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In this work we develop a scalable computational framework for the solution of PDE-
constrained optimal control problems under high-dimensional uncertainty. Specifically, 
we consider a mean-variance formulation of the control objective and employ a Taylor 
expansion with respect to the uncertain parameter field either to directly approximate 
the control objective or as a control variate for variance reduction. The expressions for 
the mean and variance of the Taylor approximation are known analytically, although their 
evaluation requires efficient computation of the trace of the (preconditioned) Hessian 
of the control objective. We propose to estimate this trace by solving a generalized 
eigenvalue problem using a randomized algorithm that only requires the action of the 
Hessian on a small number of random directions. Then, the computational work does 
not depend on the nominal dimension of the uncertain parameter, but depends only 
on the effective dimension (i.e., the rank of the preconditioned Hessian), thus ensuring 
scalability to high-dimensional problems. Moreover, to increase the estimation accuracy of 
the mean and variance of the control objective by the Taylor approximation, we use it as a 
control variate for variance reduction, which results in considerable computational savings 
(several orders of magnitude) compared to a plain Monte Carlo method. In summary, 
our approach amounts to solving an optimal control problem constrained by the original 
PDE, the generalized eigenvalue equations at a small number of eigenfunctions, and a 
set of linearized PDEs that arise from the computation of the gradient and Hessian of 
the control objective with respect to the uncertain parameter. We use the Lagrangian 
formalism to derive expressions for the gradient with respect to the control and apply 
a gradient-based optimization method to solve the problem. We demonstrate the accuracy, 
efficiency, and scalability of the proposed computational method for two examples with 
high-dimensional uncertain parameters: subsurface flow in a porous medium modeled as 
an elliptic PDE, and turbulent jet flow modeled by the Reynolds-averaged Navier–Stokes 
equations coupled with a nonlinear advection-diffusion equation characterizing model 
uncertainty. In particular, for the latter more challenging example we show scalability of 
our algorithm up to one million parameters resulting from discretization of the uncertain 
parameter field.
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1. Introduction

Optimal control (and more general optimization) constrained by partial differential equations (PDEs) are ubiquitous in 
many applications of practical relevance for science and engineering. The objective of such problems is to seek an optimal 
control that minimizes a cost functional, which often consists of a control objective and a penalty term. The control objective 
is often given as a distance between the solution of the PDE and a desired state or more generally formulated as a quantity 
of interest related to the solution, while the penalty term reflects the cost of the control or imposes regularity of the 
control. In practical applications, uncertainties in the PDE model are inevitable and can arise from various sources, such as 
the PDE coefficients, initial or boundary conditions, external sources, or geometries. Different realizations of these uncertain 
parameters may lead to significant differences in the optimal control. Mathematical theories and computational methods 
have been developed for several decades to deal with deterministic PDE-constrained optimal control [14,15,39,40,44,56,75]. 
More recently, PDE-constrained optimal control under uncertainty has become an important area of research and has drawn 
increasing attention [3,4,11,16,26–30,41,45,49–54,61,67,71,74].

Different formulations of the cost functional have been studied to incorporate uncertainty into the PDE-constrained 
optimal control. A straightforward choice is to optimize the mean of the control objective, i.e., the integration of the control 
objective with respect to the probability measure of the uncertain parameter [16,28,41,45,49]. However, this formulation 
does not control the variability of the control objective. To avoid a possible and undesired large variation of the control 
objective, which may represent the risk of a system failure, one can include the variance or higher moments of the control 
objective in the cost functional [11,67,74]. An alternative approach is use the Value-at-Risk (VaR) or conditional VaR [50], 
which measure the (conditional) probability of the control objective surpassing a certain critical value. An extreme choice is 
robust optimization (also referred as min-max optimization), where one seeks a control that yields the optimal value of the 
objective in the worst-case scenario, i.e., the extreme value of the control objective in the range of the uncertain parameter 
[13,54].

A common challenge in all of these formulations is to compute the statistics of the control objective (i.e., mean, variance, 
higher moments, or conditional probabilities); this involves the integration of the control objective or related quantities with 
respect to the probability measure of the uncertain parameter. This challenge becomes more severe for high-dimensional 
uncertain parameter space, which is often the case when the parameter is a uncertain spatially correlated field. A straight-
forward approach is to apply a Monte Carlo method to compute the statistics by taking the average of the control objective 
or related quantities at a set of samples randomly drawn according to the probability measure of the parameter. However, 
the converge rate of the Monte Carlo estimator is just O (M−1/2), where M is the number of samples. This may lead to an 
extremely large number of samples to achieve a target accuracy, and therefore may not be feasible when the state equa-
tion is a complex nonlinear PDE. Quasi Monte Carlo methods using low-discrepancy sequences improve the convergence 
rate to O ((log(M))d/M) for a d-dimensional parameter [34], and is thus attractive for low to medium dimensional prob-
lems. Stochastic Galerkin and stochastic collocation methods have also been used to compute the statistical moments in the 
cost functional [28,29,41,45,49,52–54,67,74], provided that a suitable finite dimensional parametrization of the uncertain 
parameter, such as a truncated Karhunen–Loève expansion, is applicable. These methods achieve fast convergence when the 
control objective depends smoothly on the low-dimensional parameter, but suffer from the so-called curse of dimensionality, 
i.e., the convergence rate quickly deteriorates as the dimension of the parameter increases. Recent advances in adaptive 
and anisotropic sparse quadrature [24,72] and high-order quasi Monte Carlo methods [35] have been shown to achieve a 
dimension-independent convergence rate N−s with s potentially much larger than 1/2. Here s is independent of the nom-
inal dimension of the uncertain parameter and depends only on the choice of parametrization and on the regularity of 
the control objective with respect to the parameter, thus mitigating or even breaking the curse of dimensionality. However, 
the convergence may still be slow if the choice of the parametrization does not correctly capture the effective parameter 
dimensions.

Another computational challenge is that, in applications of practical relevance, the PDE may lead, after discretization, to 
possibly nonlinear large-scale systems that are extremely expensive to solve. Thus, only a limited number of high-fidelity 
PDE solves can be afforded. This challenge prevents a direct application of most of the computational methods introduced 
above as they require a large number of evaluations of the control objective for computing its statistics. To tackle this 
challenge, reduced basis methods [43,65,68] or other model reduction techniques [10] can be employed to exploit the low 
dimensionality of the solution manifold, even when the parameter lives in a high-dimensional space. Such methods solve 
the high-fidelity state equation at a few carefully selected samples of the parameter, and use such high-fidelity solutions 
(known as snapshots) as the basis to approximate the solution at any other realization of the uncertain parameter by a 
(Petrov)-Galerkin projection. Solving the projected problem in the reduced basis space allows for considerable computational 
saving compared to solving in the full space, such as a finite element space with a large number of degrees of freedom. 
These techniques have been successfully developed for solving parametric and stochastic PDE-constrained optimal control 
with several classes of PDE models [6,12,28,30,31,47,59,60,77]. Nevertheless, difficulties in using such techniques arise for 
highly nonlinear problems that require effective affine approximation (see [43,65] and references therein) or when the 
solution manifold becomes high-dimensional, even if the effective dimension of the manifold of the control objective is low 
[17,25].

In this work, we propose a scalable computational framework that uses Taylor expansions of the control objective with 
respect to the uncertain parameter to efficiently and accurately approximate the cost functional. This framework takes ad-
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vantage both of the smooth dependence of the control objective on the uncertain parameter and of the low-rank structure of 
the Hessian of the control objective, which exposes the low effective dimension of the nominally high-dimensional parame-
ter space. Such Taylor expansions can be used directly to approximate the moments of the control objective as proposed in 
[3] or as control variates to reduce the variance of Monte Carlo estimators. Analytic expressions for the mean and variance 
of the Taylor expansions are known; we refer to [3] for such expressions in the case of linear and quadratic approximations. 
These expressions depend on the trace of the preconditioned Hessian (second order derivative of the control objective with 
respect to the uncertain parameter) and/or its square. While for low-dimensional problems it is possible to explicitly com-
pute the Hessian matrix (see [37,38]), this approach is not tractable for high-dimensional problems, where the Hessian is 
a formally large dense operator implicitly defined by its action on a given vector. Gaussian trace estimators (see [5]) only 
need to perform the action of the Hessian on a number of random directions, and have been successfully used for the solu-
tion of optimal experimental design in [1,2]. However, such estimators may still require a large number of Hessian actions 
to achieve high accuracy; see [5] for probabilistic bounds on the number of matrix actions necessary to achieve a target 
accuracy with high probability, even when the eigenvalues of the preconditioned Hessian decay very fast. In this work, we 
approximate the trace of the preconditioned Hessian with the sum of its dominant eigenvalues. Randomized algorithms 
[42,70] are computationally efficient methods to compute dominant eigenvalues of a large-scale implicitly defined operator 
whose spectra exhibit fast decay. The spectral properties of the Hessian operator have been extensively studied, and it has 
been observed numerically or proven analytically that for many problems the Hessian operator is either nearly low-rank or 
its eigenvalues exhibit fast decay [1–3,8,18–23,32,33,36,46,58,64]. Thus, this approach can provide highly accurate approx-
imation of the trace at a cost (measured in number of Hessian actions) much smaller than the Gaussian trace estimators. 
We note that this approach results in an optimal control problem constrained by the generalized eigenvalue equations, with 
a small number of eigenfunctions computed at each optimization step. In contrast, a number of fixed eigenfunctions com-
puted at some nominal value of the controls is used across the optimization iterations in [3]; as a result, the generalized 
eigenvalue equations are not considered as constraints for the optimal control problem. This latter approach in [3] likely 
works when the (subspace spanned by the dominant eigenfunctions of the) Hessian does not change much at different 
optimization iterations, but could fail to achieve the desired accuracy when the change is large.

The Taylor approximation may be not sufficiently accurate and introduces bias in the estimation of the mean and variance 
of the control objective. Specifically, the norm of the remainder of the Taylor expansion scales as O (tr(C)(r+1)/2) where C
is the covariance of the uncertain parameter and r is the order of the truncated Taylor expansion, e.g., r = 1 and 2 for 
linear and quadratic approximations, respectively [3]. To address this issue, we propose to use the Taylor approximation as 
a control variate to reduce the variance of the Monte Carlo estimator for the mean and variance of the control objective, 
or use Monte Carlo correction for the remainder of the Taylor expansion from another viewpoint. In cases when the Taylor 
approximation is highly correlated with the exact control objective, reduction in the computational cost can be dramatic, 
up to several orders of magnitude in our numerical examples.

We consider two examples of PDE-constrained optimal control under uncertainty to numerically illustrate the scalability, 
accuracy and efficiency of our computational framework. The first is a problem of optimal control of subsurface flow in a 
porous medium, where the control is the injection rate at given well locations, the state equation is an elliptic PDE repre-
senting single phase flow with uncertain permeability, and the objective is to drive the pressure field to a desired state. The 
second is an optimal boundary control for a turbulent jet flow, where the control is the inlet velocity profile, the state equa-
tions are the Reynolds-averaged Navier–Stokes equations coupled with a nonlinear stochastic advection-diffusion equation 
representing model uncertainty, and the objective is to maximize the jet width at a cross-section a certain distance from 
the inlet boundary. In both cases, the uncertain parameter is infinite-dimensional in the continuous setting and becomes 
high-dimensional after discretization.

For solution of the PDE-constrained optimal control with Taylor approximation and variance reduction we employ a 
gradient-based method, specifically the limited memory BFGS method [62]. The cost functional involves the analytical ex-
pressions for the mean and variance of the Taylor approximation and the Monte Carlo correction when using the Taylor 
approximation for variance reduction; the constraint involves the state (possibly nonlinear) PDE, the generalized eigenvalue 
equations, and a set of linearized PDEs used in the computation of the gradient and Hessian of the control objective with 
respect to the uncertain parameter. We use the Lagrangian formalism to derive the gradient of the cost functional with 
respect to the control. Specifically, we compute mixed high-order derivatives of the Lagrangian functional with respect to 
the state, the adjoint, the uncertain parameter, and the control by symbolic differentiation in a variational setting before 
discretization. This allows us to efficiently apply our framework to rather complex PDE models such as the turbulent jet ex-
ample, which features coupled nonlinear PDEs, nonlinear numerical stabilization, and weak imposition of Dirichlet boundary 
conditions. We demonstrate numerically that our method scales independent of the uncertain parameter dimension, in that 
the number of required PDE solves does not depend on the discretization of the parameter field, and instead depends only 
on the effective or instrinsic dimension of the problem, i.e., the number of parameter dimensions to which the control 
objective is sensitive.

The rest of the paper is organized as follows: We present the basic setting for the PDE-constrained optimal control 
under uncertainty in Section 2 using a general notation for the uncertain parameter, the PDE model, the cost functional, 
and the optimal control problem. We also present a sample average approximation of the mean and variance of the control 
objective in this section. Section 3 is devoted to the development of the Taylor approximation and variance reduction for 
the evaluation of the mean and variance of the control objective. We also present computation of the gradient and Hessian 
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of the control objective with respect to the uncertain parameter and a double-pass randomized algorithm for solution of 
generalized eigenvalue problems. This is followed by Section 4 where we derive the gradient of the cost functional with 
respect to the control for different approximations including the sample average approximation, Taylor approximation, and 
Taylor approximation with Monte Carlo correction. Numerical results for two examples are presented in Section 5 for the 
demonstration of the scalability, accuracy, and efficiency of the proposed computational methods. Section 6 closes with 
some conclusions and perspectives.

2. PDE-constrained optimal control under uncertainty

In this section we present the PDE-constrained optimal control under uncertainty in an abstract setting. To this aim, let 
us first introduce the notation used throughout the paper. Let X be a Hilbert space and X ′ the dual space, then X 〈·, ·〉X ′
denotes the duality pairing between the spaces X and X ′ . For ease of notation, we will omit to specify the subscripts X and 
X ′ and simply write 〈·, ·〉 when the spaces can be inferred from the context without ambiguity. Given two Hilbert spaces 
X and Y and a map f :X ×Y �→R, ∂x f (x, y) ∈X ′ denotes the Fréchet derivative of f (x, y) with respect to x evaluated at 
(x, y), which satisfies

lim
x̃→0

| f (x + x̃, y) − f (x, y) − 〈x̃, ∂x f (x, y)〉|/||x̃||X = 0. (1)

Let ∂xy f (x, y) :Y �→X ′ denote the Fréchet derivative of ∂x f (x, y) with respect to y evaluated at (x, y), or the second order 
(mixed) Fréchet derivative of f (x, y) with respect to x and y evaluated at (x, y). Similarly, ∂yx f (x, y) : X �→ Y ′ denotes the 
Fréchet derivative of ∂y f (x, y) with respect to x evaluated at (x, y), which is the adjoint operator of ∂xy f (x, y) and satisfies

〈x̃, ∂xy f ŷ〉 := X 〈x̃, ∂xy f ŷ〉X ′ = Y 〈 ŷ, ∂yx f x̃〉Y ′ =: 〈 ŷ, ∂yx f x̃〉, ∀x̃ ∈ X , ŷ ∈ Y. (2)

where we have omitted the argument (x, y) for simplicity. Finally, let us introduce the Hilbert spaces U , V, M, and Z in 
which the state u, the adjoint v , the uncertain parameter m, and the deterministic control z live, respectively. The exact 
definition of these spaces is problem specific and is specified in Sec. 5.

2.1. The uncertain parameter

We assume that the uncertain parameter m ∈ M has mean m̄ ∈ M and covariance C : M → M′ . The computational 
framework developed in this work is applicable as long as this assumption is satisfied regarding the uncertain parameter, 
which can be both finite and infinite dimensional. In particular, to demonstrate the scalability of our computational methods, 
we consider an infinite-dimensional Gaussian random field with distribution μ = N (m̄, C) for the uncertain parameter, 
which is one of the most important building blocks in modern spatial statistical modeling. A general covariance structure 
is known as Matérn covariance. It is equivalent to that the uncertain parameter m is given as the solution of some linear 
fractional stochastic PDE [55]. In this work we consider this type of covariance, i.e.,

C = (−α1∇ · (�∇) + α2 I)−α, (3)

where ∇·, ∇ , and I are the divergence, gradient, and identity operators, respectively; the parameter α > 0 reflects the 
smoothness of the random field, which renders the covariance of trace class when α > d/2 for spatial dimension d = 1, 2, 3, 
α1, α2 > 0 controls its correlation length and variance, while � ∈ R

d×d enables its spatial anisotropy.

2.2. The PDE model and control objective

We consider a state problem modeled by the following PDE model. Given a realization of the uncertain parameter m ∈ M
and a deterministic control z ∈Z , find the state u ∈ U , such that

R(u,m, z) = 0 in V ′, (4)

where R(·, m, z) : U → V ′ denotes a (possibly nonlinear) operator from U to the dual of V . We then define the weak form 
associated to the state equation (4) by means of duality pairing, and write

r(u, v,m, z) := V 〈v,R(u,m, z)〉V ′ = 0 ∀v ∈ V. (5)

Note that r(u, v, m, z) is linear with respect to the adjoint v and possibly nonlinear with respect to the state u.
As for the control objective, we consider a real-valued, possibly nonlinear, functional Q of the state u ∈ U ,

Q : U →R. (6)

For simplicity, we assume that Q depends on m and z only implicitly through the solution of the state equation (5). The 
general case where Q has an explicit dependence on m and z can be treated with slight modifications in the derivation of 
the cost functional and its gradient, as we address along the presentation in Sec. 3 and Sec. 4.
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2.3. The PDE-constrained optimal control under uncertainty

Since the control objective Q (implicitly) depends on the uncertain parameter m through the state u, we face PDE-
constrained optimal control under uncertainty. In this work we consider a mean-variance cost functional of the form

J (z) = E[Q ] + β Var[Q ] +P(z), (7)

which is often used in stochastic programming [73]. Above E[Q ] and Var[Q ] are, respectively, the mean and variance of Q
with respect to the probability measure μ of the uncertain parameter m, and are defined as

E[Q ] :=
∫
M

Q (u(m, z))dμ(m), and Var[Q ] :=
∫
M

(Q (u(m, z)) −E[Q ])2dμ(m) = E[Q 2] − (E[Q ])2. (8)

As the control objective Q (implicitly) depends on the control z through the state u, so do E[Q ] and Var[Q ]. The scaling 
factor β ≥ 0 in (7) controls the relative weight of the mean and variance, and P(z) is a penalty term.

Recalling that the state u (implicitly) depends on the uncertain parameter m and control z through the solution of the 
PDE (5), we then formulate the PDE-constrainted optimal control under uncertainty as: find z∗ ∈Z such that

z∗ = arg min
z∈Z J (z), subject to the problem (5). (9)

To evaluate the mean and variance in the cost functional (7), a plain Monte Carlo sample average approximation can be 
used. We briefly discuss this approach below, while in the following section we introduce more sophisticated approximation 
that allow for more efficient algorithms by exploiting high-order derivatives.

2.4. Sample average approximation

The (plain Monte Carlo) sample average approximation of the mean reads

E[Q ] ≈ Q̂ := 1

M1

M1∑
i=1

Q (mi), (10)

where mi , i = 1, . . . , M1, are independent indentically distributed (i.i.d.) random samples drawn from the probability mea-
sure μ. Similarly, the sample average approximation of the variance is given by

Var[Q ] ≈ V̂ Q := 1

M2

M2∑
i=1

Q 2(mi) −
(

1

M2

M2∑
i=1

Q (mi)

)2

, (11)

where mi , i = 1, . . . , M2, are i.i.d. random samples from μ. Since each evaluation of Q (mi) involves solving the possibly 
nonlinear state equation (5), it is common practice to choose M1 = M2 = M and reuse the same samples mi to estimate 
both the mean and variance of Q . However, a more careful choice of M1 and M2 relies on estimating the variance of Q
and Q 2 and aims at minimizing the mean square error of Q̂ + β V̂ Q . Note that a large number of samples is required to 
obtain a relatively accurate approximation of E[Q ] and Var[Q ] due to the slow convergence of Monte Carlo sampling, thus 
rendering this approach computationally prohibitive for practical applications due to the large number of (nonlinear) PDE 
solves at each optimization step.

3. Taylor approximation and variance reduction

We develop the main approximation methods in this section, which include the approximation by (low-order) Taylor 
expansion of the control objective, the computation of the gradient and Hessian of the control objective with respect to the 
uncertain parameter used in the Taylor expansion, the randomized algorithm to solve a generalized eigenvalue problem for 
trace estimation, and the Monte Carlo correction for the remainder of the Taylor expansion.

3.1. Taylor approximation of the control objective

In this section we derive expressions for the Taylor expansion of the control objective Q (u(m, z)) with respect to the 
uncertain parameter m for a fixed value of the control z. In what follows, we denote with the subscript m the total derivative 
of Q (u(m, z)) with respect to m and we assume sufficient smoothness so that all Fréchet derivatives are well-defined. For 
ease of notation, we also denote with 〈·, ·〉 the duality-pairing M〈·, ·〉M′ , and, with a slight abuse of notation, we write 
Q (m) to indicate the control objective Q (u(m, z)) evaluated at a fixed value of z.
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A formal Taylor expansion of the control objective evaluated at m̄ ∈M is given in [3]

Q (m) = Q (m̄) + 〈m − m̄, Q m(m̄)〉 + 1

2
〈m − m̄, Q mm(m̄) (m − m̄)〉 + · · · , (12)

where Q m(m̄) ∈ M′ and Q mm(m̄) : M → M′ are the first and second order Fréchet derivatives of Q with respect to 
m evaluated at the nominal m̄ ∈ M. In what follows, we refer to such derivatives as the gradient and Hessian of Q , 
respectively. Based on the Taylor expansion, we can define the linear approximation of Q as

Q lin(m) = Q (m̄) + 〈m − m̄, Q m(m̄)〉, (13)

and the quadratic approximation of Q as

Q quad(m) = Q (m̄) + 〈m − m̄, Q m(m̄)〉 + 1

2
〈m − m̄, Q mm(m̄) (m − m̄)〉. (14)

We remark that Q lin(m) and Q quad(m) are polynomials with respect to the uncertain parameter m, and depend on the 
control z through the solution of the state equation (5) at m = m̄.

For the linear approximation, given the mean m̄ and covariance C of the uncertain parameter m, we have

E[Q lin] = Q (m̄), and Var[Q lin] = 〈Q m(m̄),CQ m(m̄)〉. (15)

In fact, Q lin(m) is Gaussian if the uncertain parameter m ∼ N (m̄, C). For the quadratic approximation, we have

E[Q quad] = E[Q lin] + 1

2
tr(H), and Var[Q quad] = Var[Q lin] + 1

2
tr(H2), (16)

where H = C1/2 Q mm(m̄)C1/2 is the covariance preconditioned Hessian, and tr(·) denotes the trace operator, see details in 
[3]. Efficient algorithms to accurately estimate the trace of H and H2 will be discussed in Sec. 3.3.

Finally, following [3], we approximate the cost functional J (z) in (7) by replacing E[Q ] and Var[Q ] with the moments 
of the linear or quadratic Taylor expansions of the control objective.

3.2. Computation of the gradient and Hessian of the control objective with respect to the uncertain parameter

In this section we use the Lagrangian formalism to derive the expressions for the gradient Q m and for the action of the 
Hessian Q mm on a given direction m̂ evaluated at m̄. In what follows, for ease of notation, we use the overline to indicate 
quantities evaluated at m = m̄ and define

r̄ := r(u, v,m̄, z), and Q̄ := Q (u(m̄, z)). (17)

We define the Lagrangian functional

L(u, v,m, z) = Q (u) + r(u, v,m, z), (18)

where the adjoint v is regarded as the Lagrangian multiplier of the state equation.
By requiring the first order variation of (18) at m̄ with respect to the adjoint v to vanish, we obtain the state problem: 

find u ∈ U , such that

〈ṽ, ∂v r̄〉 = 0, ∀ṽ ∈ V. (19)

Similarly, by setting the first order variation of (18) at m̄ with respect to the state u to zero, we obtain the adjoint problem: 
find v ∈ V , such that

〈ũ, ∂ur̄〉 = −〈ũ, ∂u Q̄ 〉, ∀ũ ∈ U . (20)

Then, the gradient of Q at m̄ acting in the direction m̃ = m − m̄ is given by

〈m̃, Q m(m̄)〉 = 〈m̃, ∂mr̄〉, (21)

where u solves the state problem (19) and v solves the adjoint problem (20).
Similarly, for the computation of the Hessian of Q acting on m̂, we consider the Lagrangian functional

LH (u, v,m, z; û, v̂,m̂) = 〈m̂, ∂mr̄〉 + 〈v̂, ∂v r̄〉 + 〈û, ∂ur̄ + ∂u Q̄ 〉, (22)

where û and v̂ denote the incremental state and incremental adjoint, respectively. By taking variation of (22) with respect 
to the adjoint v and using (2), we obtain the incremental state problem: find û ∈ U such that
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〈ṽ, ∂vur̄ û〉 = −〈ṽ, ∂vmr̄ m̂〉, ∀ṽ ∈ V, (23)

where the derivatives ∂vur̄ : U → V ′ and ∂vmr̄ : M → V ′ are linear operators. The incremental adjoint problem, obtained by 
taking variation of (22) with respect to the state u and using (2), reads: find v̂ ∈ V such that

〈ũ, ∂uv r̄ v̂〉 = −〈ũ, ∂uur̄ û + ∂uu Q̄ û + ∂umr̄ m̂〉, ∀ũ ∈ U, (24)

where ∂uv r̄ : V → U ′ is the adjoint of ∂vur̄ : U → V ′ in the sense of (2). We remark that an extra term −〈ũ, ∂um Q̄ m̂〉 is 
added on the right hand side if Q explicitly depends on m. The Hessian of Q at m̄ acting on m̂ can then be computed by 
taking variation of (22) with respect to m and using (2) as

〈m̃, Q mm(m̄)m̂〉 = 〈m̃, ∂mvr̄ v̂ + ∂mur̄ û + ∂mmr̄ m̂〉, (25)

where the incremental state û and adjoint v̂ solve (23) and (24), respectively. Note that 〈m̃, ∂mu Q̄ û +∂mm Q̄ m̂〉 is also added 
if Q explicitly depends on m.

We summarize the computation of the gradient and Hessian of the control objective Q with respect to the uncertain 
parameter m in Algorithm 1.

Algorithm 1 Computation of the gradient and Hessian of Q with respect to m.
Input: control objective Q , PDE r(u, v, m, z), mean m̄, direction m̂.
Output: the gradient Q m(m̄) and Hessian Q mm(m̄) acting on m̂.

1. Solve the state problem (19) for u.
2. Solve the adjoint problem (20) for v .
3. Compute the gradient Q m(m̄) by (21).

4. Solve the incremental state problem (23) for û.
5. Solve the incremental adjoint problem (24) for v̂ .
6. Compute the Hessian Q mm(m̄) acting on m̂ by (25).

3.3. Randomized algorithms to compute the trace

The first and second moments of the quadratic approximation Q quad in equation (16) involve the trace of the covariance 
preconditioned Hessian H. H is formally a large scale dense operator and it is only implicitly defined through its action on 
a given direction as in (25).

The standard approach to estimate the trace of an implicitly defined operator is based on a Monte Carlo method, where 
one computes the action of the operator on N random directions sampled from a suitable distribution. For example, using 
the Gaussian trace estimator, one can approximate tr(H) and tr(H2) as

tr(H) ≈ T̂1(H) := 1

N

N∑
j=1

〈m̂ j, Q mm(m̄)m̂ j〉 and tr(H2) ≈ T̂1(H2) := 1

N

N∑
j=1

〈Q mm(m̄)m̂ j,CQ mm(m̄)m̂ j〉, (26)

where m̂ j , j = 1, . . . , N , are i.i.d. random samples from the Gaussian distribution N (0, C). Lower bounds on the number 
of samples N to obtain a guaranteed probabilistic error bound for the trace are discussed in [5]. Such bounds hold for any 
symmetric positive defined operator, regardless of size and spectral properties. However the number of samples N necessary 
to obtain an accurate approximation may be prohibitively large and impractical: e.g., to guarantee a relative error of 10−3

in the estimation of the trace more than 106 samples are need using the bounds in [5]. Improved bounds are demonstrated 
in [66] and show that the Gaussian estimator becomes very inefficient if the stable rank of the operator is small and that it 
allows for small N only if the eigenvalues are all of approximately the same size. This means that the randomized Gaussian 
estimator is not a viable solution to estimate the trace of H, since it has been observed numerically or proven analytically 
that for many problems the Hessian operator is either nearly low-rank or its eigenvalues exhibit fast decay [1–3,8,18–23,32,
33,36,46,58,64].

In this work, we propose to estimate the trace of H and H2 by means of a randomized approximated eigendecomposi-
tion. Specifically, we approximate tr(H) and tr(H2) by

tr(H) ≈ T̂2(H) :=
N∑

j=1

λ j(H), and tr(H2) ≈ T̂2(H2) :=
N∑

j=1

λ2
j (H), (27)

where λ j(H), j = 1, . . . , N , are the dominant eigenvalues of H obtained by solving the generalized eigenvalue problem

〈φ, Q mm(m̄)ψ j〉 = λ j〈φ,C−1ψ j〉, ∀φ ∈ M, j = 1, . . . , N. (28)

Above, the eigenvector ψ j , j = 1, . . . , N , are C−1-orthonormal, that is
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〈ψ j,C−1ψi〉 = δi j, i, j = 1, . . . , N, (29)

where δi j is the Kronecker delta. Note that N is independent of the nominal parameter dimension, and, as shown numeri-
cally in Sec. 5, it is relatively small for H nearly low-rank or when its spectrum exhibits fast decay.

After suitable discretization, e.g., by a finite element discretization, the generalized eigenvalue problem (28) results in an 
algebraic eigenproblem of the form Aψ = λBψ with A, B ∈ R

n×n and ψ ∈ R
n . Algorithm 2 summarizes the so-called double 

pass randomized algorithm to solve the algebraic generalized eigenvalue problem (see [42,70] for details of the algorithms 
and [76] for its implementation).

Algorithm 2 Randomized algorithm for generalized eigenvalue problem (A, B).
Input: matrix A, B , the number of eigenpairs k, an oversampling factor p.
Output: eigenpairs (
k, �k) with 
k = diag(λ1, . . . , λk) and �k = (ψ1, . . . , ψk).

1. Draw a Gaussian random matrix � ∈R
n×(k+p) .

2. Compute Y = B−1(A�).
3. Compute Q R-factorization Y = Q R such that Q � B Q = Ik+p .
4. Form T = Q � A Q and compute eigendecomposition T = S
S� .
5. Extract 
k = 
(1 : k, 1 : k) and �k = Q Sk with Sk = S(:, 1 : k).

There are multiple advantages in using Algorithm 2 to approximate the trace, see e.g., [42,69]. In terms of accuracy, the 
approximation error is bounded by the sum of the remaining eigenvalues, so that the error is small if the eigenvalues decay 
fast or if the Hessian H has low rank, see [42,69] for more details. In terms of computational efficiency, the 2(k + p) Hessian 
matrix-vector products, which entail the solution of a pair of linearized state/adjoint equations (as shown in Sec. 3.2) and 
therefore dominate the computational cost of the algorithm, can be computed independently and, therefore, asynchronously 
across the random directions.

3.4. Monte Carlo correction

Using the moments of the truncated Taylor expansion Q lin and Q quad as approximation of E[Q ] and Var[Q ] in the cost 
functional (7) may be not sufficiently accurate. In this circumstance, we can use the Taylor approximation as a control variate 
to reduce the variance of the Monte Carlo estimator. The basic idea is to correct the moments of Q lin and Q quad by applying 
a Monte Carlo method to estimate the mean (and variance) of the difference between Q and its Taylor approximation.

Specifically, recalling (15) and (13), the Monte Carlo correction for the mean of the linear approximation reads

E[Q ] = E[Q lin] +E[Q − Q lin] ≈ Q̂ lin := Q (m̄) + 1

M1

M1∑
i=1

(
Q (mi) − Q (m̄) − 〈mi − m̄, Q m(m̄)〉

)
. (30)

Similarly, recalling that the variance is invariant with respect to deterministic translations, we have

Var[Q ] = Var[Q − Q (m̄)] = E[(Q − Q (m̄))2] − (E[Q − Q (m̄)])2

= E[(Q lin − Q (m̄))2] +E[(Q − Q (m̄))2 − (Q lin − Q (m̄))2]
− (

E[Q lin − Q (m̄)] +E[(Q − Q (m̄)) − (Q lin − Q (m̄))])2
,

(31)

and therefore the Monte Carlo correction of the variance of the linear approximation is given by

V̂ lin
Q := 〈CQ m(m̄), Q m(m̄)〉 + 1

M2

M2∑
i=1

(
(Q (mi) − Q (m̄))2 − (〈mi − m̄, Q m(m̄)〉)2

)

−
(

1

M2

M2∑
i=1

Q (mi) − Q (m̄) − 〈mi − m̄, Q m(m̄)〉
)2

.

(32)

Note that, similar to the sample average approximation in Sec. 2.4, for simplicity we can use the same M = M1 = M2

random samples for the approximation of both the mean and variance. A more careful choice of M1 and M2 relies on the 
variance of Q (1) = Q − Q lin and Q (2) = (Q − Q̄ )2 − (Q − Q lin)2, in order to balance the errors in the approximation of the 
mean and variance. For the quadratic approximation, a combination of (16) and (14) leads to

E[Q ] = E[Q quad] +E[Q − Q quad] ≈ Q̂ quad := Q (m̄) + 1

2
tr(H)

+ 1

M1

M1∑(
Q (mi) − Q (m̄) − 〈mi − m̄, Q m(m̄)〉 − 1

2
〈mi − m̄, Q mm(m̄) (mi − m̄)〉

)
.

(33)
i=1
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For the variance, akin to the linear approximation, we obtain

Var[Q ] = E[(Q quad − Q (m̄))2] +E[(Q − Q (m̄))2 − (Q quad − Q (m̄))2]
− (

E[Q quad − Q (m̄)] +E[(Q − Q (m̄)) − (Q quad − Q (m̄))])2
,

(34)

which can be approximated by

V̂ quad
Q := 〈CQ m(m̄), Q m(m̄)〉 + 1

4
(tr(H))2 + 1

2
tr(H2)

+ 1

M2

M2∑
i=1

(
(Q (mi) − Q (m̄))2 −

(
〈mi − m̄, Q m(m̄)〉 + 1

2
〈mi − m̄, Q mm(m̄) (mi − m̄)〉

)2)

−
(1

2
tr(H) + 1

M2

M2∑
i=1

(
Q (mi) − 〈mi − m̄, Q m(m̄)〉 − 1

2
〈mi − m̄, Q mm(m̄) (mi − m̄)〉

))2
.

(35)

Note that to achieve certain approximation accuracy, the number of Monte Carlo samples depends on the variance of 
the integrand. If the approximations Q lin and Q quad are highly correlated with Q , the variances of Q − Q lin and Q − Q quad
would be small so that only a small number of Monte Carlo samples are required. This use of the Taylor approximation 
(of the control objective with respect to the uncertain parameter) can be viewed as a kind of “multifidelity Monte Carlo 
method” [63], in which the Taylor approximation plays the role of a reduced model.

4. Gradient-based optimization

In this section, we present a gradient-based optimization method to solve the problem (9) using different approxima-
tions introduced in Sec. 3, namely the sample average approximation, the first and second order Taylor approximation, and 
variance reduction using the Taylor approximation as the control variate. These approximated formulations feature different 
levels of accuracy and computational complexity, and could possibly be combined within a multifidelity framework to ob-
tain an efficient computational procedure while preserving high accuracy. In this section, we use the Lagrangian formalism 
to derive expressions for the gradient of the approximated formulations of the cost functional with respect to the control 
z, which are needed to perform the gradient-based optimization. In the following, to distinguish the gradient of the cost 
function with respect to the control from the gradient of the control objective with respect to the uncertain parameter, we 
denote the former as z-gradient.

4.1. z-gradient for the sample average approximation

By the sample average approximation presented in Sec. 2.4, the cost functional becomes

J MC(z) = Q̂ + β V̂ Q +P(z), (36)

subject to the state problem (5) at mi , i = 1, . . . , M , where M = M1 = M2 if the same samples are used for the mean and 
variance or M = M1 + M2 otherwise. To compute the gradient of (36) with respect to the control z (z-gradient for short), 
we consider the Lagrangian functional

LMC({ui}, {vi}, z) = J MC(z) +
M∑

i=1

r(ui, vi,mi, z), (37)

where {vi} are the Lagrange multipliers (adjoints) of the state problems: given mi ∈M and z ∈Z , find ui ∈ U such that

r(ui, vi,mi, z) = 0, ∀vi ∈ V; i = 1, . . . M. (38)

The i-th adjoint problem (i = 1, . . . M) is obtained by setting to zero the first variation of the Lagrangian functional with 
respect to the state ui . The i-th adjoint vi then solves: given mi ∈M, z ∈ Z , and ui ∈ U as the solution of (38), find vi ∈ V
such that

〈ũi, ∂ur(ui, vi,mi, z)〉 = − 1

M1
〈ũi, ∂u Q (mi)〉 − 2β

M2
Q (mi)〈ũi, ∂u Q (mi)〉

+ 2β

M2

⎛⎝ 1

M2

M2∑
j=1

Q (m j)

⎞⎠ 〈ũi, ∂u Q (mi)〉, ∀ũi ∈ U .

(39)

Then we can compute the z-gradient as
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〈z̃, DzJ MC(z)〉 = 〈z̃, ∂zLMC({ui}, {vi}, z)〉 = 〈z̃, DzP(z)〉 +
M∑

i=1

〈z̃, ∂zr(ui, vi,mi, z)〉, (40)

where {ui} and {vi} denote the set of solutions of the state problem (38) and adjoint problem (39) at the set of samples 
{m j}, respectively. Therefore, each gradient evaluation requires M (nonlinear) state PDE solves and M linearized PDE solves. 
Note that, for the general case in which Q explicitly depends on z, extra terms involving 〈z̃, ∂z Q (mi)〉 need to be included 
in the gradient computation.

4.2. z-gradient for the Taylor approximation

We first consider the linear approximation (15), by which the cost functional (7) becomes

Jlin(z) = Q̄ + β〈CQ m(m̄), Q m(m̄)〉 +P(z), (41)

where Q̄ and its gradient Q m(m̄) are defined in (17) and (21), respectively.
To compute the z-gradient of (41), we introduce the Lagrangian functional

Llin(u, v, u∗, v∗, z) = Jlin(z) + 〈v∗, ∂v r̄〉 + 〈u∗, ∂ur̄ + ∂u Q̄ 〉, (42)

where the adjoints v∗ ∈ V and u∗ ∈ U represent the Lagrange multipliers of the state problem (19) and adjoint problem 
(20).

By setting to zero the first order variation of the Lagrangian (42) with respect to v and using (2), we have: find u∗ ∈ U
such that

〈ṽ, ∂vur̄u∗ 〉 = −2β〈ṽ, ∂vmr̄ (C∂mr̄)〉, ∀ṽ ∈ V, (43)

while setting to zero the first order variation with respect to u and using (2), we have: find v∗ ∈ V such that

〈ũ, ∂uv r̄ v∗〉 = − 〈ũ, ∂u Q̄ 〉 − 2β〈ũ, ∂umr̄ (C∂mr̄)〉 − 〈ũ, ∂uur̄ u∗ + ∂uu Q̄ u∗〉, ∀ũ ∈ U . (44)

Finally, the z-gradient of Jlin in a direction z̃ ∈Z is computed as

〈z̃, DzJlin(z)〉 = 〈z̃, ∂zLlin(u, v, u∗, v∗, z)〉 = 2β〈z̃, ∂zmr̄ (C∂mr̄)〉 + 〈z̃, ∂zP(z)〉 + 〈z̃, ∂zv r̄ v∗ + ∂zur̄ u∗〉. (45)

In summary, evaluation of the cost functional with the linear approximation requires solution of the state problem (19) and 
adjoint problem (20). Computation of the z-gradient requires, in addition, solution of the two linear problems in (43) and 
(44).

For the quadratic approximation (14), thanks to the relation (16) and the approximation (26), we obtain the approxima-
tion of the cost functional as

Jquad(z) = Q̄ + 1

2

N∑
j=1

λ j + β

⎛⎝〈CQ m(m̄), Q m(m̄)〉 + 1

2

N∑
j=1

λ2
j

⎞⎠ +P(z), (46)

which is subject to the state and adjoint problems (19) and (20) for the evaluation of Q and its gradient at m̄, the general-
ized eigenvalue problems (28) for the computation of the eigenvalues, as well as the incremental state and adjoint problems 
(23) and (24) for the Hessian action in (28). Correspondingly, we form the Lagrangian

Lquad

(
u, v, {λ j}, {ψ j}, {û j}, {v̂ j}, u∗, v∗, {λ∗

j }, {ψ∗
j }, {û∗

j }, {v̂∗
j }, z

)
= Jquad(z) + 〈v∗, ∂v r̄〉 + 〈u∗, ∂ur̄ + ∂u Q̄ 〉 +

N∑
j=1

〈ψ∗
j , (Q mm(m̄) − λ jC−1)ψ j〉 +

N∑
j=1

λ∗
j (〈ψ j,C−1ψ j〉 − 1)

+
N∑

j=1

〈v̂∗
j , ∂vur̄ û j + ∂vmr̄ ψ j〉 +

N∑
j=1

〈û∗
j , ∂uv r̄ v̂ j + ∂uur̄ û j + ∂uu Q̄ û j + ∂umr̄ ψ j〉.

(47)

Here we assume that the dominating eigenvalues are not repeated (thanks to their rapid decay as shown in Sec. 5), so 
that the constraints 〈ψ j, C−1ψ j〉 = 1, j = 1, . . . , N , are sufficient to guarantee the orthonormality 〈ψ j, C−1ψi〉 = δi j for any 
i, j = 1, . . . , N . In fact, for any i �= j, by definition we have

〈ψ j, Q mmψi〉 = 〈ψ j, λi C
−1ψi〉 and 〈ψi, Q mmψ j〉 = 〈ψi, λ jC−1ψ j〉, (48)

which, by the symmetry of Q mm and C−1, leads to
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(λi − λ j)〈ψi,C−1ψ j〉 = 0, so that 〈ψi,C−1ψ j〉 = 0 if λi �= λ j . (49)

By setting the variation of Lquad with respect to λ j as zero, we obtain

ψ∗
j = 1 + 2βλ j

2
ψ j, j = 1, . . . , N. (50)

Subsequently, for each j = 1, . . . , N , taking the variation of Lquad with respect to v̂ j as zero, and using the Hessian action 
equation (25) and (2), we have: find û∗

j ∈ U such that

〈ṽ, ∂vur̄ û∗
j 〉 = −〈ṽ, ∂vmr̄ ψ∗

j 〉, ∀ṽ ∈ V, (51)

which is the same as the incremental forward problem (23). Therefore, from the result (50), we have

û∗
j = 1 + 2βλ j

2
û j, j = 1, . . . , N . (52)

Then, taking variation with respect to û j as zero and using (2), we have: find v̂∗
j ∈ V such that

〈ũ, ∂uv r̄ v̂∗
j 〉 = −〈ũ, ∂uur̄ û∗

j + ∂uu Q̄ û∗
j + ∂umr̄ ψ∗

j 〉, ∀ũ ∈ U, (53)

which is the same as the incremental adjoint problem (24). Therefore, by (52) and (50), we obtain

v̂∗
j = 1 + 2βλ j

2
v̂ j, j = 1, . . . , N. (54)

By setting to zero the variation with respect to v and using (2), we have: find u∗ ∈ U such that

〈ṽ, ∂vur̄ u∗〉 = −2β〈ṽ, ∂vmr̄ (C∂mr̄)〉 −
N∑

j=1

〈ṽ, ∂vmur̄ û j ψ
∗
j + ∂vmmr̄ ψ j ψ

∗
j 〉

−
N∑

j=1

〈ṽ, ∂vuur̄ û j û∗
j + ∂vumr̄ ψ j û∗

j 〉, ∀ṽ ∈ V.

(55)

Lastly, by setting to zero the variation with respect to u and using (2), we have: find v∗ ∈ V such that

〈ũ, ∂uv r̄ v∗〉 = −〈ũ, ∂u Q̄ 〉 − 2β〈ũ, ∂umr̄ (C∂mr̄)〉 − 〈ũ, ∂uur̄ u∗ + ∂uu Q̄ u∗〉

−
N∑

j=1

〈ũ, ∂umv r̄ v̂ j ψ
∗
j + ∂umur̄ û j ψ

∗
j + ∂uumr̄ ψ j ψ

∗
j 〉 −

N∑
j=1

〈ũ, ∂uvur̄ û j v̂∗
j + ∂uvmr̄ ψ j v̂∗

j 〉

−
N∑

j=1

〈ũ, ∂uuv r̄ v̂ j û∗
j + ∂uuur̄ û j û∗

j + ∂uuu Q̄ û j û∗
j + ∂uumr̄ ψ j û∗

j 〉,∀ũ ∈ U,

(56)

where the third order derivatives take the form of the bilinear map ∂xyz f : Z × Y → X ′ . Then, the z-gradient of the cost 
functional in the direction z̃ ∈Z can be computed as

〈z̃, DzJquad(z)〉 = 〈z̃, ∂zLquad (states,adjoints, z)〉, (57)

where states and adjoints represent the state and adjoint variables for short. Note that we do not need to solve for λ∗
j as the 

terms involving λ∗
j are independent of z. In summary, to get these states and adjoints, we need to solve 1 (nonlinear) state 

problem and 2N + 3 linear problems (1 for v , N for {û j}, N for {v̂ j}, 1 for u∗ , and 1 for v∗), where the linear operators are 
the same as those in (23) and (24). Moreover, to compute the eigenvalues by Algorithm 2, which requires the action of the 
Hessian on N + p random directions twice, we need to solve 4(N + p) linear problems.

We summarize the evaluation of the cost functional and its z-gradient with quadratic approximation as follows.

4.3. z-gradient for the Monte Carlo correction

The approximation in (41) and (46) introduced by the Taylor approximation may be not sufficiently accurate and gen-
erates bias in the evaluation of the mean E[Q ] and variance Var[Q ]. Recalling (30) and (32), we obtain a MC-corrected 
unbiased linear approximation for the cost functional, which is given by

J MC(z) = Q̂ lin + β V̂ lin +P(z), (58)
lin Q



174 P. Chen et al. / Journal of Computational Physics 385 (2019) 163–186
Algorithm 3 Computation of the cost functional Jquad and its z-gradient.
Input: cost functional J (z) and PDE r(u, v, m, z).
Output: the approximate cost functional Jquad and its z-gradient DzJquad.

1. Solve the state problem (19) for u at m̄ and evaluate Q̄ = Q (u(m̄)).
2. Solve the adjoint problem (20) for v and evaluate Q m(m̄) by (21).
3. Use Algorithm 1 and 2 to compute the generalized eigenpairs (λ j, ψ j)

N
j=1.

4. Compute the approximate cost functional Jquad by (46).

5. Solve the linear problem (55) for û∗ .
6. Solve the linear problem (56) for v̂∗ .
7. Compute the z-gradient DzJquad by (57).

subject to the state problem (19) at m̄, the adjoint problem (20), and the state problems (5) at mi , i = 1, . . . , M , where M =
M1 = M2 if the same samples are used for the mean and variance or M = M1 + M2 otherwise. We form the corresponding 
Lagrangian functional as

LMC
lin

(
u, v, {ui}, u∗, v∗, {vi}, z

)
= J MC

lin (z) + 〈v∗, ∂v r̄〉 + 〈u∗, ∂ur̄ + ∂u Q̄ 〉 +
M∑

i=1

r(ui, vi,mi, z). (59)

Setting variation with respect to v∗ , vi , and u∗ to zero we obtain u, ui , and v by solving 1 + M state problems (5) at mi , 
i = 0, . . . , M , and 1 linear adjoint problem (20). In a similar way, setting variation with respect to v , ui , and u to zero, we 
obtain u∗ , vi , and v∗ , by solving 2 + M linear problems. Thus, in addition, 2 + M linear problems need to be solved to 
compute the z-gradient

〈z̃, DzJ MC
lin (z)〉 = 〈z̃, ∂zLMC

lin

(
u, v, {ui}, u∗, v∗, {vi}, z

)
〉. (60)

As for the quadratic approximation (14), by the Monte Carlo correction (33) and (35), we have an unbiased and more 
accurate evaluation of the cost functional as

J MC
quad(z) = Q̂ quad + β V̂ quad

Q +P(z), (61)

subject to the state problems (5) and (19), the adjoint problem (20), the incremental state and adjoint problems (23) and 
(24). We form the Lagrangian with the Lagrange multiplier (u∗, v∗, {vi}, {λ∗

j }, {ψ∗
j }, {û∗

j }, {v̂∗
j }, {û∗

i }, {v̂∗
i }) as

LMC
quad

(
u, v, {ui}, {λ j}, {ψ j}, {û j}, {v̂ j}, {ûi}, {v̂ i}, u∗, v∗, {vi}, {λ∗

j }, {ψ∗
j }, {û∗

j }, {v̂∗
j }, {û∗

i }, {v̂∗
i }, z

)
= J MC

quad + 〈v∗, ∂v r̄〉 + 〈u∗, ∂ur̄ + ∂u Q̄ 〉 +
M∑

i=1

r(ui, vi,mi, z)

+
N∑

j=1

〈ψ∗
j , (Q mm(m̄) − λ jC−1)ψ j〉 +

N∑
j=1

λ∗
j (〈ψ j,C−1ψ j〉 − 1)

+
N∑

j=1

〈v̂∗
j , ∂vur̄ û j + ∂vmr̄ ψ j〉 +

N∑
j=1

〈û∗
j , ∂uv r̄ v̂ j + ∂uur̄ û j + ∂uu Q̄ û j + ∂umr̄ ψ j〉

+
M∑

i=1

〈v̂∗
i , ∂vur̄ ûi + ∂vmr̄ mi〉 +

M∑
i=1

〈û∗
i , ∂uv r̄ v̂ i + ∂uur̄ ûi + ∂uu Q̄ ûi + ∂umr̄ mi〉.

(62)

By setting variation with respect to v∗, u∗, vi, ̂v∗
j , ̂u

∗
j , ̂v

∗
i , ̂u

∗
i to zero, we obtain the states u, v, ui, ̂u j, ̂v j, ̂ui, ̂vi by solving 

1 + M (nonlinear) state problems and 1 + 2N + 2M linear problems, i = 1, . . . , M , j = 1, . . . , N . For the eigenpairs, 4(N + p)

linear problems needs to be solved. By setting variation with respect to λ j , v̂ j , and û j to zero, we obtain similar expressions 
(50), (52), and (54) for the adjoint variables ψ∗

j , û∗
j , and v̂∗

j , where the constant 1+2βλ j
2 is replaced by 1+2βλ j

2 − βc where c
is given by

c = 1

M

M∑
i=1

Q (mi) − Q (m̄) − 〈mi − m̄, Q m(m̄)〉 − 1

2
〈mi − m̄, Q mm(m̄)(mi − m̄)〉. (63)

By setting variation with respect to v̂ i, ̂ui, ui, v, u to vanish, we get the adjoints û∗
i , ̂v

∗
i , vi, u∗, v∗ by solving 2 + 3M linear 

problems, which are defined similarly as that for the quadratic approximation, but with the additional correction terms in 
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Table 1
The computational cost for the evaluation of the cost functional J and its z-gradient DzJ in 
terms of the number of PDE solves for the five cases of approximation of E[Q ] and Var[Q ]. N
is the number of samples/bases for the trace estimator; p is the oversampling factor (p = 5 ∼
10) in Algorithm 2; M is the number of samples used in the sample average approximation 
or the Monte Carlo correction.

Computational cost MC Linear Quadratic Linear+MC Quadratic+MC

J (state PDE) M 1 1 1 + M 1 + M
J (linear PDE) 0 1 1 + 4N + 4p 1 1 + 4N + 4p + 2M
DzJ (linear PDE) M 2 2 + 2N 2 + M 2 + 2N + 3M

both the cost functional and the constraints, thus in total 1 + M (nonlinear) state problems and 3 + 6N + 4p + 5M linear 
problems to evaluate the z-gradient

〈z̃, DzJ MC
quad(z)〉 = 〈z̃, ∂zLMC

quad(states,adjoints, z)〉, (64)

where states and adjoints represent the state and adjoints for short.

4.4. z-gradient-based optimization method

To solve the PDE-constrained optimal control problem we use a gradient-based optimization method, since it only re-
quires the ability to evaluate the cost functional (7) and its z-gradient. In particular, we use a BFGS method [62].

The five approximations described in this section all differ among each other in terms of accuracy and computational 
cost. Table 1 summarizes the cost, measured in number of (nonlinear) state and linear PDE solves, to evaluate cost functional 
and its z-gradient for each approximation. The linear approximation in (41) is the cheapest to compute but also the most 
crude, while the MC-corrected approximations in (58) and (61) are the most accurate but also the most expensive. The 
quadratic approximation (46) is, in many applications, more accurate than the linear approximation and, for highly nonlinear 
problems, is much cheaper to compute than the MC-corrected approximation. In fact, all the linear PDE solves in the 
trace approximation share the same left hand side ∂vur̄ (or its adjoint ∂uv r̄), and therefore one can amortize the cost of 
computing an expensive preconditioner or sparse factorization over several solutions of the linearized PDE. It is worth 
noting that these different approximations can be exploited in a multifidelity framework [63] where the optimal solution 
of a cheaper approximation is used as initial guess for a more accurate (and more expensive) approximation. For example, 
in the numerical results section the optimal solution using the MC-corrected formulation are obtained by first solving the 
linear approximation in (41), then solving the quadratic approximation in (46) and finally (58) or (61). We remark that, 
in general, the approximations (41), (46), (58), (61) may be non-convex with respect to the control, even when the cost 
functional (7) is convex. In such cases, continuation from simple (e.g., deterministic or linear) approximations to more 
complex (e.g., quadratic with MC correction) ones are also helpful in finding a global, or at least a good local, optimum.

5. Numerical experiments

We consider two examples of PDE-constrained optimal control under uncertainty in which the uncertain parameter is 
the discretization of an infinite-dimensional random field. These examples aim to demonstrate the scalability, computational 
efficiency and accuracy of the approximation based on the Taylor approximation and their MC-corrected counterparts. In 
the first example we consider a fluid flow in a porous medium; the control is the fluid injection rate into the subsurface at 
specific well locations, the uncertain parameter is the permeability field (modeled as a log-normal random field), and the 
objective is to drive the pressures measured at the production wells to given target values. In the second example we seek 
an optimal velocity profile on the inlet boundary of a turbulent jet flow such that the jet width in a given cross-section 
is maximized; the governing state equations are the Reynolds-averaged Navier–Stokes equations (RANS) with an algebraic 
closure model and an ad-hoc nonlinear advection-diffusion equation with uncertain coefficients is introduced to model the 
intermittency of turbulence at the edges of the jet.

The numerical results presented in this section are obtained using hIPPYlib [76], an extensible software framework 
for large scale PDE-based deterministic and Bayesian inverse problems. hIPPYlib builds on FEniCS [57] (a parallel fi-
nite element library) for the discretization of the PDE and PETSc [7] for scalable and efficient linear algebra operations 
and solvers. Finally, we use the implementation of the L-BFGS algorithm in the Python library SciPy, specifically the
fmin_l_bfgs_b routine (BFGS with limited memory and box constraint), to solve the optimization problem.

5.1. Optimal source control of fluid flow in a porous medium

We consider an optimal source control problem—originally presented in [3]—motivated by flow in a subsurface porous 
medium, where the state problem is a linear elliptic equation describing single phase fluid flow in a porous medium:
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Fig. 1. Top: mean m̄ of the Gaussian uncertain parameter m ∼ N (m̄, C). The red diamonds represent the locations of the injection wells, and the black 
squares represent the locations of the production wells. Bottom: random samples drawn from the Gaussian measure N (m̄, C). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

−∇ · (em∇u) = F z in D,

u = g on 
D ,

em∇u · n = 0 on 
N ,

(65)

where D is an open and bounded physical domain D ⊂ R
d (d = 2, 3) with Lipschitz boundary ∂ D , and 
D , 
N ⊂ ∂ D (
D ∪


N = ∂ D and 
D ∩ 
N = ∅) denote respectively the Dirichlet and Neumann portion of ∂ D . u is the state representing the 
pressure. m is an uncertain parameter representing the logarithm of the permeability field, which is assumed to be Gaussian 
N (m̄, C) with mean m̄ and covariance C . F is a map from the control z to the source term F z defined as

F z =
nc∑

i=1

zi f i, (66)

where f i , i = 1, . . . , nc , are the mollified Dirac functions located at the nc injection wells, and z = (z1, . . . , znc )
� ∈ R

Nc is a 
control that represents the fluid injection rate. The control z takes admissible value in Z = [zmin, zmax]nc , where zmin and 
zmax denote the minimum and maximum injection rate.

Let R g denote the lifting of the boundary data g such that R g ∈ H1(D) and R g |
D = g . The weak formulation of problem 
(65) reads: Given m ∈M = L2(D) and z ∈Z , find ů = u − R g ∈ U := {v ∈ H1(D) : v|
D = 0} such that

r(ů, v,m, z) = 0, ∀v ∈ V, (67)

where V = U , and

r(ů, v,m, z) =
∫
D

em∇(ů + R g) · ∇vdx −
∫
D

F z vdx. (68)

The control objective measures the difference between the pressure (computed by solving the state problem (67)) and a 
target pressure distribution ū = (ū1, . . . , ̄unp ) at the production wells x1, . . . , xnp ∈ D . Specifically,

Q (ů) = ||Bů − ū||22, (69)

where B : U →R
np is a pointwise observation operator at the locations x1, . . . , xnp .

Here, we set D = (0, 2) × (0, 1), 
D = {0, 2} × [0, 1], and 
N = (0, 2) × {0, 1}. We impose the Dirichlet data g = 2 − x1. 
The mean field m̄ is shown in the top part of Fig. 1, in which locations for the 20 injection wells and the 12 production 
wells are also shown. For the covariance C defined in (3), we specify � = [1, 0; 0, 1], α = 2, α1 = 0.1, and α2 = 20. Three 
random samples of the Gaussian measure N (m̄, C) are shown in the bottom part of Fig. 1. In the cost functional (7), we 
set β = 1 and use the control cost P(z) = 10−5 × ||z||22, where the parameters are chosen as in [3]. We use a finite element 
discretization with a structured uniform triangular mesh with 65 ×33 vertices and piecewise linear elements for the discrete 
approximation of the state u, the adjoint v , and the uncertain parameter m, which results in 2145 dimensions for m. We 
specify the desired pressure ūi = 3 − 8(xi

1 − 1)2 − 4(xi
2 − 0.5)2 at the production wells xi = (xi

1, x
i
2), i = 1, . . . , 12, which are 

shown in the top part of Fig. 1. Moreover, we set the lower and upper bounds zmin = 0 and zmax = 32 for the control, i.e., 
z ∈ [0, 32]20.
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Fig. 2. The decay of the generalized eigenvalues, λ+ for positive eigenvalues and λ− for negative eigenvalues, and the errors, denoted as error1 and error2

for the trace estimators ̂T1 and ̂T2 with respect to the number N in (26) and (27). Left: at the initial control z = z0; right: at the optimal control z = zMC
quad

obtained by quadratic approximation with Monte Carlo correction.

Fig. 3. Relative errors at 100 random samples of the uncertain parameter for the linear and quadratic approximations of Q used in the computation of the 
mean E[Q ] (left) and of q = (Q − Q̄ )2 for the variance Var[Q ] (right). Here, the errors are show at the optimal control z = zMC

quad obtained by quadratic 
approximation with Monte Carlo correction.

We consider the five different approximations of the cost functional presented in Sec. 3, and use the limited memory 
BFGS method with box constraints to solve the optimization problem, where the z-gradient of the cost functional is com-
puted as in Sec. 4. We chose z0 = (16, . . . , 16) as an initial guess for the control. We used M = 100 random samples from 
N (m̄, C) to estimate the mean and variance of the control objective in both the sample average approximation presented in 
Sec. 2.4 and the variance reduction in Sec. 3.4.

For the computation of the trace appearing in the quadratic approximations (16), (33), and (35), we use the trace esti-
mator T̂2(·) (27) by solving the generalized eigenvalue problem (28) using Algorithm 2, with k = 100 and p = 10. We also 
test the Gaussian trace estimator T̂1(·) in (26). In Fig. 2, we plot the errors, denoted as error1 and error2 for the two trace 
approximations, respectively, against the reference value 

∑k
j=1 λ j with k = 140 at both the initial control z = z0 and the op-

timal control z = zMC
quad obtained by the quadratic approximation with Monte Carlo correction. We can observe that in both 

cases, the error for T̂2(H) decays much faster than that for T̂1(H) as a result of fast decaying eigenvalues, especially at the 
optimal control where more than two orders of magnitude improvement in accuracy is observed for N = 100. We remark 
that the slow decay of the error for T̂1(·) may demand a very large N if relatively high accuracy of the trace estimator is 
required, which leads to a large number of PDE solves at each step of the optimization procedure, thus diminishing the 
computational advantage of using the Taylor approximation. In the following test, we use T̂2(·) with N = 100.

Fig. 3 shows the relative errors at 100 random samples of the uncertain parameter m for the linear and quadratic 
approximations of Q in (69) used for the computation of E[Q ], as well as of q = (Q − Q̄ )2 in (32) and (35) for the 
computation of Var[Q ]. We note that, for both quantities, the quadratic approximation is more accurate than the linear 
approximation for most of the realizations.
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Table 2
Variance reduction by the linear and quadratic approximations at the initial control z0, and 
the optimal controls zMC

lin and zMC
quad. The mean-square-error (MSE) with different numbers of 

random samples for the evaluation of the mean E[Q ] are reported.

control # samples E
MC[Q ] MSE(Q ) MSE(Q − Q lin) MSE(Q − Q quad)

z0 10 2.42e+01 1.10e+00 7.94e−03 1.52e−04
100 2.54e+01 2.54e−01 4.16e−03 7.40e−05

zMC
lin 10 3.01e−01 1.10e−03 1.31e−03 1.69e−05

100 2.89e−01 9.68e−05 7.49e−05 9.00e−07
zMC

quad 10 3.16e−01 1.11e−03 8.02e−04 1.05e−05
100 2.98e−01 1.10e−04 9.98e−05 1.12e−06

Table 3
Variance reduction by the linear and quadratic approximations at the initial control z0, 
and the optimal controls zMC

lin and zMC
quad. The MSE for the evaluation of the variance 

Var[Q ], where q = (Q − Q̄ )2, qlin = (Q lin − Q̄ )2, qquad = (Q quad − Q̄ )2 are reported.

control # samples E
MC[q] MSE(q) MSE(q − qlin) MSE(q − qquad)

z0 10 1.32e+01 1.71e+01 9.38e−01 6.05e−03
100 2.54e+01 1.35e+01 2.61e+00 3.09e−02

zMC
lin 10 1.99e−02 1.00e−04 9.35e−05 3.92e−06

100 1.65e−02 1.32e−05 1.22e−05 2.44e−07
zMC

quad 10 2.38e−02 1.82e−04 1.79e−04 8.07e−07
100 1.99e−02 1.66e−05 1.65e−05 3.81e−07

Since the quadratic approximation is very close and strongly correlated to the true value, we may expect large variance 
reduction by using it as a control variate. In fact, the correlation coefficient between the quadratic approximation and the 
true value is very close to one, 0.996 for Q and 0.998 for q evaluated using the 100 samples. On the contrary, the linear 
approximation is poorly correlated to the true value (with correlation coefficient −0.211 for Q and 0.718 for q), thus leading 
to negligible variance reduction. In Tables 2 and 3, we report the effect of the variance reduction by the linear and quadratic 
approximations for the computation of the mean E[Q ] and variance Var[Q ], respectively. This reduction is measured by the 
mean-square-error (MSE), which is defined (e.g., for Q ) as

MSE(Q ) = Varp[Q ]
M

, (70)

where Varp[Q ] is the population variance of Q at M random samples.
In all cases, we can see that the quadratic approximation achieves more significant variance reduction than the linear 

approximation. This means that the number of samples needed to achieve a target MSE is significantly smaller for the 
quadratic approximation than for the linear. For example, at the initial control z0, the quadratic approximation results in 
a speed-up (defined as the ratio between the MSE of the Monte Carlo estimator and the MSE of the correction) of order 
1000X and 100X in the estimation of E[Q ] and Var[Q ], respectively. On the other hand, the linear approximation provides a 
speed-up of order 100X and 10X respectively. In addition, at the optimal controls zMC

lin and zMC
quad, the quadratic approximation 

can still achieve a ∼ 100X speed up for evaluation of both the mean and variance, while the linear approximation is too poor 
to achieve meaningful variance reduction. Note that the mean and variance are both much smaller at the optimal control 
than those at the initial control, confirming that the cost functional is significantly reduced by solving the minimization 
problem (9).

In this example, we see that the trace estimator using the generalized eigenvalues computed by Algorithm 2 is much 
more accurate than that using the Gaussian randomized (Monte Carlo) trace estimator thanks to the fast decay of the 
generalized eigenvalues. Moreover, using the Taylor approximation, in particular the quadratic approximation, as a control 
variate results in over two orders of magnitude in variance reduction for the evaluation of the cost functional.

5.2. Optimal boundary control of a turbulent jet flow

We consider a turbulent jet flow modeled by the Reynolds-averaged Navier–Stokes equations coupled with a nonlinear 
stochastic advection-diffusion equation that serves as a notional model of uncertainty in the turbulent viscosity νt . Specifi-
cally, the governing equations read

−∇ ·
(
(ν + νt)

(
∇u + ∇u�))

+ (u · ∇) u + ∇p = 0, in D,

∇ · u = 0, in D,

−∇ · ((ν + (
γ + em)

νt,0
)∇γ

) + u · ∇γ − 1 u · e1
γ = 0, in D,

(71)
2 x1 + b
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Fig. 4. Left: sketch of the physical domain of the turbulent jet flow, with inlet boundary 
I , outlet boundary 
O , top and bottom wall 
W , center axis 
C , 
and the cross-section 
0. The computational domain D is the symmetric top half of the physical domain. Right: B-spline interpolation of the inlet velocity 
profile used as an initial guess, and the distribution of the B-spline knots.

with the boundary conditions

σ n(u) · τ = 0, u · n + χW φ(z) = 0, on 
I ,

σ n(u) · n = 0, u · τ = 0, on 
O ∪ 
W ,

σ n(u) · τ = 0, u · n = 0, on 
C ,

γ − γ0 = 0, on 
I ∪ 
W ,

σ
γ
n (γ ) · n = 0, on 
O ∪ 
C .

(72)

Here, D = (0, 30) ×(0, 10) is the computational domain (the symmetric upper half of the physical domain for the jet flow) as 
shown in the left part of Fig. 4. e1 = (1, 0), τ and n are the unit tangential vector and unit normal vector pointing outside 
the domain D along the boundary ∂ D , σ n(u) = (ν + νt) 

(∇u + ∇u�) · n is the traction vector, and σγ
n (γ ) = (ν + (γ +

em)νt,0)∇γ · n is the normal flux of γ . The control portion of the inflow boundary is denoted by the indicator function χW

with χW (x) = 1 if x2 ∈ [0, W ] and χW (x) = 0 if x2 ∈ (W , 10). Here we take W = 1.5. The state variables u = (u1, u2) and 
p are the time-averaged velocity and pressure, and νt = γ νt,0 is the turbulent viscosity, where νt,0 represents an algebraic 
closure model and γ is the indicator function that is close to one near the centerline 
C and zero outside the jet region. 
Based on a dimensional analysis of the turbulent planar jet, the turbulent viscosity along the jet centerline is given by

νt,0 = C
√

M(x1 + aW )1/2, (73)

where M = ∫

I

||u||2ds and W are momentum and jet width at the inlet boundary, C and a are two adimensional param-
eters that need to be calibrated against either experimental or direct Navier-Stokes simulation (DNS) data. The indicator 
function γ satisfies the nonlinear stochastic advection-diffusion equation in (71) with the boundary data

γ0 = 0.5 − 0.5 tanh

(
5

(
30 − x1

30

)
(x2 − 1 − 0.5x1)

)
. (74)

The uncertain parameter m is a Gaussian random field with distribution N (m̄, C), for which we set the mean m̄ as a 
constant field and the covariance as in (3) with α = 2, α1 = α2 = 0.5, and � = [15, 0; 0, 1]. Two samples drawn from 
N (0, C) are shown in Fig. 5. In general, the parameters (C, a, m̄, b) are also random variables whose distributions can be 
inferred from experimental or DNS data. Here, for simplicity, we consider only the uncertainty in m and take deterministic 
values for (C, a, m̄, b) = (0.012, 5.29, −0.47, 9.58).1

The function φ(z) in (72) is the horizontal component of the velocity profile on the inlet boundary 
I , which is repre-
sented by B-splines as (we use t for x2 here)

φ(z)(t) =
K∑

k=1

zk Bk,n(t), (75)

1 These values are the maximum a posteriori estimates obtained by solving a Bayesian calibration problem where the misfit functional is the L2 distance 
between the velocity of (71) and the DNS data provided in [48].
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Fig. 5. Two random samples drawn from the Gaussian distribution N (0,C) with C given in (3), where α = 2, α1 = α2 = 0.5, � = [15,0;0,1].

where the coefficient vector z := (z1, . . . , zK ) ∈ [0, 1]K is the control and Bk,n(t) are B-spline basis functions recursively 
defined as

Bk,n(t) = t − tk

tk+n − tk
Bk,n−1(t) + tk+n+1 − t

tk+n+1 − tk+1
Bk+1,n−1(t), (76)

where

Bk,0(t) =
{

1 if tk ≤ t < tk+1;
0 otherwise.

(77)

Here we take K = 11 and use the B-spline of order n = 3 with 15 knots (4 repetitions at each endpoint), as depicted on the 
right of Fig. 4. A B-spline representation of the inflow velocity profile used for the initial control is also shown.

The control objective is the jet width Q along the cross-section 
0 at x1 = 20 shown in Fig. 4, and is defined as

Q (u) = 1

δ0
1(u)

∫

0

u · e1dx2, (78)

where δ0
1(u) = u(x0) · e1 with x0 = (20, 0). The objective is to maximize the expected value of the jet width Q , i.e., to 

minimize E[−Q ] subject to the state problem (71) and the constraint that the inlet momentum M is prescribed. Specifically, 
we consider the cost functional

J (z) = E[−Q ] + βVar[Q ] +P(z). (79)

Here we set β = 103 to balance the mean and variance, and define the penalty term P(z) as

P(z) = β1

⎛⎜⎝∫

I

(φ(z))2dx − M

⎞⎟⎠
2

+ β2

∫

I

|∇φ(z)|2dx, (80)

where the first term penalizes violations of the inlet momentum constraint (with a relatively large β1 = 103), and the 
second term controls the regularity of the inlet velocity (β2 = 1).

The weak formulation of the turbulence model is given by: Given the realization m ∈ M = L2(D) and control z ∈Z = R
K , 

find u ∈ U such that

r(u, v,m, z) = 0, ∀v ∈ V, (81)

where we denote the state with u = (ů, p, γ̊ ) ∈ U and adjoint with v = (v, q, η) ∈ V . The space for the state and adjoint 
variables are U = V = U × P × V , where U = {v ∈ (H1(D))2 : v · n = 0 on 
C and v · τ = 0 on 
O ∪ 
W }, P = L2(D), and 
V = {γ ∈ H1(D) : γ |
W ∪
I = 0}. Let R0 be the lifting of the Dirichlet boundary data for velocity on 
C ∪ 
O ∪ 
W , we have 
u = ů + R0. Let Rγ0 be the lifting of the boundary data γ0 on 
I ∪ 
W , we have γ = γ̊ + Rγ0 .

Specifically, the weak form in (81) consists of three terms and reads

r(u, v,m, z) = Model(u, v,m) + Stabilization(u, v) + Nitsche(u, v,m, z). (82)

The first term represents the PDE model in weak form given by

Model(u, v,m) =
∫
D

(ν + νt)2S(u) · S(v)dx +
∫
D

[(u · ∇)u] · vdx −
∫
D

p∇ · vdx +
∫
D

q∇ · udx

+
∫
D

(
ν + (

γ + em)
νt,0

)∇γ · ∇ηdx +
∫
D

[u · ∇γ ]ηdx −
∫
D

1

2

u · e1

x1 + b
γ ηdx,

(83)

where S(u) = (∇u + ∇u�)/2 denotes strain tensor.
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Fig. 6. The velocity field of the turbulent jet flow obtained solving the state model for the initial (left) and optimal (right) inlet velocity profile. Specifically, 
the optimal profile was obtained using the quadratic approximation with Monte Carlo correction.

Fig. 7. The decay of the generalized eigenvalues, λ+ for positive eigenvalues and λ− for negative eigenvalues, and the errors, denoted as error1 and error2

for the trace estimators T̂1 and T̂2 with respect to the number N in (26) and (27). Left: the initial control z = z0; right: the optimal control z = zMC
quad

obtained by quadratic approximation with Monte Carlo correction.

The second term of (81) represents stabilization by the Galerkin Least-Squares (GLS) for the momentum and mass con-
servation equations, and by streamline diffusion for the nonlinear advection diffusion equation, i.e.,

Stabilization(u, v) =
∫
D

τ1L1(u) · Du L1(u)(v)dx +
∫
D

τ2(∇ · u)(∇ · v)dx +
∫
D

τ3(u · ∇γ )(u · ∇η)dx, (84)

where L1(u) represents the strong form of the residual of the momentum equation (line 1) of (71), and τ1, τ2 and τ3 are 
properly chosen stabilization parameters associated with the local Péclet number.

The third term of (81) represents the weak imposition of the inlet velocity profile (i.e., the control) by Nitsche’s method 
[9] and reads

Nitsche(u, v,m, z) = Cd

∫

I

h−1(ν + νt)(u · n + χW φ(z))(v · n)ds

−
∫

I

(σn(u) · n)(v · n) + (σn(v) · n)(u · n + χW φ(z))ds,
(85)

where the first term guarantees the coercivity of the form and the second term arises from integration by parts. The constant 
Cd is taken as Cd = 105, and h is a local element edge length along the Dirichlet boundaries. This weak imposition of the 
inlet velocity is necessary to reveal the boundary control in the optimization formulation.

We discretize the problem using finite element with piecewise polynomials (P2, P1, P1) for the state u and P1 for 
the uncertain parameter m. We triangulate the computational domain using an anisotropic mesh, locally refined in the 
jet region, with 14,400 triangular elements (60 elements along the x1-direction and 120 along the x2-direction). After 
discretization, we obtain an optimization problem in which the dimension of the control, state, and uncertain parameter are 
11,73084, and 7381, respectively. As in the previous example, we use a BFGS method with bound constraints to solve the 
optimization problem (9) with the cost functional defined in (79) and the constraint defined by the state problem (81). At 
each BFGS iteration, we solve the fully-coupled nonlinear state problem using Newton’s method with an LU factorization of 
the Jacobian operator. To compute all the derivatives involved in the z-gradient presented in Sec. 4 we exploit the symbolic 
differentiation capabilities of FEniCS [57]. Fig. 6 shows that the turbulent jet is more spread out with larger jet width at 
the optimal value of the control compared to that at the initial control.
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Fig. 8. Relative errors at 10 random samples of the linear and quadratic approximations of Q (for the computation of the mean E[Q ] (left)) and of 
q = (Q − Q̄ )2 (for the variance Var[Q ] (right)). Here, the errors are shown at the optimal control z = zMC

quad.

Table 4
Variance reduction by the linear and quadratic approximations at the optimal control zlin for 
different uncertain parameter dimensions. The mean-square-error (MSE) with 10 random sam-
ples for the evaluation of the mean E[Q ] are reported.

parameter dimension E
MC[−Q ] MSE(Q ) MSE(Q − Q lin) MSE(Q − Q quad)

1,891 −1.71e+00 7.40e−06 2.68e−08 1.81e−09
7,381 −1.59e+00 7.94e−06 1.57e−07 1.46e−08
29,161 −1.44e+00 3.82e−06 7.23e−08 1.66e−08
115,921 −1.42e+00 9.47e−06 6.91e−08 3.06e−08
462,241 −1.41e+00 8.85e−06 9.00e−08 1.78e−08

Table 5
Variance reduction by the linear and quadratic approximations at the optimal control 
zlin for different uncertain parameter dimensions. The MSE with test 10 random samples 
for the evaluation of the variance are reported, where q = (Q − Q̄ )2, qlin = (Q lin − Q̄ )2, 
qquad = (Q quad − Q̄ )2.

parameter dimension E
MC[q] MSE(q) MSE(q − qlin) MSE(q − qquad)

1,891 8.05e−05 9.37e−10 1.76e−11 8.77e−13
7,381 8.13e−05 1.15e−09 8.87e−12 1.48e−12
29,161 5.60e−05 6.59e−10 3.39e−11 4.04e−12
115,921 1.07e−04 1.82e−09 7.04e−11 2.08e−11
462,241 8.96e−05 1.37e−09 7.78e−12 1.33e−11

For the computation of the trace in the quadratic approximation we use both the Gaussian trace estimator T̂1(·) in 
(26), and the trace estimator T̂2(·) in (27) obtained by solving the generalized eigenvalue problem (28). Fig. 7 displays 
the decay of the eigenvalues as well as the approximation error of the two estimators for both the initial control z0 and 
the optimal control zMC

quad. The rapid decay of the eigenvalues (four orders of magnitude reduction in the first 100 out 
of 7381 eigenvalues) of the covariance-preconditioned Hessian reflects the intrinsic low-dimensionality of the map from 
the uncertain parameter field m to the control objective Q . This is despite the complexity and nonlinearity of the state 
equations. The reference value for the trace tr(H) was computed (with a precision of 10−8) as the sum of the first 140 
dominant eigenvalues of H using Algorithm 2 with k = 140 and p = 10. It is evident that the second trace estimator 
achieves much faster decay of the error than the Gaussian trace estimator, with a gain in accuracy of about three orders of 
magnitude when using N = 100 samples/eigenvalues. In the numerical test, we use the second trace estimator with N = 20, 
which already provides sufficiently accurate results. It is worth noticing that, in contrast, the Gaussian trace estimator would 
have required about N = 104 samples to achieve the same accuracy.

Fig. 8 shows the relative difference between the true quantity of interest and the linear and quadratic approximations 
evaluated at 10 random samples for both Q and q = (Q − Q̄ )2. It is clear that the quadratic approximation is more accurate 
than the linear approximation for both quantities. Nevertheless both approximations lead to drastic reduction in the variance 
of the Monte Carlo correction with respect to plain Monte Carlo estimator, as demonstrated by the MSE reported in Tables 4
and 5. This variance reduction translates to greater than 100X speed up in the computation relative to the plain Monte 
Carlo estimator for the same accuracy (MSE).



P. Chen et al. / Journal of Computational Physics 385 (2019) 163–186 183
Fig. 9. Top-left: decay of the eigenvalues of the covariance-preconditioned Hessian (i.e., the generalized eigenvalues (in absolute value) of (28)) with different 
uncertain parameter dimensions (dim) at the optimal control obtained by linear approximation. Decay of the gradient with respect to the number of BFGS 
iterations (# iter), with linear approximation (top-right), quadratic approximation (bottom-left), and linear approximation with Monte Carlo correction 
(bottom-right). Smaller dimensionality is shown for the last case due to constraints on the computating time.

To investigate the scalability of the proposed algorithm, we consider up to six levels of uniform mesh refinement: 30 ×60, 
60 × 120, 120 × 240, 240 × 480, 480 × 960, and 720 × 1440. The dimension of the uncertain parameter m ranges from 1,891
on the coarsest mesh to 1,038,961 on the finest. For the linear and quadratic approximation, we solve the optimization 
problem using the BFGS algorithm with convergence defined by an absolute tolerance of 10−3 for the �∞ norm of the 
projected gradient. We also use a mesh continuation technique to define initial guesses for the control: on the coarsest 
mesh we use the velocity profile in Fig. 4 (right), and, on the finer meshes, we use the optimal control obtained from the 
previous (coarser) mesh. For the linear approximation with Monte Carlo correction, we set the BFGS absolute tolerance to 
10−4 and we use the solution of the linear approximation (at the same mesh resolution) as the initial guess.

The scalability of our approach with respect to the uncertain parameter dimension depends on three properties, namely 
the dimension-independent behavior of (i) the spectral of the covariance preconditioned Hessian, (ii) the convergence rate 
of BFGS, and (iii) the variance of estimators for the Monte Carlo correction of the objective function. The top-left plot of 
Fig. 9 demonstrates (i): the eigenvalues of the covariance-preconditioned Hessian of the control objective (i.e., the gener-
alized eigenvalues of problem (28)) at the optimal control obtained by linear approximation exhibit the same fast decay 
independent of the uncertain parameter dimension (ranging from a thousand to a million), thus indicating that approximat-
ing the trace by a randomized eigensolver is scalable with respect to the uncertain parameter dimension. The other three 
plots of Fig. 9 provide numerical evidence of the mesh independent convergence of the BFGS algorithm, property (ii), for 
this particular problem. In the case of the linear and quadratic approximations using mesh continuation, the norm of the 
z-gradient drops below the prescribed tolerance within 12 iterations for all mesh resolutions except the coarsest one (which 
represents a pre-asymptotic result); in the case of the linear approximation with Monte Carlo correction, BFGS converges 
within 19 iterations for all mesh resolutions using the solution of the linear approximation as initial guess. This implies that 
the gradient-based BFGS algorithm is also scalable with respect to the uncertain parameter dimension. Finally, Tables 4 and 
5 indicate that the variance of the Monte Carlo correction, i.e., property (iii), using Taylor approximation as control variates 
is independent of the uncertain parameter dimension, and, furthermore, it allows greater than 100X speed up with respect 
to plain Monte Carlo estimator to achieve the same accuracy (MSE). Combining the three dimension-independent properties, 
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we conclude that the Taylor approximation and variance reduction stochastic optimization method is overall scalable with 
respect to the uncertain parameter dimension.

6. Conclusions

In this work we proposed a scalable computational framework to solve PDE-constrained optimal control under uncer-
tainty where the cost functional involves the mean and variance of the control objective and the state equation is governed 
by a (nonlinear) PDE with high-dimensional uncertain parameter. Specifically, we advocate the use of (low-order) Taylor 
expansions of the control objective with respect to the uncertain parameter either to directly approximate the moments 
of the control objective or as control variates to reduce the variance of Monte Carlo estimator. The mean and variance 
expressions of the (linear and quadratic) Taylor expansions involve the trace of the covariance-preconditioned Hessian of 
the control objective with respect to the uncertain parameter. Randomized algorithms for solution of generalized eigenvalue 
problems [69,70,76] allow for accurate and efficient approximation of this trace and only require computing the action 
of the covariance-preconditioned Hessian on a number of random directions that depends on its numerical rank. As we 
showed in the numerical results, this approach is more efficient and accurate than the Gaussian trace estimator when the 
eigenvalues of the covariance-preconditioned Hessian exhibit fast decay, which is true when the control objective is only 
sensitive to a limited number of directions in the uncertain parameter space. This is often true regardless of the complexity 
of the state problem. Moreover, when the possibly biased Taylor (linear and quadratic) approximation is not sufficiently 
accurate, we can use it as a control variate and correct the mean and variance by Monte Carlo estimator of the remainder 
of the Taylor expansion, which was shown to achieve considerable computational cost reduction (by several orders of mag-
nitude) compared to a plain Monte Carlo estimator. We have demonstrated the scalability of our method with respect to 
the uncertain parameter dimension in three aspects: the decay of the eigenvalues of the covariance-preconditioned Hessian 
of the control objective, the variance of the remainder of the Taylor expansion, and the number of optimization iterations. 
All three properties do not depend on the nominal dimension of the uncertain parameter but only on the intrinsic dimen-
sion of the uncertain parameter, i.e. on the number of directions the control objective is sensitive to. Moreover, by using 
the randomized eigensolver for trace estimator, Taylor approximation as control variate for variance reduction, and quasi-
Newton method with a Lagrangian formalism for the optimization, we showed that the complexity—measured in number 
of PDE solves—scales linearly with respect to the intrinsic dimensionality to achieve target (high) accuracy, several orders of 
magnitude more accurate than a plain Monte Carlo estimator. This is illustrated numerically by solving an optimal boundary 
control governed by a nonlinear PDE model for turbulent jet flow with infinite-dimensional uncertain parameter field that 
characterizes the turbulent viscosity. Hence, the proposed computational framework for PDE-constrained optimal control 
under uncertainty is demonstrated scalable, accurate and efficient.

Several extensions and further developments of the proposed computational framework are worth pursuing. First, we 
intend to investigate higher-order Taylor expansions beyond the quadratic approximation when the later becomes poor. 
Second, another research direction is to pursue more general risk measures than the mean-variance measure, such as VaR 
and conditional VaR [50,73]. Third, further computational savings can be achieved in combination with model reduction for 
the state PDE and the linearized PDEs [30,77]. Fourth, one can replace the Monte Carlo estimator in the variance reduction 
by a sparse quadrature [24] to possibly achieve faster convergence of the approximation error. Fifth, application of the 
Taylor approximation and variance reduction in a multifidelity framework [63] may lead to additional computational saving. 
Finally, one can apply the scalable computational framework to other challenging control and design problems, such as 
optimal design of metamaterials under uncertainty [27].
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