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Highlights

• This is the first energy-conserving HDG method for the wave equation.
• Using polynomials of degree k we can obtain convergence of order k + 2.
• The method preserves the Hamiltonian structure of the equation.
• The techniques is extended to general DG methods and Mixed methods.
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Abstract

We devise the first symplectic Hamiltonian hybridizable discontinuous Galerkin (HDG) methods for the

acoustic wave equation. We discretize in space by using a Hamiltonian HDG scheme, that is, an HDG

method which preserves the Hamiltonian structure of the wave equation, and in time by using symplectic,

diagonally implicit and explicit partitioned Runge-Kutta methods. The fundamental feature of the resulting

scheme is that the conservation of a discrete energy, which is nothing but a discrete version of the original

Hamiltonian, is guaranteed. We present numerical experiments which indicate that the method achieves

optimal approximations of order k + 1 in the L2-norm when polynomials of degree k ≥ 0 and Runge-Kutta

time-marching methods of order k + 1 are used. In addition, by means of post-processing techniques and

by increasing the order of the Runge-Kutta method to k + 2, we obtain superconvergent approximations

of order k + 2 in the L2-norm for the displacement and the velocity. We also present numerical examples

that corroborate that the methods conserve energy and that they compare favorably with dissipative HDG

schemes, of similar accuracy properties, for long-time simulations.
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1. Introduction

In this paper, we devise symplectic Hamiltonian hybridizable discontinuous Galerkin (HDG) methods

for numerically solving the wave equation

ü(t) = div(κ∇u(t)) + f(t) in Ω, ∀t ≥ 0, (1a)

ακ∇u(t) · n+ βu(t) = g(t) on Γ := ∂Ω, ∀t ≥ 0, (1b)

u(0) = u0, in Ω, t = 0, (1c)

u̇(0) = v0 in Ω, t = 0, (1d)

on an open and bounded polygonal domain Ω ⊂ R
d with Lipschitz continuous boundary Γ := ∂Ω. We

assume that the scalar coefficient κ = κ(x) ∈ L∞(Ω), satisfies κ ≥ κ0 > 0 almost everywhere, and the source

term f(t) ∈ L2(Ω) for all t ≥ 0. The problem prescribes Robin boundary conditions with coefficients α, β

varying on ∂Ω, and the source term g(t) ∈ H1/2(∂Ω), for all t ≥ 0. Initial conditions are also given, with

initial data u0, v0 ∈ L2(Ω). We are particularly interested in the case in which the wave equation system (1)

is autonomous, that is, when the source terms are f ≡ 0 and g ≡ 0. Under these conditions, the energy is

conserved in time which fuels the interest in the development of non-dissipative methods numerical methods,

that is, of methods which also conserve a discrete version of the energy. Since most, if not all, HDG methods

proposed so far are actually dissipative, it was believed that non-dissipative HDG methods did not exist.

However, here we show how to devise a large class of non-dissipative HDG methods for the wave equation

and argue that methods with similar conservation properties can be obtained by using mixed and standard

DG methods as well.

The semi-discrete numerical scheme presented in this paper belongs to the class of HDG methods. These

methods were first introduced in [12] for diffusion problems, and since then they have gained notorious

attention, accumulating extensive theoretical and experimental results for a wide variety of partial differential

equations. Their popularity is explained mainly by two properties, the significantly smaller number of

globally-coupled unknowns compared to DG methods, and the enhanced convergence or superconvergence

property of their approximations; see the recent reviews in [8, 7].

The HDG methodology has also been applied to wave propagation problems. First, in [26] a semi-

discrete HDG method coupled with diagonally implicit Runge-Kutta time-marching method was applied

to the acoustic wave propagation and elastodynamics. The fully discrete method was implicit and high-

order accurate with optimal rates of convergence, as their numerical experiments showed. The semi-discrete

scheme, based on the velocity and stress variables, was later analyzed in [13], where the authors proved

optimal L2-error estimates for the velocity and stress approximations. They also proved superconvergence

properties and showed a local post-processing technique that gives a superconvergent approximation to the

displacement of order k+2. More recently, an explicit method, based on the same semi-discrete formulation,
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was introduced in [31] which displayed similar convergence properties. Unfortunately, these methods are

dissipative and are not suitable for long-term simulations.

Many finite element methods have been applied to wave propagation problems. In particular, mixed and

discontinuous Galerkin (DG) methods have shown certain advantages in comparison with continuous finite

element methods. Since the introduction of the mixed method for the velocity-stress formulation in [19],

many others have considered this first order system for their discretization. For instance, space-time DG

methods [18, 25, 27], staggered DG methods [4, 5], local discontinuous Galerkin methods [32], and symmetric

interior penalty methods [20]. In particular, in [20] the authors proved optimal rates of convergence in the

L2-norm. An alternative formulation for the displacement and the stress has also been discretized using

mixed methods in [16]. They obtained optimal L2-errors estimates of the semi-discrete scheme. For a

complete description and comparison of these methods see [13].

In spite of the optimal convergence properties (or quasi-optimal in some cases), most of the schemes

mentioned above might not be suitable for long-time computations, due to their energy-dissipative char-

acteristics. Indeed, it has been observed that dissipative numerical schemes suffer a loss of accuracy for

long-time computations, despite their optimal error estimates. The exceptions in the schemes mentioned

above are the energy-conserving schemes introduced in [4, 5], [23] and [32]. The proof of the energy-

conservative properties in these cases uses features of the respective methods. Alternatively, there are

numerical methods that derive the energy conservation from the structure of the discretization. They devise

a spatial discretization satisfying a discrete Hamiltonian structure, and prove the conservation of energy by

simply applying the theory of finite dimensional Hamiltonian systems. Among these methods we found, the

non-dissipative DGTD method in [28], and the mimetic finite difference methods in [17]. More recently,

in [14], a semidiscrete, energy-conservative HDG was proposed. Since the method keeps the second-order

time derivative, it was combined with a Stormer-Numerov time-marching method. The resulting method

preserves an approximation to the energy under a suitable CFL condition. In this paper, we keep the same

semidiscrete HDG discretization, but introduce the velocity as a new unknown. This allows us to show that

the Hamiltonian structure of the wave equation is preserved under discretization and that, as a consequence,

when symplectic time-marching schemes are used, the discrete Hamiltonian of the semidiscrete scheme, the

discrete energy in our case, is maintained constant in time.

Thus, the numerical methods presented in this paper have two fundamental properties. First, the

L2-errors of the approximations for the displacement, velocity, and stress (or negative gradient) variables

converge optimally, with an order of k + 1 when piecewise polynomials of degree k are used, and a su-

perconvergence order of k + 2 is achieved for the L2 errors of the post-processed approximations for the

displacement and velocity variables. Second, the discrete Hamiltonian of the space discretization, which is

nothing but the discrete energy of the space discretzation, remains constant in time. We focus on symplectic
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implicit and explicit Runge-Kutta methods of orders consistent with the superconvergence rate k + 2. To

the best of our knowledge, these are the first symplectic Hamiltonian HDG schemes.

The paper is structured as follows. In Section 2, we introduce the Hamiltonian formulation of the wave

equation and describe its HDG discretization. We then present the main result of the paper, the preservation

of the Hamiltonian structure of the wave equation under the HDG discretization. In Section 3, we present

the high-order accurate symplectic time-integrators that complete our fully discrete schemes. First, we

introduce symplectic diagonally implicit Runge-Kutta methods, and then symplectic explicit partitioned

Runge-Kutta methods. In both cases, we outline the resulting pseudo- algorithms. We then define the

post-processing techniques employed to obtain superconvergent approximations in Section 2.4. In Section

4, we present numerical evidence corroborating the expected convergence properties of the schemes and

displaying their conservative properties. Finally, in Section 5, we discuss the extension of our ideas to mixed

and DG methods, and briefly discuss future work.

2. The Hamiltonian HDG scheme

In this section, we introduce the semi-discrete Hamiltonian HDG method approximating solutions of

the wave equation under consideration; we follow [14]. We then prove that this numerical scheme preserves

the Hamiltonian structure of the continuous problem. Because of this property, which turns out to be the

cornerstone in the construction of fully discrete energy-conservative schemes, the method is said to be a

Hamiltonian method.

We begin by rewriting the second order partial differential equation (1a) into a Hamiltonian system for

the displacement u(t) and the velocity v(t) variables

u̇(t) = v(t) in Ω, ∀t ≥ 0, (2a)

v̇(t) = f(t)−∇ · q(t) in Ω, ∀t ≥ 0, (2b)

q(t) := −κ∇u(t) in Ω, ∀t ≥ 0. (2c)

These are subject to Robin boundary conditions,

αq(t) · n+ βu(t) = g(t) on Γ, ∀t ≥ 0, (3)

and the initial conditions,

u(0) = u0, v(0) = v0 in Ω, t = 0. (4)

The total Hamiltonian function associated with (2) is given by

H(u, v, t) =

∫
Ω

(
1

2
v(t)2+

1

2
κ−1q(t) · q(t)− f(t)u(t)

)
dx−

∫
∂Ω

α−1g(t)u(t) ds. (5)
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If f(t) = g(t) = 0 then it can be easily shown that the Hamiltonian function satisfies

H(u(t), v(t)) = H(u(0), v(0)) = H(u0, v0) ≥ 0, ∀ t. (6)

The quantity E(t) ≡ H(u(t), v(t)) is called the energy of the Hamiltonian system (2), which is conserved

for all time.

Next, we define the Hamiltonian HDG method based on the Hamiltonian system (2). We first introduce

some standard discontinuous Galerkin notation.

2.1. Notation

Let Ωh be a conforming simplicial triangulation of Ω ⊂ R
d, i.e., the elements of Ωh are segments for

d = 1, triangles for d = 2, and tetrahedra for d = 3. We denote by Eh the set of faces (d = 3, respectively

edges d = 2 or nodes d = 1) of the triangulation (or skeleton of the triangulation). We assume that the

triangulation Ωh satisfies standard finite element assumptions, see [6] and [3].

For a domain K ∈ R
d we let (·, ·)K to be the volume integral of the inner product for functions u, v ∈

L2(K) and q, r ∈ [L2(K)]d, i.e.,

(u, v)K :=

∫
K

uv dx, (q, r)K :=

∫
K

q · r dx. (7)

Similarly, for a domain F ⊂ R
d−1 the product is denoted by 〈·, ·〉F , i.e., for μ, η ∈ L2(F ) we have

〈μ, η〉F :=

∫
F

μη ds. (8)

Now, by means of the previous definitions, we introduce the following products over the triangulation and

its skeleton

(u, v)Ωh
:=

∑
K∈Ωh

(u, v)K , (q, r)Ωh
:=

∑
K∈Ωh

(q, r)K ,

〈·, ·〉∂K :=
∑

F∈∂K∩Eh

〈·, ·〉F , 〈u, r · n〉∂Ωh
:=

∑
K∈Ωh

〈u, r · n〉∂K ,

〈u, v〉∂Ωh
:=

∑
K∈Ωh

〈u, v〉∂K , 〈u, v〉∂Ωh\Γ :=
∑

K∈Ωh

〈u, v〉∂K\(∂K∩Γ).

Furthermore, our numerical methods seek finite element approximations to the displacement u, the

velocity v, and the flux q in the domain, and the displacement u on the faces of the triangulation. These

numerical approximations be defined on the following discontinuous piecewise polynomial spaces:

Vh := {r ∈ [L2(Ω)]d : r|K ∈ V (K), ∀K ∈ Ωh},

Wh := {w ∈ L2(Ω) : w|K ∈ W (K), ∀K ∈ Ωh},

Mh := {μ ∈ L2(Eh) : μ|F ∈ M(F ), ∀F ∈ Eh}.
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For the sake of simplicity, we take the local spaces as V (K) := [Pk(K)]d, W (K) := Pk(K), and M(F ) :=

Pk(F ), where Pk(D) denotes the space of polynomials of degree at most k on a domain D. In this case,

the definition of the HDG projection is as follows. Given q ∈ [L2(Ω)]d and u ∈ L2(Ω), the HDG projection

(Πq,Πu) is defined locally for each simplex K ∈ Ωh, by the solution of the following system of equations:

(Πq, r)K = (q, r)K ∀r ∈ Pk−1(K),

(Πu,w)K = (u,w)K ∀w ∈ Pk−1(K), (9)

〈Πq · n+ τΠu, μ〉∂K = 〈q · n+ τu, μ〉∂K ∀μ ∈ ∪F∈∂KPk(F ),

for τ a stabilization parameter.

The above choice of elements and local spaces is convenient for its simplicity but is certainly not necessary.

Other choices of elements and local spaces can be obtained by using the theory of M-decompositions, see

[11, 9, 10].

Now, we are in position to introduce the Hamiltonian HDG scheme.

2.2. The semi-discrete HDG formulation

We discretize the Hamiltonian form (2) of the acoustic wave equation using HDG methods. Note that,

this HDG formulation is slightly different from the one introduced in [14], where the velocity variable is not

approximated directly. However, the convergence results derived in [14] can be applied to this case. We

define the semi-discrete HDG method as follows: find (uh(t), vh(t), qh(t), ûh(t)) ∈ Wh×Wh×Vh×Mh, such

that

(u̇h(t), w)Ωh
= (v(t), w)Ωh

(10a)

(v̇h(t), w)Ωh
= (qh(t),∇w)Ωh

− 〈q̂h(t) · n, w〉∂Ωh
+ (f(t), w)Ωh

(10b)

(κ−1qh(t), r)Ωh
= (uh(t),∇ · r)Ωh

− 〈ûh(t), r · n〉∂Ωh
(10c)

〈q̂h(t) · n, μ〉∂Ωh\Γ = 〈αq̂h(t) · n− βûh(t) + g(t), μ〉Γ (10d)

q̂h(t) · n := qh(t) · n+ τ(uh(t)− ûh(t)) on Eh, (10e)

for all w ∈ Wh, v ∈ Vh and μ ∈ Mh, and for all t ≥ 0. Moreover, the initial conditions of the system

(uh(0), vh(0), qh(0), ûh(0)) are prescribed by suitable projections to the finite element spaces of the initial

data (u0, v0). Specifically, (uh(0), qh(0), ûh(0)) ∈ Wh × Vh ×Mh are defined as the solution of the system:

(κ−1qh(0), r)Ωh
− (uh(0),∇ · r)Ωh

+ 〈ûh(0), r · n〉∂Ωh
= 0 ∀r ∈ Vh (11a)

−(qh(0),∇w)Ωh
+ 〈q̂h(0) · n, w〉∂Ωh

= (−∇ · (κ∇u0), w)Ωh
∀w ∈ Wh, (11b)

〈q̂h(0) · n, μ〉∂Ωh\Γ + 〈−αq̂h(0) · n+ βûh(0), μ〉Γ = 〈g(0), μ〉Γ ∀μ ∈ Mh, (11c)

q̂h(0) · n = qh(0) · n+ τ(uh(0)− ûh(0)) on Eh, (11d)

6



and vh(0) ∈ Wh is given by

((q̇)h(0), vh(0)) := (Π(−κ∇v0),Π(v0)), (12)

where (Πq,Πu) ∈ Vh ×Wh is the auxiliary HDG-projection defined in (9).

Remark 2.1. The particular choice of the initial condition (11) of the HDG method is guided by the

analysis in [14]. An interesting question is if we can replace this initial condition by other projections. For

instance, by the L2-projection or by the HDG projections of the initial data. We explore these options in

Section 4, finding evidence of loss of accuracy for the L2 projection.

2.3. The Hamiltonian structure of the HDG formulation

Next, we prove that the Hamiltonian structure of the wave equation is preserved after the discretization

with the HDG method. To state the result, we need introduce some notation. For the sake of simplicity,

and without loss of generality, we consider an orthonormal basis {φi}i∈J of the finite element space Wh,

that is, (φi, φj)Ωh
= δi,j , where δi,j is the Kronecker delta function. Then, we define the degrees of freedom

of the approximations uh(t) and vh(t), respectively ui(t) and vi(t), for i ∈ J , by

uh(t, x) =
∑
i∈J

ui(t)φi(x), vh(t, x)=
∑
i∈J

vi(t)φi(x).

We can now state our main result.

Theorem 1. Set pi := vi and qi := ui, for i ∈ J , and H(p, q, t) := Hh(uh, vh, t) where

Hh(uh, vh, t) =
1

2
(vh, vh)Ωh

+
1

2
(κ−1qh, qh)Ωh

+
1

2
〈τ(uh− ûh), uh− ûh〉∂Ωh

− (f(t), uh)Ωh
−〈( 1

α
)g(t), ûh〉∂Ωh

.

(13)

Here qh and ûh(t) are determined by the HDG scheme in terms of uh, by means of equations (10c), (10d)

and (10e). Then, the HDG method (10) is equivalent to the following Hamiltonian system:

ṗi = −∂

∂qi
H(p, q, t) i ∈ J ,

q̇i =
∂

∂pi
H(p, q, t) i ∈ J .

This result states that the semi-discrete HDG method (10) has a Hamiltonian structure. A consequence

of this fact is that the discrete Hamiltonian, which in this case is also a discrete energy, remains constant

in time whenever Hh(uh, vh, t) = Hh(uh, vh), that is, whenever f and g are independent of time. Indeed, in

such a case we have that

d

dt
Hh(uh, vh) = Ḣ(p, q) = ṗi

∂H
∂pi

+ q̇i
∂H
∂qi

= −∂H
∂qi

∂H
∂pi

+
∂H
∂pi

∂H
∂qi

= 0.

Another consequence is that this spatial discretization is a proper pair for symplectic time integrators, see

[30, 21], as the resulting fully discrete method always maintain a modified Hamiltonian constant in (discrete)
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time. Moreover, since our Hamiltonian is quadratic, exact Hamiltonian conservation is achieved by means

of Runge-Kutta methods that preserve quadratic invariants. These methods are symplectic [2].

Let us prove Theorem 1.

Proof. Let us prove the first identity. We have

ṗi = v̇i by def. of pi,

= (v̇h, φi)Ωh
by def. of φi,

= (∇φi, qh)Ωh
− 〈φi, q̂h · n〉∂Ωh

+ (φi, f(t))Ωh
by (10b),

=− (φi,∇ · qh)Ωh
− 〈φi, (q̂h − qh) · n〉∂Ωh

+ (φi, f(t))Ωh

=− (
∂

∂ui
uh,∇ · qh)Ωh

− 〈 ∂

∂ui
uh, (q̂h − qh) · n〉∂Ωh

+ (
∂

∂ui
uh, f(t))Ωh

by def. of φi,

=− (
∂

∂ui
uh,∇ · qh)Ωh

− 〈 ∂

∂ui
(uh − ûh), (q̂h − qh) · n〉∂Ωh

− 〈 ∂

∂ui
ûh, (q̂h − qh) · n〉∂Ωh

+ (
∂

∂ui
uh, f(t))Ωh

=− (
∂

∂ui
uh,∇ · qh)Ωh

− 〈 ∂

∂ui
(uh − ûh), (q̂h − qh) · n〉∂Ωh

+ 〈 ∂

∂ui
ûh,

β

α
ûh − 1

α
g(t)〉Γ

+ 〈 ∂

∂ui
ûh, qh · n〉∂Ωh

+ (
∂

∂ui
uh, f(t))Ωh

by (10d),

=− (
∂

∂ui
uh,∇ · qh)Ωh

+ 〈 ∂

∂ui
ûh, qh · n〉∂Ωh

− 〈 ∂

∂ui
(uh − ûh), (q̂h − qh) · n〉∂Ωh

+ 〈 ∂

∂ui
ûh,

β

α
ûh − 1

α
g(t)〉Γ + (

∂

∂ui
uh, f(t))Ωh

=− (
∂

∂ui
uh,∇ · qh)Ωh

+ 〈 ∂

∂ui
ûh, qh · n〉∂Ωh

− 〈 ∂

∂ui
(uh − ûh), τ(uh − ûh)〉∂Ωh

+ 〈 ∂

∂ui
ûh,

β

α
ûh − 1

α
g(t)〉Γ + (

∂

∂ui
uh, f(t))Ωh

by (10e),

=− (
∂

∂ui
qh, qh)Ωh

− 〈 ∂

∂ui
(uh − ûh), τ(uh − ûh)〉∂Ωh

+ 〈 ∂

∂ui
ûh,

β

α
ûh − 1

α
g(t)〉Γ + (

∂

∂ui
uh, f(t))Ωh

by (10c),

=− ∂

∂ui
Hh(uh, vh, t) = −∂

∂qi
H(p, q, t),

by the identity

∂

∂ui
Hh(uh, vh, t) = (κ−1 ∂

∂ui
qh, qh)Ωh

+ 〈 ∂

∂ui
(uh − ûh), τ(uh − ûh)〉∂Ωh

− (f(t),
∂uh

∂ui
)Ωh

− 〈( 1
α
)g(t),

∂ûh

∂ui
〉∂Ωh

,

and the definition of H(p, q, t). This proves the first identity.
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The second identity is simpler to prove. Indeed, we have

q̇i = u̇i by def. of qi,

= vi by def. of vi,

= (φi, vh)Ωh
by def. of φi,

= (
∂

∂vi
vh, vh)Ωh

=
∂

∂vi
Hh(uh, vh, t) =

∂

∂pi
H(p, q, t),

by the identity

∂

∂vi
Hh(uh, vh, t) = (

∂

∂vi
vh, vh)Ωh

,

and the definition of H(p, q, t). This completes the proof. �

2.4. Post-processing

Next, we complete the presentation of the HDG methods by describing standard post-processing tech-

niques for the displacement and velocity approximations.

2.4.1. Standard local post-processing of the displacement

We first consider a standard local post-processing for the displacement with the aim of improving the

accuracy of the numerical approximation. Given the approximations uh, qh, ûh for a time T , we define, on

every simplex K ∈ Th, a new approximate displacement u∗
h|K ∈ Pk+1(K) to satisfy

(∇un ∗
h ,∇w)K = (qn

h ,∇w)K , ∀w ∈ Pk+1(K),

(un ∗
h , 1)K = (un

h, 1)K .
(14)

The post-processing (14), requires us to solve a linear system whose size is the dimension of the space

Pk+1(K).

2.4.2. Post-processing of the velocity

Given the velocity approximation vh for a time T , in order to obtain a post-processed approximation v∗h,

we first compute an approximation ph ∈ Pk(K) to the velocity gradient p ≡ ∇v, by solving the following

system

(ph, r)Ωh
− 〈v̂h, r · n〉∂Ωh

= −(vh,∇ · r)Ωh
,

〈ph · n, μ〉∂Ωh\Γ + 〈τ v̂h, μ〉∂Ωh\Γ + 〈v̂h, μ〉Γ = 〈τvnh , μ〉∂Ωh\Γ + 〈ġ(T ), 〉Γ
(15)

for all (v, μ) ∈ Vh ×Mh. We then find vn ∗
h ∈ Pk+1(K) such that

(∇v∗h,∇w)K = (ph,∇w)K , ∀w ∈ Pk+1(K),

(v∗h, 1)K = (vh, 1)K .
(16)
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This post-processing step is similar to (14). The post-processing of the velocity is more expensive than that

of the displacement because it requires the solution of the global system (15).

Note that (15) only works for the boundary condition u = g on Γ.

2.5. Error estimates

We end this Section by recalling some convergence properties of the semidiscrete method just introduced.

To do this, we use the fact that the semi-discrete HDG formulation defined in (10) is equivalent to the

semi-discrete formulation introduced in [14], with the extra velocity variable in our case. Therefore, our

formulation inherits the convergence properties proved in [14]. We state these convergence results and refer

to [14] for their proof, see Theorem 2.3 and Corollary 2.4 therein. Note that the theoretical results in [14]

only apply to the displacement post-processing. There is not theoretical result for the post-processing of

the velocity only, as we see in Section 4, numerical evidence.

Theorem 2. Suppose that the initial data (uh(0), vh(0)) is defined by (11) and (12). If ü(t) ∈ Hk+1(Ω) for

all t ∈ [0, T ], then, there exists a constant C > 0, independent of h, such that

‖u(T )− uh(T )‖L2(Ω) ≤ Chk+1,

‖q(T )− qh(T )‖L2(Ω) + ‖v(T )− vh(T )‖L2(Ω) ≤ Chk+1.

Moreover, consider the post-processing displacement u∗
h defined in Section 2.4 for k ≥ 1, and assume that

the following regularity result holds: there exists a constant C > 0 such that

‖η‖H2(Ω) ≤ C‖∇ · (κ∇η)‖L2(Ω),

for all η ∈ H1
0 (Ω) such that ∇ · (κ∇η) ∈ L2(Ω). Then,

‖u(T )− u∗
h(T )‖L2(Ω) ≤ Chk+2,

for a constant C > 0 independent of h. Note that the constants in the errors estimates depend on T , the

stabilization parameter τ , and the exact solution.

Observe that Theorem 2 provides optimal error estimates of order k + 1 for the semi-discrete HDG

approximations of the displacement, velocity, and negative gradient of the displacement, as well as, a su-

perconvergent rate of order k + 2 for the error of the post-processed displacement approximation. In fact,

motivated by this superconvergence, we seek high-order accurate symplectic time stepping schemes, match-

ing the k + 2 order of the spatial discretization. With this aim, in the following section, we introduce fully

discrete schemes based on symplectic diagonally implicit and explicit partitioned Runge-Kutta methods for

temporal discretizations.

10



3. Symplectic Hamiltonian HDG methods

In this section, we exploit the Hamiltonian structure of the semi-discrete HDG scheme (10) by pairing

it with symplectic time integrators. The main property of these methods is that they preserve the sym-

plecticity of the flow of Hamiltonian systems, which implies some desirable conservation properties such

as the conservation of a modified Hamiltonian. For thorough overviews of symplectic time integrators see

[30] and [21]. In principle, there is no restriction in terms of what symplectic integrator we can use. As

mentioned earlier, in order to achieve accuracy of hk+2, we naturally seek time stepping schemes with the

same order (Δtk+2). This is one of our main criteria for choosing the symplectic Runge-Kutta formulae.

A second criterion, is that Symplectic Runge-Kutta methods are constructed starting from methods with

vanishing stability matrix (see (20)). Methods with this property preserve quadratic invariants (see [15])

and are proven to be symplectic [2]. In particular, since the discrete Hamiltonian is a quadratic first integral

of the semidiscrete HDG scheme for the wave equation, symplectic Runge-Kutta methods applied to this

problem give exact conservation of the discrete Hamiltonian.

We present implicit and explicit schemes. For an implicit approach, we implement Symplectic Diago-

nally Implicit Runge-Kutta methods in Section 3.1 and denote these schemes by HDG-SDIRK. For general

Hamiltonian equations, a well-known result is that explicit Runge-Kutta methods are not symplectic [21].

However, for cases where the Hamiltonian function is separable, which is the case under consideration, it

is possible to derive explicit symplectic integrators using partitioned Runge-Kutta methods. This resulting

numerical method is called HDG-ESPRK. In addition, we also provide a table of the CFLL2 condition of

these schemes.

In the following subsections, we present these fully discrete schemes. In order to illustrate the imple-

mentation ideas, we present for each case a one step method. For the fully implicit scheme (HDG-SDIRK),

we write down the symplectic midpoint rule, whilst for the fully explicit scheme (HDG-ESPRK), we show

the symplectic Euler method. These two basic symplectic methods are widely known, and their proper-

ties has been studied and contrasted with their non-symplectic variants. See [21] for illustrations of these

comparisons.

3.1. Implicit schemes: HDG-SDIRK methods

As a first example of symplectic diagonally implicit Runge-Kutta methods, we consider the implicit

midpoint scheme. Let us denote z(t) = (p(t), q(t))t and f(t, z) = (∂H(t, p, q)/∂q,−∂H(t, p, q)/∂p)t. Then,

we rewrite the Hamiltonian system of Theorem 1 as follows

dz

dt
= f(t, z). (17)

For a given time level tn, with time step Δtn, the implicit midpoint scheme for (17) reads as follows

zn+1 = zn +Δtnf(tn +
Δtn

2
,
zn+1 + zn

2
),

11



for zn = z(tn). Now we apply it to our scheme. Assume that we know the values of un
h = uh(t

n), vnh = vh(t
n),

qn
h = qh(t

n) and ûn
h = ûh(t

n). Then, un+1
h , vn+1

h , qn+1
h , ûn+1

h are determined by the solution of the system

(un+1
h , w)Ωh

− Δtn

2
(vn+1

h , w)Ωh
= (un

h, w)Ωh
+

Δtn

2
(vnh , w)Ωh

,

(vn+1
h , w)Ωh

− Δtn

2

(
(qn+1

h ,∇w)Ωh
− 〈q̂n+1

h · n, w〉∂Ωh

)
= (vnh , w)Ωh

+
Δtn

2
((qn

h ,∇w)Ωh
− 〈q̂n

h · n, w〉∂Ωh
)

+ Δtn(f(tn +
Δtn

2
), w)Ωh

(κ−1qn+1
h , r)Ωh

− (un+1
h ,∇ · r)Ωh

+ 〈ûn+1
h , r · n〉∂Ωh

= 0

〈q̂n+1
h · n, μ〉∂Ωh\Γ = 〈αq̂n+1

h · n− βûn+1
h + g(tn+1), μ〉Γ

q̂n+1
h · n = qn+1

h · n+ τ(un+1
h − ûn+1

h ),

for w ∈ Wh, r ∈ Vh, and μ ∈ Mh. The structure of the higher-order schemes described next is the same as

the one above.

We now review the diagonally implicit Runge-Kutta schemes. The s-stage Diagonally Implicit Runge-

Kutta (DIRK) method for the ODE system (17) is the following

zn+1 = zn +Δtn
s∑

i=1

bif(t
n + ciΔtn, yi), (19a)

yi −Δtnaiif(yi) = zn +Δtn
i−1∑
j=1

aijf(t
n + ciΔtn, yj), 1 ≤ i ≤ s. (19b)

where the coefficients aij , bi, ci, for i, j = 1, . . . , s, are given in the form of the following Butcher tableau:

a11 0 . . . 0 c1

a21 a22
. . .

... c2
...

...
. . . 0

...

as1 as2 . . . ass cs

b1 b2 . . . bs

The properties of a DIRK scheme (simplecticity, consistency, accuracy, and stability) are completely

determined by the parameters bj , aij . We are particularly interested in the class of symplectic DIRK

schemes. A characterization of these schemes (see [21]) is given by the following equation for the coefficients

bibj − biaij − bjaij = 0, 1 ≤ i, j ≤ s. (20)

This formula yields, in the case of DIRK schemes, to Butcher tableaux of the form:

From the implementation viewpoint, it is convenient to rewrite the DIRK scheme (19) into the following

12



b1/2 0 . . . 0 b1/2

b1 b2/2
. . .

... b1 + b2/2
...

...
. . . 0

...

b1 b2 . . . bs/2
∑s−1

i=1 bi + bs/2

b1 b2 . . . bs

system:

zn+1 = zn +

s∑
i=1

bi

i∑
j=1

dij(yj − zn) (21a)

diiyi −Δtnf(yi) = diiz
n −

i−1∑
j=1

dij(yj − zn), 1 ≤ i ≤ s. (21b)

Here dij is the inverse of the matrix aij . Concretely, system (21b) is written as follows

dii(u
n,i
h , w)Ωh

−Δtn(vn,ih , w)Ωh
= (ũi

h, w)Ωh

dii(v
n,i
h , w)Ωh

−Δtn
(
(qn,i

h ,∇w)Ωh
− 〈q̂n,i

h · n, w〉∂Ωh

)
= (ṽih, w)Ωh

+Δtn(f(tn + ciΔtn), w)Ωh

(κ−1qn,i
h , r)Ωh

+ 〈ûn,i
h , r · n〉∂Ωh

− (un,i
h ,∇ · r)Ωh

= 0 (22)

〈q̂n,i
h · n, μ〉∂Ωh\Γ = 〈αq̂n,i

h · n− βûn,i
h + g(tn + ciΔtn), μ〉Γ

q̂n,i
h · n = qn,i

h · n+ τ(un,i
h − ûn,i

h ),

for all w ∈ Wh, r ∈ Vh, μ ∈ Mh, and where

ũi
h = diiu

n
h −

i−1∑
j=1

dij(u
n,j
h − un

h), ṽih = diiv
n
h −

i−1∑
j=1

dij(v
n,j
h − vnh) (23)

for i = 1, . . . , s. Thus, the HDG-SDIRK method can be outlined as it is shown in Algorithm 1.

3.2. Explicit scheme: HDG-ESPRK methods

We now consider fully explicit schemes based on partitioned Runge-Kutta methods. Similarly to the

previous section, we illustrate the schemes with a one-stage partitioned Runge-Kutta method, the symplectic

Euler method. For a given time level tn, with time step Δtn, assume that we know the values of un
h = uh(t

n),

vnh = vh(t
n), qn

h = qh(t
n) and ûn

h = ûh(t
n). Then, un+1

h , vn+1
h , qn+1

h , ûn+1
h are determined by the solution of

the system

(vn+1
h , w)Ωh

= (vnh , w)Ωh
+Δtn ((qn

h ,∇w)Ωh
+ 〈q̂n

h · n, w〉∂Ωh
)−Δtn(f(tn), w)Ωh

(un+1
h , w)Ωh

= (un
h, w)Ωh

+Δtn(vn+1
h , w)Ωh

(κ−1qn+1
h , r)Ωh

+ 〈ûn+1
h , r · n〉∂Ωh

= (un+1
h ,∇ · r)Ωh

〈q̂n+1
h · n, μ〉∂Ωh\Γ = 〈αq̂n+1

h · n− βûn+1
h g(tn +Δtn), μ〉Γ

13



Algorithm 1: HDG-SDIRK

Input : (un
h, v

n
h , q

n
h , û

n
h)

Output: (un+1
h , vn+1

h , qn+1
h , ûn+1

h )

1 Initialize (un+1
h , vn+1

h , qn+1
h , ûn+1

h ) ← (un
h, v

n
h , q

n
h , û

n
h);

2 for i = 1 to s do

3 ũn,i
h ← diiu

n
h −∑i−1

j=1 dij(u
n,j
h − un

h);

4 ṽn,ih ← diiv
n
h −∑i−1

j=1 dij(v
n,j
h − un

h);

5 (un,i
h , vn,ih , qn,i

h , ûn,i
h ) ← Solve system (22) for (ũn,i

h , ṽn,ih );

6 un+1
h ← un+1

h + bi
∑i

j=1 dij(u
n,j
h − un

h);

7 vn+1
h ← vn+1

h + bi
∑i

j=1 dij(v
n,j
h − un

h);

8 qn+1
h ← qn+1

h + bi
∑i

j=1 dij(q
n,j
h − qn

h);

9 ûn+1
h = ûn+1

h + bi
∑i

j=1 dij(û
n,j
h − ûn

h);

10 end

11 return (un+1
h , vn+1

h , qn+1
h , ûn+1

h )

We now consider s-stages partitioned Runge-Kutta methods applied to the Hamiltonian system of The-

orem(1). These methods have the following form:

pn+1 = pn +
∑
i

biki, qn+1 = qn +
∑
i

b̃ik̃i

ki = − ∂

∂q
H(tn + ciΔtn, pn,i, qn,i), k̃i =

∂

∂p
H(tn + c̃iΔtn, pn,i, qn,i), i = 1, . . . . , s, (24)

pn,i = pn +Δt

s∑
j=1

aijkj , qn,i = qn +Δtn
s∑
j

ãij k̃j , i = 1, . . . . , s,

where the coefficients on the left, aij , bj , and the coefficients on the right, ãij , b̃j , determine two distinct

Runge-Kutta methods. In addition, under the assumption of separability of the Hamiltonian, the partitioned

Runge-Kutta method (24) is symplectic if the coefficients satisfy

biãij + b̃jaij − bj b̃j = 0, i, j = 1, . . . , s. (25)

We observe that, although symplectic Euler can be written as a partitioned Runge-Kutta method, it does

not satisfy condition (25). More precisely, symplectic Euler does not preserve quadratic invariants. Now,

using the structure of the partitioned Runge-Kutta method (24), it is possible to devise fully explicit schemes

with combinations of, for example, diagonally implicit and explicit Runge-Kutta methods. Specifically, let

us consider a diagonally implicit Runge-Kutta scheme with coefficients aij , bj , and an explicit Runge-Kutta

scheme with coefficients ãij , b̃j , i.e., these coefficients satisfy

aij = 0, i < j, and ãij = 0, i ≤ j, j = 1, . . . , s. (26)

For this case, the symplecticity condition (25) becomes

aij = bj , i ≥ j, and ãij = b̃j , i > j, j = 1, . . . , s. (27)

14



Thus, the Butcher tableaux associated with these schemes have the following structure

b1 0 . . . 0 b1/2

b1 b2
. . .

... b1 + b2
...

...
. . . 0

...

b1 b2 . . . bs
∑s

i=1 bi

b1 b2 . . . bs

0 0 . . . 0 0

b̃1 0
. . .

... b̃1

b̃2 b̃2
. . . b̃1 + b̃2

...
...

. . . 0 0
...

b̃1 b̃2 . . . b̃s−1 0
∑s−1

i=1 b̃i

b̃1 b̃2 . . . b̃s−1 b̃s

We now discuss in more detail the implementation of these methods to the HDG semi-discrete scheme

(10). Observe that, considering the symplecticity condition (27) (equivalently the structure of the coefficients

given in Table 3.2), the symplectic partitioned Runge-Kutta scheme reads as follows:

pn,i = pn +Δt

i∑
j=1

bijkj , qn,i = qn +Δtn
i−1∑
j

b̃ij k̃j ,

ki = − ∂

∂q
H(tn + ciΔtn, qn,i), k̃i =

∂

∂p
H(tn + ciΔtn, pn,i),

for i = 1, . . . , s, and hence obtaining pn+1 = pn,s and qn+1 = qn,s. The scheme then is fully explicit, and in

terms of our HDG method is formulated as follows:

(vn,ih , w)Ωh
= (vn,i−1

h , w)Ωh
+ biΔtn

(
(qn,i−1

h ,∇w)Ωh
+ 〈q̂n,i−1

h · n, w〉∂Ωh

)
−Δtnbi(f(t

n + ciΔtn), w)Ωh

(28)

(un,i
h , w)Ωh

= (un,i−1
h , w)Ωh

+ b̃iΔtn(vn,ih , w)Ωh
(29)

Observe that, although the scheme is explicit for vn,ih and un,i
h , we still need to solve for qn,i

h and ûn,i
h in

terms of un,i
h , in order to compute the next stage. In fact, this dependence is given by equations (10c), (10d)

and (10e). Therefore, in order to implement the HDG-ESPRK we need to solve for a given uh the following

system for qh and ûn,i
h

(κ−1qn,i
h , r)Ωh

+ 〈ûn,i
h , r · n〉∂Ωh

= (un,i
h ,∇ · r)Ωh

〈qn,i
h · n− τ ûn,i

h , μ〉∂Ωh\Γ − 〈α(qn,i
h · n− τ ûn,i

h )− βûn,i
h , μ〉Γ = 〈ατun,i

h + g(tn + c̃iΔtn), μ〉Γ
(30)

for all r ∈ Vh and μ ∈ Mh. Only once qn,i
h and ûn,i

h are computed, we can proceed to the next stage.

Observe that this systems is time independent (left-hand side), therefore it can be solved faster than the

implicit scheme, using LU decomposition for example. An alternative to avoid this difficulty would be to

use a local space discretization such as a Local DG method. We see below in Section 5.1, that this method

indeed is a suitable candidate since it also preserves the Hamiltonian structure of the wave equation. We

outline the implementation of the HDG-ESPRK fully discrete scheme in Algorithm 2.

Furthermore, we present in Table 1 with CFLL2 numbers for the explicit family of methods HDG-ESPRK.
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Algorithm 2: HDG-ESPRK

Input : (un
h, v

n
h , q

n
h , û

n
h)

Output: (un+1
h , vn+1

h , qn+1
h , ûn+1

h )

1 Initialize (un,1
h , vn,0h , qn,1

h , ûn,1
h ) ← (un

h, v
n
h , q

n
h , û

n
h);

2 for i = 1 to s do

3 vn,ih ← Solve (28) given (vn,i−1
h , qn,i

h , ûn,i
h , bi);

4 un,i+1
h ← un,i

h +Δtnb̃i+1v
n,i
h ;

5 (qn,i+1
h , ûn,i+1

h ) ← Solve system (30) given (un,i
h );

6 end

7 return (un,s+1
h , vn,sh , qn,s+1

h , ûn,s+1
h )

ν\k 0 1 2 3 4

1 0.5764 0.2577 0.1531 0.1025

3 0.7217 0.2131 0.1919 0.1284

4 0.8404 0.3758 0.2232 0.1493

5 0.8838 0.3949 0.2345 0.1569

6 1.7709 0.7921 0.4705 0.3101

Table 1: CFLL2 numbers for methods HDG-ESPRK, using polynomials of order k in the HDG discretization and the ESPRK

schemes of order ν detailed in Appendix A.2.

4. Numerical experiments

In this section, we show numerical experiments illustrating the convergence properties of the implicit

and explicit Hamiltonian HDG schemes, HDG-SDIRK and HDG-ESPRK, respectively. We specify in our

methods the polynomial order k of the HDG scheme and the order ν of the Runge-Kutta method, by means

of the notation HDG(k)-SDIRK(ν) and HDG(k)-ESPRK(ν). The coefficients of the respective Runge-Kutta

methods used in our computations are presented in the appendix. As mentioned earlier, in order to observe

the superconvergence properties of the post-processed approximations we need ν ≥ k + 2. We report error

tables for the approximations uh, vh, qh, u
∗
h and v∗h, in which we compute the errors as the maximum over

the time steps tn of the L2 errors of the numerical approximations, and their estimated orders of convergence

(e.o.c). For instance, for the displacement approximation, we compute

errorh = max
tn

‖u(tn)− un
h‖L2(Ω).

In our computations, we use a mesh size h = 2−l, and we report the value of l in the error tables.

We present two sets of experiments. In the first, we verify the convergence properties of the numerical

schemes, whilst, in the second, we test the energy conservative properties of our scheme HDG-SDIRK

comparing it with the dissipative HDG method, also based on DIRK formulae, presented in [26]; this

dissipative HDG method is based on the velocity-stress formulation of the wave equation. We also illustrate

the importance of using symplectic methods which preserve quadratic invariants by comparing the energies
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obtained by the symplectic Euler scheme, which does not preserve quadratic invariants, and the implicit

midpoint scheme, which does.

4.1. Verification of the convergence properties

We present two numerical examples, in the one- and two-dimensional cases, verifying the expected

convergence properties of the numerical schemes HDG-SDIRK and HDG-ESPRK.

Example 4.1. We consider the following exact solution of the acoustic wave equation (1) in one dimension,

u(t, x) =
1

π
sin(π(x− ε)) cos(πt), x ∈ (0, 1), t ∈ (0, Tf ], (31)

with parameters κ = 1, α = 0 and β = 1, i.e., with Dirichlet boundary conditions. We study the following

cases:

a) Exact solution with ε = 0. We test the convergence properties of the schemes HDG(k)-SDIRK(k + 2)

and HDG(k)-ESPRK(k+2). We report in Tables 2 and 3, respectively, the L2-errors and their estimated

orders of convergence (e.o.c.) for the numerical approximations up to the final time Tf = 1.0. Here we use

the initial condition given by (11). We observe optimal rates of convergence k+1 for the approximations

of the displacement uh, velocity vh and negative gradient qh, and a rate of convergence k + 2 for the

post-processed approximations of the displacement u∗
h and velocity v∗h.

b) Exact solution with ε = 0. We study the effect of other initial conditions on our numerical schemes. We

first consider the L2-projection of the initial data and then the HDG-projection of the initial data. We

compute the errors of the approximations of the schemes HDG(1)-SDIRK(3) and HDG(1)-ESPRK(3).

These results are reported in Tables 4 and 5, respectively. We observe that when the L2-projection is

used the HDG(1)-SDIRK(3) scheme exhibits suboptimal convergence of order 1.5 and 2.5 for the velocity

and the post-processed velocity, whereas when the HDG-projection is used the results are optimal. For

the scheme HDG(1)-ESPRK(3) with the L2-projection of the initial data we observe not only the same

suboptimal rate of 1.5 of the velocity approximation, but also sub-optimal rate of 2 for the post-processed

displacement and velocity. The HDG projection gives optimal approximations for this scheme as well.

c) Exact solution ε = 0.5. We study the effect of time-dependent boundary conditions (non-autonomous

dynamics). Considering piecewise linear approximations, we compute the errors by the schemes HDG(1)-

DIRK(3) and HDG(1)-ESPRK(3), and report them in Tables 6 and 7, first using the time step Δt = h

and then Δt = h3/2. For both schemes we observe suboptimal results (particularly on the velocity

approximation) when Δt = h is used. For the second case, Δt = h3/2, the convergence is recovered,

showing the convergence properties of the semi-discrete scheme.

Example 4.2. We consider the following exact solution of the two dimensional acoustic wave equation:

u(t, x, y) =
1√
2π

sin(πx) sin(πy) cos(
√
2πt), x, y ∈ (0, 1)2, t ∈ (0, Tf ], (32)

with parameters κ = 1, α = 0 and β = 1, i.e., with Dirichlet boundary conditions. We report in Table

8 and 9 the errors and estimated orders of convergence of the approximations by the schemes HDG(k)-

SDIRK(k + 2) and HDG(k)-ESPRK(k + 2), respectively, for k = 1, 2, 3, 4. We observe optimal convergence

as in the one dimensional case.
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uh vh qh u∗
h v∗

h

k l error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1

1 3.4e-02 − 1.7e-01 − 1.7e-01 − 3.0e-02 − 1.6e-01 −
2 7.1e-03 2.27 2.2e-02 2.99 5.0e-02 1.75 6.3e-03 2.27 2.2e-02 2.90

3 1.5e-03 2.28 4.3e-03 2.32 1.5e-02 1.79 6.0e-04 3.38 1.2e-03 4.21

4 3.5e-04 2.05 1.1e-03 2.00 3.9e-03 1.88 7.6e-05 2.99 1.6e-04 2.85

5 8.7e-05 2.02 2.7e-04 2.00 1.0e-03 1.94 9.9e-06 2.94 2.8e-05 2.55

6 2.2e-05 2.00 6.9e-05 1.98 2.6e-04 1.97 1.3e-06 2.97 4.3e-06 2.69

7 5.4e-06 2.00 1.7e-05 2.00 6.6e-05 1.98 1.6e-07 2.98 6.0e-07 2.86

8 1.4e-06 2.00 4.3e-06 2.00 1.7e-05 1.99 2.0e-08 2.99 7.8e-08 2.93

2

1 3.7e-02 − 2.3e-01 − 1.2e-01 − 3.7e-02 − 2.3e-01 −
2 6.1e-03 2.60 3.6e-02 2.70 1.9e-02 2.59 6.1e-03 2.60 3.6e-02 2.70

3 5.7e-04 3.44 3.1e-03 3.53 1.8e-03 3.44 5.7e-04 3.44 3.1e-03 3.53

4 3.9e-05 3.86 2.1e-04 3.87 1.3e-04 3.83 3.9e-05 3.87 2.1e-04 3.87

5 2.5e-06 3.95 1.4e-05 3.96 9.1e-06 3.78 2.5e-06 3.96 1.4e-05 3.96

6 1.6e-07 3.95 8.5e-07 3.99 1.0e-06 3.17 1.6e-07 3.99 8.5e-07 3.99

7 1.2e-08 3.75 5.3e-08 4.00 1.3e-07 2.99 9.8e-09 4.00 5.3e-08 4.00

8 1.4e-09 3.11 4.4e-09 3.60 1.6e-08 3.00 6.1e-10 4.01 3.3e-09 4.00

3

1 7.1e-03 − 4.5e-02 − 2.2e-02 − 7.1e-03 − 4.5e-02 −
2 4.6e-04 3.93 2.7e-03 4.02 1.5e-03 3.93 4.6e-04 3.93 2.7e-03 4.02

3 1.4e-05 5.08 7.5e-05 5.20 4.3e-05 5.08 1.4e-05 5.08 7.5e-05 5.20

4 2.5e-07 5.75 1.4e-06 5.76 9.0e-07 5.58 2.5e-07 5.76 1.4e-06 5.76

5 4.9e-09 5.69 2.2e-08 5.94 4.8e-08 4.24 4.1e-09 5.93 2.2e-08 5.94

6 2.8e-10 4.16 8.6e-10 4.70 3.0e-09 3.99 6.5e-11 5.98 3.5e-10 5.98

7 1.7e-11 4.00 5.4e-11 4.00 1.9e-10 3.99 1.6e-12 5.32 5.6e-12 5.98

4

1 2.8e-03 − 1.8e-02 − 8.9e-03 − 2.8e-03 − 1.8e-02 −
2 1.2e-04 4.61 6.9e-04 4.70 3.7e-04 4.61 1.2e-04 4.61 6.9e-04 4.70

3 2.7e-06 5.45 1.5e-05 5.57 8.4e-06 5.45 2.7e-06 5.45 1.5e-05 5.57

4 4.5e-08 5.88 2.5e-07 5.88 1.4e-07 5.88 4.5e-08 5.88 2.5e-07 5.88

5 7.2e-10 5.97 3.9e-09 5.97 2.3e-09 5.97 7.2e-10 5.97 3.9e-09 5.97

6 1.1e-11 6.00 6.1e-11 6.00 3.6e-11 5.99 1.1e-11 6.06 6.1e-11 6.00

7 1.1e-13 6.67 1.6e-12 5.22 2.3e-12 3.94 4.8e-12 1.17 1.5e-11 2.00

Table 2: Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution

u(t, x) = (1/π) sin(πx) cos(πt) by the schemes HDG(k)-SDIRK(k + 2). Computations were performed up to a final time

Tf = 1.0 and with a time step Δt = h.
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uh vh qh u∗
h v∗

h

k l error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1

1 3.0e-02 − 8.5e-02 − 1.6e-01 − 2.5e-02 − 8.5e-02 −
2 6.4e-03 2.23 1.9e-02 2.20 5.0e-02 1.66 3.9e-03 2.67 1.5e-02 2.53

3 1.5e-03 2.13 4.5e-03 2.04 1.5e-02 1.79 5.6e-04 2.79 2.2e-03 2.74

4 3.5e-04 2.05 1.1e-03 2.04 3.9e-03 1.88 7.6e-05 2.88 3.1e-04 2.85

5 8.7e-05 2.02 2.8e-04 2.00 1.0e-03 1.94 9.9e-06 2.94 4.0e-05 2.93

6 2.2e-05 2.00 6.9e-05 2.00 2.6e-04 1.97 1.3e-06 2.97 5.1e-06 2.97

7 5.5e-06 2.00 1.7e-05 2.00 6.6e-05 1.98 1.6e-07 2.98 6.5e-07 2.98

8 1.4e-06 2.00 4.3e-06 2.00 1.7e-05 1.99 2.0e-08 2.99 8.2e-08 2.99

2

1 3.1e-03 − 1.1e-02 − 2.3e-02 − 1.7e-03 − 6.1e-03 −
2 3.7e-04 3.04 1.2e-03 3.20 3.5e-03 2.74 1.3e-04 3.73 4.2e-04 3.88

3 4.6e-05 3.02 1.4e-04 3.00 4.7e-04 2.87 9.0e-06 3.87 2.9e-05 3.83

4 5.7e-06 3.01 1.8e-05 3.00 6.2e-05 2.93 5.9e-07 3.93 1.9e-06 3.95

5 7.1e-07 3.00 2.2e-06 3.00 8.0e-06 2.96 3.8e-08 3.96 1.2e-07 3.97

6 8.9e-08 3.00 2.8e-07 3.00 1.0e-06 2.98 2.4e-09 3.98 7.6e-09 3.99

7 1.1e-08 3.00 3.5e-08 2.99 1.3e-07 2.99 1.5e-10 3.99 4.8e-10 4.00

8 1.4e-09 3.00 4.4e-09 3.00 1.6e-08 3.00 1.3e-11 3.58 3.9e-11 3.61

3

1 2.9e-04 − 9.4e-04 − 2.4e-03 − 1.3e-04 − 4.5e-04 −
2 1.8e-05 4.01 5.7e-05 4.04 1.7e-04 3.81 4.5e-06 4.80 1.4e-05 4.97

3 1.1e-06 4.00 3.5e-06 4.01 1.2e-05 3.90 1.5e-07 4.91 4.8e-07 4.92

4 7.0e-08 4.00 2.2e-07 3.99 7.5e-07 3.95 4.9e-09 4.95 1.6e-08 4.94

5 4.4e-09 4.00 1.4e-08 4.01 4.8e-08 3.97 1.6e-10 4.97 4.9e-10 4.98

6 2.8e-10 4.00 8.7e-10 3.99 3.0e-09 3.99 4.9e-12 4.98 1.6e-11 4.98

7 1.7e-11 4.00 5.4e-11 4.00 1.9e-10 3.99 1.6e-12 1.59 5.2e-12 1.59

4

1 2.3e-05 − 7.1e-05 − 2.0e-04 − 8.0e-06 − 2.7e-05 −
2 7.1e-07 5.00 2.2e-06 5.00 6.9e-06 4.86 1.4e-07 5.88 4.7e-07 5.86

3 2.2e-08 5.00 7.0e-08 4.99 2.3e-07 4.92 2.3e-09 5.91 7.2e-09 6.01

4 6.9e-10 5.00 2.2e-09 5.01 7.3e-09 4.96 3.6e-11 5.96 1.2e-10 5.97

5 2.2e-11 5.00 6.8e-11 4.99 2.3e-10 4.98 6.3e-13 5.85 2.0e-12 5.83

Table 3: Example 4.1: History of convergence of numerical approximations of the wave equation with exact solution u(t, x) =

(1/π) sin(πx) cos(πt) by the schemes HDG(k)-ESPRK(k + 2), Computations were performed up to a final time Tf = 1.0.

uh vh qh u∗
h v∗

h

l error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

HDG(1)-DIRK(3), Initial condition L2 projection

1 3.1e-02 − 2.4e-01 − 2.5e-01 − 2.8e-02 − 1.3e-01 −
2 6.4e-03 2.27 4.7e-02 2.33 8.3e-02 1.60 4.7e-03 2.59 2.5e-02 2.42

3 1.4e-03 2.22 1.1e-02 2.15 2.6e-02 1.65 4.5e-04 3.40 2.2e-03 3.52

4 3.9e-04 1.83 4.2e-03 1.34 7.6e-03 1.80 6.2e-05 2.85 3.0e-04 2.85

5 1.0e-04 1.93 1.4e-03 1.57 2.0e-03 1.94 8.1e-06 2.95 5.6e-05 2.44

6 2.5e-05 2.00 5.3e-04 1.43 5.1e-04 1.96 1.1e-06 2.82 1.0e-05 2.46

7 6.4e-06 1.99 1.8e-04 1.51 1.3e-04 1.98 1.5e-07 2.91 1.8e-06 2.50

HDG(1)-DIRK(3), Initial condition HDG-projection

1 3.0e-02 − 2.2e-01 − 2.7e-01 − 3.1e-02 − 1.4e-01 −
2 5.6e-03 2.43 2.7e-02 3.01 6.9e-02 1.97 4.7e-03 2.74 2.3e-02 2.62

3 1.4e-03 2.03 4.4e-03 2.62 1.7e-02 2.00 2.9e-04 4.00 1.2e-03 4.31

4 3.5e-04 1.97 1.1e-03 1.96 4.3e-03 2.00 3.5e-05 3.05 1.4e-04 3.07

5 8.7e-05 2.01 2.8e-04 2.05 1.1e-03 2.00 5.5e-06 2.70 2.6e-05 2.42

6 2.2e-05 2.00 6.9e-05 1.99 2.7e-04 2.00 8.3e-07 2.71 4.3e-06 2.61

7 5.4e-06 2.00 1.7e-05 2.01 6.7e-05 2.00 1.1e-07 2.86 5.9e-07 2.84

Table 4: Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution

u(t, x) = (1/π) sin(πx) cos(πt) by the scheme HDG(1)-SDIRK(3), initializing with the L2 projections and HDG-projections of

the initial data. Computations were performed up to a final time Tf = 1.0 and with a time step Δt = h/2.
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uh vh qh u∗
h v∗

h

l error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

HDG(1)-ESPRK(3), Initial condition L2 projection

1 3.9e-02 − 3.0e-01 − 1.9e-01 − 3.7e-02 − 2.9e-01 −
2 1.1e-02 1.81 4.8e-02 2.63 5.2e-02 1.85 1.1e-02 1.75 4.5e-02 2.67

3 2.9e-03 1.95 1.4e-02 1.76 1.5e-02 1.83 2.8e-03 1.98 1.0e-02 2.14

4 7.1e-04 2.03 4.5e-03 1.65 4.0e-03 1.85 7.0e-04 2.01 2.5e-03 2.01

5 1.7e-04 2.02 1.5e-03 1.56 1.0e-03 1.95 1.7e-04 2.03 6.0e-04 2.10

6 4.3e-05 2.01 5.3e-04 1.55 2.6e-04 1.98 4.2e-05 2.02 1.4e-04 2.06

7 1.1e-05 2.01 1.9e-04 1.50 6.7e-05 1.99 1.1e-05 2.01 3.5e-05 2.04

HDG(1)-ESPRK(3), Initial condition HDG projection

1 7.0e-02 − 7.8e-01 − 3.0e-01 − 3.6e-02 − 5.0e-01 −
2 6.0e-03 3.55 2.5e-02 4.99 6.9e-02 2.12 2.3e-03 3.99 1.3e-02 5.28

3 1.4e-03 2.11 5.2e-03 2.24 1.7e-02 2.00 3.6e-04 2.66 2.1e-03 2.62

4 3.5e-04 1.98 1.1e-03 2.19 4.3e-03 2.00 5.2e-05 2.81 3.0e-04 2.78

5 8.7e-05 2.00 2.8e-04 2.04 1.1e-03 2.00 6.9e-06 2.90 4.0e-05 2.94

6 2.2e-05 2.00 6.9e-05 2.01 2.7e-04 2.00 8.9e-07 2.95 5.1e-06 2.95

7 5.4e-06 2.00 1.7e-05 2.01 6.7e-05 2.00 1.1e-07 2.97 6.5e-07 2.98

Table 5: Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution

u(t, x) = (1/π) sin(πx) cos(πt) by the scheme HDG(1)-ESPRK(3), initializing with the L2 projections and HDG-projections of

the initial data. Computations were performed up to a final time Tf = 1.0 and with a time step Δt = h/2.

uh vh qh u∗
h v∗

h

l error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

HDG(1)-DIRK(3), Δt = h

1 1.9e-01 − 6.8e-01 − 9.3e-01 − 2.0e-01 − 6.4e-01 −
2 5.1e-02 1.90 4.2e-01 0.70 6.1e-01 0.60 5.0e-02 1.96 3.7e-01 0.77

3 1.1e-02 2.25 1.6e-01 1.42 2.1e-01 1.57 1.1e-02 2.25 1.5e-01 1.29

4 1.8e-03 2.57 5.2e-02 1.60 8.2e-02 1.34 1.9e-03 2.44 5.4e-02 1.49

5 3.3e-04 2.47 1.7e-02 1.59 3.0e-02 1.46 3.3e-04 2.55 1.9e-02 1.53

6 6.1e-05 2.43 5.9e-03 1.55 1.1e-02 1.49 6.0e-05 2.46 6.6e-03 1.53

7 1.1e-05 2.42 2.0e-03 1.52 3.7e-03 1.50 1.1e-05 2.49 2.3e-03 1.52

HDG(1)-DIRK(3), Δt = h3/2

1 1.0e-01 − 7.2e-01 − 7.2e-01 − 9.5e-02 − 6.1e-01 −
2 1.2e-02 3.16 1.4e-01 2.32 1.6e-01 2.20 1.0e-02 3.23 1.4e-01 2.12

3 1.5e-03 2.96 1.7e-02 3.07 3.7e-02 2.09 1.0e-03 3.31 1.7e-02 3.07

4 3.6e-04 2.06 2.5e-03 2.79 7.8e-03 2.24 1.3e-04 3.03 2.6e-03 2.67

5 8.8e-05 2.03 3.2e-04 2.94 1.6e-03 2.29 1.6e-05 3.02 3.6e-04 2.87

6 2.2e-05 2.01 7.1e-05 2.18 3.4e-04 2.22 1.9e-06 3.04 4.7e-05 2.91

7 5.5e-06 2.00 1.7e-05 2.04 7.7e-05 2.15 2.3e-07 3.02 6.1e-06 2.97

Table 6: Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution

u(t, x) = (1/π) sin(π(x + 1/2)) cos(πt) by the scheme HDG(1)-SDIRK(3). Computations were performed up to a final time

Tf = 1.0 and with a time steps Δt = h and Δt = h3/2.
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uh vh qh u∗
h v∗

h

l error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

HDG(1)-ESPRK(3), Δt = h

1 3.0e-02 − 1.0e-01 − 1.6e-01 − 2.3e-02 − 9.9e-02 −
2 6.9e-03 2.14 2.3e-02 2.15 5.1e-02 1.63 4.7e-03 2.31 2.0e-02 2.33

3 1.5e-03 2.17 5.2e-03 2.13 1.5e-02 1.80 7.3e-04 2.69 3.4e-03 2.55

4 3.6e-04 2.09 1.3e-03 2.02 3.9e-03 1.88 1.0e-04 2.85 1.2e-03 1.55

5 8.8e-05 2.03 3.5e-04 1.88 1.0e-03 1.93 1.4e-05 2.90 3.5e-04 1.70

6 2.2e-05 2.01 1.1e-04 1.65 2.8e-04 1.87 1.8e-06 2.91 1.2e-04 1.52

7 5.5e-06 2.00 3.9e-05 1.51 7.9e-05 1.84 2.4e-07 2.90 4.3e-05 1.51

HDG(1)-ESPRK(3), Δt = h3/2

1 2.9e-02 − 1.1e-01 − 1.6e-01 − 2.4e-02 − 1.0e-01 −
2 7.1e-03 2.04 2.2e-02 2.34 5.3e-02 1.57 5.1e-03 2.24 1.7e-02 2.58

3 1.5e-03 2.20 4.8e-03 2.17 1.5e-02 1.84 7.7e-04 2.72 2.4e-03 2.81

4 3.6e-04 2.10 1.1e-03 2.09 4.0e-03 1.91 1.1e-04 2.86 3.3e-04 2.87

5 8.8e-05 2.03 2.8e-04 2.03 1.0e-03 1.95 1.4e-05 2.93 4.3e-05 2.92

6 2.2e-05 2.01 6.9e-05 2.01 2.6e-04 1.97 1.8e-06 2.97 5.5e-06 2.97

7 5.5e-06 2.00 1.7e-05 2.00 6.6e-05 1.98 2.2e-07 2.98 7.0e-07 2.98

Table 7: Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution

u(t, x) = (1/π) sin(π(x + 1/2)) cos(πt) by the scheme HDG(1)-ESPRK(3). Computations were performed up to a final time

Tf = 1.0 and with a time steps Δt = h and Δt = h3/2.

uh vh qh u∗
h v∗

h

k l error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1

1 1.2e-01 − 8.8e-01 − 5.2e-01 − 1.2e-01 − 8.8e-01 −
2 6.9e-02 0.78 3.0e-01 1.56 3.1e-01 0.77 6.9e-02 0.78 3.0e-01 1.56

3 1.5e-02 2.24 5.1e-02 2.54 6.5e-02 2.24 1.5e-02 2.24 5.1e-02 2.54

4 1.4e-03 3.42 4.7e-03 3.46 6.1e-03 3.42 1.4e-03 3.42 4.7e-03 3.46

5 9.4e-05 3.86 3.3e-04 3.84 4.3e-04 3.82 9.3e-05 3.87 3.2e-04 3.86

2

1 1.0e-03 − 4.8e-03 − 9.8e-03 − 4.3e-04 − 2.2e-03 −
2 1.3e-04 3.02 5.7e-04 3.09 1.4e-03 2.81 3.2e-05 3.75 1.4e-04 3.95

3 1.6e-05 3.01 6.9e-05 3.05 1.9e-04 2.92 2.1e-06 3.90 9.3e-06 3.97

4 2.0e-06 3.01 8.5e-06 3.01 2.4e-05 2.96 1.4e-07 3.95 5.8e-07 4.00

5 2.5e-07 3.00 1.1e-06 2.99 3.0e-06 2.98 8.8e-09 3.98 3.8e-08 3.93

3

1 1.1e-04 − 4.8e-04 − 1.1e-03 − 3.8e-05 − 1.8e-04 −
2 6.8e-06 4.00 2.9e-05 4.05 8.0e-05 3.85 1.3e-06 4.85 5.4e-06 5.09

3 4.2e-07 4.00 1.8e-06 4.00 5.2e-06 3.93 4.3e-08 4.93 1.8e-07 4.89

4 2.6e-08 4.00 1.1e-07 3.99 3.4e-07 3.97 1.4e-09 4.97 6.0e-09 4.93

5 1.7e-09 4.00 7.1e-09 4.00 2.1e-08 3.98 4.3e-11 4.98 1.9e-10 5.00

4

1 8.0e-06 − 3.5e-05 − 8.7e-05 − 1.9e-06 − 8.9e-06 −
2 2.5e-07 4.98 1.1e-06 5.02 3.0e-06 4.87 3.3e-08 5.82 1.4e-07 5.99

3 7.9e-09 4.99 3.4e-08 4.99 9.7e-08 4.94 5.4e-10 5.94 2.4e-09 5.89

4 2.5e-10 5.00 1.1e-09 5.00 3.1e-09 4.98 8.7e-12 5.97 3.7e-11 6.01

5 7.8e-12 5.00 3.4e-11 4.98 9.7e-11 4.99 6.5e-13 3.74 6.4e-12 2.52

Table 8: Example 4.2: History of convergence of the numerical approximations of the wave equation with exact solution

u(t, x, y) = (1/(
√
2π)) sin(πx) sin(πy) cos(

√
2πt) by the schemes HDG(k)-SDIRK(k + 2). Computations were performed up to

a final time Tf = 1.0 and with a time step Δt = h.
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uh vh qh u∗
h v∗

h

k l error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1

1 1.2e-02 − 4.6e-02 − 7.7e-02 − 1.2e-02 − 3.7e-02 −
2 2.3e-03 2.38 9.2e-03 2.30 2.3e-02 1.75 2.1e-03 2.53 2.4e-03 3.98

3 5.5e-04 2.10 2.3e-03 2.03 6.3e-03 1.87 3.0e-04 2.81 3.8e-04 2.63

4 1.3e-04 2.04 5.6e-04 2.01 1.7e-03 1.93 4.0e-05 2.91 5.0e-05 2.93

5 3.3e-05 2.01 1.4e-04 1.99 4.2e-04 1.97 5.1e-06 2.95 6.5e-06 2.95

2

1 1.0e-03 − 4.8e-03 − 9.8e-03 − 4.3e-04 − 2.2e-03 −
2 1.3e-04 3.02 5.7e-04 3.09 1.4e-03 2.81 3.2e-05 3.75 1.4e-04 3.95

3 1.6e-05 3.01 6.9e-05 3.05 1.9e-04 2.92 2.1e-06 3.90 9.3e-06 3.97

4 2.0e-06 3.01 8.5e-06 3.01 2.4e-05 2.96 1.4e-07 3.95 5.8e-07 4.00

5 2.5e-07 3.00 1.1e-06 2.99 3.0e-06 2.98 8.8e-09 3.98 3.8e-08 3.93

3

1 1.1e-04 − 4.8e-04 − 1.1e-03 − 3.8e-05 − 1.8e-04 −
2 6.8e-06 4.00 2.9e-05 4.05 8.0e-05 3.85 1.3e-06 4.85 5.4e-06 5.09

3 4.2e-07 4.00 1.8e-06 4.00 5.2e-06 3.93 4.3e-08 4.93 1.8e-07 4.89

4 2.6e-08 4.00 1.1e-07 3.99 3.4e-07 3.97 1.4e-09 4.97 6.0e-09 4.93

5 1.7e-09 4.00 7.1e-09 4.00 2.1e-08 3.98 4.3e-11 4.98 1.9e-10 5.00

4

1 8.0e-06 − 3.5e-05 − 8.7e-05 − 1.9e-06 − 8.9e-06 −
2 2.5e-07 4.98 1.1e-06 5.02 3.0e-06 4.87 3.3e-08 5.82 1.4e-07 5.99

3 7.9e-09 4.99 3.4e-08 4.99 9.7e-08 4.94 5.4e-10 5.94 2.4e-09 5.89

4 2.5e-10 5.00 1.1e-09 5.00 3.1e-09 4.98 8.7e-12 5.97 3.7e-11 6.01

5 7.8e-12 5.00 3.4e-11 4.98 9.7e-11 4.99 6.5e-13 3.74 6.4e-12 2.52

Table 9: Example 4.2: History of convergence of the numerical approximations of the wave equation with exact solution

u(t, x, y) = (1/(
√
2π)) sin(πx) sin(πy) cos(

√
2πt) by the schemes HDG(k)-ESPRK(k + 2). Computations were performed up to

a final time Tf = 1.0.

4.2. Comparison with dissipative HDG methods and verification of energy conservation properties

The purpose of the following experiments is to compare the energy-conservative schemes presented in

this paper with the dissipative HDG schemes introduced in [26]. Notice that these schemes have also optimal

convergence properties and utilize DIRK formulae for time integration. Thus, in the examples below, we

use the same SDIRK method for both schemes. We consider three examples of travelling wave solutions

on periodic domains, two one dimensional and one two dimensional. In the first example, we set the exact

solution to be a sinusoidal signal, first with low frequency and then with a higher frequency. In the second

example, we consider an impulse solution to observe the long time behavior of the approximations. Finally,

in the third example we consider two impulse solutions traveling in perpendicular directions. In order to

diminish the dispersive effects in the numerical approximations, we use Runge-Kutta schemes of order 5.

Example 4.3. Consider the following one dimensional travelling wave, solution of (1) with periodic bound-

ary conditions

u(t, x) = sin(2nπ(x− t)), x ∈ (0, 1), t ∈ (0, Tf ], (33)

with parameter κ = 1. Firstly, we test the dissipation properties of the HDG schemes with low frequency,

n = 1. For a fixed triangulation, we compute the numerical approximations by the dissipative scheme [26]

until its amplitude decays to a 80% of the amplitude of the exact solution, registering the time at which

this occurs. Next, for the same final time and triangulation we compute the numerical approximations by

the implicit symplectic scheme HDG-SDIRK. We display the graph of the exact solutions and numerical
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approximations in Figure 1. We observe that whilst the approximations by the dissipative scheme decay in

amplitude, the approximations by the symplectic scheme maintains it.

Secondly, we consider the exact solution (33) with a higher frequency, n = 6. For a given mesh parameter,

we compute the dissipative and symplectic implicit approximations until a given (reasonably small) final

time Tf = 20. Figure 2 shows the exact solution and approximations at the final time. We observe the

same behaviour than in the low frequency case, this time magnified by the higher frequency. In addition,

we compute the energy associated to the schemes, and display in Figure 3 their relative errors in time. To

study the effect on the energy of the terms over the skeleton of the triangulation, we compute the following

modified energy for the symplectic scheme

H̃h(uh, vh) =
1

2
(vh, vh)Ωh

+
1

2
(κ−1qh, qh)Ωh

. (34)

As seen Figure 3, although H̃h has similar error as Hh, it is not constant in time. The plots of the numerical

approximations and the energies show the outstanding dissipative properties of our scheme in comparison

with the dissipative scheme.

Example 4.4. Consider an initial pulse of the form

φb,δ(x) = ψ(
x− b

δ
), ψ(x) =

{
(2x− 1)10(2x+ 1)10, if |x| < 0.5

0, otherwise.
(35)

We consider the following exact solution of the wave equation (1) with periodic boundary conditions:

u(t, x) = φb,δ(x− t),

with b = 1/2, and δ = 1 in (35). We test the long time behaviour of the numerical approximations. We

compute the piecewise linear approximations by the dissipative scheme and HDG-SDIRK scheme using a

DIRK formula of order 6, up to the final time Tf = 1000, for a fixed mesh parameter h = 2−6 and time step

Δt = h. We plot the approximate and exact solutions in Figure 4. We observe that, in the long time term,

the symplectic scheme has superior dissipation properties, and it captures the shape of the solution more

accurately than the dissipative scheme. We plot the relative error of the discrete energies in Figure 5. We

observe that the energy for our scheme is constant in time, and the energy of dissipative scheme diminishes

in time. Although H̃h oscillates in time, its average is approximately constant.

Example 4.5. Consider the exact solution to the wave equation (1) in two dimensions with periodic bound-

ary conditions,

u(t, x, y) = φb,δ(x− t),+φb,δ(y − t), x, y ∈ (0, 1)2,

with parameters b = 1/2, and δ = 1 in the impulse function defined in (35). We proceed as in the previous

example. We compute the piecewise linear approximations by the dissipative scheme and HDG-SDIRK

scheme using a DIRK formula of order 5, up to the final time Tf = 50, for a fixed mesh parameter h = 2−5

and time step Δt = .25h. We plot the approximate and exact solutions in Figure 6. We observe that the

symplectic scheme has superior dissipation properties in comparison with the dissipative scheme, even for

this example where the final time is moderate. Thus, the approximation by the symplectic scheme becomes

quickly more accurate.
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Figure 1: Example 4.3. Plot of exact solution and numerical approximations by the dissipative implicit scheme (left) and

Hamiltonian implicit scheme (right). We use a symplectic time integrator DIRK of order 6 with time step Δt = h for both

cases. Top row: mesh size h = 2−8, polynomial degree k = 0, and final time Tf = 0.65. Middle row: mesh size h = 2−6,

polynomial degree k = 1, and final time Tf = 551.70. Bottom row: mesh size h = 2−4, polynomial degree k = 2, and final

time Tf = 5944.16.
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Figure 2: Example 4.3. Plot of exact solution (n = 6) and numerical approximations by the dissipative implicit scheme (left)

and symplectic implicit scheme (right). We use a symplectic time integrator of order 6 with time step Δt = h for both cases.
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Figure 3: Example 4.3. Semi-log plot of the relative errors of the discrete energies vs. time. We plot the relative error of

the discrete energy, EH = |H − Hh|/H, where H is the exact energy and where the discrete energies Hh, defined in (13),

are provided by the dissipative and conservative schemes. We also plot the relative error of the energy ˜Hh, defined in (34),

E
˜H

= |H − ˜Hh|/H, computed by the conservative scheme. We use a symplectic time integrator of order 6 with time step

Δt = h = 2−6, and τ = 10.
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Figure 4: Example 4.4. Plot of the exact solution and numerical approximations by the implicit dissipative (left) and Hamil-

tonian schemes (right) for k = 1. We use a triangulation with mesh size h = 2−6, and a time integrator DIRK of order 6 with

time step Δt = h, up to the final time Tf = 1000.
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Figure 5: Example 4.4. Semi-log plot of the relative errors of the discrete energies vs. time. We plot the relative error of

the discrete energy, EH = |H − Hh|/H, where H is the exact energy and where the discrete energies Hh, defined in (13),

are provided by the dissipative and conservative schemes. We also plot the relative error of the energy ˜Hh, defined in (34),

E
˜H

= |H − ˜Hh|/H, computed by the conservative scheme. We use a symplectic time integrator of order 6 with time step

Δt = h = 2−6, and τ = 10.

Example 4.6. We consider exact solution u(t, x) = sin(2π(t+x)), on a periodic domain (0, 1), and compare

the energies obtained by the HDG symplectic Euler and HDG implicit midpoint methods. We compute with

polynomials of order k = 0 and k = 1 until the final time Tf = 10. We plot the relative energies in Fig.

7, observing oscillations in the case of the symplectic Euler whilst the energy in the case of the implicit

midpoint remains constant. The exact conservation of the Hamiltonian is due to the fact that the implicit

midpoint scheme preserves quadratic invariants, which is the case of our discrete Hamiltonian. We observe

that the other Runge-Kutta methods (implicit and partitioned explicit) used in this paper show the same

invariant behavior. Similar results are also obtained with higher-order polynomials.

5. Extensions and concluding remarks

In this Section, we extend our semi-discrete scheme to other finite element methods, in particular Dis-

continuous Galerkin methods. We prove that the resulting scheme also preserves the Hamiltonian structure

of the wave equation, and hence, it is energy-conservative. We then mention possible applications of our

ideas to other Hamiltonian equations.

5.1. Hamiltonian Discontinuous Galerkin methods

For the sake of simplicity, we consider in this section the wave equation with periodic boundary conditions.

We first introduce standard Discontinuous Galerkin (DG) notation for the averages and jumps on faces of

the triangulation

{{u}} :=
1

2
(u+ + u−), {{q}} :=

1

2
(q+ + q−),

�u� := u+n+ + u−n−, �q� := q+ · n+ + q− · n−.
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Figure 6: Example 4.4. Contour plots at Tf = 10 (first row), Tf = 30 (second row), and Tf = 50 (third row): exact solution

(left), numerical approximation by the dissipative scheme in [26] (center), and numerical approximation by the HDG-symplectic

(right). Parameters: k = 1, h = 2−5, and Δt = h/4. Time integrator symplectic DIRK(6, 5)
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Figure 7: Relative energies vs. time. We plot the relative energies Hh/H, where H is the exact energy and Hh, defined

in (13), are computed by the conservative HDG scheme with two time integrators, the symplectic Euler and the implicit

midpoint method. Left figure: polynomial degree k = 0, Δt = h = 2−8 and τ = 10. Right figure: polynomial degree k = 1,

Δt = .5h = 2−7 and τ = 10.

We also introduce the dot product over the set of faces of the triangulation

〈·, ·〉Eh
:=

∑
F∈Eh

〈·, ·〉F . (36)

By means of the previous definitions for averages and jumps we have the following relation

〈μ, η〉∂Ωh
= 〈{{μ}}�η� + {{η}}�μ�, 1〉Eh

, (37)

for μ, η ∈ L2(Eh). Now, we introduce the semi-discrete DG scheme: find (uh(t), vh(t), qh(t)) ∈ Wh×Wh×Vh,

such that

(u̇h(t), w)Ωh
= (v(t), w)Ωh

(38a)

(v̇h(t), w)Ωh
= (qh(t),∇w)Ωh

− 〈q̂h(t) · n, w〉∂Ωh
+ (f(t), w)Ωh

(38b)

(κ−1qh(t), r)Ωh
= (uh(t),∇ · r)Ωh

− 〈ûh(t), r · n〉∂Ωh
(38c)

where the numerical fluxes are explicitly defined on the faces F ∈ Fh\∂Ω by:

q̂h := {{qh}}+ C11�uh� −C12�qh�, ûh := {{uh}}+C12 · �uh� + C22�qh�,

with auxiliary parameters C11, C12 and C22, that might depend on x. These parameters define different

DG methods. For example, for C22 ≡ 0 we obtain the LDG method.

The discrete (total) Hamiltonian function is defined by:

Hh(uh, vh, t) =
1

2
(vh, vh)Ωh

+
1

2
(κ−1qh, qh)Ωh

+
1

2
C11〈�uh�, �uh�〉Eh

+
1

2
C22〈�qh�, �qh�〉Eh

−(f(t), uh)Ωh
, (39)

Thus, we prove that formulation (38) has a Hamiltonian structure.
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Theorem 3. Set pi := vi and qi := ui, for i ∈ J , and H(p, q, t) := Hh(uh, vh, t). Then, the DG method

(38) is equivalent to the following Hamiltonian system:

ṗi = −∂

∂qi
H(p, q, t) i ∈ J , (40a)

q̇i =
∂

∂pi
H(p, q, t) i ∈ J . (40b)

For the sake of completeness, we provide the proof in the Appendix.

Theorem 3 implies that if we pair the DG semi-discrete scheme (38) with a symplectic time integrator we

obtain a fully discrete energy conservative DG method. These methods certainly have attractive properties.

For instance, the locality of the LDG method together with explicit time integrators (for example, ESPRK)

gives fast fully discrete scheme with conservation properties. On the other hand, the superconvergence

properties of the HDG have the edge in terms of accuracy.

5.2. Concluding remarks

In this paper, we devised Hamiltonian HDG methods for approximating solutions of the wave equation.

The semi-discrete HDG methods are said to be Hamiltonian since they satisfy a finite dimensional Hamil-

tonian system, for a discrete Hamiltonian functional approximating the infinite dimensional Hamiltonian

functional of the equation. Then, the Hamiltonian structure of the method implies that the discrete energy

is conserved in time. As is shown in [14], the L2 errors of the semi-discrete method converge optimally

with an order of k + 1, when piecewise polynomial spaces of degree k are used. The method also has

superconvergence properties that allow constructing a post-processed displacement approximation, which

converges with order k + 2. Similarly, we presented a post-processed approximation for the velocity which

super converges with order k + 2.

We take advantage of the Hamiltonian structure of the semi-discrete HDG scheme using symplectic time

integrators for the discretization in time. In particular, we considered symplectic diagonally implicit Runge-

Kutta methods and explicit symplectic partitioned Runge-Kutta methods. These time-stepping schemes

were chosen, in order to match the high-order accuracy properties of our spatial discretizations, and hence,

achieving high-order accurate approximations, and because they are known to preserve quadratic invariants.

We corroborated the optimal convergence and superconvergence properties of the fully discrete schemes with

numerical examples, and compared our energy-conservative schemes with the dissipative scheme introduced

in [26], evidencing the superior conservative and dissipative properties of our fully discrete schemes.

We concluded our analysis observing that the keystone of our numerical methods, the Hamiltonian

structure, is not an exclusive feature of the HDG discretization. We commented that discontinuous Galerkin

and Mixed methods also have this property. In particular, we presented a proof of the Hamiltonian structure

of a general discretization using discontinuous Galerkin methods.
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Finally, regarding our future research directions, we reiterate that the fundamental idea behind our

energy-conservative methods is the discrete preservation of the Hamiltonian structure of the problem. Al-

though we have only dealt with a linear wave equation, all we have done here carries over to non-linear

systems of equations with a Hamiltonian structure. We plan to extend our approach to other linear and non-

linear Hamiltonian systems including the elastodynamics (small and large deformation) equations, Maxwell

equations, and shallow water equations.
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Appendix A. Runge-Kutta coefficients

Appendix A.1. Symplectic DIRK schemes

In Table A.10, we display the coefficients of the Symplectic Diagonally Implicit Runge-Kutta schemes,

of q-stages and p-order, SDIRK(q, p), that are used in our computations.

i bi

1 a

2 a

3 1 − 2a

i bi

1 a

2 1 − 2a

3 a

i bi

1 0.5080048194000274

2 1.360107162294827

3 2.0192933591817224

4 0.5685658926458251

5 -1.4598520495864393

6 -1.9961191839359627

i bi

1 7.8451361047755652e-01

2 2.3557321335935860e-01

3 -1.1776799841788705

4 1.3151863206839107

5 -1.1776799841788705

6 2.3557321335935860e-01

7 7.8451361047755652e-01

Table A.10: Coefficients of schemes of the SDRIK(q, p) schemes. From left to right: SDIRK(3,3), SDIRK(3,4), SDIRK(6,5),

and SDIRK(7,6). For the first two schemes a = 1.351207191959658.

Appendix A.2. Symplectic EPRK schemes

In Table A.11, we display the coefficients of the Explicit Symplectic Partitioned Runge-Kutta schemes,

of q-stages and p-order, ESPRK(q, p), that are used in our computations.
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i bi b̃i

1 7/24 2/3

2 3/4 −2/3

3 −1/24 1

i bi b̃i

1 7/48 1/3

2 3/8 −1/3

3 −1/48 1

4 −1/48 −1/3

5 3/8 1/3

6 7/48 0

i bi b̃i

1 0.1193900292875672758 0.339839625839110000

2 0.6989273703824752308 -0.088601336903027329

3 -0.1713123582716007754 0.5858564768259621188

4 0.4012695022513534480 -0.6030393565364911888

5 0.0107050818482359840 0.3235807965546976394

6 -0.0589796254980311632 0.4423637942197494587

i bi b̃i

1 0.0502627644003922 0.148816447901042

2 0.413514300428344 -0.132385865767784

3 0.0450798897943977 0.067307604692185

4 -0.188054853819569 0.432666402578175

5 0.541960678450780 -0.016404589403618

6 -0.725525558508690 -0.016404589403618

7 0.541960678450780 0.432666402578175

8 -0.188054853819569 0.067307604692185

9 0.0450798897943977 -0.132385865767784

10 0.413514300428344 0.148816447901042

11 0.0502627644003922 0

Table A.11: Coefficients of the schemes ESPRK(q, p) schemes. Top, from the left to right: ESPRK(3,3) (Ruth’s method) [29],

ESPRK(6,4) [22], and ESPRK(6,5) [24]. Bottom: ESPRK(11,6) [1] .

Appendix B. Proof of Theorem 3

Let us prove the first identity. We have

ṗi = v̇i by def. of pi,

= (v̇h, φi)Ωh
by def. of φi,

= (∇φi, qh)Ωh
− 〈φi, q̂h · n〉∂Ωh

+ (φi, f(t))Ωh
by (38),

=− (φi,∇ · qh)Ωh
− 〈φi, (q̂h − qh) · n〉∂Ωh

+ (φi, f(t))Ωh

=− (
∂

∂ui
uh,∇ · qh)Ωh

− 〈 ∂

∂ui
uh, (q̂h − qh) · n〉∂Ωh

+ (
∂

∂ui
uh, f(t))Ωh

by def. of φi,

=− (
∂

∂ui
uh,∇ · qh)Ωh

+ 〈 ∂

∂ui
ûh, qh · n〉∂Ωh

− 〈 ∂

∂ui
(uh − ûh), (q̂h − qh) · n〉∂Ωh

+ (
∂

∂ui
uh, f(t))Ωh

=− (
∂

∂ui
uh,∇ · qh)Ωh

+ 〈 ∂

∂ui
ûh, qh · n〉∂Ωh

+ (
∂

∂ui
uh, f(t))Ωh

− 〈 ∂

∂ui
({{uh − ûh}}) �q̂h − qh� +

∂

∂ui
(�uh − ûh�) {{q̂h − qh}}, 1〉Eh

=− (
∂

∂ui
qh, qh)Ωh

+ (
∂

∂ui
uh, f(t))Ωh

− 〈− ∂

∂ui
({{uh − ûh}}) �qh� +

∂

∂ui
(�uh�) {{q̂h − qh}}, 1〉Eh

=− (
∂

∂ui
qh, qh)Ωh

+ (
∂

∂ui
uh, f(t))Ωh

− 〈 ∂

∂ui
(C12�uh� + C22�qh�) �qh� +

∂

∂ui
(�uh�) (C11�uh� −C12�qh�) , 1〉Eh

=− (
∂

∂ui
qh, qh)Ωh

+ (
∂

∂ui
uh, f(t))Ωh

− C22
∂

∂ui
〈�qh��qh�, 1〉Eh

− C11
∂

∂ui
〈�uh��uh�, 1〉Eh

=− ∂

∂ui
Hh(uh, vh, t) by (39),

=− ∂

∂qi
H(p, q, t),
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by definition of H(p, q, t).

The proof of the second identity follows in a similar manner. This completes the proof. �
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