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This paper presents improvement and performance evaluation of the “perturbation source 
method”, which is one of the Monte Carlo perturbation techniques. The formerly proposed 
perturbation source method was first-order accurate, although it is known that the 
method can be easily extended to an exact perturbation method. A transport equation 
for calculating an exact flux difference caused by a perturbation is solved. A perturbation 
particle representing a flux difference is explicitly transported in the perturbed system, 
instead of in the unperturbed system. The source term of the transport equation is 
defined by the unperturbed flux and the cross section (or optical parameter) changes. The 
unperturbed flux is provided by an “on-the-fly” technique during the course of the ordinary 
fixed source calculation for the unperturbed system. A set of perturbation particle is started 
at the collision point in the perturbed region and tracked until death. For a perturbation in 
a smaller portion of the whole domain, the efficiency of the perturbation source method 
can be improved by using a virtual scattering coefficient or cross section in the perturbed 
region, forcing collisions. Performance is evaluated by comparing the proposed method 
to other Monte Carlo perturbation methods. Numerical tests performed for a particle 
transport in a two-dimensional geometry reveal that the perturbation source method is less 
effective than the correlated sampling method for a perturbation in a larger portion of the 
whole domain. However, for a perturbation in a smaller portion, the perturbation source 
method outperforms the correlated sampling method. The efficiency depends strongly on 
the adjustment of the new virtual scattering coefficient or cross section.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Monte Carlo methods have difficulties in calculating the effect of a small perturbation in the system parameters. The 
effect of a perturbation, of course, can be obtained by performing two independent Monte Carlo calculations and subtracting 
the estimates of the unperturbed system from those of the perturbed system. A prohibitively huge computational cost would 
however be required to obtain statistically significant estimates for a small perturbation. The statistical uncertainty of the 
difference between two independent runs is sometimes comparable with the change of the estimates if the perturbation 
is small and the computation time short. Thus far, two perturbation calculation methods, the correlated sampling method 
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[1–5] and the differential operator sampling method [4,6,7], have been developed to overcome difficulties in the Monte 
Carlo perturbation calculations. These methods have been widely investigated; their unique advantages and drawbacks have 
been identified in many publications (e.g., [8–12]).

In the correlated sampling method, the perturbed history is forced to follow the unperturbed one along the same tracks 
in phase space. It has been found that the correlated sampling method suffers from a large or unbounded variance when 
the perturbation exceeds a certain limit [4].

The differential operator sampling method accumulates a sum of products combining cross section, path segment prob-
abilities, and associated partial derivatives (first order and higher) for all trajectories. The divergence of the variance, which 
frequently occurs in the correlated sampling method for a larger perturbation, can be circumvented in the differential op-
erator method. However, the differential operator sampling method uses up to the second-order terms in a widely used 
Monte Carlo code, MCNP [12], and the higher-order terms, beyond the third order, are truncated. A localized and large 
perturbation would require higher-order terms, truncated in commonly-used differential operator sampling method. As the 
order becomes higher, the mathematical formulation of the higher-order terms becomes more involved. In addition, many 
quantities need to be scored during the course of the particle’s random walk, making the calculation less efficient. In the 
Monte Carlo code, MVP, the order of the differential operator method is uniquely expanded to the 8th order [9]. However 
higher the order is, the differential operator sampling method remains essentially approximate and may be occasionally 
insufficient for large and localized perturbations.

The two Monte Carlo perturbation methods have already been implemented into some Monte Carlo production codes [8,
9,12–16]. The two Monte Carlo perturbation methods can be applied to perturbation calculations in keff -eigenvalue problems 
as well as fixed source problems. In the keff -eigenvalue problems, the fission source spatial distribution is also perturbed 
due to the perturbation of system parameters such as cross sections and material density. To estimate the effect of the 
fission source perturbation, some techniques have been developed and installed into Monte Carlo codes [8,9,17]. For the 
fixed source problems, on the other hand, the need to consider the fission source perturbation effect can be avoided.

Besides the correlated sampling method and the differential operator method, there exists another perturbation method 
known as the “perturbation source” method [18–20] in which a separate random walk is performed to follow a “pertur-
bation particle” once a perturbed region is encountered in the original random walk. The perturbation particle explicitly 
represents the change of the flux due to the perturbation. However, this method is less effective when a large number of 
collisions occurs in the perturbed region during a history, too many perturbation particles must be followed. On the other 
hand, if the perturbed region is very small, most of particles pass through the perturbed region without collision and too 
few perturbation particles are started, which make the perturbation source method less effective than other perturbation 
techniques. To compensate for the shortcomings of the perturbation source method, Preeg and Tsang [20] proposed a hybrid 
method that uses the correlated sampling method initially, and then switches to the perturbation source method for the re-
mainder of the history. According to [18,19], the perturbation source method has been used within the first-order accuracy 
by neglecting higher-order terms; although it is known that the method can be easily extended to an exact perturbation 
method [18]. Thus, the formerly proposed perturbation source method only yields an approximate estimate of perturbation.

The present paper focuses on the Monte Carlo perturbation method for particle (light or neutron) transport in a semi-
transparent material. The perturbation source method is improved to take into account higher-order terms neglected in 
the previous studies. This paper proposes a method for improving the effectiveness of the perturbation source method to 
estimate the variation of flux in problems where the perturbed region covers only a small fraction of the whole domain. 
The dependence of the efficiency improvement for a user-specified parameter is investigated. It is shown that the newly 
improved perturbation source method outperforms the correlated sampling method and the differential operator method 
for such problems in terms of computation efficiency. The underlying concept of this paper is applicable to other particle 
transport calculations. In the sections that follow, the theory and numerical examples are presented.

2. Theory of the improved perturbation source method

This section presents a theory of the perturbation method used to calculate the difference of flux variation caused by 
the perturbation of system parameters in a fixed source problem. The theory is already proposed [18,19] and simple, but it 
provides an exact perturbation method that can be performed in the Monte Carlo method. The unperturbed light transport 
equation with a fixed source is given by

Hφ(r,Ω, E) = S(r,Ω, E), (1)

where

Hφ(r,Ω, E) ≡ Ω · ∇φ(r,Ω, E) + μt(r, E)φ(r,Ω, E) −
∫

4π

dΩ ′
∫

dE ′μs
(
r,Ω ′ → Ω, E ′ → E

)
φ
(
r,Ω ′, E ′), (2)

φ(r, Ω, E) = the unperturbed flux at position r with energy E and direction Ω , S(r, Ω, E) = the external light source term, 
μt = the total coefficient of absorption and scattering, μs = the scattering coefficient. We suppose that the coefficients in 
Eq. (2) are perturbed with the fixed source term being unchanged. Then, the flux is perturbed to φ′(r, Ω, E)(≡ φ(r, Ω, E) +
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δφ(r, Ω, E)) where δφ(r, Ω, E) is the difference of the flux due to the perturbation. On the other hand, the perturbed flux, 
φ′(r, Ω, E), obeys the following perturbed transport equation:

Hφ′(r,Ω, E) + �Hφ′(r,Ω, E) = S(r,Ω, E). (3)

�Hφ(r, Ω, E) is described by

�Hφ(r,Ω, E) ≡ �μt(r, E)φ(r,Ω, E) −
∫

4π

dΩ ′
∫

dE ′�μs
(
r,Ω ′ → Ω, E ′ → E

)
φ
(
r,Ω ′, E ′), (4)

where �μt and �μs are the differences of the total coefficient and the scattering coefficient due to the perturbation, 
respectively. Subtracting Eq. (1) from Eq. (3) yields the transport equation for the flux difference δφ(r, Ω, E):

Hδφ(r,Ω, E) + �Hδφ(r,Ω, E) = −�Hφ(r,Ω, E). (5)

The right-hand side of Eq. (5) represents a source term for this equation and is defined by Eq. (4). To solve Eq. (5), the 
unperturbed flux φ(r, Ω, E) on the right-hand side of Eq. (5) needs to be obtained by the unperturbed transport equation, 
Eq. (1), with the fixed source S(r, Ω, E). Once we know the unperturbed flux and the source term for Eq. (5), the flux 
difference δφ(r, Ω, E) can be obtained by solving Eq. (5).

Formerly, the perturbation source method was used by omitting the second term on the left-hand side of Eq. (5) [18,19]. 
However, it is very easy to include this term by transporting perturbation particles in the perturbed system, not in the un-
perturbed system as noted in [18]. This perturbation method that solves Eq. (5) can provide an exact flux difference without 
approximation. When we apply this perturbation method to a deterministic method, the unperturbed flux distribution is 
calculated first and then it is stored in a memory or a file. Then, Eq. (5) is solved by reading the unperturbed flux distribu-
tion from the file or memory. As can be seen in Eq. (4), the flux is energy- and angular-dependent to estimate the source 
term in Eq. (5). Thus, if a three dimensional problem with a fine energy group structure is being treated, a huge memory 
or file storage would be required. We have to note that the source term can be positive and negative, thereby making the 
flux difference positive and negative as well.

3. Monte Carlo algorithm of the perturbation source method

3.1. Monte Carlo algorithm for calculating flux difference

This section presents a Monte Carlo algorithm to solve the flux difference transport equation, Eq. (5). First of all, a fixed 
source Monte Carlo calculation is performed to solve Eq. (1), and the unperturbed flux φ(r, Ω, E) is obtained. This cal-
culation is called the “fixed source calculation mode”. Up to this point, this procedure is similar to ordinary fixed source 
calculations. When a particle undergoes a collision in the perturbed region, the source term for the flux difference equation, 
Eq. (5), is estimated. The information for the source term is composed of the position, energy, direction, and particle weight. 
Two methods are available for obtaining the source term. One method is to perform the unperturbed fixed source calcula-
tion until a sufficiently large number of collision points are accumulated. After the unperturbed fixed source calculation is 
completed, the accumulated seven-dimensional data (3 for position, 1 for energy, 2 for direction, and 1 for particle weight) 
are used for the subsequent flux difference calculation for Eq. (5). This method, however, requires a large storage capacity 
to store a sufficient amount of source information. This is more serious in the Monte Carlo method since a collision point is 
defined in the continuous space while the flux is allocated at discrete points in the deterministic methods.

Another method, which is adopted in this paper, is a so-called “on-the-fly” technique. When a particle undergoes a 
collision in the perturbed region in the unperturbed system, the fixed source calculation is temporarily suspended. Then, 
the source term for Eq. (5) is calculated using Eq. (4) and a new particle (perturbation particle), which represents the flux 
difference, is emitted from the collision point (how to determine the weight, energy, and direction of the new particle is 
described below). This process is called the “perturbation calculation mode”. The perturbation particle is tracked using the 
perturbed parameters as defined on the left-hand side of Eq. (5). The proposed perturbation method can yield the exact 
values of the flux change on the grounds that the perturbed parameters are used for tracking the perturbation particle. 
After the perturbation particle emitted from the collision point is killed when escaping from the external boundary or 
Russian roulette game, the calculation for Eq. (5) is terminated. Then, the suspended fixed source calculation is resumed as 
if nothing had happened. This process is repeated until desired statistics for the flux difference are reached.

Next, how to define the source term in Eq. (5) in the Monte Carlo method is discussed. Once a particle with a weight 
of W undergoes a collision in the perturbed region in the unperturbed system, the calculation mode is switched to the 
perturbation calculation mode. The source term in Eq. (5) is defined as follows.

(1) Source term caused by the perturbation of the total coefficient

The first term on the right-hand side of Eq. (4) is caused by the perturbation of the total coefficient. This term is 
represented by
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Fig. 1. Schematic flow chart of the perturbation source method.

Wt = −�μt(r, E)
W

μt(r, E)
. (6)

A new perturbation particle with a weight of Wt is emitted from the collision point. The direction and energy of the new 
particle are unchanged from the colliding particle. If �μt > 0, the weight Wt is negative.

(2) Source term due to the perturbation of the scattering coefficient

The second term on the right-hand side of Eq. (4) is caused by the perturbation of the scattering coefficient. This source 
term is composed of the perturbation of the total scattering coefficient and the scattering angle and energy distribution 
function. This source term is obtained by the following steps.

1) The direction Ω ′ and energy E ′ after the scattering are sampled from the probability density function of the unperturbed
scattering cross section μs(r, Ω → Ω ′, E → E ′).

2) The source term due to the perturbation of the total scattering coefficient is obtained with

W s = (
μ

p
s (r, E) − μs(r, E)

) W

μt(r, E)
, (7)

where

μs(r, E) ≡
∫

4π

dΩ ′
∞∫

0

dE ′μs
(
r,Ω → Ω ′, E → E ′), (8)

and the superscript p denotes that the quantity is for the perturbed system. Note that the integrals in Eq. (8) are carried 
out with respect to the angle and energy after scattering.

3) The source term due to the perturbation of the scattering angle and energy distribution is obtained by

Wa = P p(Ω ′, E ′) − P (Ω ′, E ′)
P (Ω ′, E ′)

μ
p
s (r, E)

W

μt(r, E)
, (9)

where P (Ω ′, E ′) is the probability density function of the direction Ω ′ and the energy E ′ after scattering in the un-
perturbed system. Note that Eq. (9) is simply written and it should be modified to use the formatting of the atomic or 
nuclear data.

4) A new perturbation particle with a weight of (W s + Wa) is emitted from the collision point. The perturbation particle’s 
direction and energy are Ω ′ and E ′ , respectively.

Consequently, the two perturbation particles, which are the sources for the flux difference calculation, are emitted from 
every collision point, and they are tracked until their deaths. The score of the perturbation particles divided by the total 
sum of starting particles’ weights from the source represents the perturbed flux δφ(r, Ω, E). The two perturbation particles 
are independent and can be emitted in no particular order. A schematic flow chart of this perturbation method is shown 
in Fig. 1. When the two perturbation particles emitted from the collision point are both killed, the fixed source calculation 
for Eq. (1) resumes from the collision point. The weights of the perturbation particles for the flux difference calculation 
are in general smaller than those of the fixed source calculation for Eq. (1) in the unperturbed system, depending on the 
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perturbation and colliding particle’s weight. The lower weight threshold for Eq. (5) should be smaller than the one of the 
fixed source calculation for Eq. (1) if the Russian roulette game is applied.

As new features of this paper, the performance of the perturbation source method is compared with other Monte Carlo 
perturbation methods and a method for improving the efficiency is proposed below.

3.2. Improvement of the perturbation source method

As shown in Fig. 1, the perturbation calculation does not start unless the particle undergoes a collision within the 
perturbed region. Even when the particle enters the perturbed region, the particle that passes through the region without 
collision does not initiate a perturbation particle. In problems where the perturbed region covers only a small fraction of 
the whole domain, perturbation particles are rarely emitted, which makes the perturbation calculation less effective. For 
improving the efficiency of the perturbation source method, a virtual scattering coefficient is added to the perturbed region. 
The total coefficient μt is increased by a factor of C(> 1). An increased pseudo total coefficient,

μ∗
t = C · μt, (10)

is assigned to the perturbed region. The increased pseudo total coefficient is used for the calculation for the fixed source 
calculation mode. This method is similar to the Woodcock delta tracking [21] that is used as an efficient algorithm for 
free path sampling in heterogeneous media. When a particle undergoes a collision within the perturbed region having 
the pseudo total coefficient μ∗

t , a perturbation particle is emitted from the collision point. The starting weight of the 
perturbation particle is adjusted to compensate for the biased total coefficient:

W ′
t = Wt

C
, (11)

W ′
s + W ′

a = W s + Wa

C
, (12)

where Wt , W s , and Wa are defined by Eqs. (6), (7), and (9), respectively. After the perturbation particles are killed, the 
perturbation calculation mode is terminated. Then, the fixed source calculation mode is resumed, and a pseudo random 
number ξ between 0 and 1 is generated. If the random number meets the criteria:

ξ <
μt

μ∗
t

(
= 1

C

)
, (13)

the virtual collision in the fixed source calculation mode is accepted as the real collision. If not, the virtual collision is 
rejected and the random walk continues with the direction, energy, and weight being left unchanged. Whether the virtual 
collision is accepted or not, the next free path within the perturbed region is sampled with μ∗

t .

4. Numerical tests for the perturbation source method

4.1. Overview of the numerical tests

Numerical tests for the proposed Monte Carlo perturbation method are performed for a two-dimensional 2 cm × 2 cm 
homogeneous rectangular domain. Following the customary procedure of light transport calculations, the energy dependence 
is neglected and the scattering angular distribution function is unchanged by the perturbation. The Henyey–Greenstein 
function [22,23], which is commonly used in light transport calculations, is chosen for the scattering angular distribution 
function:

f
(
r,Ω ′ → Ω

) = 1

4π

1 − g2

(1 + g2 − 2g cos θ)3/2
, (14)

where θ is the angle between Ω ′ and Ω , and g is the anisotropy factor. The optical parameters of the unperturbed system 
are:

μs = 10 cm−1, μa = 0.5 cm−1, and g = 0.9,

where μa = absorption coefficient and μt = μa + μs = 10.5 cm−1.
As discussed above, the efficiency of the perturbation source method depends on the fraction of the perturbed region. 

First, the perturbation source method is tested for a perturbation in a larger portion of the whole domain. Then, a pertur-
bation in a smaller portion is tested.
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Fig. 2. Geometry for a perturbation in a larger portion.

4.2. Perturbation in a large portion

The absorption coefficient or scattering coefficient is changed in the 1.6 cm ×1.6 cm region as shown in Fig. 2. A beam 
source perpendicular to the “Side 3” is placed at the center of the “Side 3” in Fig. 2. When a particle with a weight of W
leaves one of four sides, the boundary measurement of the particle,

W · (n · Ω), (15)

is scored where Ω = particle’s direction and n = unit outward vector normal to the boundary surface, and the boundary is 
considered transparent and non-reflecting. The exitance on a side is estimated as

Pd = 1

N

∑
i

W i · (n · Ω i), (16)

where W i = ith particle’s weight leaving the side, and i is summed over all particles leaving the side, and N = the total 
number of particles emitted from the source.

Two perturbations are considered for the numerical tests. In the first one, the absorption coefficient in the perturbed re-
gion is increased by 20% (i.e., +0.1 cm−1). In the second one, the scattering coefficient is increased by 20% (i.e., +2.0 cm−1). 
To compare the perturbation source method with other perturbation techniques, the correlated sampling method, the first-
order differential operator method, and the second-order differential method are used.

In the correlated sampling method used in this paper, the perturbed history is forced to follow the unperturbed one 
along the same track. When a particle having a weigh of W flies a distance s and undergoes a collision in the perturbed 
region, the weight of the perturbed history after the collision is [24]

W
μ′

te−μ′
t s

μte−μt s
· μ′

s/μ
′
t

μs/μt
· μs

μt
= W · e−�μt s μ

′
s

μt
, (17)

where the prime denotes the perturbed coefficient and �μt = μ′
t − μt .

The differential operator method estimates the perturbed exitance with the Taylor series expansion when an optical 
parameter p changes by �p:

�Pd = ∂ Pd

∂ p
�p + 1

2

∂2 Pd

∂ p2
�p2 + · · · . (18)

Cross terms on the second derivative [25] are neglected because the material is single or the perturbation merely changes 
the density in the examples of this paper.

In the first-order differential operator method, the first-derivative of Pd with respect to μa and μs in the perturbed 
region are respectively [26]:

∂ Pd

∂μa
= − 1

N

∑
i

W i · (n · Ω i)Si, (19)

∂ Pd

∂μs
= 1

N

∑
i

W i · (n · Ω i)

(
Mi

μs
− Si

)
, (20)

where Si = sum of the path lengths in the perturbed region for ith detected particle, and Mi = number of collisions in the 
perturbed region for ith detected particle. Si and Mi are accumulated during the course of the random walk in the fixed 
source Monte Carlo calculation with the unperturbed optical parameters. Similarly, the second-derivative of Pd with respect 
to μa and μs in the perturbed region are respectively [26]:
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Table 1a
Change of Pd by 20% increase in absorption coefficient in a larger portion.

Side 1 Side 2 Side 3 Side 4

Independent run −8.50E−3a −7.09E−3 −3.11E−3 −4.95E−3
(2.35E−6)b (2.74E−6) (4.04E−6) (2.79E−6)

Correlated sampling −8.50E−3 −7.09E−3 −3.11E−3 −4.95E−3
(1.11E−6) (9.47E−7) (5.21E−7) (6.86E−7)

Perturbation source C = 1 −8.49E−3 −7.09E−3 −3.11E−3 −4.95E−3
(1.78E−6) (1.65E−6) (7.14E−7) (1.01E−6)

Perturbation source C = 4 −8.50E−3 −7.09E−3 −3.11E−3 −4.95E−3
(2.89E−6) (2.64E−6) (9.06E−7) (1.37E−6)

Differential operator first order −9.48E−3 −7.85E−3 −3.40E−3 −5.37E−3
(1.23E−6) (1.05E−6) (5.27E−7) (7.45E−7)

Differential operator second order −8.41E−3 −7.02E−3 −3.08E−3 −4.92E−3
(1.10E−6) (9.40E−7) (5.17E−7) (6.82E−7)

a Read as −8.50 × 10−3.
b One standard deviation.

Table 1b
Relative FOM with respect to the correlated sampling method for 20% increase in 
absorption coefficient in a larger portion.

Side 1 Side 2 Side 3 Side 4

Independent run 0.007 0.004 0.001 0.002
Correlated sampling 1.000 1.000 1.000 1.000
Perturbation source C = 1 0.465 0.396 0.641 0.555
Perturbation source C = 4 0.132 0.116 0.298 0.226
Differential operator first order 0.812 0.821 0.830 0.848
Differential operator second order 1.08 1.08 1.08 1.07

∂2 Pd

∂μ2
a

= 1

N

∑
i

W i · (n · Ω i)S2
i , (21)

∂2 Pd

∂μ2
s

= 1

N

∑
i

W i · (n · Ω i)

(
− Mi

μ2
s

+
(

Mi

μs
− Si

)2)
. (22)

(1) Perturbation of absorption coefficient

The change of Pd due to the change of the absorption coefficient by +20% are obtained by the four perturbation methods 
(correlated sampling, perturbation source, first-order, and second-order differential operator methods) and are shown in 
Table 1a. In addition to the Monte Carlo perturbation methods, the change of Pd is obtained by the difference between two 
independent runs before and after the perturbation. For the perturbation source method, the factor C defined in Eq. (10) is 
chosen as C = 1 and 4. Throughout this paper, the change of Pd calculated by the perturbation source method agrees with 
that by the correlated sampling method within 2 standard deviations. The results obtained by the first-order differential 
operator method significantly differs from other methods. However, the second-order differential operator method performs 
much better than the first order.

Table 1b compares the relative figure-of-merit (FOM) defined by

FOM = 1

s2T
, (23)

where s = one standard deviation of absolute uncertainty and T = computation time. The FOMs are normalized with re-
spect to the correlated sampling. The perturbation source method is less effective compared to other perturbation methods 
regardless of the factor C . Furthermore, the computation efficiency of the perturbation source method decreases with the 
factor C , which is contrary to expectation. The additional computational cost for handling more perturbation particles may 
not be worth the gain of reducing the uncertainty for this problem.

(2) Perturbation of scattering coefficient

The Monte Carlo perturbation calculations due to the perturbation of the scattering coefficient have larger variances than 
the absorption coefficient. In the first-order differential operator method, for example, this is because two terms, in the 
parentheses in Eq. (20), Mi/μs and Si , almost cancel each other. The change of Pd due to the change of the scattering 
coefficient by +20% and the relative FOMs are shown in Tables 2a and 2b, respectively. In this case, the second-order 
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Table 2a
Change of Pd by 20% increase in scattering coefficient in a larger portion.

Side 1 Side 2 Side 3 Side 4

Independent run −8.43E−3a −1.57E−3 5.96E−3 5.58E−4
(2.39E−6)b (2.86E−6) (4.14E−6) (2.89E−6)

Correlated sampling −8.43E−3 −1.57E−3 5.96E−3 5.51E−4
(4.88E−6) (4.88E−6) (3.68E−6) (4.11E−6)

Perturbation source C = 1 −8.41E−3 −1.52E−3 5.96E−3 5.32E−4
(3.10E−5) (2.93E−5) (2.19E−5) (2.68E−5)

Perturbation source C = 4 −8.45E−3 −1.61E−3 5.98E−3 5.46E−4
(2.26E−5) (2.13E−5) (1.56E−5) (1.91E−5)

Differential operator first order −9.73E−3 −1.29E−3 6.08E−3 9.43E−4
(6.00E−6) (5.02E−6) (3.14E−6) (4.00E−6)

Differential operator second order −8.24E−3 −1.65E−3 5.96E−3 5.05E−4
(4.95E−6) (4.95E−6) (3.65E−6) (4.14E−6)

a Read as −8.43 × 10−3.
b One standard deviation.

Table 2b
Relative FOM with respect to the correlated sampling method for 20% increase in 
scattering coefficient in a larger portion.

Side 1 Side 2 Side 3 Side 4

Independent run 0.138 0.097 0.026 0.067
Correlated sampling 1.000 1.000 1.000 1.000
Perturbation source C = 1 0.019 0.021 0.021 0.018
Perturbation source C = 4 0.019 0.021 0.022 0.019
Differential operator first order 0.702 0.999 1.46 1.11
Differential operator second order 1.03 1.03 1.08 1.04

Fig. 3. Geometry for a perturbation in a smaller portion.

differential operator method does not perform as well as with the perturbation of the absorption coefficient. Higher-order 
derivatives would be required to obtain more accurate estimates using the differential operator method. The FOMs of the 
perturbation source method for the scattering coefficient are much worse than for the absorption coefficient. The factor C
does not affect the efficiency of the perturbation source method unlike the perturbation of the absorption coefficient.

As a conclusion, the source perturbation method can certainly yield an exact estimate of the perturbation. However, for 
a perturbation in a larger portion of the whole domain, the efficiency is inferior to other Monte Carlo perturbation methods.

4.3. Perturbation in a small portion

The absorption coefficient or scattering coefficient is changed in the 0.0833 cm × 0.0833 cm region as shown in Fig. 3. 
Again, a beam source perpendicular to the “Side 3” is placed at the center of the “Side 3”. The perturbed area within 
the whole domain accounts for 0.17% of the whole domain. First, a smaller perturbation is added to the perturbed region. 
According to [4], the correlated sampling method suffers from a large or unbounded variance for a large perturbation. 
Therefore, a larger perturbation is also tested to compare the efficiency of the perturbation source method to the correlated 
sampling method.

(1) Smaller perturbation of absorption coefficient

The absorption coefficient in the perturbed region is increased by 20% (i.e., +0.1 cm−1). The correlated sampling method, 
the perturbation source method (C = 1, 4, and 32), the first-order differential operator method, and the second-order dif-
ferential method are performed for the perturbation calculation, the change of Pd and their relative FOMs are shown in 
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Table 3a
Change of Pd by 20% increase in absorption coefficient in a smaller portion.

Side 1 Side 2 Side 3 Side 4

Correlated sampling −2.15E−6a −1.47E−6 −1.67E−5 −4.33E−5
(3.42E−9)b (2.78E−9) (1.22E−9) (2.11E−9)

Perturbation source C = 1 −2.15E−6 −1.46E−6 −1.67E−5 −4.33E−5
(3.11E−9) (2.27E−9) (1.20E−8) (2.38E−8)

Perturbation source C = 4 −2.15E−6 −1.46E−6 −1.67E−5 −4.33E−5
(1.62E−9) (1.18E−9) (7.54E−9) (1.59E−8)

Perturbation source C = 32 −2.14E−6 −1.46E−6 −1.67E−5 −4.32E−5
(1.06E−9) (7.60E−10) (7.92E−9) (1.80E−8)

Differential operator first order −2.16E−6 −1.48E−6 −1.68E−5 −4.35E−5
(3.45E−9) (2.81E−9) (1.24E−8) (2.18E−8)

Differential operator second order −2.15E−6 −1.46E−6 −1.68E−5 −4.33E−5
(3.45E−9) (2.78E−9) (1.23E−8) (2.11E−8)

a Read as −2.15 × 10−6.
b One standard deviation.

Table 3b
Relative FOM with respect to the correlated sampling method for 20% increase in 
absorption coefficient in a smaller portion.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 1.00 1.00 1.00 1.00
Perturbation source C = 1 1.12 1.39 0.960 0.726
Perturbation source C = 4 3.83 4.78 2.26 1.50
Perturbation source C = 32 11.9 15.3 2.73 1.56
Differential operator first order 0.983 0.982 0.981 0.987
Differential operator second order 0.997 1.01 0.998 1.00

Table 4a
Change of Pd by 300% increase in absorption coefficient in a smaller portion.

Side 1 Side 2 Side 3 Side 4

Correlated sampling −2.95E−5a −1.99E−5 −2.30E−4 −6.05E−4
(4.61E−8)b (3.63E−8) (1.64E−7) (2.92E−7)

Perturbation source C = 1 −2.96E−4 −1.99E−5 −2.31E−4 −6.05E−4
(4.35E−8) (3.12E−8) (1.67E−7) (3.36E−7)

Perturbation source C = 4 −2.95E−4 −1.98E−5 −2.30E−4 −6.05E−4
(2.25E−8) (1.61E−8) (1.05E−7) (2.24E−7)

Perturbation source C = 32 −2.95E−4 −1.99E−5 −2.31E−4 −6.05E−4
(1.34E−8) (9.45E−9) (1.00E−7) (2.31E−7)

Differential operator first order −3.23E−4 −2.21E−5 −2.53E−4 −3.53E−4
(5.15E−8) (4.19E−8) (1.85E−7) (3.18E−7)

Differential operator second order −2.92E−4 −1.96E−5 −2.28E−4 −6.02E−4
(4.53E−8) (3.56E−8) (1.62E−7) (2.90E−7)

a Read as −2.95 × 10−5.
b One standard deviation.

Tables 3a, and 3b, respectively. For this perturbation, the estimates of the first-order differential operator method agree 
with other perturbation methods within 2%, which is much better than the results for the larger perturbation. The effi-
ciency of the perturbation source method with C = 1 is improved in the two sides and worsened in the remaining two 
sides compared with other perturbation methods. The efficiency of the perturbation source method becomes better as C
increases. By adjusting the factor C , the perturbation source method can be superior to other Monte Carlo perturbation 
techniques.

(2) Larger perturbation of absorption coefficient

The absorption coefficient in the perturbed region is increased by 300% (i.e., +1.5 cm−1). The results are shown in 
Tables 4a, and 4b. The tendency of the relative FOMs in Table 4b is almost the same as the smaller perturbation in Table 3b.

(3) Smaller perturbation of scattering coefficient

The scattering coefficient in the perturbed region is increased by 30% (i.e., +3.0 cm−1). The results are shown in Ta-
bles 5a, and 5b. The perturbed source method with C = 1 is approximately half as effective as the correlated sampling 
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Table 4b
Relative FOM with respect to the correlated sampling method for 300% increase in 
absorption coefficient in a smaller portion.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 1.00 1.00 1.00 1.00
Perturbation source C = 1 1.08 1.30 0.930 0.725
Perturbation source C = 4 3.73 4.51 2.21 1.51
Perturbation source C = 32 11.9 14.7 2.70 1.59
Differential operator first order 0.832 0.782 0.821 0.876
Differential operator second order 1.03 1.04 1.03 1.01

Table 5a
Change of Pd by 30% increase in scattering coefficient in a smaller portion.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 5.46E−6a 4.95E−6 2.51E−5 −6.89E−5
(9.99E−8)b (7.65E−8) (3.52E−7) (6.10E−7)

Perturbation source C = 1 5.71E−6 5.07E−6 2.47E−5 −6.90E−5
(1.37E−7) (9.98E−8) (4.37E−7) (7.19E−7)

Perturbation source C = 4 5.60E−6 5.05E−6 2.51E−5 −6.89E−5
(6.70E−8) (5.00E−8) (2.16E−7) (3.63E−7)

Perturbation source C = 32 5.60E−6 4.99E−6 2.50E−5 −6.89E−5
(3.06E−8) (2.29E−8) (1.03E−7) (1.79E−7)

Differential operator first order 5.91E−6 5.07E−6 2.50E−5 −7.01E−5
(9.98E−8) (7.45E−8) (3.52E−7) (6.34E−7)

Differential operator second order 5.71E−6 5.01E−6 2.46E−5 −6.87E−5
(1.01E−7) (7.69E−8) (3.51E−7) (6.11E−7)

a Read as 5.46 × 10−6.
b One standard deviation.

Table 5b
Relative FOM with respect to the correlated sampling method for 30% increase in 
scattering coefficient in a smaller portion.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 1.00 1.00 1.00 1.00
Perturbation source C = 1 0.515 0.544 0.621 0.666
Perturbation source C = 4 1.85 1.95 2.22 2.36
Perturbation source C = 32 7.19 7.56 7.97 7.84
Differential operator first order 1.14 1.20 1.14 1.05
Differential operator second order 1.02 1.03 1.05 1.04

method. However, the efficiency of the perturbed source method increases with the factor C . When C = 32, the pertur-
bation source method outperforms the correlated sampling method by a factor of 7. The perturbation source method can 
achieve a higher efficiency than other perturbation methods by adjusting the factor C .

(4) Larger perturbation of scattering coefficient

The scattering coefficient in the perturbed region is increased by 200% (i.e., +20.0 cm−1). The results are shown in 
Tables 6a, and 6b. For such a larger perturbation of the scattering coefficient, the correlated sampling method incurs a 
larger variance, which can be observed by comparing the FOMs between the correlated sampling method and the differen-
tial operator method. Thus, the perturbation source method and the differential operator method exhibit relatively better 
performance than the correlated sampling method. The improvement of the efficiency in the perturbation source method is 
more remarkable than in the smaller perturbation. When C = 32, the perturbation source method is about 50 times more 
efficient than the correlated sampling method.

4.4. Perturbation in an anisotropy factor

In the next example, the anisotropy factor of the Henyey–Greenstein function, which is defined in Eq. (14), is perturbed 
in the perturbed region in Fig. 3. The correlated sampling method, the perturbation source method (C = 1, 4, and 32), the 
first-order differential operator method, and the second-order differential method are tested for the perturbation calculation.

In the perturbation source method, when a particle having a weight of W undergoes a collision within the perturbed 
region, a perturbation particle is emitted from the collision point. The scattering angle θ for the perturbation particle is 
sampled using Eq. (14). The weight of the perturbation particle emitted from the collision point is:
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Table 6a
Change of Pd by 200% increase in scattering coefficient in a smaller portion.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 3.26E−5a 2.89E−5 1.39E−4 −4.15E−4
(1.69E−6)b (1.26E−6) (7.67E−6) (1.27E−5)

Perturbation source C = 1 3.38E−5 3.17E−5 1.55E−4 −4.21E−4
(9.36E−7) (7.11E−7) (3.29E−6) (5.71E−6)

Perturbation source C = 4 3.31E−5 3.17E−5 1.53E−4 −4.17E−4
(4.68E−7) (3.56E−7) (1.65E−6) (2.86E−6)

Perturbation source C = 32 3.31E−5 3.22E−5 1.54E−4 −4.20E−4
(1.65E−7) (1.26E−7) (5.82E−7) (1.01E−6)

Differential operator first order 3.77E−5 3.45E−5 1.71E−4 −4.64E−4
(6.46E−7) (4.83E−7) (2.27E−6) (4.10E−6)

Differential operator second order 3.26E−5 3.18E−5 1.58E−4 −4.14E−4
(1.20E−6) (1.00E−6) (4.22E−6) (6.40E−6)

a Read as 3.26 × 10−5.
b One standard deviation.

Table 6b
Relative FOM with respect to the correlated sampling method for 200% increase in 
scattering coefficient in a smaller portion.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 1.00 1.00 1.00 1.00
Perturbation source C = 1 3.01 2.93 5.03 4.54
Perturbation source C = 4 10.8 10.5 18.1 16.4
Perturbation source C = 32 41.3 40.1 69.1 62.3
Differential operator first order 7.11 7.14 11.9 9.94
Differential operator second order 2.04 1.66 3.45 4.07

Wa = f (θ, g′) − f (θ, g)

f (θ, g)
μ

p
s

W

μt
, (24)

where g′ = the perturbed anisotropy factor, and

f (θ, g) = 1

4π

1 − g2

(1 + g2 − 2g cos θ)3/2
. (25)

In the correlated sampling method, when a particle having a weight of W flies a distance s and undergoes a collision in 
the perturbed region, the weight of the perturbed history after the collision is

W · e−�μt s μs

μt
· f (θ, g′)

f (θ, g)
, (26)

where θ = the scattering angle for the perturbed and unperturbed histories after the collision.
In the differential operator method, the first- and the second-derivative of Pd with respect to the anisotropy factor g in 

the perturbed region are respectively [26]:

∂ Pd

∂ g
= 1

N

∑
i

W i · (n · Ω i)G1i, (27)

∂2 Pd

∂ g2
= 1

N

∑
i

W i · (n · Ω i)
(
G2

1i + G2i
)
, (28)

where

G1i =
∑

j

1

f (θ j, g)

∂ f (θ j, g)

∂ g
, (29)

G2i =
∑

j

∂

∂ g

(
1

f (θ j, g)

∂ f (θ j, g)

∂ g

)
, (30)

and the summation symbols for j denote the sum for all collisions in the perturbed region.
The perturbation calculations are performed when the anisotropy factor g is changed from 0.9 to 0.895. The change of 

Pd and their relative FOMs are shown in Tables 7a, and 7b, respectively. The perturbed source method with C = 1 is as 
effective as other perturbation methods for this perturbation. However, the efficiency of the perturbation source method 
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Table 7a
Change of Pd by the change of the anisotropy factor from 0.9 to 0.895.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 9.05E−7a 8.71E−7 4.19E−6 −1.15E−5
(1.49E−8)b (1.14E−8) (5.25E−8) (9.18E−8)

Perturbation source C = 1 9.16E−7 8.70E−7 4.16E−6 −1.14E−5
(1.49E−8) (1.13E−8) (5.26E−8) (9.17E−8)

Perturbation source C = 4 9.04E−7 8.54E−7 4.14E−6 −1.15E−5
(7.48E−9) (5.69E−9) (2.65E−8) (4.64E−8)

Perturbation source C = 32 9.16E−7 8.58E−7 4.17E−6 −1.14E−5
(2.66E−9) (2.02E−9) (9.95E−9) (1.82E−8)

Differential operator first order 9.29E−7 8.63E−7 4.18E−6 −1.14E−5
(1.08E−8) (8.18E−9) (3.80E−8) (6.71E−8)

Differential operator second order 8.92E−7 8.70E−7 4.09E−6 −1.15E−5
(9.62E−9) (7.36E−9) (3.39E−8) (5.92E−8)

a Read as 9.05 × 10−7.
b One standard deviation.

Table 7b
Relative FOM with respect to the correlated sampling method for the change of the 
anisotropy factor from 0.9 to 0.895.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 1.00 1.00 1.00 1.00
Perturbation source C = 1 1.00 1.02 0.997 1.00
Perturbation source C = 4 3.69 3.74 3.65 3.63
Perturbation source C = 32 18.6 18.9 16.5 15.0
Differential operator first order 1.00 1.01 0.994 0.974
Differential operator second order 1.04 1.04 1.04 1.04

Table 8a
Change of Pd by the change of the anisotropy factor from 0.9 to 0.6.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 4.27E−5a 4.87E−5 2.05E−4 −5.68E−4
(7.94E−7)b (8.57E−7) (3.74E−6) (3.62E−6)

Perturbation source C = 1 4.17E−5 4.95E−5 2.06E−4 −5.70E−4
(4.35E−7) (3.90E−7) (1.54E−6) (1.92E−6)

Perturbation source C = 4 4.24E−5 4.91E−5 2.05E−4 −5.68E−4
(2.69E−7) (2.39E−7) (9.51E−7) (1.21E−6)

Perturbation source C = 32 4.25E−5 4.97E−5 2.06E−4 −5.69E−4
(1.07E−7) (9.51E−8) (4.05E−7) (5.83E−7)

Differential operator first order 5.23E−5 5.14E−5 2.49E−4 −6.92E−4
(9.11E−7) (6.93E−7) (3.23E−6) (5.69E−6)

Differential operator second order 4.15E−5 5.00E−5 1.89E−4 −5.75E−4
(2.67E−6) (2.11E−6) (9.52E−6) (1.69E−5)

a Read as 4.27 × 10−5.
b One standard deviation.

Table 8b
Relative FOM with respect to the correlated sampling method for the change of the 
anisotropy factor from 0.9 to 0.6.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 1.00 1.00 1.00 1.00
Perturbation source C = 1 3.70 5.46 6.66 4.00
Perturbation source C = 4 13.2 19.5 23.5 13.6
Perturbation source C = 32 69.0 102 107 48.4
Differential operator first order 1.39 2.80 2.45 0.742
Differential operator second order 0.162 0.301 0.283 0.0841

increases with the factor C . Tables 8a and 8b show the results when the perturbation of g is much larger (from 0.9 to 
0.6). For the perturbation of g , the perturbation source method outperforms other perturbation methods regardless of the 
factor C .



H. Sakamoto, T. Yamamoto / Journal of Computational Physics 345 (2017) 245–259 257
Fig. 4. Geometry for a multi-group neutron transport perturbation.

Table 9
3-group constants for light-water and graphite.

Light-water Graphite

Σt1 (cm−1) Total cross section of 1st group 0.33207 0.21053
Σt2 (cm−1) Total cross section of 2nd group 1.1265 0.45009
Σt3 (cm−1) Total cross section of 3rd group 2.7812 0.53500
Σa1 (cm−1) Absorption cross section of 1st group 0.00030500 0.00013890
Σa2 (cm−1) Absorption cross section of 2nd group 0.00036990 0.0000017
Σa3 (cm−1) Absorption cross section of 3rd group 0.018250 0.000021
Σ1→2

s (cm−1) Group-transfer cross section from 1st to 2nd group 0.10464 0.029672
Σ2→3

s (cm−1) Group-transfer cross section from 2nd to 3rd group 0.097961 0.015913

Table 10a
Change of the thermal neutron currents by 80% decrease in the light water density.

Side 1 Side 2 Side 3 Side 4

Correlated sampling −6.56E−5a −7.71E−5 −1.74E−4 2.01E−5
(1.78E−6)b (1.17E−6) (3.82E−6) (5.84E−6)

Perturbation source C = 1 −6.45E−5 −7.68E−5 −1.67E−4 6.02E−6
(4.02E−7) (8.63E−7) (2.14E−6) (2.15E−6)

Perturbation source C = 10 −6.46E−5 −7.65E−5 −1.70E−4 8.99E−6
(8.65E−7) (4.01E−7) (1.02E−6) (1.03E−6)

Perturbation source C = 30 −6.48E−5 −7.66E−5 −1.68E−4 7.73E−6
(3.68E−7) (3.67E−7) (9.87E−7) (9.92E−7)

Differential operator first order −5.22E−5 −6.25E−5 −1.57E−4 −1.61E−5
(6.90E−7) (6.90E−7) (2.05E−6) (2.06E−6)

Differential operator second order −6.23E−5 −7.49E−5 −1.62E−4 −5.09E−6
(8.89E−7) (8.87E−7) (2.74E−6) (2.74E−6)

a Read as −6.56 × 10−5.
b One standard deviation.

4.5. Perturbation for multi-group neutron transport in a heterogeneous geometry

The perturbation source method is applied to perturbation calculations for multi-group neutron transport in a heteroge-
neous geometry. The geometry for the perturbation calculations is a two-dimensional right square having a checkerboard 
pattern array of light water and graphite as shown in Fig. 4. The calculations use 3 energy group constants that are pre-
pared with the standard reactor analysis code SRAC [27]. The constants are listed in Table 9. The scattering is assumed 
to be isotropic. A line neutron beam in the 1st energy group perpendicular to the “Side 3” enters from the center of the 
“Side 3”. As the perturbation added to this configuration, the water density of the perturbed region decreases by 80%. In 
the same manner as in the numerical examples shown above, the changes of the neutron currents in the 3rd energy group 
(i.e., thermal neutron) on the four outer boundaries are calculated with the three perturbation methods. The change of the 
thermal neutron currents and their relative FOMs are shown in Tables 10a, and 10b, respectively. Among the perturbation 
methods tested in this paper, the computation efficiency is maximized when the perturbation source method with C ≈ 30
is used. The tendency for this neutron transport in the heterogeneous geometry is the same as the numerical examples for 
the light transport.
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Table 10b
Relative FOM with respect to the correlated sampling method for 80% decrease in 
the light water density.

Side 1 Side 2 Side 3 Side 4

Correlated sampling 1.00 1.00 1.00 1.00
Perturbation source C = 1 6.18 2.71 4.64 10.8
Perturbation source C = 10 19.7 8.62 14.0 32.6
Perturbation source C = 30 23.6 10.3 15.0 34.9
Differential operator first order 12.5 5.45 6.50 15.2
Differential operator second order 7.08 3.09 3.43 8.01

5. Conclusions

The present paper has proposed an exact Monte Carlo perturbation method for fixed source problems, which is dubbed 
the “perturbation source method”. This paper is actually an improvement over a previously proposed version of the pertur-
bation source method. In the previous studies for the perturbation source method, the higher-order perturbation has been 
neglected and the accuracy has been limited within the first-order perturbation. On the other hand, the perturbation source 
method in this paper solves explicitly and exactly the transport equation for the flux difference without approximation by 
tracking “perturbation particles” in the perturbed system. This method employs a quite different concept from the well-
known perturbation methods such as the correlated sampling method and the differential operator method. This method 
requires the flux in the unperturbed system as its source term. The unperturbed flux is provided by an “on-the-fly” tech-
nique during the course of the ordinary fixed source calculation for the unperturbed system. Then, a perturbation particle 
that started from the collision point in the perturbed region is tracked until its death.

If the perturbed region covers a larger portion of the whole domain, too many perturbation particles have to be tracked, 
which makes the perturbation source method less effective than the correlated sampling method. On the other hand, if 
the perturbed region covers only a smaller portion of the whole domain, too few perturbation particles are started. For a 
perturbation in a smaller portion, the efficiency of the perturbation source method can be improved by adding a virtual 
scattering coefficient to the perturbed region, forcing collisions in the perturbed region.

The numerical tests are performed for a particle transport in a two-dimensional semi-transparent material. The numerical 
tests in this paper compare the perturbation source method with the correlated sampling method, the first-order differential 
operator method, and the second-order differential operator method. The perturbation source method is less effective than 
the correlated sampling method for a perturbation in a larger portion of the whole domain. However, the perturbation 
source method outperforms other perturbation methods in situations where the perturbed region covers only a smaller 
portion of the whole domain. The improvement by the perturbation source method depends on the added virtual scattering 
coefficient or cross section and on how large the perturbation is. For a large perturbation, the correlated sampling method 
suffers from a large variance. In such a case, the performance of the perturbation source method is relatively superior to 
the correlated sampling method. The efficiency of the perturbation source method depends strongly on the adjustment of 
the virtual scattering coefficient or cross section added to the perturbed region. As a general rule, the efficiency increases 
with the virtual scattering coefficient added.

There still remain some works to be done in the future. The application to the continuous-energy physics is one of 
future works. The optimization of the factor C for increasing the number of collisions in a perturbed region may also 
be desirable. The proposed method can be straightforwardly applied to keff -eigenvalue problems unless the fission source 
distribution is changed by a perturbation. However, a new algorithm should be invented to take into account the fission 
source perturbation.
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