters. The approach taken by Bose and Moin [42] was to use a dynamic 
procedure taking information from the local flow, akin to Germano’s dynamic method for the Smagorinsky coefficient. They 
were able to accurately predict the separation point on an airfoil at stall conditions using this method.

An exact SFS stress reconstruction can be derived from the filter variant (31), although it is complicated by the presence 
of first and second derivatives of lp . If condition (33) is imposed on ũ, then τSFS can be equipped with consistent boundary 
conditions, derived using (33):

τSFS|y=0 = ũũT − ũuT = β2
(

∂ũ

∂n

)(
∂ũ

∂n

)T

. (35)

The investigation of limited-slip boundary conditions on ̃u is left as the subject of future research. In this paper, we employ 
no-slip boundary conditions and perform wall-resolved LES.

3. Numerical discretisation and implementation

3.1. Stabilised finite element method

The methods developed are implemented in the open-source finite element CFD code Fluidity [43,44]. A continuous 
Galerkin finite element method is used with piecewise linear basis functions for the velocity and pressure (P 1 CG–P 1



124 J.R. Bull, A. Jameson / Journal of Computational Physics 306 (2016) 117–136
CG). This element pair is LBB-unstable and can introduce spurious pressure modes on collocated grids. Using a higher-
dimensional space for velocity, such as the P 2 CG–P 1 CG discretisation, does satisfy the LBB criterion [45]. However, it has 
been found that P 1 CG–P 1 CG is the better choice for LES owing to its superior treatment of the velocity–pressure gradient 
correlation, which drives energy exchanges between velocity components [46]. These exchanges are important because they 
affect the small-scale flow dynamics, while spurious pressure modes are negligible on unstructured meshes [46]. Stabilisa-
tion of the P 1 CG–P 1 CG element pair is achieved by including a fourth-order pressure derivative term into the continuity 
equation [47,48]. The disadvantage is that the continuity equation is no longer exactly satisfied, i.e. the velocity field is not 
divergence-free.

3.2. Discretised inverse Helmholtz filter

Using the continuous Galerkin finite element method, the inverse Helmholtz filter (13) applied to a field uh ∈ Uh , 
weighted with a test function wh ∈Wh and integrated over a bounded domain � can be written:

Given uh ∈ Uh, find a filtered field ̃uh ∈ Uh such that

∫
�

ũhwhd� −
∫
�

∇ · �̃2

24
∇ũhwhd� =

∫
�

uhwhd�, ∀wh ∈ Wh. (36)

Using Green’s first identity on the Laplacian (∇ · ∇) term, (36) is written∫
�

ũhwhd� +
∫
�

∇wh · �̃2

24
∇ũhd� −

∫
�

wh �̃2

24
∇ũh · n d� =

∫
�

uhwhd�, (37)

where n is the surface normal. An integral over the domain boundary � has appeared allowing the imposition of a weak 
Neumann boundary condition; neglecting the term implicitly imposes a homogeneous Neumann condition. Choosing iden-
tical test and trial spaces Uh and Wh and linear shape functions Ni we write the matrix equation over an element �e :

ũe = [
Ge

Helm

]−1 ue,[
Ge

Helm

]
i j =

∫
�e

Ni N jd� +
∫
�e

∇Ni · �̃2

24
∇N jd�. (38)

4. Turbulent channel flow at Reτ = 180

We use the 3D periodic channel flow at Reτ = 180, for which DNS data is available from Kim et al. [49], to validate the 
exact SFS reconstruction. The domain has dimensions Lx = 2π , L y = 1, Lz = π and the coordinates are chosen such that 
0 ≤ x ≤ 2π , −0.5 ≤ y ≤ 0.5, 0 ≤ z ≤ π .

4.1. Simulation setup

Besides the exact SFS reconstruction, the following simulations were performed:

• implicit filtering, no SGS model
• explicit filtering, no SFS model
• implicit filtering, dynamic Smagorinsky SGS model
• explicit filtering, dynamic Smagorinsky SFS model
• explicit filtering, rational LES SFS model

We refer to the model as ‘SGS’ if no explicit filtering is performed, otherwise as ‘SFS’. The dynamic Smagorinsky model 
employed inverse Helmholtz test filtering [25]. Whether implicitly or explicitly filtering, the model is a function of the filter 
width �̃; the value of filter width:mesh size ratio γ = 1 was chosen for the current tests. With the exact SFS reconstruction, 
sensitivity to γ was assessed across the range γ = {0.5, 1, 2, 4}.

Three structured hexahedral meshes were generated, and the cells split into tetrahedra, using the free meshing package 
Gmsh [50]. Wall-normal resolution was specified so that the boundary layers were well resolved and increased with a linear 
stretching function towards the channel centre. Uniform resolution was prescribed in the streamwise (x) and spanwise (z) 
directions. The meshes are summarised in Table 1. Also listed are the computed C f and Reτ using explicit filtering and exact 
SFS with γ = 1, showing convergence towards the DNS values. Unless otherwise stated, all simulations presented hereafter 
used the fine mesh.
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Table 1
Mesh resolution in turbulent channel flow. Quantities in wall units are based on friction velocities using explicit filtering and exact SFS (γ = 1) on each 
mesh.

Mesh Nx N y Nz NDOF 
x+ 
y+ 
z+ Reτ C f × 103

DNS 192 129 160 3.96M 12 0.05 7 180 8.18
crs 36 32 36 41,472 59.4 1.7 29.7 170.3 7.15
med 48 44 48 101,376 43.1 1.2 21.5 164.6 7.48
fine 96 64 48 294,912 24.1 0.9 24.1 184.5 7.68

Table 2
Computed flow parameters from LES simulations versus DNS. Effect of γ in exact SFS model.

Model Reδ Reτ U B/Uτ UC /U B C f × 103

DNS 3440 180 15.63 1.16 8.18
exact SFS (γ = 0.5) 4143.4 212.6 17.09 1.141 6.85
exact SFS (γ = 1) 2975.7 184.5 16.14 1.157 7.68
exact SFS (γ = 2) 2206.3 150.0 14.70 1.189 9.25
exact SFS (γ = 4) 1524.5 119.3 12.78 1.237 12.25

All simulations used the stabilised P 1 CG–P 1 CG formulation described above. The time derivative was approximated 
by a central difference and the timestep was limited by CFL ≤ 2, giving typical timesteps of about 0.05–0.08 seconds. Time 
marching was by the Picard iteration method with two nonlinear iterations per timestep and a nonlinear relaxation coeffi-
cient of 0.5. Solution of the discretised pressure and velocity equations employed the CG and GMRES solvers respectively, 
and SOR preconditioning, in the PETSc library [51]. CG/SOR was also used to solve (13) for the filtered velocity and (24) for 
the exact SFS stress. A relative error tolerance of 1.0 × 10−7 was set for all solves.

A fourth-order polynomial initial condition was specified:

u(y) = 1.875 − 15y2 + 30y4, (39)

resulting in a bulk velocity uB = 1.0. The molecular viscosity was set at ν = 1.453 × 10−4 corresponding to a bulk Reynolds 
number of Reδ = 3440 based on channel half-width δ = 0.5. Using the method of Andersson et al. [52], an initial perturba-
tion in the vertical direction was prescribed to initiate the turbulent cascade:

v(x, y, z) = 0.1 exp

[
−

(
x − Lx/2

Lx

)2
]

exp

[
−

(
y

L y

)2

cos 4(z − Lz/2)

]
. (40)

Statistics were computed during the simulation, starting after 200 seconds of flow time (≈30 convection periods), which 
was found to be sufficient for the L2 norm of the velocity field to reach quasi-steady state, i.e. for the initial transient 
to decay. Sampling took place every timestep for at least 400 seconds (60 convection periods). Time-averaged quantities 
are denoted by angle brackets, e.g. 〈u〉. To force the flow to a steady state, a constant streamwise pressure gradient was 
prescribed. The Blasius correlation for fully developed turbulent flow gave an estimated friction factor of f ≈ 0.042, equating 
to a pressure gradient of dP/dx = 8.67 × 10−3. The actual bulk velocities obtained at steady state deviated slightly from 1.0 
because the imposed pressure gradient tended to be too high during the initial flow development. However, the deviation 
is not considered large enough to have a significant effect on the results.

To estimate the wall shear stress, the wall-normal gradient of the time-averaged streamwise velocity ∂〈u〉/∂ y was calcu-
lated by a linear approximation within the wall-adjacent element. In addition to time averaging, the velocity and Reynolds 
stresses were averaged over homogeneous directions in postprocessing with a grid of 40 × 40 evenly-spaced sampling 
locations. Unless stated otherwise, all quantities were averaged in time and space.

4.2. Bulk quantities

Tables 2 and 3 show the computed bulk and friction Reynolds numbers Reδ and Reτ , ratio of bulk to friction velocity 
U B/Uτ , ratio of mean centerline to bulk velocity UC /U B , and skin friction coefficient C f for the current simulations versus 
the DNS data. In Table 2, the filter width to mesh size ratio γ is varied in the exact SFS model. Higher values give lower 
Reynolds numbers, indicating an increase in dissipation. The best agreement of all parameters with the DNS data is at 
γ = 1. U B/Uτ , UC /U B and C f are in very good agreement, suggesting that the free-stream and near-wall mean profiles are 
well captured. The Reynolds numbers suggest that the exact SFS model provides the correct amount of energy drainage to 
counterbalance the imposed pressure gradient.

In Table 3, different models are compared with γ = 1. Explicit filtering (no model) has very little effect compared to 
the unfiltered case (no model). The dynamic LES results are inaccurate and do not differ much from the no-model results; 
filtering makes very little difference here either. The rational LES and exact SFS results are far more accurate. Furthermore, 
they are almost identical, suggesting that the fourth-order term in the exact SFS reconstruction is insignificant in this test.
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Table 3
Computed flow parameters from LES simulations versus DNS. Comparison of models with γ = 1.

Model Reδ Reτ U B/Uτ UC /U B C f × 103

DNS 3440 180 15.63 1.16 8.18
no model, unfiltered 4126.7 232.1 17.78 1.132 6.33
no model, filtered 4144.6 234.1 17.70 1.129 6.38
dynamic, unfiltered 4329.3 216.8 19.97 1.126 5.02
dynamic, filtered 4315.6 216.2 19.96 1.123 5.02
rational LES 2987.0 184.1 16.22 1.155 7.59
exact SFS 2975.7 184.5 16.12 1.157 7.68

Fig. 5. Time- and space-averaged velocity in wall units 〈u+〉. N = implicit filter/no model, F1 = explicit filter/no model (γ = 1), E0.5/1/2/4 = exact SFS 
(γ = 0.5/1/2/4), D = implicit filter/dynamic model (γ = 1), R = explicit filter/Rational LES model (γ = 1).

4.3. Mean velocity

Fig. 5 shows the time- and space-averaged velocity 〈u+〉 in wall units for the current simulations versus the DNS data. 
Also shown is the empirical log law of the wall, 〈u+〉 = ln(y+)/0.41 + 5.2, which is approximately satisfied in the region 
30 < y+ < 180 at this Reynolds number. The variations in maximum 〈u+〉 can be explained by the differences in computed 
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Fig. 6. Time- and space-averaged velocity in wall units normalised by max. DNS u+ value, 〈u+〉/max(u+
DNS).

bulk Reynolds numbers. Even so, the exact SFS and rational LES model results (γ = 1) almost overlie the DNS data, as 
expected from the results in Table 3. In Fig. 5 (b), increasing gamma shifts the curves up away from the correct solution.

In Fig. 6, the curves have all been corrected so that the maximum u+ values are equal to the maximum u+ value of the 
DNS data. All the curves in Fig. 6 (a) almost collapse on top of each other, showing good agreement with the DNS data. In 
Fig. 6 (b), increasing gamma adjusts the shape of the curves away from the correct solution. These effects are shown more 
clearly in Figs. 7 (a) and (b) where the region 30 ≤ y+ ≤ 180 is magnified. In Fig. 7 (a) the rational LES and exact SFS results 
(γ = 1) are on top of each other. This suggests that the fourth-order term in the exact SFS reconstruction makes no real 
difference to the accuracy, at least in the context of a second-order accurate numerical method. Fig. 8 plots the uncorrected 
mean velocity on the three meshes using the exact SFS model with γ = 1, showing convergence towards the true solution.

4.4. Reynolds stresses

Upon time-averaging the filtered Navier–Stokes equations, the Reynolds stresses are given by the sum of the mean 
velocity fluctuations and the mean SFS stresses. We denote the time-averaged Reynolds stresses by 〈Rij〉 = 〈u′

iu
′
j + τSFS,i j〉. 

In the results presented, space averaging is performed in addition to time averaging. Fig. 9 shows the normalised Reynolds 
stress components 〈R11〉/u2

τ , 〈R22〉/u2
τ , 〈R33〉/u2

τ and 〈−R12〉/u2
τ (where uτ is the friction velocity) for the different models 

with γ = 1.
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Fig. 7. Close-up of 〈u+〉/max(u+
DNS) in range 30 < y+ < 180. Legends are the same as Figs. 5, 6.

All simulations over-predict the peak streamwise component 〈R11〉/u2
τ and deviatoric component 〈−R12〉. The spanwise 

and wall-normal components, 〈R22〉 and 〈R33〉, are fairly well-predicted, with the exact SFS and RLES models out-performing 
the others. In turbulent flows, momentum is transferred from fluctuations in the streamwise direction to transverse orien-
tations, and it appears that the RLES and exact SFS models account for this mechanism to a greater degree than the other 
models. The dynamic Smagorinsky model appears to be no more effective than the absence of a model in this respect. 
Notably, the near-wall gradients of 〈R22〉, 〈R33〉 and 〈−R12〉 are under-predicted by the dynamic Smagorinsky model, but 
are quite well captured by the exact SFS and RLES models.

In Fig. 10, γ is varied in the exact SFS model. As γ is increased, the near-wall gradients become steeper. The streamwise 
component R11 is fairly constant with varying γ , but the other components display a marked sensitivity. Overall, γ = 1
and γ = 2 are closest to the reference data; γ = 0.5 under-predicts R22 and R33 while γ = 4 has the opposite behaviour. 
Fig. 11 plots the diagonal components of 〈Rij〉/u2

τ on the three meshes using the exact SFS model with γ = 1, showing 
convergence towards the true solution. Coarser resolutions tend to result in over-prediction of the Reynolds stresses.

4.5. SFS stresses

Fig. 12 shows the space-averaged normalised SFS stress components 〈τSFS,11〉/u2
τ , 〈τSFS,22〉/u2

τ , 〈τSFS,33〉/u2
τ and 

〈τSFS,12〉/u2
τ at the final timestep of each simulation. No time averaging has been applied, which explains the slight lack of 

smoothness. Since the incompressible Navier–Stokes equations are being solved, the velocity divergence is approximately 
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Fig. 8. Time- and space-averaged velocity in wall units 〈u+〉. C = crs, M = med, F = fine mesh. All results using exact SFS (γ = 1).

zero1 and therefore diagonal components of the SFS stress calculated by the dynamic Smagorinsky model are zero, while 
the deviatoric component τSFS,12 is nonzero. As a consequence, the Poisson equation is solved for a modified pressure p̃′
incorporating the trace of the SFS stresses. In contrast, the exact SFS and rational LES stresses do not have zero diagonals 
and the solution of the Poisson equation is the true filtered pressure p . This may be of some benefit in applications where 
the pressure must be quantified.

Very little difference is observed between the RLES and exact SFS reconstructions, again implying that the fourth-order 
term in the exact SFS reconstruction is not significant. Both the exact SFS and rational LES models predict a strong peak 
in 〈τSFS,11〉 close to the wall. With γ = 1, the peak value is around 1.75 or ≈ 15% of the peak value of the Reynolds stress 
〈u′u′〉. (When γ is increased, the peak stresses increase considerably.) The peak SFS stress is located at about y+ = 10, 
within the buffer layer. The peak streamwise velocity fluctuation 〈u′〉 is at about y+ = 20: i.e., the SFS models provide a 
mechanism of momentum transfer in a region where the resolved stresses do not. The other SFS stress components reach a 
peak around y+ = 50–70.

4.6. Flow visualisation

Fig. 13 shows contours of the instantaneous normalised SFS kinetic energy, kSFS = 1
2 τSFS,ii/u2

τ , in the lower half-channel 
at time t = 1000 using the exact SFS reconstruction. The energy is non-negative everywhere, i.e. local backscattering is not 
predicted by the model. The energy is concentrated very close to the wall in flattened elongated streaks. Fig. 14 displays 
contours of the instantaneous Q criterion in the lower half-channel from the exact SFS results, showing the presence of 
complex vortical structures. Figs. 15 and 16 display the instantaneous streamwise and spanwise vorticity components on 
horizontal and vertical cut planes respectively, in which coherent flow structures are also visible.

5. Discussion and conclusions

This paper investigates explicit filtering and SFS stress reconstruction using an invertible differential filter for large eddy 
simulation. The invertibility property allows for exact reconstruction of the resolved SFS stresses. Although this idea has 
been around for nearly 30 years [8], it has very rarely been tested in actual computations. A number of similar approaches 
have since been proposed, usually formulated in terms of an approximate inverse filtering operation to simultaneously 
improve numerical robustness and model the small scales.

The only tunable model parameter in the exact SFS reconstruction is the filter width to mesh size ratio γ . The method 
can be considered valid in any flow regime, without recourse to arguments based on Kolmogorov’s theorems, the Boussinesq 
hypothesis or any other argument based on fluid physics. That is not to say it guarantees an accurate result from the 
LES: one must still resolve enough of the turbulent spectrum to capture the important scales in a particular flow. Explicit 
low-pass filtering and exact SFS reconstruction amounts to re-distribution of energy from poorly-resolved high wavenumbers 
(k ≥ kF ) to better-resolved lower wavenumbers (k < kF ), improving overall spectral resolution. Unlike adding an SGS closure 

1 Zero divergence is only approximately satisfied when solving the Navier–Stokes equations with a predictor–corrector method, as is the case here. 
Furthermore, the use of explicit filtering with spatially-varying filter width introduces a commutation error in the continuity equation, preventing the 
filtered velocity field from being exactly divergence-free.
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Fig. 9. Normalised time- and space-averaged Reynolds stresses 〈Rij〉/u2
τ . Legend is the same as Fig. 5.
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Fig. 10. Normalised time- and space-averaged Reynolds stresses 〈Rij〉/u2
τ . Legend is the same as Fig. 5.
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Fig. 11. Normalised time- and space-averaged Reynolds stresses 〈Rij〉/u2
τ . C = crs, M = med, F = fine mesh. All results using exact SFS (γ = 1).

model, the current method does not modify the original equations: it is more of a numerical procedure than a turbulence 
model.

Recovery of the subgrid-scale stresses, which may contain a significant proportion of the turbulent kinetic energy, is still 
not possible by the method of reconstruction. Instead of the usual approach of adding an eddy-viscosity type model for the 
SGS stresses, we simply rely on numerical dissipation from a second-order accurate stabilised finite element discretisation. 
The extent to which numerical dissipation can represent SGS dynamics depends on the resolution, flow and scheme and is 
not the subject of the current investigation. At higher Reynolds numbers, it may become necessary to resort to a model for 
the SGS stresses.

Regarding computational cost, filtering and exact reconstruction requires the solution of six scalar elliptic equations for 
the six independent components of τSFS , plus three for the filtered velocity components. While this is not cheap, it is 
comparable to AD methods which rely on repeated filtering. Furthermore, it has the distinct advantage over AD methods of 
being applicable to unstructured meshes. The cost could be reduced by considering alternative discretisations. For example, 
using structured finite differences allows the 3D filtering equation to be reduced to a series of 1D equations involving only 
the inversion of a tridiagonal matrix. Using spectral methods, the filtering equation is reduced to an algebraic operation 
in Fourier space [53]. Neither of these options is feasible on unstructured meshes so other methods of reducing the cost 
should be investigated.
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Fig. 12. Space-averaged subfilter stress components. Legend abbreviations are the same as Fig. 5.

Fig. 13. Contours of subfilter-scale kinetic energy 1
2 τSFS,ii/u2

τ in exact SFS computation.

It was discovered that explicitly filtered LES with exact SFS reconstruction predicted several quantities of interest much 
more accurately than filtering alone, or implicitly filtered LES with the dynamic Smagorinsky model or no turbulence model. 
Increased accuracy with mesh refinement was demonstrated, which is often difficult to achieve with conventional (implicitly 
filtered) LES due to the entanglement of numerical and modelling errors. The skin friction coefficient C f on the fine mesh 
was very close to the DNS values, implying that near-wall velocity gradients were well resolved. In contrast, the dynamic 
model and no-model values of C f were on the low side, implying that the velocity gradients at the wall were not strong 
enough. This allowed the flow to accelerate under the pressure gradient forcing term calibrated for fully developed channel 
flow at Reτ = 180, explaining why the computed Reτ were too high. Instead of a pressure gradient, one can enforce a con-
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Fig. 14. Contours of Q -criterion in exact SFS computation.

Fig. 15. Streamwise vorticity on horizontal plane at a height 0.002 δ above lower boundary (within first element) in exact SFS computation.

Fig. 16. Spanwise vorticity on vertical mid-plane in exact SFS computation.

stant mass flux through the inlet at every timestep, guaranteeing that the reference conditions are matched. Nevertheless, 
the mean velocity profiles for all simulations roughly collapsed to the DNS when normalised, showing that slight variations 
in flow speed did not significantly affect the flow topology and permitting a fair comparison.

Little difference in accuracy was observed between the exact SFS and the rational LES models. The models differ by a 
term in �̃4

, and due to the use of second-order numerics this was not expected to have a significant effect. It would be 
illuminating to conduct the same investigation with a high-order accurate numerical method, and we will pursue this in 
future work. Numerical dissipation in the second-order method may be excessive in terms of modelling the SGS stresses. 
A less dissipative second-order method or a higher-order method should be employed instead.

The mesh used in the channel flow had a linear variation of element size � (hence filter width �̃) in the wall-normal 
direction. Therefore, the commutation error (26) is of order �̃2

. Its inclusion into the model could have a beneficial effect 
on the accuracy of the results, albeit at increased computational expense. In general, the rate of variation of filter width 
should be controlled such that the error is of at least the order of the numerical scheme. This has consequences for mesh 
generation, especially in complex domains or if adaptively meshing.

We have shown that explicit filtering with an invertible filter and exact reconstruction of the SFS stresses obtains accurate 
results in a canonical flow. The potential of this approach for accurate and robust large eddy simulations of challenging flows 
is considerable. Only the ratio of filter width to mesh size needs to be chosen, and there is good reason to think that this 
ratio depends solely on the spectral characteristics of the numerical discretisation employed. Future work will be directed 
at using the method with high-order accurate numerical discretisations and at different invertible filters. Extension of the 
method to compressible flows has been shown [10] and merits further investigation, in particular in high speed flows with 
shocks.
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