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We demonstrate the first implementation of recently-developed fast explicit kinetic 
integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as 
a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear 
network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using 
operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic 
networks in parallel in the same time that standard implicit methods can solve a single 
such network on a CPU. This orders-of-magnitude decrease in computation time for solving 
systems of realistic kinetic networks implies that important coupled, multiphysics problems 
in various scientific and technical fields that were intractable, or could be simulated only 
with highly schematic kinetic networks, are now computationally feasible.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many important physical processes can be modeled by the coupled evolution of a reaction network (kinetic network) 
and fluid dynamics. A representative example is provided by astrophysical thermonuclear reaction networks, where a proper 
description of the overall problem typically requires multidimensional hydrodynamics coupled to the network across a 
spatial grid. Within each zone of the simulation the hydrodynamical (“hydro”) evolution controls the temperature and 
density, while the network influences the hydrodynamical evolution through energy release and composition changes. The 
solution of large kinetic networks by the usual implicit-integration approaches is slow and few calculations have attempted 
to couple the element and energy production strongly to the hydrodynamics with a network of realistic complexity. The 
most ambitious approaches use small schematic networks, perhaps tuned empirically to get critical quantities like energy 
production correct on average, coupled to the hydrodynamical simulation. Then a more physically realistic network is run 
in a separate “post-processing” step, where fixed hydrodynamical profiles computed in the hydrodynamical simulation with 
the schematic network are used to specify the variation of thermodynamic variables such as temperature and density with 
time.

Many other scientifically-interesting problems employ kinetic networks. Representative examples include the networks of 
chemical reactions required to model atmospheric chemistry, chemical evolution networks in contracting molecular clouds 
during star formation, plasma–surface interactions in magnetically confined fusion devices, fuel depletion in fission power 
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Fig. 1. Thermonuclear networks for simulating a typical Type Ia supernova explosion. (a) A 365-isotope network containing isotopes that are populated with 
measurable intensity in the explosion. (b) A 150-isotope subset of the 365-isotope network representing the isotopes populated with sufficient intensity to 
influence significantly the evolution of the hydrodynamics. This is the minimal realistic network for coupling to hydrodynamical simulations of the Type Ia 
explosion. (c) The largest network (an α network) that has been coupled to multidimensional hydrodynamics in a published Type Ia simulation.

reactors, and chemical burning networks in combustion chemistry. The corresponding reaction networks are large. Realistic 
atmospheric simulations, combustion of larger hydrocarbon molecules, studies of soot formation, core-collapse supernovae, 
and thermonuclear supernovae all can involve hundreds to thousands of reactive species undergoing thousands to tens 
of thousands of reaction couplings [1,2]. Current techniques based on implicit numerical integration typically are not fast 
enough to allow coupling of realistic reaction networks to the full dynamics of such problems and even the most realistic 
simulations have employed highly schematic reaction networks.

As a representative example, the present situation in Type Ia supernova simulations is illustrated in Fig. 1. A physically-
realistic network is displayed in Fig. 1(a), a minimal physically-correct network for coupling to the hydrodynamical sim-
ulation is displayed in Fig. 1(b), and the current state of the art for Type Ia simulations employing multidimensional 
hydrodynamics is displayed in Fig. 1(c). The species omitted in reducing the 365-isotope network in Fig. 1(a) to the 
150-isotope network in Fig. 1(b) are populated sufficiently weakly that they play little role in energy release and do not 
have significant influence on the coupling of the network to hydrodynamics. Thus, the 150-isotope network is a minimal 
network for coupling to the hydrodynamics; any network smaller than this will omit non-trivial parts of the realistic cou-
pling between kinetics and fluid dynamics. The disparity between the minimal realistic network in Fig. 1(b) and the current 
state of the art in Fig. 1(c) is a consequence of insufficient computational power to couple a realistic kinetic network in real 
time to the fluid dynamics using current technology. This example from astrophysics is but one example of a number of 
problems from various fields of science and technology in which coupling realistic kinetics to fluid dynamics is hampered 
severely by insufficient computational speed for kinetic networks.

There are two general approaches that we might take to address the preceding issues. The first is to seek faster algo-
rithms for solution of the typically large and stiff system of differential equations that describe the kinetic evolution. The 
second is to take advantage of advances in computational architectures to solve the chosen algorithm more rapidly. In pre-
vious work, [3–6], we described a new algebraically-stabilized explicit approach to solving kinetics equations that extends 
earlier work by Mott [13] and is capable of taking stable integration timesteps comparable to those of standard implicit 
methods, even for extremely stiff systems of equations. Since the methods are explicit, they do not involve matrix inver-
sions and thus scale linearly with network size. Because of this much more favorable scaling and competitive integration 
step size, we demonstrated that such algorithms are capable of performing numerical solution of extremely stiff kinetic 
networks containing several hundred species 5–10 times faster than the best implicit codes [3–6].

One implication of new algorithms is that they may give new perspectives on optimization. Standard implicit meth-
ods spend most of their time on linear algebra operations for larger networks because they must be solved iteratively, 
which requires inversion of large matrices. Thus, the optimization strategy is clear for implicit algorithms: do the linear 
algebra faster. Conversely, the new explicit methods do not involve matrix inversions, so optimizing them involves differ-
ent strategies. These may offer unique opportunities for implementation on newer architectures such as GPU or many-core 
accelerators coupled to standard CPUs [3]. In this paper we take a first step in addressing these issues by deploying the 
explicit integration methods described in our previous work [3–6] on coupled CPU–GPU systems. We show that using GPUs 
to exploit the parallelism inherent in the explicit kinetic algorithm for networks of realistic size makes it possible find the 
solution for a single network on the GPU faster than on the CPU and the solutions for many networks simultaneously on 
the GPU versus serially on the CPU.

2. Implementation of realistic kinetic networks

We shall assume that the coupling of reaction networks is done using operator splitting, where the hydrodynamical 
solver is evolved for a numerical timestep holding network parameters constant, and then the network is evolved over 
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the time corresponding to the hydrodynamical timestep holding the new hydrodynamical variables constant (see Section 4
below). The general task for the kinetic network then is to solve efficiently N coupled ordinary differential equations

dyi

dt
≈ Fi(y, t) =

∑

j

F i j(t)

≡ F +
i (t) − F −

i (t) = F +
i (t) − ki(t)yi(t) (1)

subject to initial conditions that have been determined in the current hydrodynamical timestep. In this expression, the 
yi (i = 1 . . . N) describe the dependent variables (typically measures of abundance), t is the independent variable (the time 
in our examples), the fluxes between species i and j are denoted by Fij , and ki(t) is the effective rate for all processes 
depleting the species i. The sum for each variable i is over all species j coupled to i by a non-zero flux Fij , and for 
later convenience we have decomposed the flux into a component F +

i that increases the abundance of yi and a component 
F −

i = ki yi that depletes it. For an N-species network there will be N such equations in the population variables yi , generally 
coupled to each other because of the dependence of the fluxes on the different y j . The variables yi are typically proportional 
to a number density ni for the species i. For the specific astrophysical examples that follow we shall replace the generic 
population variables yi with the mass fraction Xi , which satisfies

Xi = Ai

ρNA
ni

∑

i

Xi = 1, (2)

where NA is Avogadro’s number, ρ is the total mass density, and Ai is the atomic mass number for the species i.

3. Algebraic stabilization of solutions using asymptotic approximations

In the asymptotic limit we have F +
i � F −

i for the species i, leading to an approximate solution of Eq. (1) given by [4]

yn = 1

1 + kn�t

(
yn−1 + F +

n �t
)
. (3)

Since the asymptotic approximation specified above is expected to be valid if k�t is large, we define a critical value κ of 
k�t (κ = 1 will be chosen here) and at each timestep cycle through all network populations and compute the product ki�t
for each species i and the proposed timestep �t . Then, for each population species i

(1) If ki�t < κ , the population is updated numerically by solving Eq. (1) using a standard explicit forward-Euler algorithm.
(2) Otherwise, for k�t ≥ κ , the population is updated algebraically using the asymptotic approximation given in Eq. (3).

This algorithm is explicit, since all quantities required to update a timestep are available from the previous timestep. Thus, it 
avoids the iterative solution and associated matrix inversions required for implicit integration. As we have noted above, this 
algorithm alone implies as much as an order of magnitude increase in speed over standard implicit algorithms for solving 
realistic kinetic networks [3]. We shall demonstrate below that significant additional efficiencies are possible by using the 
GPU to exploit the parallelism inherent in the algebraically-stabilized explicit integration algorithm.

4. Operator-split integration timesteps

In Fig. 2 the relationship of a hydrodynamical integration timestep �thydro (“hydro timestep”) to a kinetic network 
integration steps �tnet (“network timestep”) is illustrated for an operator-split simulation. The hydro integrator takes an 
adaptive timestep �thydro while the kinetic network is dormant. Then the updated hydrodynamical variables (temperature, 
density, . . . ) are held constant while the kinetic network is integrated over the interval �thydro using adaptive network 
timesteps �tnet. The updated abundance variables and the energy released by the kinetic network are then passed from the 
kinetic network to the hydro integrator, which uses these and the equation of state to set the initial conditions for the next 
hydro integration timestep, and so on.

The hydro timestep �thydro and the network timestep �tnet are different timescales and should not be confused in the 
following discussion. The hydro timestep is set by characteristic times for response of the fluid while the network timestep 
is set by the inverse of the reaction rates in the kinetic network. For the examples discussed here, typically �thydro ≥ �tnet
and the kinetic integrator might take ∼1–1000 network timesteps �tnet over the interval of one hydro timestep �thydro, 
depending on the ratio of characteristic kinetic reaction times to fluid response times in a given zone of the simulation. 
For our purposes, the hydro integration may be viewed as a black box to which the kinetic network is coupled by two-way 
transfer of information, and the only role of the current hydro timescale is to set the interval �thydro over which the kinetic 
network is to be integrated using adaptive timesteps �tnet.
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Fig. 2. (a) Illustration of hydrodynamical timesteps �thydro and kinetic network timesteps �tnet in one hydro zone for operator-split coupling of a kinetic 
network to fluid dynamics. The hydro timestep �thydro sets the interval over which the kinetic network will be integrated using adaptive timesteps �tnet. 
(b) The elapsed wallclock time as the operator-split integration proceeds, alternating between the hydrodynamical and kinetic network integration. One 
full integration step (hydro plus kinetic network) requires the elapsed time between two dashed lines. Generally, the wallclock time to integrate the hydro 
within a full step is different from that required to integrate the network in the same full step.

5. GPU acceleration

Modern supercomputers (as well as desktop and laptop systems) often have access to GPUs that can greatly accelerate 
the execution of algorithms formulated to take advantage of the parallelism exposed by the GPU. For example, Oak Ridge 
National Laboratory’s Titan supercomputer, which has been benchmarked at 17.59 petaflops and has a theoretical peak 
performance of 27.1 petaflops, employs 18,688 compute nodes, each consisting of 16 CPU cores and one NVIDIA Tesla 
K20X GPU, which uses the Kepler GPU microarchitecture [17]. The most powerful applications must integrate CPUs (each 
executing a few heavyweight threads) and GPUs (each executing many lightweight threads) seamlessly to reach speeds that 
are a significant fraction of the peak capability of the machine.

NVIDIA’s CUDA framework provides a parallel computing platform in which computational kernels written in CUDA C/C++ 
can be offloaded to the GPU from code running on the CPU. The CUDA programming model utilizes a heterogeneous memory 
paradigm in which a user first copies data from the CPU to the GPU using a special CUDA function, then launches a large 
number of threads, organized in blocks, which perform some computation. Thread blocks are distributed among streaming 
multiprocessors, which contain physical execution cores for integer and floating point operations along with registers, thread 
schedulers, and a cache, part of which can be accessed directly by the user as shared memory. Once kernel execution is 
complete, the user may copy data back to the CPU.

GPUs have various limitations that must be overcome to achieve large speedup from the massively-parallel, lightweight-
thread implementation. Four issues are of particular importance:

(1) Data transfer between CPU and GPU is slow relative to GPU compute speeds and memory bandwidth; thus scalable 
CPU–GPU computation must control the cost of communication between the CPU and GPU.

(2) Code running on GPUs must be highly parallel, since even small serial portions of a parallel code will greatly diminish 
performance (Amdahl’s Law). Additionally, since GPUs exhibit SIMT (single instruction, multiple thread) parallelism, 
divergence in control flow through complex conditional statements (“thread divergence”) also leads to serialization. 
This severely limits speedup gained from adding additional threads (strong scaling).

(3) A modern general-purpose GPU typically has large amounts of relatively slow global memory and smaller amounts of 
much faster shared memory. For example, on a Tesla K20X GPU, each thread block has access to 6 GB of slow global 
memory and 48 KB of fast memory shared only within the block. Thus, optimal use of the GPU must enable a significant 
fraction of the calculation to use the fast, shared memory.

(4) The highest amount of performance is gained when as many as possible of the total number of threads on the GPU are 
used (“occupancy”).
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Because of the simplicity and associated transparency of explicit integration algorithms and their intrinsically parallel nature 
for many of the required computing tasks, they are particularly attractive candidates for parallelization using GPUs. This 
task is greatly facilitated by the availability of computing platforms that allow high-level access to the GPU without the user 
having to deal with the details of thread management. In the applications discussed in this paper we have used NVIDIA 
CUDA C/C++ to implement algorithms that are launched under CPU control but that execute entirely on the GPU.

It is important to note that we do not present a detailed discussion on what the CPU can do with its free cycles. Ideally, 
the CPU would solve other coupled physics problems with these cycles in such a way that maximizes the amount of work 
done but minimizes the amount of time spent waiting for either piece of hardware to finish. However, it is also possible that 
the CPU could work on post-processing or uncertainty quantification. The easiest way to consume the cycles is to launch 
the GPU work asynchronously on a separate thread, possibly using OpenMP, and then do the CPU work.

6. Previous GPU efforts

Previous efforts exist to perform integration of chemical kinetics networks efficiently on GPUs. While implicit methods 
have seen some success on GPUs, particularly in combustion chemistry and reactive-flow problems, they are limited by 
scaling and memory management problems [8,9,11]. Explicit methods offer a route for efficiently integrating large kinetic 
networks; however, current methods quickly suffer when stiffness is introduced, ultimately becoming slower than bench-
mark CPU implicit methods when networks are sufficiently stiff [7,10,12].

7. Implementing the explicit asymptotic algorithm on a CPU–GPU system

The prototype implementation that we shall describe here assumes an operator-split formulation of fluid dynamics cou-
pled to a large kinetic network, with the computation of the fluid dynamics implemented on the CPUs and the computation 
of the kinetic networks implemented on the GPUs. This framework describes qualitatively a large number of potential scien-
tific applications in a variety of fields, but to be definite we shall emphasize astrophysical thermonuclear networks coupled 
to hydrodynamical simulations in explosive burning scenarios. Our reference example will correspond to a 150-isotope 
network containing 1604 reactions (the minimal realistic network of Fig. 1(b)), integrated at a constant temperature of 
7 × 109 K and constant density of 108 g cm−3, but we shall display calculations with as many as 365 network species and 
4300 reactions. In realistic simulations one often encounters approach to equilibrium and must use the asymptotic algo-
rithm described above supplemented by a partial equilibrium approximation [3,6]. Adding the partial equilibrium algorithm 
should not affect the parallelism of the problem substantially, so we shall simplify and illustrate using calculations not near 
equilibrium where the asymptotic approximation is sufficient.

In Fig. 3 we illustrate the basic structure of our example calculation. We shall refer to the code running on the CPU as 
the host and the code running on the GPU as the kernel in the following discussion. In a setup step that is executed once 
for each overall problem, library parameters required to calculate the temperature and density-dependent reaction rates 
are copied to the GPU and are resident on the GPU for the duration of the calculation. At the end of each hydrodynamical 
integration step a fully coupled CPU code would hold initial conditions for the kinetic network, which consists of the current 
temperature and density, and the current abundances for all species in the kinetic network. In a realistic simulation these 
values would be supplied to the CPU code by the hydrodynamical integration, but the source is irrelevant for our present 
tests and in our simulation we simply read in a trial set of initial conditions for a hydro timestep. One full kinetic network 
integration over a time interval corresponding to one hydrodynamical timestep then consists of the following steps.

(1) Copy from the CPU to the GPU (1) a vector of current network abundances, (2) the temperature, density, and duration of 
the current hydro timestep �thydro, and (3) a trial initial network timestep. For the representative 150-isotope network 
this corresponds to copying a total of 154 floating point numbers from the CPU to the GPU.

(2) Launch a GPU kernel to integrate the kinetic network over the time interval corresponding to the hydro timestep.
(3) When the integration on the GPU is complete, copy back to the CPU values of (1) the updated species abundances at the 

end of the kinetic network integration, (2) the integrated energy release over the kinetic network integration, and (3) a 
final kinetic network integration timestep for use in setting the initial trial timestep in the next network integration. 
For the representative 150-isotope network this corresponds to copying a total of 152 floating point numbers from the 
GPU to the CPU.

In this scheme, during the kinetic network integration corresponding to one hydrodynamical timestep (see Fig. 2) the 
network integration is done entirely on the GPU and the only communication between the CPU and GPU is at the beginning 
and end of the network integration. For the examples discussed here, the required data transfer between the CPU and 
GPU over each hydro integration step is thus ∼1 kB at the beginning and a similar amount at the end of each network 
integration. For typical installations the CPU–GPU data transfer rate is ∼1010 bytes per second, so each network integration 
over the interval of a hydro timestep requires a communication time that should be a negligible fraction of the total network 
integration time.

The GPU kernel, as illustrated in Fig. 3, consists primarily of an integration loop. Before the integration loop is entered, 
the temperature-dependent rates are computed with a simple parallel for loop. This occurs only once per kernel launch. 
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Fig. 3. Schematic flow for the example calculation presented here for a single kinetic network. The kinetic network is assumed to be coupled to the 
hydrodynamical integration by operator splitting. The kinetic network integration over a time interval corresponding to one hydro timestep is executed 
entirely on the GPU. Once the problem is set up, the only communication between CPU and GPU is to copy data from the last hydro timestep to the 
GPU, launch the kernel, and then copy the network integration results back to the CPU. The points labeled “Sync” in the GPU kernel are points where the 
algorithm requires that all threads be synchronized before proceeding because subsequent operations require the completed results of those threads.

Inside the integration loop, the major operations consist of: updating the fluxes, summing F + and F − for each isotope, 
computing the maximum difference between the sum of F + and F − , and updating abundances by the asymptotic algorithm. 
Updating the fluxes is done through a simple parallel for loop. For the summation of F + and F − , the sums for isotopes 
with more than 32 F + or F − values are computed one at a time with a parallel sum reduction algorithm. The parallel sum 
reduction algorithm first copies the values to shared memory, then performs the computation using a simple sum reduction 
tree algorithm. For each of the networks we test, each of the F + and F − arrays can fit in shared memory. For isotopes 
with fewer than 32 values, a parallel sum reduction is not efficient, so these sums are computed with a simple parallel for 
loop, with one isotope given to each thread. Each of these sum values is then copied to arrays resident in shared memory. 
The maximum difference in the sums of F + and F − is then computed using a parallel maximum reduction algorithm. This 
algorithm copies the values to shared memory, then performs a parallel tree reduction on the values. After these steps are 
complete, the abundances are updated using the asymptotic algorithm. This is a simple parallel for loop. Synchronization 
is necessary between each of these steps, as well as at the end of each integration time step. Thus, a single network is 
integrated within one CUDA block.

8. Performance for a single network

The accuracy of the GPU calculation relative to the reference CPU implementation of the algorithm used in Refs. [3–6]
has been tested for various networks containing from 14 to 365 isotopic species, in both single and double precision. This is 
illustrated in Fig. 4 for some arbitrarily selected species from the representative 150-isotope network integrated with double 
precision. It is clear that in double precision the GPU integration gives essentially the same results (typical differences 
between points and curves are less than one part in 104) as the reference CPU implementation of the algorithm for mass 
fractions ranging over 20 orders of magnitude.
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Fig. 4. Comparison of selected isotopic mass fractions for 150-isotope calculation using the GPU parallel (symbols) and the reference CPU serial (curves) 
implementation of the algorithm, both integrated in double precision. A constant temperature of 7 ×109 K and a constant density of 108 g cm−3 (conditions 
typical of a strongly-burning zone in a Type Ia supernova simulation) were assumed.

Fig. 5. Comparison of GPU calculation of mass fractions in double precision (curves) and single precision (symbols). Arbitrarily selected isotopes from a 
150-isotope calculation assuming a constant temperature of 7 × 109 K and a constant density of 108 g cm−3.

For GPU applications the limited amount of fast shared memory per block would make the use of single rather than 
double precision in the kinetic network highly advantageous, if it leads to stable and accurate results. We have tested single 
versus double precision implementations of the GPU algorithm. In general we find that for the conditions used in our tests 
(which are probably as extreme as for any kinetics simulation) the single-precision results are stable and more than accurate 
enough for coupling to fluid dynamics simulations. An example for the representative 150-isotope network is displayed in 
Fig. 5. Thus we anticipate that considerable speed increase may be possible in a variety of applications by using single rather 
than double precision variables for the network, which allows more of the calculation to fit in the fast shared memory.

The execution time for the explicit asymptotic algorithm on several representative GPU installations for the case shown 
in Fig. 5 is displayed in Table 1. To put things on a common footing, we have divided the total integration time by the total 
number of integration steps and reported the average time to execute one network integration step in column 5. There is a 
range of almost two in speeds for different GPU microarchitectures, but we see that generally a GPU implementation is able 
to execute a kinetic integration step in 0.1–0.2 ms.
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Table 1
Network integration times on various architectures.

System Microarchitecture Time (s) Steps Time/step (s) Time/100 steps (s)

Tesla M2090 Fermi 3.581 32,182 1.11 × 10−4 0.011
Tesla K20X Kepler 5.910 32,182 1.84 × 10−4 0.018
GT 640 Kepler 4.590 32,182 1.43 × 10−4 0.014
Intel Xeon W3540 Nehalem 6.1 32,182 1.9 × 10−4 0.019

Fig. 6. Time to execute a single integration step in milliseconds for one network as a function of the number of isotopes in the network. (a) GPU imple-
mentation of the explicit asymptotic algorithm (solid blue curve) versus CPU serial implementation of the same algorithm (dashed red curve). (b) GPU 
implementation of the explicit asymptotic algorithm (solid blue curve) versus serial implementation of a standard backward Euler implicit method (dashed 
green curve). The implicit curve was estimated using the scaling factors F determined in Ref. [4] to scale the explicit serial CPU curve in (a). See the text for 
further explanation. All calculations assumed Type Ia supernova conditions with a constant temperature of 7 × 109 K and a constant density of 108 g cm−3. 
GPU calculations were run on a Tesla M2090 Fermi architecture; CPU calculations were run on a 3 GHz Intel Xeon W3540 processor.

We may compare these results with representative explicit and implicit serial implementations of kinetic network inte-
gration on CPUs. For the example used in Table 1, the serial implementation of the explicit asymptotic algorithm [4] took 
1.9 × 10−4 seconds per kinetic integration step on a ∼3 GHz processor, which is not much longer than the GPU speeds 
displayed in Table 1. Although the GPU version is more parallel, the processors on the GPU are as much as 3–4 times slower 
than the CPU processor used, which partially offsets the parallelism advantage at the present level of optimization for the 
GPU code. We anticipate that with further optimization the explicit GPU code will become substantially faster than the 
corresponding CPU explicit code on present architectures.

For comparison with standard implicit methods we use as reference current implementations of the backward-Euler 
implicit code Xnet [14], which is a standard computational tool for solving thermonuclear networks in astrophysics and 
was the implicit-code reference used for comparisons in Refs. [3–6]. We shall leave systematic comparisons aside until the 
explicit GPU code is more completely optimized, but some immediate quantitative comparisons are possible. We noted 
above that the current explicit serial CPU code is almost as fast as the GPU code at its current optimization. In Ref. [4] we 
used scaling arguments to predict that the serial (algebraically-stabilized) explicit algorithm should be able to integrate a 
150-isotope network 5 or more times faster than an implicit algorithm on the same architecture because of faster compu-
tation of each timestep. Currently the implicit code using a sparse-matrix solver requires 0.5–1.0 ms per integration step 
on a CPU for integration of the representative 150-isotope network, depending on whether one or two Newton–Raphson 
iterations are required in an integration step (use of non-sparse methods for a 150-isotope network would be ∼2 times 
slower) [15]. Thus, with the fastest GPUs in Table 1 the 150-isotope network appears to be executing 5–10 times faster on 
a GPU than current implicit codes running on a CPU.

The last column in Table 1 displays the time to execute 100 network integration steps using the explicit asymptotic GPU 
solver, which would be a representative number of kinetic network timesteps required in one hydro timestep for problems 
of the kind discussed here. Since the total time of this integration is ∼10 ms, this suggests that a realistic kinetic network 
coupled to another physics solver could be executed in a time that will not slow the integration of the other physical system 
to a debilitating degree.

9. Scaling with network size for a single network

Fig. 6 shows the scaling of execution time for a single network integration step with network size. In Fig. 6(a) we 
compare the GPU version of the explicit asymptotic algorithm with a serial version of the same algorithm run on a standard 
3 GHz CPU. We see that the speeds are comparable for small networks (with the serial code somewhat faster) but the 
parallel GPU version is approximately twice as fast as the serial version for 150 isotopes and almost three times as fast for 
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Fig. 7. Schematic illustration of integrating multiple kinetic networks in parallel on the GPU by stacking one network per block.

365 isotopes. Although the GPU version is aided by added parallelism, this is partially offset by the greater speed of the 
CPU processor versus GPU processors.

In Fig. 6(b) we make an approximate comparison of the parallel GPU explicit asymptotic algorithm with a standard 
backward Euler implicit integrator as a function of network size. We obtained the implicit curve by multiplying the serial 
explicit CPU curve in Fig. 6(a) by the scaling factors F computed as a function of network size in Ref. [4], which give the 
ratio of the times to compute a single step for implicit and explicit methods, with F > 1 because of the added matrix 
overhead of the implicit algorithm. The scaling of this curve could vary by several factors because of variables such as the 
numerical solver used for the implicit method and the relative number of timesteps required in the implicit and explicit 
solves; however, with the present assumptions we see that for small networks the speeds are comparable but the explicit 
GPU calculation becomes considerably faster than the implicit calculation as network size increases. For 150 isotopes it is 
∼9 times faster, and for 365 isotopes the GPU code is ∼15 times faster than the serial implicit calculation. We note that 
the explicit GPU scaling advantage of approximately 9 for a 150-isotope network inferred from Fig. 6(b) is consistent with 
the estimate made above based on current calculations with the implicit backward Euler code Xnet, giving some confidence 
in the validity of the comparison in Fig. 6(b).

Comparison of Fig. 6(a) and Fig. 6(b) indicates that the significant speed advantage of the GPU code for larger networks 
has two sources: (a) the explicit algorithm itself is faster per timestep for larger networks than implicit algorithms, as doc-
umented in Refs. [4–6,3], and (b) the GPU implementation of the explicit algorithm is faster than the serial implementation 
of the same algorithm because of the enhanced parallelism of the GPU code, which is sufficient even at the present early 
stage of optimization to outweigh the slower speed of the GPU processors.

10. Multiple parallel networks and thread occupancy

The preceding examples indicate that a single realistic kinetic network can be integrated entirely on the GPU, with 
minimal communication overhead since CPU–GPU transfer of only a small amount of data at the beginning and end of the 
integration is required. This is already a substantial advance, since this implies that fast realistic fluid dynamics coupled 
to kinetic network simulations are now possible with the kinetic network running entirely on the GPU, freeing almost all 
CPU cycles for implementing the fluid dynamics. However, implementing a single network on the GPU is a woefully poor 
utilization of available threads since it basically engages only one of the available streaming multiprocessors. It is not easy 
to increase GPU thread occupancy in the solution of a single network because the network solution requires synchronization 
at several places (see Fig. 3). Without returning to the CPU, this can be enforced only within a single block containing a 
maximum of 1024 threads using present technology. However, it is desirable to run more than one network at a time on the 
GPU because in typical applications the CPUs of a compute node having a GPU will host multiple fluid dynamics zones and 
each zone has an independent network reflecting the conditions in that zone. Thus, we have tested running many networks 
in parallel on a single GPU, as illustrated schematically in Fig. 7.

In our tests of concurrent execution of the reaction network kernel we deploy a number of OpenMP threads, with one 
asynchronous kernel launched by each thread after a small amount of processing on the CPU to prepare data for copying to 
the GPU. Timings are taken using the CUDA events timer and are started before thread creation and ended after all threads 
have joined. Thus the timing includes CPU processing and copying overhead as well as kernel execution time. Timing results 
for the launch of many representative 150-isotopes networks running in parallel are displayed in Fig. 8. We see that the 
time to run n networks scales almost perfectly (it is essentially the time to run a single network) up to n = 14. The time to 
run 15–28 networks is then about twice the time to run a single network, the time to run 29–42 networks is about three 
times the time to run a single network, and so on. The period of 14 concurrent networks in the steps reflects the availability 
of 14 streaming multiprocessors on the Kepler GPU microarchitecture. (The step period was found to be 15 when tested 
on a GPU using the Fermi GPU microarchitecture with 15 streaming multiprocessors available.) The slight rise in execution 
time on any given step presumably reflects a small increase in CPU overhead associated with launching increasing numbers 
of networks concurrently.
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Fig. 8. Timing for multiple networks running in parallel on the GPU. All calculations assumed Type Ia supernova conditions with a constant temperature of 
7 × 109 K and a constant density of 108 g cm−3. These calculations were run on a Kepler GPU on Titan, which has 14 streaming multiprocessors per GPU.

The results implied by Fig. 8 have large implications for simulations in a variety of scientific fields. They demonstrate 
that not only can a single realistic network be run fast enough now to couple to fluid dynamics, but in fact many such 
networks can execute in a short enough time to make the simulation feasible. The results presented in this paper are far 
from optimized (for example, we have only skimmed the surface of implementing efficient memory access), so we shall 
save detailed benchmarking for future papers. However, based on the results presented here (see Fig. 6 and Fig. 8 and 
the discussion associated with Table 1), and those of Refs. [3–6], we may estimate that even without further optimization 
14 realistic 150-isotope networks can now be run on a GPU in perhaps 10–20% of the time that a standard implicit code 
running on a CPU can integrate one such network, and that ∼100 realistic 150-isotope networks could be run in parallel 
entirely on a GPU in the same length of time that a standard implicit code could run one such network on a CPU.

Implicit algorithms are more complex than explicit algorithms because of the required iteration and matrix inversions. It 
remains to be seen whether they can implement GPU versions having the same runtime qualities and low-memory footprint 
of this explicit method. In particular, problems with matrices of dimension a few hundred are memory bound because of a 
small number of computations relative to data required compared with problems with large matrices. To date, ports of the 
implicit code Xnet [14] to combined CPU–GPU architectures run only part of the calculation on the GPU, and do not give 
appreciable increase in performance over implementations on the CPU alone [15]. Recent tests of an accelerated batched LU 
factorization of 150 ×150 matrices using the MAGMA library hybrid CPU–GPU algorithm have demonstrated speed increases 
as large as a factor of ∼3–4 [16], but those methods remain to be fully implemented in Xnet [15].

The utility of these developments for realistic simulations is apparent. In an operator-split implementation of a zone-
based fluid dynamics plus kinetics simulation, one could deploy the zones of the fluid dynamics on the CPUs of the compute 
nodes and the corresponding kinetic networks on the GPUs of the compute nodes (with one CPU per node allocating a small 
fraction of cycles to GPU management). Then the GPU can execute independent kinetic networks in parallel for many of the 
fluid dynamics zones at once in a short enough time to make the calculation with realistic networks in many zones feasi-
ble.1 This goes far beyond the current limitations of being able to execute only a highly-restricted number of unrealistically 
small kinetic networks coupled to the fluid dynamics, and plausibly enables a variety of simulations with realistic kinetics 
that previously were not accessible with available computing power.

11. GPU virtues and the explicit approach

Let us revisit the four issues listed earlier in Section 5 that require particular attention for the efficient utilization of GPU 
acceleration. As we have shown, the simplicity of the explicit approach has permitted us to address these issues in a highly 
expeditious manner.

(1) Because the explicit method is compact, it is easy to fit entirely on the GPU so that no CPU–GPU communication is 
required except to launch the kernel and retrieve the results at the end of the calculation. Furthermore, the required data 
transfer at the beginning and end is minimal (of order a few kB for the representative examples shown here). Thus, there 
is little CPU–GPU communication penalty, even for the launch of multiple concurrent networks.

1 The parallel network launches on a given GPU are asynchronous. To simplify this proof of principle the concurrent networks all were assigned the 
same temperature, density, and initial abundances, and so took the same number of integration steps. In a realistic application the concurrent networks in 
different zones typically would have the same reaction structure but perhaps different abundances and rates because of different conditions in each zone. 
Thus they may require varying numbers of integration steps and so might not return at the same time. The management of the network kernel launches 
can presumably be used to optimize workflow and load balancing in the coupled fluid dynamics and kinetic calculation. We have not explored these issues 
yet.
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(2) The explicit algorithm is naturally highly parallel. The calculation of rates from the rate library expressions is a very 
parallel operation since the rates are all independent and need be calculated only once for each network integration.2 The 
calculation of fluxes must be done at each network integration step (fluxes are products of rates and population variables; 
rates are constant but populations change with time in the integration), but that is also highly parallel since the fluxes are 
independent. The least parallel part of applying the algebraically-stabilized explicit asymptotic algorithm is that the sums 
of fluxes populating and depopulating a given isotope (the F −

i and F +
i of Eq. (1)) are required in order to compute the 

asymptotic update at each network timestep, and these summations are not intrinsically parallel. However, we have used 
tree methods to implement them, which can in principle attain ln N execution times for the sum of N fluxes. (We are far 
from that scaling now, presumably because our memory accesses are not yet optimized.)

(3) Even with double precision it is possible to fit most of the important variables into fast shared memory because 
of the compactness of the algorithm. We have also demonstrated that single-precision integration is stable and sufficiently 
accurate for many applications, which permits placing roughly twice as many variables in shared memory. For example, all 
relevant variables should fit in shared memory for the 150-isotope network in single precision.

(4) We have demonstrated that one can greatly increase thread occupancy by launching multiple networks concurrently. 
Thus the explicit method applied to multiple parallel networks scales to use all of the GPU streaming multiprocessors.

12. Future work

It is our intention to develop the present technology into an open-source, general-purpose code for solving physically-
realistic kinetic networks in a variety of disciplines. Although the present results are a substantial step in that direction, 
several important pieces remain to be implemented.

(1) The present implementation uses only the explicit asymptotic algorithm. This is adequate far from equilibrium but 
as systems approach equilibrium the asymptotic algorithm must be supplemented by a partial equilibrium algorithm 
to continue to scale [6]. Implementation of the asymptotic plus partial equilibrium algorithm requires only some flux 
modifications and some additional bookkeeping, neither of which should have much impact on parallelism, so we do 
not anticipate major issues with implementing it.

(2) The present algorithm is not well optimized with respect to memory access patterns. We anticipate that additional 
work on this issue will lead to a substantial increase in speed. The most significant source of concern in this area is 
coalescing memory accesses in order to prevent serialization caused by uncoalesced memory. It may be useful to utilize 
the GPU’s texture memory, which features a dedicated read-only cache optimized for spatial locality in a texture’s 
coordinate system rather than memory locality.

(3) We have shown that these calculations are stable and accurate with single-precision integration. This should allow less 
memory usage and faster calculations than double-precision integration, but this has not yet been fully explored.

(4) The least parallel part of the algorithm is the summation of fluxes changing the population of each isotope in each 
integration step. It is likely that this piece of the algorithm can be improved by restructuring, with a corresponding 
increase in speed.

(5) There are load-balancing issues associated with the flux summations that we have yet to address, occurring because the 
different isotopes in the network can require very different numbers of fluxes to be summed. For example, in the larger 
networks used here protons, neutrons, and 4He each have hundreds of fluxes that change their populations and must 
be summed, whereas almost all of the other isotopes in the network have fewer than ten. Presumably considerable 
optimization can be attained by a more load-balanced implementation of the flux summation algorithm.

(6) The explicit Quasi-Steady-State (QSS) algorithm is similar to the asymptotic algorithm and may in some cases give 
better CPU integration performance than the asymptotic algorithm [5]. It will be of interest to see if replacement of the 
asymptotic algorithm with the QSS algorithm in the present code leads to improved GPU performance.

(7) This paper has dealt with using GPU accelerators to implement the kinetics integration. We intend to port the cur-
rent algorithm to systems with many-core accelerators, which we anticipate will also permit much more ambitious 
calculations than have been possible before.

(8) This work did not explore the benefits of overlapping computation and communication but it must be reviewed in the 
future.

Work is in progress on these improvements and we expect to report on them in future papers.

13. Summary and conclusions

We have demonstrated that newly-developed explicit integration algorithms exhibiting many properties that are more 
desirable than those of implicit methods for large networks, coupled with multithreaded acceleration on GPUs, may per-
mit orders of magnitude decreases in the runtimes to simulate large and realistic reaction kinetic networks that can be 

2 In the operator splitting approximation that we are employing the temperature and density are held constant during the network integration, so the 
rates also remain constant during the network integration steps corresponding to one hydro timestep and need be calculated only once per hydro timestep.
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coupled to other physics solvers. For the performance of a single network, we demonstrate that a GPU implementation 
of these explicit methods exhibits sub-linear scaling. Furthermore, we have demonstrated that for finding the solutions of 
many networks simultaneously the GPU far exceeds the performance of the CPU with the ability to integrate one network 
independently on each streaming multiprocessor. These properties may make it possible to solve realistic coupled physics 
problems where the reaction network solve is the limiting factor. Finally, we described the future work that will be required 
to fully realize the performance benefits of using a GPU on these problems.

Readers interested in obtaining the source code should contact the corresponding author directly.
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