
Journal of Computational Physics 355 (2018) 426–435
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Spherical Bessel transform via exponential sum approximation 

of spherical Bessel function

Hidekazu Ikeno a,b,∗
a NanoSquare Research Institute, Research Center for the 21st Century, Organization for Research Promotion, Osaka Prefecture University, 1-2 
Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
b JST PRESTO, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 June 2017
Received in revised form 11 November 2017
Accepted 13 November 2017
Available online 20 November 2017

Keywords:
Hankel transform
Spherical Bessel transform
Bessel function
Oscillatory integrals
Balanced truncation method

A new algorithm for numerical evaluation of spherical Bessel transform is proposed in 
this paper. In this method, the spherical Bessel function is approximately represented as 
an exponential sum with complex parameters. This is obtained by expressing an integral 
representation of spherical Bessel function in complex plane, and discretizing contour 
integrals along steepest descent paths and a contour path parallel to real axis using 
numerical quadrature rule with the double-exponential transformation. The number of 
terms in the expression is reduced using the modified balanced truncation method. The 
residual part of integrand is also expanded by exponential functions using Prony-like 
method. The spherical Bessel transform can be evaluated analytically on arbitrary points 
in half-open interval.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the integrals transformation of a function f (r) of the form,

f̃ l(k) =
∞̂

0

r2 f (r) jl(kr)dr (k > 0), (1)

where, jl(r) is the spherical Bessel function of the first kind of order l. The integral transformation (1) is referred as a 
spherical Hankel or spherical Bessel transform (SBT). The SBT appears when the Fourier transform of an angular momentum 
eigenfunction is considered. Let ψ(r) = f (r)Ylm(r̂), where Ylm(r̂) is a spherical harmonic. Using the spherical wave expan-
sion of plane wave,

e−ik·r =
∞∑

l=0

(−i)l jl(kr)Ylm(k̂)Y ∗
lm(r̂), (2)

then, the Fourier transform of ψ(r) can be written as

* Correspondence to: NanoSquare Research Institute, Research Center for the 21st Century, Organization for Research Promotion, Osaka Prefecture 
University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.

E-mail address: h-ikeno@21c.osakafu-u.ac.jp.
https://doi.org/10.1016/j.jcp.2017.11.016
0021-9991/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2017.11.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:h-ikeno@21c.osakafu-u.ac.jp
https://doi.org/10.1016/j.jcp.2017.11.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2017.11.016&domain=pdf


H. Ikeno / Journal of Computational Physics 355 (2018) 426–435 427
ψ̃(k) =
ˆ

e−ik·rψ(r)dr = 4π(−i)l f̃l(k)Ylm(k̂), (3)

where f̃ l(k) is expressed as SBT given in (1). Since the spherical Bessel function jl(r) is defined in terms of Bessel function 
Jν(r) of half-integer order as,

jl(r) =
√

π

2x
Jl+ 1

2
(r), (4)

a SBT can be regarded as a special case of a Hankel transform (HT) defined as,

g̃(k) =
∞̂

0

rg(r) Jν(kr)dr (k > 0). (5)

Both HT and SBT are used in many field, including astronomy, optics, electromagnetics, seismology, and quantum mechanics. 
In particular, SBT is involved in the scattering in atomic or nuclear systems [1], and multi-center integrals arises in atomic 
and molecular integrals [2].

The straight forward evaluation of integral (1) using conventional numerical integration method, such as the Gauss–
Laguerre rule, meets intractable difficulties when k becomes large, because the integrand is highly oscillatory. Several 
approaches to overcome the difficulty have been proposed. The most efficient approach is the fast SBT method, where 
the transform is made on a logarithmic mesh for both the r and k in conjunction with variable transformation [3–7]. The 
integration is performed by two successive application of the fast Fourier transform (FFT). One of the drawback of this ap-
proach is the use of logarithmic mesh that most of mesh points are concentrated close to the origin. The fast SBT algorithm 
on linearly spaced mesh has also developed, where the integral representation of the spherical Bessel function jl(r) in terms 
of the Legendre polynomial is used with variable transformation, and the integral is performed via FFT [8]. In these two 
methods, the values of integral (1) on the predefined mesh points (either logarithmic or linear mesh) can efficiently be 
evaluated in O (N log N) operations. On the other hand, an appropriate interpolation or extrapolation is necessary to obtain 
the integral value for arbitrary points other than the mesh points on real axis. The numerical method for SBT in another 
direction is to partition the integral (1) into the integrals over subintervals between the zeros of spherical Bessel functions. 
The integrals on subintervals form an alternating series and can be summed with acceleration method. The advantage of 
this approach is that one can control the accuracy by adjusting the quadrature points. The drawback is, however, that the 
computational cost is much higher than that of fast SBT, as the integration has to be performed each value of k. See ref. [9]
for the detailed comparison of the performance between these two approaches. Alternative approach for HT using wavelets 
was also proposed [10,11]. But the method is for HT with integer order and hence it cannot be directly applied to evaluate 
SBT.

In this paper, a new method for numerical evaluation of SBT at arbitrary points in high accuracy is proposed. The basic 
idea behind is to fit the integrand r2 f (r) by sum of analytic functions so that the SBT in (1) can be obtained analytically. 
The HT algorithm with the similar mind has already reported, where the function rg(r) in (5) is fitted by sum of exponential 
type functions [12,13]. In our approach, the oscillatory spherical Bessel kernel jl(kr) is also approximated by an exponential 
sum with complex parameters. This enable us to evaluate SBT analytically at arbitrary points in half-open interval. The 
advantage of the present method compared to those in refs. [12,13] is that r2 f (r) can be expanded by various kind of 
analytic functions, including algebraic functions, trigonometric functions, exponential functions and combinations of them, 
as long as r2 f (r)e−ar can be integrated analytically.

This paper is organized as follows. The theoretical background for the approximation of spherical Bessel kernel via an 
exponential sum is explained in Sec. 2. The details of the numerical algorithm to obtain exponential sum approximation of 
spherical Bessel functions numerically is described in Sec. 3.1 and 3.2. The procedure to obtain exponential sum approxima-
tion of residual part r2 f (r) is briefly explained and some results of numerical tests are provided in Sec. 3.3.

2. Exponential sum approximation of spherical Bessel functions

In this section, we are considering the approximation of spherical Bessel kernel jl(r) by an exponential sum. Let g(r) be 
a function of the form,

g(r) =
N∑

k=1

cke−akr (r ≥ 0), (6)

where ak ∈ C, Re(ak) > 0 are distinct complex numbers, and ck ∈ C \ {0}. The function g(r) is a smooth, exponentially 
decaying function, and it oscillates if Im(ak) �= 0. Our problem here is to find parameters ak and ck with small number of 
terms M , such that∣∣ jl(r) − g(r)

∣∣ < ε (r ≥ 0) (7)

where ε > 0 is a prescribed accuracy of the approximation.
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Fig. 1. Contour paths in the complex t-plane used for discretizing the integral representations of and spherical Bessel functions jl(r) with r ∈R.

Approximating analytic functions by exponential sums has been studied in applied mathematics. One of the most useful 
approaches to obtain an exponential sum approximation is to discretize the integral representation by using a numerical 
quadrature rule [14,15]. To obtain the exponential sum approximation of spherical Bessel function jl(r), let us consider the 
following integral representation,

jl(r) = (−i)l

2

1ˆ

−1

eirt Pl(t)dt, (8)

where Pl(t) is the Legendre polynomial of degree l. The integrand of (8) becomes highly oscillatory when r is large (see, 
Fig. 2(a)). Hence, the application of conventional quadrature rule, such as the Gauss–Legendre rule, on (8) is inefficient. 
Several quadrature rules for Fourier type integrals have been reported [16–18]. Unfortunately, in those quadrature rules, the 
quadrature nodes are chosen depending on the argument r, hence, they cannot be used for the present purpose. A common 
approach to remove the difficulty in the integration coming from the highly oscillatory nature of function is the steepest 
descent method [19,20]. In this approach, the integral is extended on complex plane and deform the contour paths so that 
the integrand decays rapidly. In this work, the method was applied to the integral representation in (8).

Let u, v be the real and imaginary part of t , so that t = u + iv , and consider the contour paths, C1 : t = u, u ∈ [−1, 1], C2 :
t = 1 + iv, v ∈ [0, R], C3 : t = u + iR , u ∈ [−1, 1], and C4 : t = −1 + iv , v ∈ [0, R] with R > 0. Those four paths on the complex 
t-plane are shown in Fig. 1. C1 coincides with the integration domain on real axis in (8). C2 and C4 are chosen to be the 
steepest descent paths. Along the paths the exponential term eixt = e−xv e±ix rapidly decrease as parameter v increase and 
does not oscillate. According to the Cauchy’s integral theorem,

˛

C1+C2+C3+C4

eirt Pl(t)dt = 0, (9)

for the closed contour constructed of those paths. Thus, the integral representation of the spherical Bessel function can be 
reformulated as

jl(r) = − (−i)l

2

ˆ

C2+C3+C4

eirt Pl(t)dt ≡ S2(r) + S3(r) + S4(r), (10)

where,

S2(r) = − (−i)l+1

2

Rˆ

0

e−(v+i)r Pl(−1 + iv)dv = (−1)l+1 S∗
4(r), (11a)

and

S3(r) = (−i)l

2

1ˆ

−1

e−(R−iu)r Pl(u + iR)du. (11b)

As Pl(−x) = (−1)l Pl(x), the integral S3(r) can be split into two part,

S3(r) = S ′
3(r) + (−1)l S ′ ∗

3 (r), (11c)

with
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Fig. 2. Integrand for the integral representations of spherical Bessel function j4(r) for r = 1 and r = 40 along the contour paths C1, C2 and C3 shown in 
Fig. 1. Real and imaginary part of integrands are drawn in red and blue lines, respectively. (For interpretation of the colors in this figure, the reader is 
referred to the web version of this article.)

S ′
3(r) = (−i)l

2

1ˆ

0

e−(R−iu)r Pl(u + iR)du, (11d)

so that

jl(r) = S2(r) + (−1)l+1 S∗
2(r) + S ′

3(r) + (−1)l S ′ ∗
3 (r). (12)

The behavior of integrands in (8), (11a), and (11b) for r = 1 and r = 40 with R = 1 are shown in Fig. 2. For r = 1, integrands 
are smooth and hardly oscillate along all paths.

As mentioned before, the integrand on real axis (C1) in (8) is highly oscillatory for r = 40. The oscillation disappears 
along the path C2 as can be seen the right panel in Fig. 2(b). The integrand of S3(r) for r = 40 is highly oscillating. However, 
the magnitude of the integrand becomes negligibly small when r and R are significantly large, because of the presence of 
the factor e−Rr . The contribution of S3(r) on jl(r) is negligibly small for large argument r. Following the observations, the 
integral (11a) and (11d) can be approximated using a quadrature rule as,

S2(r) ≈ − (−i)l+1

2

N2∑
j=1

w(2)
j Pl

(−1 + iy(2)
j

)
e−(y(2)

j +i)r
, (13a)

and

S ′
3(r) ≈ (−i)l

2

N3∑
j=1

w(3)
j Pl

(
y(3)

j + iR
)
e−(R+iy(3)

j )r
, (13b)

where y(k)
j and w(k)

j are nodes and weights of the quadrature rule. The details for selecting quadrature nodes and weights 
will be discussed in the next section. The approximation (13a) and (13b) have the form of exponential sum in (6). The 
exponential sum approximation of the spherical Bessel function can be obtained by substituting (13a) and (13b) into (12).
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It should be noted that the integral S3(r) vanishes as R → ∞ due to the factor e−Rr . Thus, the spherical Bessel function 
can, in principle, be represented as sum of two integrals S2(r) and S4(r) on the steepest descent paths. In practice, however, 
we may suffer from large numerical round of error for evaluating the summation in (13a) when R becomes large, since the 
magnitude of the weight factor Pl(−1 + iy) may vary in wide range from 0 to Rl . In order to avoid this problem, S3(r)
should be explicitly included to construct exponential sum approximation with keeping R as small as possible. How to 
choose the parameter R will be explained in the next section.

3. Details of numerical procedures

3.1. Discretization of integral representation for jl(r)

As explained in the previous section, the exponential approximation of spherical Bessel function jl(r) can be obtained 
by discretizing the integral representation in the complex plane using appropriate quadrature rule, as described in (12) and 
(13). The choice of quadrature rule is crucial to achieve the approximation g(r) satisfying (7) in high accuracy. The behavior 
of the integrand of S2(r) and S ′

3(r) significantly depend on the magnitude of argument r, as can be seen in Fig. 2. When 
r is small, the integrands of S2(r) and S ′

3(r) are both smooth functions and have significant contribution on entire region 
of integrals. When r is large, the contribution of S ′

3(r) becomes negligibly small in whole region because of the presence 
of e−Rr factor. Thus, the contribution of S2(r) is dominating. In addition, the integrand of S2(r) has significant contribution 
near the end point v = Im(t) = 0 (t = −1), and is decaying exponentially as v increases, as can be seen in Fig. 2(b). These 
observations suggest that many quadrature points should be distributed near the lower bound of integral region in order 
to achieve the approximation in high accuracy for large r. The Gauss–Legendre rule, which is most common quadrature 
rule for integral in finite interval, do not fulfill this requirement. This is confirmed by numerical experiments, where 500 
points Gauss–Legendre rule were applied for evaluating integrals S2(r) and S ′

3(r). We found that the absolute errors of the 
exponential sum approximation for jl(r) (0 ≤ l ≤ 10) are about order of 10−7 (only 1 or 2-digit accuracy) for r > 105.

In the present work, the double-exponential transformation formula for the numerical integration was adopted [21]. In 
this formula, an integral over [−1, 1] can be approximated as

I =
1ˆ

−1

f (x)dx ≈ h
N+∑

k=−N−
wk f (xk), (14a)

where

xk = tanh

(
π

2
sinh kh

)
, wk =

π
2 cosh kh

cosh2(π
2 sinh kh)

. (14b)

The formula gives very high accuracy with small number of quadrature nodes, even if f (x) is singular at the end points. 
For a given number of quadrature nodes N = N− + N+ + 1 interval h > 0 is chosen so that quadrature weights at the end 
points w N− , w N+ become smaller than prescribed threshold 0 < η � 1, i.e.,

h ≈ 1

N
ln

[
2

π
ln

(
4

πη
ln

2

η

)]
. (15)

We set η = εM/Ni for evaluating quadrature form (13a) and (13b), where εM is the machine epsilon.
The choice of parameter R > 0, the upper bound of Im(t) on contour paths, is also important to achieve the exponential 

sum approximation of jl(r) in high accuracy. R should be large enough so that the contribution of integrals S3(r) is negligi-
bly small for large r where the integrand is highly oscillating. On the other hand, R should be kept small as possible so as 
not to increase the magnitude of Legendre polynomial in the weight factor in (13) significantly: otherwise, the summations 
in (13) become inaccurate especially for r < 1 because of the numerical round-off error.

The number of quadrature nodes N2, N3, and the parameter R were determined empirically, so that maximum absolute 
error becomes smaller than tolerance, εtol, for any r > 0. In the present work, computation was done in double precision 
with εtol = 10−13. The parameters were set to be N2 = 200, N3 = 120 + 2l, and R = 5/(l + 1) respectively. By selecting the 
parameters in this way, the exponential sum approximation of jl(r) with maximum absolute error smaller than 5 × 10−14

can be obtained for l up to ten.

3.2. Reduction of terms

The exponential sum approximation of jl(r) obtained by the procedure described above can be approximated with an-
other exponential sum with smaller number of terms, such that,

g̃(r) =
M∑

c̃ke−ãkr,
∣∣g(r) − g̃(r)

∣∣ < ε, (16)

k=1
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Table 1
Summary of the exponential sum approximation for jl(r). M represents the num-
ber of terms after applying the modified balanced truncation with accuracy ε =
10−12. εmax and εave are the maximum and averaged error on the 106 points log-
arithmically spaced grid on [10−5, 107].

l M εmax εave

0 130 7.0 × 10−13 3.3 × 10−13

1 132 4.2 × 10−13 1.4 × 10−13

2 134 7.1 × 10−13 3.1 × 10−13

3 136 4.4 × 10−13 2.4 × 10−13

4 136 3.0 × 10−13 1.7 × 10−13

5 138 8.8 × 10−13 4.0 × 10−13

with M < N . Numerical procedures finding shorter exponential sum approximation in (16) based on the theory of Adamjan, 
Arov, and Krein (AAK theory) has been discussed in literatures [22–24]. Alternatively, the balanced truncation method, which 
is an algorithm use for model order reduction, can also be used [25,26].

In this work, a modified balanced truncation method for sparse exponential sum approximation was adopted. In this 
method, we consider the Laplace transform of exponential sum in (6),

G(s)= L
[

g(r)
] =

∞̂

0

e−sr g(r)dr =
N∑

k=1

ck

s + ak
, (17)

and find approximation G̃(s)=L[g̃(r)] such that |G(s) − G̃(s)| < ε . G(s) can be written in matrix form as,

G(s) = C(sI + A)−1 B, (18)

where A = diag(a1, a2, . . . , aN) ∈ C
N×N , B = (

√
c1, 

√
c2, . . . , 

√
cN )T ∈ C

N×1 and C = BT . Using the terminology of control 
theory, G(s) is a transfer function of a linear time-invariant system identified by matrices (A, B, C). The balanced truncation 
method finds approximation of the system with lower order matrices (T −1 AT , T −1 B, C T ). Here, T ∈ C

M×N (M < N) is a 
projection matrix which is determined from the singular vectors of Gramian matrices P and Q , which are solutions of 
equations, A P + P A∗ = B B∗ and A Q + Q A∗ = C∗C , respectively. Because of the diagonal structure of A, elements of matrices 
P , Q can be obtained analytically as,

Pij =
√

cic∗
j

ai + a∗
j

= Q ∗
i j . (19)

Thus, P , Q are Hermitian, quasi-Cauchy matrices. The algorithms for computing singular value decomposition of a quasi-
Cauchy matrix in high accuracy is available [27–29]. In this work, the con-eigenvalue decomposition P = UΣU T with 
U U T = I , that is a special case of singular value decomposition, of a quasi-Cauchy matrix is computed using the algorithm 
proposed by Haut and Beylkin [30]. The number of terms, M , in truncated exponential sum (16) is determined from the 
con-eigenvalues, so that σM+1 < ε . By setting the projection matrix T = U [1 : N, 1 : M]H , the exponents ãk are obtained 
from the eigenvalue decomposition T −1 AT = XΛX T as Λ = diag(ã1, ̃a2, . . . , ̃aM). The corresponding coefficients ck are ob-
tained as X T T −1 B = (

√
c̃1, 

√
c̃2, . . . , 

√
c̃M)T . More details about the balanced truncation method used in this work will be 

published elsewhere.
Using the procedure above, the exponential sum approximation of jl(r) was obtained. Fig. 3 shows the results of expo-

nential sum approximation for j4(r) with accuracy ε = 10−12. The 136-terms approximation was obtained by the modified 
balanced truncation. The nodes zk = e−ak and coefficients ck on complex plane, and absolute errors on r ∈ [10−5, 107] are 
shown. The absolute errors of approximation are smaller than the prescribed accuracy ε for all r ≥ 0. The exponential sum 
approximation of other spherical Bessel functions with various l are summarized in Table 1. The number of terms M , maxi-
mum (εmax) and averaged (εave) absolute errors on the 106 points logarithmically spaced grid in [10−5, 107] are shown. The 
parameters ak and ck for exponential sum approximations of jl(r) for 0 ≤ l ≤ 10 are also given in supplemental material.

3.3. Exponential sum approximation of residual function

Using the obtained exponential sum approximation of jl(r), SBT can be evaluated analytically as long as integral of 
r2 f (r)e−pr on half-open interval can be obtained analytically. Here, we consider the approximation of r2 f (r) by sum of 
exponential functions multiplied by power function, given as

r2 f (r) = rn
N∑

γie
−αi r, (20)
i=1
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Fig. 3. Results of the exponential sum approximation of spherical Bessel function j4(r). (a) Distribution of z j = exp(−a j) for exponential sum. (b) Distribu-
tion of coefficients c j . (c) Absolute error of the exponential sum approximation on r ∈ [10−5, 107].

where n > −1, αi ∈ C, Re(αi) > 0 are distinct complex numbers, and γi ∈ C \ {0}. The approximation of the form (20) can 
be obtained by sampling r2−n f (r) on uniform grid and applying Prony-like methods. The methods are well established and 
commonly used in the field of signal processing, hence, are not explained here. We just refer to [31–33] for details about 
the Prony-like methods.

Once the parameters in (20) are obtained, the SBT of f (r) can be analytically obtained in terms of Gauss hypergeometric 
functions 2 F1 with complex arguments as (see, 6.621.1 of [34]),

f̃ l,n(k) =
N∑

i=1

γi

∞̂

0

rne−αi r jl(kr)dr

=
√

π

2

N∑
i=1

γi
Γ (l + n + 1)

(2l + 1)!!
kl

αl+n+1
i

× 2 F1

(
l + n + 1

2
,

l + n + 2

2
; l + 3

2
;− k2

α2
i

)
. (21)

However, the numerical evaluation of hypergeometric function for complex arguments is still not an easy task [35–37]. This 
can be avoided by utilizing the exponential sum approximation of jl(r). By substituting jl(r) ≈ ∑M

m=1 cm exp(−amr) to (21), 
we obtain the approximation of f̃ l,n(k) as

f̃ l,n(k) ≈ g̃l,n(k) = n!
N∑

i=1

M∑
m=1

cmγi

(amk + αi)
n+1 . (22)

By using (22), the SBT can be evaluated efficiently as a sum of rational functions.

3.4. Numerical examples

In this section, we present some numerical examples to demonstrate the performance of our SBT algorithm via exponen-
tial sum approximation. In order to test the accuracy of the SBT of exponential sum function (19), it is sufficient to consider 
the case of N = 1, such as,

f (r) = rn−2e−αr . (23)
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Fig. 4. Absolute errors | f̃n,l(k) − g̃n,l(k)| of spherical Bessel transform of f (r) = rn−2e−αr with α = 0.01,0.1,1,10,100.

The SBT of function (23) was evaluated using exact formula (21) and approximation (22) with varying exponents α. 
The absolute errors | f̃ l,n(k) − g̃l,n(k)| for (l, n) = (0, 0), (2, 0), (0, 2), (2, 2), and α = 0.01, 0.1, 1, 10, 100 on the interval 
k ∈ [10−5, 105] are shown in Fig. 4. The hypergeometric function in (21) is evaluated using arbitrary precision arithmetic, 
using the ‘mpmath’ Python library. For evaluation of (22), 130 and 134 terms exponential sum approximations are used 
for spherical Bessel kernel j0(kr) and j2(kr), respectively. In all the cases, the absolute error tends to increase as k decreases 
to zero. In addition, the smaller the exponent parameter α, the larger the absolute error close to k = 0. This is because the 
factor (amk + α)−n−1 in (22) become significantly large when k and α are small and enhance the numerical round off er-
ror of exponential sum. However, the approximation error shown in Fig. 4 would be acceptable for applications in many 
physical problems.

Similar calculations were performed with complex exponent parameters. Fig. 5 shows absolute errors | f̃ l,n(k) − g̃l,n(k)| for 
(l, n) = (0, 0), (2, 0), and with α = eiϕ (ϕ = 0, π/6, π/4, π/3). The results suggest that the absolute errors do not strongly 
depend on the argument of α. The errors are kept in same order as long as the magnitude of parameter α is same.

The range of the magnitudes of αi is strongly depend on feature of function f (r). In the case of Gaussian distribution 
function, i.e., f (r) = e−r2/2σ 2

, for instance, r2 f (r) can be approximated using a Prony-like method by a 17 terms exponential 
sum with an accuracy of 10−13 on r ≥ 0, where the magnitude of αi is in 3.32/σ < |αi | < 6.81/σ . Thus, the SBT can 
be evaluated in good accuracy using the exponential sum approximation for modest values of σ . The |αi | varies much 
wider range when f (r) is singular at origin and slowly decaying. For instance, the exponential sum approximation of the 
power function, r2 f (r) = r−β (β > 0), in the finite interval [δ, 1] (δ > 0) can be obtained in accordance with the procedure 
developed by Beylkin and Monzón [14]. A 137 terms approximation is obtained for β = −2 and δ = 10−10 with the relative 
accuracy of 10−10. The parameter αi are all positive real values and are in 0.05 < αi < 8.5 × 1013. This implies that the SBT 
can be evaluated in good accuracy by using the proposed algorithm even if the function f (r) has r−β singularity.

Exponential functions of the form (23) are frequently used in quantum chemistry, where an atomic orbital is expressed 
as linear combinations of Slater-type orbitals (STOs) as χnlm(r) = ∑

i cirne−αi r Ylm(r̂). The number of terms is typically two 
to four per each atomic orbital. The power factor n, which represents the principal quantum number of atomic orbitals, 
varies from one to seven, depending on atomic species. The exponents αi are predetermined to reproduce the electronic 
structures of atoms and molecules, which exceeds 0.4 for all the atoms [38,39]. Hence the SBTs of STOs can also be evaluated 
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Fig. 5. Absolute errors | f̃n,l(k) − g̃n,l(k)| of spherical Bessel transform of f (r) = rn−2e−αr with complex exponents, α = eiϕ (ϕ = 0,π/6,π/4,π/3).

efficiently and accurately, which would be useful to evaluate the multicenter integrals between STOs required to construct 
Hamiltonian matrix [40,41].

3.5. Computational costs

Finally, we discuss the computational cost of the proposed algorithm for the numerical evaluation of the SBT. The compu-
tation of the parameters for the exponential sum approximation of spherical Bessel function ( jl(r)) takes some time (about 
ten seconds using modern CPU), especially for reducing the number of terms by the modified balanced truncation method 
as matrix decompositions and multiplications are required. However, the parameters for jl(r) can be precomputed and 
reused for evaluating the many SBTs, hence, the computational costs for this step could be negligible for practical use. The 
computational cost for the exponential sum approximation of the residual functions (r2 f (r)) is hard to estimate: it strongly 
depends on the nature of the function, e.g., the decay rate or the presence of singularity. If r2 f (r) is smooth, non-singular 
and rapidly decaying function, the exponential sum approximation can be obtained within a second using the Prony-like 
methods.

The evaluation of a SBT using (22) requires O(MN) operations for each k, where M and N are number of terms for 
the exponential sum approximations of jl(r) and r2 f (r), respectively. The values of M are summarized in Table 1, which 
can be reduced if larger absolute error for the approximation of jl(r) is acceptable. The value of N strongly depends on the 
feature of f (r). If r2 f (r) is sooth and rapidly decaying, the function can be well approximated by several tens of exponential 
functions (e.g., N = 15 for the Gaussian distribution function with the accuracy of 10−13). In typical case, MN is about order 
of one thousand.

Because the parameters for the exponential sum approximation of jl(r) are complex numbers, the use of complex arith-
metic cannot be avoided at the last step. This results in a loss of computational efficiency because the computational cost of 
complex arithmetic is about four times larger than that of real arithmetic. The SBT can also be evaluated in high accuracy 
using real arithmetic by applying adaptive integration to evaluate the integral (1) directly. However, the latter approach be-
comes inefficient when we evaluate the SBT at large k, as the number of integration points required to achieve the desired 
accuracy increases significantly. To demonstrate this behavior, the SBT of singe exponential function given in (23) was also 
evaluated for n = 0 and l = 2 using QUADPACK, a subroutine package for automatic integration, at selected values of k. The 
numbers of integration points required to achieve the accuracy of 10−12 is 315, 1155, 4935, and 9513 at k = 1, 10, 50, and 
100, respectively. In the proposed method, in contrast, the SBT can be obtained as a sum of 132N terms rational functions 
in (22). The computational cost of the proposed algorithm for evaluating the SBT is independent of the magnitude of k, and 
hence, would be much more efficient than adaptive integration scheme at large k.

4. Summary

In this paper, a new algorithm for numerically evaluating SBT in high accuracy was proposed. In this approach, both the 
spherical Bessel kernel, jl(kr), and residual part of integrand, r2 f (r), were approximated by exponential sums in the form 
(6) and (19). Then, the SBT was evaluated analytically as a sum of rational function in (22).

The procedures to obtain the exponential sum approximation of jl(r) were described in detail. Starting from the integral 
representation of jl(r) in (8), the variable of integration was extended in complex plane, and integration paths were modified 
along the steepest descent paths, as shown in Fig. 1. The integral representations on those paths were discretized using 
the double-exponential transformation formula for numerical quadrature. Then, the optimal exponential sum with smaller 
number of terms was obtained using modified balanced truncation algorithm.
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Once the exponential sum approximation of r2 f (r) is obtained, the SBT of f (r) at arbitrary points on k ≥ 0 can be 
evaluated efficiently. The numerical results in Sec. 3.4 confirmed that the SBT can be obtained in high accuracy, except the 
case that both the magnitude of exponents and k are too small.

The present approach can also be extended to evaluate SBT when f (r) is expressed as sum of other type of analytic 
functions, including trigonometric and algebraic functions, as long as r2 f (r)e−ar can be evaluated efficiently and in high 
accuracy. This technique could be applied, for instance, the evaluation of multi-center integrals between atomic orbitals in 
quantum chemistry. The multi-center integrals can be obtained by performing forward SBTs of atomic orbitals, multiplying 
them, and then, performing backward SBT [2,42], which could be evaluated efficiently by applying the Prony-like method 
for fitting radial functions as exponential sums. Further research in this direction is now in progress.
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