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Highlights

• Structure-preserving discretization leads to noncanonical Hamiltonian system in time.
• No spurious modes compared to standard numerical methods.
• Better long-term energy conservation compared to standard numerical methods.
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A B S T R A C T
8

We applied two numerical methods both belonging to the class of finite el-

ement particle-in-cell methods to a four-dimensional (one dimension in real

space and three dimensions in velocity space) hybrid plasma model for elec-

trons in a stationary, neutralizing background of ions. Here, the term hybrid
means that (energetic) electrons with velocities close to the phase velocities

of the model’s characteristic waves are treated kinetically, whereas electrons

that are much slower than the phase velocity are treated with fluid equations.

The two developed numerical schemes are based on standard finite elements

on the one hand and on structure-preserving geometric finite elements on the

other hand. We tested and compared the schemes in the linear and in the non-

linear stage. We show that the structure-preserving algorithm leads to better

results in both stages. This can be related to the fact that the spatial discretiza-

tion results in a large system of ordinary differential equations that exhibits a

noncanonical Hamiltonian structure. To such systems special time integration

schemes with good conservation properties can be applied.
c© 2019 Elsevier Inc. All rights reserved.
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1. Introduction11

We present two numerical algorithms for a hybrid plasma model in order to demonstrate similarities and dif-12

ferences between standard finite element particle-in-cell (PIC) methods and structure-preserving finite element PIC13

methods. The latter use techniques from finite element exterior calculus (FEEC) [1] and were applied by Kraus et14

al. [2] on the full six-dimensional Vlasov-Maxwell model. By taking into account the underlying geometric structure15

of the system of partial differential equations, spatial discretizations using FEEC exactly preserve certain invariants16

on the semi-discrete level (discrete in space and continuous in time). Examples for this are conservation laws like17

energy or the two divergence constraints arising in electrodynamics, ∇ · E = ρ/ε0 and ∇ · B = 0, where E = E(x, t)18

and B = B(x, t) denote the electric field and the magnetic flux density (or induction) which we will simply refer to as19
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magnetic field. Furthermore, ρ = ρ(x, t) and ε0 are the charge density and the vacuum permittivity, respectively. As20

shown by Arnold, Falk & Winther [3], the preservation of such invariants goes hand in hand with numerical stability.21

In this work, we shall apply these methods as well as classical finite element PIC methods on a hybrid plasma model22

which makes use of a combined fluid/kinetic description for different particle species to get a good balance between23

accuracy (kinetic models) and computational costs (fluid models). By comparing numerical results to the analytical24

theory in the linear stage and the conservation of energy in the nonlinear stage, the aim of this paper is to investigate25

whether there is a visible difference in the performances of the two algorithms.26

There are several plasma configurations which involve the interaction of an energetic plasma species with a lower27

temperature bulk plasma, e.g. fusion born alpha-particles interacting with the ambient plasma in nuclear fusion28

devices [4] or the interaction of energetic electrons in the solar wind with planetary magnetospheres. The model29

which is used in this work corresponds to the latter case and is thus applicable to plasma dynamics in the Earth’s30

magnetosphere, for instance. It has been used intensively for the simulation [5, 6] of a special type of electromagnetic31

waves called Chorus waves [7, 8], which are electromagnetic emissions whose frequency-time-spectrograms show a32

series of discrete elements with rising frequencies with respect to time. This phenomenon is also known as frequency33

chirping [9]. An important condition for the excitation of Chorus waves is the injection of energetic electrons with an34

anisotropic velocity distribution with respect to the Earth’s magnetic field into the magnetosphere, which then interact35

with Whistler mode waves propagating in the background plasma therein [10].36

This article is structured as follows. In Sec. 2, we introduce and discuss the considered electron hybrid model37

by starting with nonlinear fluid equations and subsequently performing a model reduction until we arrive at the38

simplified model which will be treated numerically. Besides this, we review and study the dispersion relation for39

waves with transverse disturbances propagating parallel to the external magnetic field in order to have a test case for40

the developed numerical algorithms. In Sec. 3, we successively apply the two above mentioned finite element PIC41

methods. For the case of structure-preserving geometric finite element PIC methods, we show, after having done the42

spatial discretization, that we end up with a noncanonical Hamiltonian system in time by proving the anti-symmetry43

and the Jacobi identity of the resulting Poisson matrix. In Sec. 4, we compare results obtained with the two developed44

algorithms before we summarize and conclude in Sec. 5. For completeness and clarity in the main text, the article45

contains three appendices. In Appendix A, the Poisson matrix of the noncanonical Hamiltonian system is displayed,46

while Appendix B contains a table which is helpful for the understanding of the proof of the Jacobi identity. Finally,47

Appendix C lists the time integrators for the geometric algorithm.48

2. Theoretical background49

2.1. The full model50

The considered model is a high-frequency plasma model which means that wave frequencies ω are of the order of51

the electron cyclotron frequencyΩce = qe|B|/me, where qe = −e and me are the electron charge and mass, respectively52

(e is the elementary charge). Since we are interested in phemomena solely arising from electron dynamics, we assume53

the plasma ions (denoted by the subscript i) to be fixed and hence treat them as a stationary, neutralizing background.54

Furthermore, we assume that the electron population consists mainly of cold electrons (denoted by the subscript c for55

“cold”). Formally, this means taking the limit Tc → 0 for the temperature of the cold electrons. Roughly speaking, this56

approximation is valid if the electrons’ thermal velocity vthc is well below the phase velocity of the considered waves,57

i.e. vthc � ω/k [11]. Hence the cold electron population is approximated by the distribution function fc = ncδ(v−uc),58

where nc = nc(x, t) is the number density of the cold electrons and uc = uc(x, t) denotes the mean velocity of the59

ensemble as a whole. This leads to a fluid closure when plugging this in the Vlasov equation and taking the first60

two moments in velocity space. Moreover, we assume that there is a small amount of energetic electrons (denoted61

by the subscript h for “hot”) for which we shall use a kinetic description with negligible collisionality, assuming that62

the average collision times are much larger than the considered time scales ω−1. Using the mass and momentum63

balance equation for the cold electrons, the Vlasov equation for the energetic electrons and Maxwell’s equations for64

the self-consistent dynamics of the electromagnetic fields, the full set of equations in SI-units reads65

cold fluid electrons

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂nc

∂t
+ ∇ · (ncuc) = 0 ,

∂uc

∂t
+ (uc · ∇)uc =

qe

me

(E + uc × B) ,

jc = qencuc,

(1a)

(1b)

(1c)
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hot kinetic electrons

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ fh
∂t
+ v · ∇ fh +

qe

me

(E + v × B) · ∇v fh = 0,

nh =

∫
fh d3v,

jh = qe

∫
v fh d3v = qenhuh,

(1d)

(1e)

(1f)

66

Maxwell’s equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂B
∂t
= −∇ × E,

1

c2

∂E
∂t
= ∇ × B − μ0(jc + jh),

∇ · E = 1

ε0
[qini + qe(nc + nh)],

∇ · B = 0,

(1g)

(1h)

(1i)

(1j)

where, as stated above, the ions shall form a stationary background. This implies a constant number density ni = ni(x)67

in time, i.e. ∂ni/∂t = 0, and a vanishing ion current ji = 0 for all times. Furthermore, jc/h denote the current densities68

of the cold/hot electrons, respectively, and fh = fh(x, v, t) denotes the distribution function of the energetic electrons.69

Moreover, c is the speed of light and μ0 the vaccuum permeability with c2μ0ε0 = 1.70

The model (1) possesses a noncanonical Hamiltonian structure which means that the dynamical equations can be71

derived from a Poisson bracket and a Hamiltonian representing the total energy of the system [12]. Thus, when we72

talk about structure-preserving numerical methods, we aim to perform a discretization that preserves this noncanonical73

Hamiltonian structure (see [2]).74

2.2. Model reduction75

The model (1) can be reduced to an equivalent set of equations for the time evolution of the unknowns (uc, fh, E,76

B) with the constraint that Gauss’ law (1i) and the divergence constraint (1j) must be satisfied at the initial time t = 0.77

The reduced model then takes the form78

∂uc

∂t
+ (uc · ∇)uc =

qe

me

(E + uc × B),

∂ fh
∂t
+ v · ∇ fh +

qe

me

(E + v × B) · ∇v fh = 0,

∂B
∂t
= −∇ × E,

1

c2

∂E
∂t
= ∇ × B − μ0qencuc − μ0qe

∫
v fh d3v,

(2a)

(2b)

(2c)

(2d)

combined with the aforementioned constraints at t = 0. The proof that the model (2) is indeed equivalent to the full79

model (1) consists of two steps: First, we note that the dynamics given by Faraday’s law (1g) conserves the divergence80

constraint for the magnetic field,81

0 = ∇ ·
(
∂B
∂t
+ ∇ × E

)
=
∂

∂t
(∇ · B), (3)

i.e. the divergence constraint remains satisfied at later times t > 0 provided that it was satisfied at the initial time82

t = 0. Likewise, the mass continuity equation for the cold fluid electrons (1a) is automatically satisfied by Ampére’s83

law (1h) by assuming that the cold electron number density nc can be reconstructed from the divergence of the electric84
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field (1i) at any time t ≥ 0:85

0 = ∇ ·
(

1

c2

∂E
∂t
− ∇ × B + μ0qencuc + μ0qe

∫
v fh d3v

)

=
↑

(1i)

μ0qe

∂

∂t
(nc + nh) + μ0qe∇ · (ncuc) + μ0qe

∫
v · ∇ fh d3v

=
↑

(1d), (1e)

μ0qe

[
∂nc

∂t
+ ∇ · (ncuc)

]
︸�����������������︷︷�����������������︸

cont. eq. (1a)

−μ0q2
e

me

∫
(E + v × B) · ∇v fh d3v︸��������������������������︷︷��������������������������︸

=0

.

(4)

From the second to the third line we first used the Vlasov equation (1d) to replace the v · ∇ fh term in the integral and86

subsequently used the definition of the hot electron number density (1e). The disappearance of the integral in the third87

line can easily be verified by partial integration in v and noting that fh → 0 for v→ ∞. Consequently, the divergence88

of Ampére’s law reduces to the the mass continuity equation for the fluid electrons (1a) which is therefore satisfied89

automatically. In summary, we showed that solutions (uc, fh, E, B) of the reduced model (2) with compatible initial90

conditions are indeed solutions (nc, uc, fh, E, B) of the full model (1).91

The model can further be simplified by considering waves as small-amplitude perturbations (denoted by tildes)92

about a given time-independent equilibrium state (denoted by the subscript “0”). In this case, we can write93

nc(x, t) = nc0(x) + ñc(x, t),
uc(x, t) = ũc(x, t),
B(x, t) = B0(x) + B̃(x, t),
E(x, t) = Ẽ(x, t),

fh(x, v, t) = f 0
h (x, v) + f̃h(x, v, t),

(5a)

(5b)

(5c)

(5d)

(5e)

where we assumed that there is no background electric field and no equilibrium plasma flow (which also means that94

there is no cold equilibrium current jc0 and thus ∇ × B0 = −μ0jh0 must be satisfied). In what follows, we neglect95

nonlinear terms for the fluid quantities, e.g. the perturbed cold current density j̃c = qenc0ũc. This leads to a modified96

momentum balance equation by first linearizing (2a) and subsequently expressing ũc in terms of j̃c according to97

ũc = j̃c/qenc0. However, we keep all nonlinearities in the Vlasov equation for the full distribution function fh in order98

to apply classical particle-in-cell methods which exploit the fact that the distribution function is constant along its99

characteristics in a Lagrangian frame, i.e. d/dt fh(x(t), v(t), t) = 0. Finally, this leads to the model100

∂j̃c

∂t
= ε0Ω

2
peẼ + j̃c ×Ωce,

∂ fh
∂t
+ v · ∇ fh +

qe

me

(E + v × B) · ∇v fh = 0,

∂B̃
∂t
= −∇ × Ẽ,

1

c2

∂Ẽ
∂t
= ∇ × B̃ − μ0 j̃c − μ0qe

∫
v f̃h d3v,

(6a)

(6b)

(6c)

(6d)

where we introduced the spatially dependent cold electron plasma frequency Ω2
pe(x) = e2nc0(x)/ε0me, the oriented101

electron cyclotron frequency Ωce(x) = qeB0(x)/me corresponding to the background magnetic field B0. An important102

property of the linearized model (6) is that its dynamics conserves the total energy103

ε :=
ε0
2

∫
Ω

Ẽ2 d3x︸����������︷︷����������︸
=:εE

+
1

2μ0

∫
Ω

B̃2 d3x︸������������︷︷������������︸
=:εB

+
1

2ε0

∫
Ω

1

Ω2
pe

j̃2
c d3x

︸����������������︷︷����������������︸
:=εc

+
me

2

∫
Ω

∫
|v|2 fh d3vd3x︸������������������������︷︷������������������������︸
εh

(7)

in the domainΩ = R3, which is the sum of the electric field energy εE , the magnetic field energy εB, the kinetic energy104

of the cold electrons εc and the kinetic energy of the hot electrons εh, respectively. It is relatively straightforward to105
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Fig. 1. (a) Real part ωr = Re(ω) of numerical solutions of the dispersion relation (12) for parameters Ωpe = 2|Ωce |, νh = 0.005, vth‖ = 0.2c
and vth⊥ = 0.6c. (b) Corresponding imaginary parts γ = Im(ω). Here, only the solution corresponding to the R-wave below the electron
cyclotron frequency |Ωce | is shown since the imaginary parts of the other two branches are close to zero.

proof this property by computing dε/dt, using the dynamical equations (6) to replace the occurring partial time106

derivatives, noting that all quantities vanish at infinity (or assuming a periodic domain) and then summing everything107

up to show that dε/dt = 0. We will use this energy conservation property later as a criterion for the performances of108

the developed numerical schemes.109

2.3. Linear dispersion relation110

We study the linear dispersion relation of the model (6) for the case of wave propagation parallel to a uniform111

magnetic field B0 = B0ez (⇒ Ωce(x) = Ωce = const.), i.e. the wave vector k = kez, and a spatially uniform plasma112

in the equilibrium state. The latter implies a constant cold electron plasma frequency Ωpe(x) = Ωpe = const. and a113

uniform hot electron equilibrium distribution function f 0
h
= f 0

h
(v). In order to obtain a linear dispersion relation, we114

now linearize the Vlasov equation as well to get the fully linearized model115

∂jc

∂t
= ε0Ω

2
peE + Ωcejc × ez,

∂ fh
∂t
+ v · ∇ fh + Ωce(v × ez) · ∇v fh = − qe

me

(E + v × B) · ∇v f 0
h ,

∂B
∂t
= −∇ × E,

1

c2

∂E
∂t
= ∇ × B − μ0jc − μ0qe

∫
v fh d3v,

(8a)

(8b)

(8c)

(8d)

where we performed a relabeling (B̃ → B, f̃h → fh, . . .) for reasons of clarity. Note that Ωce < 0 for electrons. In the116

above stated case of parallel wave propagation, the problem becomes effectively one-dimensional in space, which is117

why we can set ∇ = ez∂/∂z in (8). By looking for plane wave solutions ∼ exp[i(kz−ωt)] for all quantities and solving118

the linearized Vlasov equation in velocity space with the method of characteristics (see [11], pp. 93 ff.), one ends119

up with three linear independent solutions: One of these solutions corresponds to electrostatic waves (longitudinal120

waves with perturbations parallel to the background magnetic field) which we do not consider further. The other121

two solutions correspond to right-handed (R) and left-handed (L) circularly polarized waves (transversal waves with122

perturbations perpendicular to the background magnetic field only), respectively. The dispersion relation for these123

types of waves for an arbitrary hot electron equilibrium distribution function f 0
h

reads [11, 13]124

0 = DR/L(k, ω) = 1 − c2k2

ω2
− Ω2

pe

ω(ω ±Ωce)
+ νh
Ω2

pe

ω

∫
v⊥
2

ĜF0
h

ω ±Ωce − kv‖
d3v, (9)

where νh = nh0/nc0 is the ratio between the hot and cold electron number density, d3v = 2πv⊥dv‖v⊥, F0
h

the velocity125

part of the equilibrium distribution function, i.e. f 0
h

(v⊥, v‖) = nh0F0
h
(v⊥, v‖) and Ĝ is a differential operator measuring126
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the anisotropy of the distribution function in velocity space:127

Ĝ =
∂

∂v⊥
+

k
ω

(
v⊥
∂

∂v‖
− v‖

∂

∂v⊥

)
. (10)

In order to satisfy the steady-state Vlasov equation with the background magnetic field B0, it is straightforward to show128

that the equilibrium distribution function must be rotationally symmetric around the magnetic field and therefore only129

depends on v2⊥ = v2
x + v2

y and v‖ = vz. For the special case of an anisotropic Maxwellian with generally different130

thermal velocities in parallel and perpendicular direction,131

F0
h(v⊥, v‖) =

1

(2π)3/2vth‖v2
th⊥

exp

⎛⎜⎜⎜⎜⎜⎝− v2⊥
2v2

th⊥
−

v2
‖

2v2
th‖

⎞⎟⎟⎟⎟⎟⎠ , (11)

the dispersion relation (9) transfers to132

0 = DR/L(k, ω) = 1 − c2k2

ω2
− Ω2

pe

ω(ω ±Ωce)
+ νh
Ω2

pe

ω2

⎡⎢⎢⎢⎢⎢⎣ ω

k
√

2vth‖
Z(ξ±) −

⎛⎜⎜⎜⎜⎜⎝1 − v2
th⊥

v2
th‖

⎞⎟⎟⎟⎟⎟⎠ (1 + ξ±Z(ξ±))

⎤⎥⎥⎥⎥⎥⎦ , (12)

where ξ± = (ω ±Ωce)/k
√

2vth‖ and Z is the plasma dispersion function [14] given by133

Z(ξ) =
√
πe−ξ

2

(
i − 2√

π

∫ ξ

0

et2

dt
)
=
√
πe−ξ

2

(i − erfi(ξ)). (13)

In the absence of energetic electrons (νh → 0), the dispersion relation (12) transfers to the well-known cold plasma134

dispersion relation for electron waves, which only provides solutions with real oscillation frequencies ωr := Re(ω)135

for all wavenumbers k. This means that there is no wave growth or damping due to an imaginary part γ := Im(ω).136

However, depending on the temperature anisotropy of F0
h
, the dispersion relation (12) provides solutions with γ � 0137

which is shown in Fig. 1, where we plot the real frequency ωr on the left-hand side and the growth rate γ on the138

right-hand side. One can see that there are two solutions for R-waves and one solution for L-waves, which is known139

from the cold plasma theory [11]. However, due to interaction of waves with fast electrons that meet the resonance140

condition ω = kv‖ ∓ Ωce, the lower branch below the electron cyclotron frequency becomes unstable for a certain141

range of wavenumbers if the temperature anisotropy is sufficiently large.142

We shall use these results for the verification of the developed numerical algorithms.143

3. Numerical methods144

In this section, we apply two kinds of numerical methods on the electron hybrid model which we have just145

discussed on the continuous level and for which the linear dispersion relation (12) is available. Since the latter corre-146

sponds to transverse electromagnetic waves, which, in the linear phase, are completely decoupled from longitudinal147

electrostatic waves, we neglect the z-components of the fields Ẽ, B̃ and j̃c in the model (6) and only solve for x- and148

y-components while retaining all velocity components in the kinetic equation. We start with an intuitive application149

of a combination of classical finite elements for solving field equations and the classical PIC method for solving the150

Vlasov equation followed by applying structure-preserving finite element PIC methods. We would like to point out151

that neglecting the z-components means that we only satisfy Gauss’s law (1i) up to the noise in the energetic electron152

charge density which is induced by the random particle loading and that the schemes are consequently not applicable153

to electrostatic phenomena like electron Landau damping.154

3.1. Standard finite element particle-in-cell155

As a first step, we write the momentum balance equation (6a), Faraday’s law (6c) and Ampére’s law (6d) in the156

compact form157

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂U
∂t
+ A1

∂U
∂z
+ A2U = S,

U(0, t) = U(L, t), U(z, t = 0) = U0(z)

(14a)
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for the vector of unknowns U = (Ẽx, Ẽy, B̃x, B̃y, j̃cx, j̃cy) with initial condition U0 and impose periodic boundary158

conditions on the domain Ω = (0, L), where L is the length of the computational domain. The constant matrices159

A1, A2 ∈ R6×6 and the source term S are160

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 c2 0 0

0 0 −c2 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15a)

161

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 μ0c2 0

0 0 0 0 0 μ0c2

0 0 0 0 0 0

0 0 0 0 0 0

−ε0Ω2
pe 0 0 0 0 −Ωce

0 −ε0Ω2
pe 0 0 Ωce 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15b)

162

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ0c2 jhx

−μ0c2 jhy

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15c)

Semi-discretization in space. Following classical finite element methods (see [15], for instance), one assumes U ∈163

(H1(Ω))6, which means that all the unknown functions contained in U are elements of the same space H1(Ω) = {u ∈164

L2(Ω), ∂u/∂z ∈ L2(Ω)} with L2(Ω) being the space of square integrable functions in the domain Ω. Furthermore, the165

problem given in strong form is transformed into an equivalent weak formulation by multiplying the equations with a166

test function V ∈ H1 (we shall use the allocations H1(Ω)→ H1 and L2(Ω)→ L2 for a shorter notation) and integrating167

over the domain Ω. In our case (14), the weak formulation reads: Find U ∈ (H1(Ω))6 such that168

∫ L

0

∂U
∂t

Vdz + A1

∫ L

0

∂U
∂z

Vdz + A2

∫ L

0

UVdz =
∫ L

0

SVdz ∀V ∈ H1. (16)

As a next step, we replace the function space H1 by a finite-dimensional subspace Sh ⊂ H1 in which we look for169

the approximate solution Uh of the problem (14). In addition to that, we use the same subspace for the trial function170

Uh and the test function Vh (Bubnov-Galerkin-method). This leads to the following discrete version of the above171

problem: Find Uh ∈ (Sh)6 such that172

∫ L

0

∂Uh

∂t
Vhdz + A1

∫ L

0

∂Uh

∂z
Vhdz + A2

∫ L

0

UhVhdz =
∫ L

0

SVhdz ∀Vh ∈ Sh. (17)

Expanding trial and test function in a basis of Sh denoted by (ϕ j) j=0,...,N−1, where N is the dimension of Sh,173

Uh(z, t) =
N−1∑
j=0

u j(t)ϕ j(z), Vh(z) =

N−1∑
j=0

v jϕ j(z), (18)

and substituting these expressions in the discrete weak formulation (17) yields174

N−1∑
i, j=0

vi
du j

dt

∫ L

0

ϕiϕ jdz︸�������︷︷�������︸
=:mi j

+A1

N−1∑
i, j=0

viu j

∫ L

0

ϕiϕ
′
jdz︸�������︷︷�������︸

=:ci j

+A2

N−1∑
i, j=0

viu j

∫ L

0

ϕiϕ jdz︸�������︷︷�������︸
=:mi j

=

N−1∑
i=0

vi

∫ L

0

Sϕidz, (19)
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where we have defined the entries of the mass matrix M := (mi j)i, j=0,...,N−1 ∈ RN×N and the advection matrix C :=175

(ci j)i, j=0,...,N−1 ∈ RN×N . With this, (19) can be expressed equivalently in the following semi-discrete block matrix form:176

VMb

du
dt
+ VC̃u + VM̃u = VS. (20)

In this matrix formulation, the vector u contains all the unknown finite element coefficients of the expansion (18),177

u = (u0, u1, . . . ,uN−1)�, and every u j = (ex j, ey j, bx j, by j, jcx j, jcy j) contains the respective coefficients of all six178

physical quantities which makes u ∈ R6N . The block matrix V for the coefficients of the test function Vh is179

V :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0I6 0 · · · 0

0 v1I6 · · · 0
...

...
. . .

...
0 0 · · · vN−1I6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R6N×6N , (21)

where I6 denotes the 6 × 6 identity matrix. Furthermore, we introduced the block matrices Mb := M ⊗ I6 ∈ R6N×6N ,180

C̃ := C ⊗ A1 ∈ R6N×6N and M̃ :=M ⊗ A2 ∈ R6N×6N . The vector S is given by181

S :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ L
0

Sϕ0(z)dz
...∫ L

0
SϕN−1(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R6N . (22)

Since we want (20) to be true for all V of the form (21), we finally end up with the semi-discrete system182

Mb

du
dt
= −C̃u − M̃u + S (23)

for the time evolution of all finite element coefficients u ∈ R6N .183

Discretization in time. Having done the spatial discretization, the next step is to apply a time stepping scheme on184

system (23). Here, we use a second-order Crank-Nicolson scheme [16] which consists of applying a mid-point rule on185

the quantities on the right-hand side. Denoting the time step by n, i.e. tn = nΔt, the fully discrete matrix formulation186

for advancing un → un+1 then reads187 (
Mb +

1

2
ΔtC̃ +

1

2
ΔtM̃

)
un+1 =

(
Mb − 1

2
ΔtC̃ − 1

2
ΔtM̃

)
un +

1

2
Δt

(
Sn+1 + Sn

)
. (24)

We see that this method is implicit and thus involves the inversion of the global matrix on the left hand side. In188

practice, we perform a LU decomposition of the matrix at the beginning of a simulation. This allows us to solve for189

the new coefficients un+1 quite efficiently by forward and backward substitution. All this happens on a computational190

time scale well below the one needed for assembling the source term Δt/2(Sn+1 + Sn) in (24) which means that the191

overall efficiency is not affacted by using an implicit scheme.192

Basis functions. Let us now construct a basis of the finite-dimensional subspace Sh with dimSh = N. We do193

this with a family of B-splines [17], which are piecewise polynomials of degree p. The set of basis functions is fully194

determined by a sequence of m + 1 points (or knots) 0 = z0 ≤ z1 ≤ . . . ≤ zm = L which defines a knot vector195

T = (z0, z1, . . . , zm). For degree p = 0 the basis functions (ϕ
p=0

j ) j=0,...,m−1 are defined by196

ϕ0
j (z) =

⎧⎪⎪⎨⎪⎪⎩1 z ∈ [z j, z j+1)

0 else.
(25)

Higher degrees are defined by the following recursion formula:197

ϕ
p
j (z) = wp

j (z)ϕ
p−1

j (z) + (1 − wp
j+1

)ϕ
p−1

j+1
(z), wp

j (z) =
z − z j

z j+p − z j
. (26)

If the knot vector T contains r repeated knots one says that this knot has multiplicity r. Using multiple knots at the198

boundaries enables the application of Dirichlet boundary conditions by enforcing all the interior splines to vanish at199
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Fig. 2. (a) Example for a periodic B-spline basis of degree p = 1 on a domain of length L = 1 discretized by Nel = 5 elements and the
corresponding Gauss-Legendre quadrature points. In this special case a B-spline basis is equivalent to the basis of linear Lagrange finite
elements. (b) Same as (a) for degree p = 2.

the boundaries and setting the first and last spline there to one. This can be achieved by using r = p+1 equal knots for200

the left and right boundary, respectively. In this case dimSh = m− p. However, since we are using periodic boundary201

conditions, we need a periodic basis. This can be achieved by extending the knot vector over the boundaries by p202

additional points. The result is shown in Fig. 2 for generic degrees p = 1 and p = 2. In this case dimSh = m − 2p.203

Note in Fig. 2, that B-splines which leave the domain at one boundary come back at the other boundary which can be204

seen by the respective color codings. The elements of the discretized domain are naturally related to the knot sequence205

by simply using all interior knots together with the boundaries of the domain as the element boundaries which we206

denote by (ck)k=0,...,Nel
, where Nel is the total number of elements and c0 = 0 and cNel

= L. Let us summarize some207

important properties of a B-spline basis [17]:208

• B-splines are piecewise polynomials of degree p,209

• B-splines are non-negative,210

• Compact support: there are exactly p + 1 non-vanishing B-splines in each element and the support of the211

B-spline ϕ
p
j is contained in [z j, . . . , z j+p+1],212

• B-splines form a partition of unity:
∑N−1

j=0 ϕ
p
j (z) = 1, ∀z ∈ R,213

• If a knot zm has multiplicity r then the B-spline is C(p−r) at zm.214

Since B-splines are piecewise polynomials, all matrices (mass and advection matrix) can be computed exactly by215

using a quadrature rule of sufficient order. Here, we use the Gauss-Legendre quadrature rule with p + 1 quadrature216

points per element which allows us to integrate exactly polynomials up to an order of 2p + 1.217

PIC. Finally, we use a classical PIC solver [18] to treat the source term and thus approximate the distribution218

function fh by a sum of Dirac masses in the four-dimensional phase space219

fh(z, v, t) ≈
Np∑

k=1

wkδ(z − zk(t))δ(v − vk(t)), (27)

where Np is the number of particles, wk is the weight of the k-th particle and vk = vk(t) and zk = zk(t) are the particles’220

velocities and positions, respectively, satisfying the equations of motion221

dvk

dt
=

qe

me

[E(zk(t), t) + vk(t) × B(zk(t), t)] , vk(0) = v0
k ,

dzk

dt
= vkz, zk(0) = z0

k .

(28a)

(28b)
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We solve this set of ordinary differential equations in time with the classical Boris method [18, 19, 20] which uses222

a staggered grid for positions and velocities, i.e. positions are computed at integer time steps (zn
k → zn+1

k ), whereas223

velocities are computed at interleaved time steps (vn−1/2
k → vn+1/2

k ). The meaning of the particles’ weights wk in224

(27) becomes clear if one uses a Monte Carlo interpretation [21] for the evaluation of the integrals over the current225

contribution from the energetic electrons appearing in (22):226

∫ L

0

jhx/yϕ jdz =
↑

see def. (1f)

qe

∫ L

0

∫
vx/y

fh
gh

ϕ j︸����︷︷����︸
=:R

ghd3vdz ≈ qe

1

Np

Np∑
k=1

vkx/y(t)
f 0
h

(z0
k , v

0
k)

g0
h
(z0

k , v
0
k)
ϕ j(zk(t)) (29)

The last expression is an estimator of the expectation value of the random variable R := vx/yϕ j fh/gh distributed under227

the probability density function (PDF) gh in phase space. Since gh is a PDF it must be normalized to one. Note228

that we used that the distribution function fh and the PDF gh are constant along a particle trajectory according to the229

Vlasov equation, i.e. fh(zk(t), vk(t), t) = f 0
h

(z0
k , v

0
k). This means that the weights are fully determined from the initial230

distribution function f 0
h

and the sampling distribution g0
h

from which the initial particles are drawn. Throughout this231

work we shall entirely use the sampling distribution232

g0
h(z, vx, vy, vz) =

1

L
1

(2π)3/2vth‖v2
th⊥

exp

⎛⎜⎜⎜⎜⎜⎝−v2
x + v2

y

2v2
th⊥
− v2

z

2v2
th‖

⎞⎟⎟⎟⎟⎟⎠ . (30)

Consequently, we sample uniformly in real space and normally in every velocity direction using standard random233

number generators. With this particular choice wk = 1/Np · f 0
h

(z0
k , v

0
k)/g0

h
(z0

k , v
0
k) = nh0L/Np for the anisotropic234

Maxwellian f 0
h
= nh0F0

h
with F0

h
given in (11). Finally, since the Boris method computes positions at integer time steps235

and velocities at interleaved time steps, we approximate the entries of the average vector Δt/2
(
Sn+1 + Sn

)
appearing236

on the right-hand side of (24) due to the Crank-Nicolson discretization in the following manner:237

−μ0c2qeΔt
2

Np∑
k=1

wk

[
vn+1

kx/yϕ j(zn+1
k ) + vn

kx/yϕ j(zn
k)

]
≈ −μ0c2qeΔt

Np∑
k=1

wkvn+1/2
kx/y ϕ j

(
1

2
(zn+1

k + zn
k)

)
. (31)

Algorithm. Let us summarize the algorithm for numerically solving the model (6) for transverse electromagnetic238

waves only:239

1. Create a periodic B-spline basis of degree p on a domain of length L discretized by Nel elements (see (25) and240

(26)). This results in N = Nel.241

2. Assemble the mass matrix M and advection matrix C and from this, assemble the block matrices Mb =M⊗ I6 ∈242

R6N×6N , C̃ = C ⊗ A1 ∈ R6N×6N and M̃ =M ⊗ A2 ∈ R6N×6N .243

3. Load the initial fields U(z, t = 0) and perform a L2-projection to get the initial coefficients u0 ∈ R6N .244

4. Sample the initial positions (z0
k)k=1,...,Np

and velocities (v0
kx, v

0
ky, v

0
kz)k=1,...,Np

according to the sampling distribution245

(30) by using a random number generator and compute the weights wk = nh0L/Np.246

5. Compute the electric and magnetic field at the particle positions by noting that247

Bx/y(zn
k , t

n) = B̃hx/y(zn
k , t

n) =

N−1∑
j=0

bn
x/yϕ j(zn

k),

Bz(zn
k , t

n) = B0,

Ex/y(zn
k , t

n) = Ẽhx/y(zn
k , t

n) =

N−1∑
j=0

en
x/yϕ j(zn

k),

Ez(zn
k , t

n) = 0.

(32a)

(32b)

(32c)

(32d)

6. In order to initialize the Boris algorithm with interleaved particle positions and velocities, compute the velocities248

(v−1/2
kx , v

−1/2
ky , v

−1/2
kz )k=1,...,Np

by applying the Boris algorithm with the time step −Δt/2.249
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7. Start the time loop:250

7.1 Update the particle positions (zn
k → zn+1

k ) and velocities (vn−1/2
k → vn+1/2

k ) by applying the Boris algorithm251

with the time step Δt.252

7.2 Assemble the source term Δt/2
(
Sn+1 + Sn

)
in the scheme (24) according to formula (31).253

7.3 Update the finite element coefficients (un → un+1) according to the scheme (24) with the time step Δt.254

7.4 Compute the new fields at the particle positions according to formulas (32).255

7.5 Go to 7.1.256

3.2. Geometric finite element particle-in-cell257

Fig. 3. Commuting diagram for involved function spaces in one spa-
tial dimension with continuous spaces in the upper line and discrete
subspaces in the lower line. The connection between the two se-
quences is made by the projectors Π0 and Π1.

In this section, we apply a structure-preserving fi-258

nite element PIC method on the same model (6), once259

more with transverse electromagnetic field components260

(x- and y-components) only. The main difference com-261

pared to standard finite element approach is that we now262

look for the fields (Ẽx, Ẽy, B̃x, B̃y, j̃cx, j̃cy) in different263

function spaces H1, respectively L2. These spaces and264

the respective finite-dimensional subspaces V0 ⊂ H1
265

and V1 ⊂ L2 are related according to the commuting dia-266

gram depicted in Fig. 3, where the upper line represents267

the sequence of spaces involved in Maxwell’s equations268

and the lower line the finite-dimensional counterparts.269

The projectors Π0 : H1 → V0 and Π1 : L2 → V1 must270

be constructed carefully in order to assure the diagram271

to be commuting, i.e. Π1∂ψ/∂z = ∂/∂zΠ0ψ [2].272

Weak formulation. In analogy to the previous section, we assume the domain to be Ω = (0, L) and impose273

periodic boundary conditions on all quantities. Obviously, we should look for Ẽ = (Ẽx, Ẽy) and j̃c = ( j̃cx, j̃cy) in274

the same space since they are never connected via spatial derivatives in the same equation. The opposite is true for275

the magnetic field because in Maxwell’s equations B̃ = (B̃x, B̃y) is connected with the other two quantities via a276

spatial derivative and therefore B̃ must be an element of a different space if we want to satisfy the diagram in Fig. 3.277

Consequently, there are two options: Either we choose B̃ ∈ (L2)2 and Ẽ, j̃c ∈ (H1)2 or vice versa. We follow Kraus278

et al. [2] and choose the former option. In order to obtain a weak formulation, we multiply by test functions Dx,279

Dy ∈ H1, Cx, Cy ∈ L2 and Ox, Oy ∈ H1 and integrate over the domain Ω. This results in the following formulation:280

find (Ẽx, Ẽy, B̃x, B̃y, j̃cx, j̃cy) ∈ H1 × H1 × L2 × L2 × H1 × H1 such that281

∫ L

0

∂Ẽx

∂t
Dxdz − c2

∫ L

0

B̃y
∂Dx

∂z
dz + μ0c2

∫ L

0

j̃cxDxdz = −μ0c2

∫ L

0

jhxDxdz ∀Dx ∈ H1,

∫ L

0

∂Ẽy

∂t
Dydz + c2

∫ L

0

B̃x
∂Dy

∂z
dz + μ0c2

∫ L

0

j̃cyDydz = −μ0c2

∫ L

0

jhyDydz ∀Dy ∈ H1,

∫ L

0

∂B̃x

∂t
Cxdz −

∫ L

0

∂Ẽy

∂z
Cxdz = 0 ∀Cx ∈ L2,

∫ L

0

∂B̃y

∂t
Cydz +

∫ L

0

∂Ẽx

∂z
Cydz = 0 ∀Cy ∈ L2,

∫ L

0

∂ j̃cx

∂t
Oxdz − ε0Ω2

pe

∫ L

0

ẼxOxdz −Ωce

∫ L

0

j̃cyOxdz = 0 ∀Ox ∈ H1,

∫ L

0

∂ j̃cy

∂t
Oydz − ε0Ω2

pe

∫ L

0

ẼyOydz + Ωce

∫ L

0

j̃cxOydz = 0 ∀Oy ∈ H1.

(33a)

(33b)

(33c)

(33d)

(33e)

(33f)

Due to this particular choice for the function spaces, we have integrated by parts the terms involving the magnetic282

field in Ampére’s law in order for the weak formulation to be well-defined (this changes the sign). This has the283
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consequence that these equations will be solved in a weak sense, whereas the other equations will be solved in a284

strong sense. Note that this procedure is actually not necessary for the last two equations since they do not involve285

spatial derivatives and are thus ordinary differential equations in time. However, for reasons of clarity, we continue286

with the above formulation. We will see later that all matrices due to the spatial discretization cancel out.287

As a next step, we replace the spaces H1 and L2 by their finite-dimensional counterparts V0 ⊂ H1 and V1 ⊂288

L2 and denote the dimensions by dim V0 = N0 and dim V1 = N1 and the set of basis functions that span the289

spaces by (ϕ0
j ) j=0,...,N0−1 and (ϕ1

j+1/2) j=0,...,N1−1, respectively. The discrete version of (33) then simply reads: find290

(Ẽhx, Ẽhy, B̃hx, B̃hy, j̃hcx, j̃hcy) ∈ V0 × V0 × V1 × V1 × V0 × V0 such that291

∫ L

0

∂Ẽhx

∂t
Dhxdz − c2

∫ L

0

B̃hy
∂Dhx

∂z
dz + μ0c2

∫ L

0

j̃hcxDhxdz = −μ0c2

∫ L

0

jhxDhxdz ∀Dhx ∈ V0,

∫ L

0

∂Ẽhy

∂t
Dhydz + c2

∫ L

0

B̃hx
∂Dhy

∂z
dz + μ0c2

∫ L

0

j̃hcyDhydz = −μ0c2

∫ L

0

jhyDhydz ∀Dhy ∈ V0,

∫ L

0

∂B̃hx

∂t
Chxdz −

∫ L

0

∂Ẽhy

∂z
Chxdz = 0 ∀Chx ∈ V1,

∫ L

0

∂B̃hy

∂t
Chydz +

∫ L

0

∂Ẽhx

∂z
Chydz = 0 ∀Chy ∈ V1,

∫ L

0

∂ j̃hcx

∂t
Ohxdz − ε0Ω2

pe

∫ L

0

ẼhxOhxdz −Ωce

∫ L

0

j̃hcyOhxdz = 0 ∀Ohx ∈ V0,

∫ L

0

∂ j̃hcy

∂t
Ohydz − ε0Ω2

pe

∫ L

0

ẼhyOhydz + Ωce

∫ L

0

j̃hcxOhydz = 0 ∀Ohy ∈ V0.

(34a)

(34b)

(34c)

(34d)

(34e)

(34f)

Commuting diagram. There are multiple possibilities to construct the commuting diagram shown in Fig. 3. The292

general procedure is to define a basis for the first subspace V0, then to look for an appropriate basis for the next space293

V1 in order to satisfy the sequence for differential operators in the lower line, and finally to find the projectors such294

that the diagram is commuting. For the space V0, we choose standard Lagrange finite elements1 of degree p which295

are most easily defined on a reference element I = [−1, 1] together with a mapping Fk : I → Ωk, s �→ z on elements296

Ωk = [ck, ck+1] on the physical domain Ω, where (ck)k=0,...,Nel
denote the boundaries of Nel elements (and the elements297

are simply labeled by 0, . . . ,Nel − 1). The mapping Fk and its inverse F−1
k are given by298

z = Fk(s) := ck +
s + 1

2
(ck+1 − ck),

s = F−1
k (z) :=

2(z − ck)

ck+1 − ck
− 1.

(35a)

(35b)

The Lagrange shape functions (ηn(s))n=0,...,p of degree p in the reference element I are created from a sequence of299

knots s0 = −1 < . . . < sm < . . . < 1 = sp and are defined by ηn(sm) = δnm, which leads to the well-known formula300

ηn(s) =
∏
m�n

s − sm

sn − sm
. (36)

The construction of the basis functions on the physical domain is then done by noting that we need continuity301

at the shared degrees of freedom at the element boundaries in order for V0 to be a subspace of H1. This leads302

to a total number of N0 = pNel basis functions in case of periodic boundary conditions and we get the formula303

j = mod(pk + n,N0)n=0,...,p;k=0...Nel−1 to go from shape to basis functions. The corresponding projector Π0 on this basis304

acting on some continuous function E ∈ H1 we define by305

Π0 : H1 → V0, (Π0E)(zi) = E(zi), (37)

1In doing FEEC, one is not restricted to Lagrange FEM. One can take any kind of basis for V0, in particular splines.
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Fig. 4. (a) Lagrange shape functions of degree p = 2 in the reference element I = [−1, 1] and the corresponding periodic basis functions on
a physical domain of length L = 1 which has been discretized by Nel = 3 elements of equal length. (b) Corresponding local histopolation
shape and basis functions.

where (zi)i=0,...,N0−1 is the global knot sequence on the physical domain which satisfies ϕ0
j (zi) = δi j. Denoting the306

projected function by Eh := Π0E we thus have307

E(zi) = Eh(zi) =

N0−1∑
j=0

e jϕ
0
j (zi) = ei, (38)

which means that the finite element coefficients are the values of the function at the knot sequence (zi)i=0,...,N0−1. As a308

next step, we consider the space V1 and define the shape functions (χn+1/2)n=0,...,p−1 in the reference element I by309 ∫ sm+1

sm

χn+1/2(s)ds = δnm, (39)

where s0 = −1 < . . . < sm < . . . < 1 = sp is the same local knots sequence as for the usual Lagrange shape310

functions. The polynomials (χn+1/2)n=0,...,p−1 are called Lagrange histopolation polynomials (LHPs). Some simple311

considerations yield that the solution of these equations is given by linear combinations of first order derivatives of312

the Lagrange shape functions (ηn(s))n=0,...,p,313

χn+1/2(s) =

p∑
m=n+1

d

ds
ηm(s), (40)

which can be verified by plugging this in the definition (39) and using the property ηn(sm) = δnm. In order to314

get a basis on the physical domain, these shape functions are just put next to each other since there are no shared315

degrees of freedom at the element boundaries at which continuity must be enforced. This also has the consequence316

that the total number of basis function is again N1 = pNel, however, in contrast to the previous case, there are317

now p non-vanishing basis function per element (and not p + 1) which means that we get the conversion formula318

j = (pk + n)n=0,...,p−1;k=0,...,Nel−1 to go from shape to basis functions. We define the corresponding projector Π1 acting319

on some square integrable function B ∈ L2 by320

Π1 : L2 → V1,

∫ zi+1

zi

(Π1B)(z)dz =
∫ zi+1

zi

B(z)dz. (41)

Note that i = 0, . . . ,N0−1 and thus zN0
= L is just the right end of the domain. Again, denoting the projected function321

by Bh := Π1B we have322

∫ zi+1

zi

B(z)dz =
∫ zi+1

zi

Bh(z)dz =
N1−1∑
j=0

b j+1/2

∫ zi+1

zi

ϕ1
j+1/2(z)dz =

ck+1 − ck

2
bi+1/2 ∀ zi ∈ [ck, ck+1), (42)
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where (ck+1 − ck)/2 is the Jacobian originating from evaluating the integral in (42) on the reference element I. This323

choice for the bases of the space V0 and V1 together with the projectorsΠ0 in (37) andΠ1 in (41) leads to the following324

consideration: take ψ ∈ H1 and note that325

∫ zi+1

zi

(Π1

∂ψ

∂z
)(z)dz =

↑
(41)

∫ zi+1

zi

∂ψ

∂z
(z)dz = ψ(zi+1) − ψ(zi) =↑

(37)

(Π0ψ)(zi+1) − (Π0ψ)(zi) =

∫ zi+1

zi

∂

∂z
(Π0ψ)(z)dz. (43)

Since the integrations from zi to zi+1 for i = 0, . . . ,N0 − 1 uniquely define an element of V1, we get Π1∂ψ/∂z =326

∂/∂z(Π0ψ) and hence the diagram is commuting.327

Semi-discratization in space. In order to obtain a matrix formulation out of the (discrete) weak formulation (34),328

we express all quantities in their respective basis by329

Ẽhx/y(z, t) =
N0−1∑
j=0

ex/y j(t)ϕ0
j (z), B̃hx/y(z, t) =

N1−1∑
j=0

bx/y j+1/2(t)ϕ1
j+1/2(z), j̃hcx/y(z, t) =

N0−1∑
j=0

yx/y j(t)ϕ0
j (z), (44)

and substitute this in the weak formulation (34). The same is done for the test functions Dhx/y ∈ V0, Chx/y ∈ V1 and330

Ohx/y ∈ V0. Let us do this in an exemplary way for the x-component of Ampére’s law (34a) by noting that the spatial331

derivative in the second term is acting on the test function Dhx ∈ V0 with coefficients (dx j) j=0,...,N0−1. According to the332

diagram in Fig. 3, this has the consequence that the function ∂Dhx/∂z must now be an element of the space V1 with333

new coefficients (dx j+1/2) j=0,...,N1−1, which are given by formula (42):334

ck+1 − ck

2
dx j+1/2 =

∫ z j+1

z j

∂Dhx

∂z
dz =

N0−1∑
i=0

dxi

∫ z j+1

z j

∂

∂z
ϕ0

i (z)dz =
N0−1∑
i=0

dxi

[
ϕ0

i (z j+1) − ϕ0
i (z j)

]
= dx j+1 − dx j. (45)

For a uniform mesh ck+1 − ck = h we hence get from (34a)335

N0−1∑
i, j

dex j

dt
dxi

∫ L

0

ϕ0
i ϕ

0
jdz︸�������︷︷�������︸

=:m0i j

−2c2

h

N1−1∑
i, j=0

by j+1/2(dxi+1 − dxi)

∫ L

0

ϕ1
i+1/2ϕ

1
j+1/2dz︸�����������������︷︷�����������������︸

=:m1i j

+μ0c2

N0−1∑
i, j=0

yx jdxi

∫ L

0

ϕ0
i ϕ

0
jdz︸�������︷︷�������︸

=:m0i j

= − μ0c2

N0−1∑
i=0

dxi

∫ L

0

jhxϕ
0
i dz︸��������︷︷��������︸

=: j̄hxi

.

(46)

Here, we defined the entries of the two mass matrices M0 := (m0i j)i, j=0,...,N0−1 ∈ RN0×N0 and M1 := (m1i j)i, j=0,...,N1−1 ∈336

RN1×N1 , respectively, as well as the vector j̄hx := ( j̄hxi)i=0,...,N0−1 ∈ RN0 for the right-hand side, which is coupled to the337

PIC part of the algorithm in the exact same way as it was done in (29). All together, this leads to the equivalent matrix338

formulation339

d�x M0

dex

dt
− c2(Gdx)�M1by + μ0c2d�x M0yx = −μ0c2qed�x Q

0WVx, ∀dx ∈ RN0 ,

⇔ M0

dex

dt
− c2G�M1by + μ0c2M0yx = −μ0c2qeQ

0WVx,

(47a)

(47b)

were we introduced the vector Vx = (v1x . . . , vNp x)� ∈ RNp holding the particles’ velocities in x-direction. The matrices340

Q0 ∈ RN0×Np and W ∈ RNp×Np defined by341

Q0 = Q0(Z) := (ϕ0
i (zk))i=0,...,N0−1;k=1...,Np

,

W := diag(w1, . . . ,wNp
),

(48a)

(48b)

with Z = (z1 . . . , zNp
)� ∈ RNp being the particle positions, simply result from writing (29) in terms of matrix-vector342
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multiplications. Finally, we introduced the discrete gradient matrix343

G :=
2

h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1

−1 1
. . .

. . .

−1 1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ RN1×N0 , (49)

where the last row is due to periodic boundary conditions and thus dN0
= d0, for instance.344

Doing the same for the other equations in (34) as well as for the equations of motion for the particles (28), leads345

to the following semi-discrete system for the ten variables u = (ex, ey, bx, by, yx, yy,Z,Vx,Vy,Vz) ∈ R4N0+2N1+4Np :346

M0

dex

dt
= c2G�M1by − μ0c2M0yx − μ0c2qeQ

0WVx,

M0

dey

dt
= −c2G�M1bx − μ0c2M0yy − μ0c2qeQ

0WVy,

dbx

dt
= Gey,

dby

dt
= −Gex,

dyx

dt
= ε0Ω

2
peex + Ωceyy,

dyy

dt
= ε0Ω

2
peey −Ωceyx,

dZ
dt
= Vz,

dVx

dt
=

qe

me

[(Q0)�ex − ByVz + B0Vy],

dVy

dt
=

qe

me

[(Q0)�ey + BxVz − B0Vx],

dVz

dt
=

qe

me

[ByVx − BxVy], ,

(50a)

(50b)

(50c)

(50d)

(50e)

(50f)

(50g)

(50h)

(50i)

(50j)

where the matrices Q1 ∈ RN1×Np and Bx/y ∈ RNp×Np defined by347

Q1 = Q1(Z) := (ϕ1
i+1/2(zk))i=0,...,N1−1;k=1...,Np

,

Bx/y = Bx/y(Z, bx/y) := diag
[
(Q1)�(Z)bx/y

]
,

(51)

(52)

arise naturally after writing the particles’ equations of motion (28) in matrix-vector form and noting that the discrete348

electric and magnetic fields can be expressed in their respective bases (see (32)).349

In order to analyze the semi-discrete system of equations (50), we define the system’s discrete Hamiltonian350

Hh : Rn → R, u �→ Hh(u) (n = 4N0 + 2N1 + 4Np) by replacing the continuous functions in the energy (7) by their351

discrete counterparts. This results in352

Hh(u) :=
ε0
2

(e�x M0ex + e�y M0ey)︸�����������������������︷︷�����������������������︸
HE

+
1

2μ0

(b�x M1bx + b�y M1by)︸���������������������������︷︷���������������������������︸
HB

+
1

2ε0Ω
2
pe

(y�x M0yx + y�y M0yy)

︸�������������������������������︷︷�������������������������������︸
HY

+
me

2
V�x WVx︸��������︷︷��������︸

Hx

+
me

2
V�y WVy︸��������︷︷��������︸

Hy

+
me

2
V�z WVz︸��������︷︷��������︸

Hz

.

(53)

Using this discrete Hamiltonian, it is straightforward to show that the semi-discrete system (50) can be equivalently353

written in a noncanonical Hamiltonian structure for the dynamics of the variable u:354

du
dt
= J(u)∇uHh(u). (54)
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Table 1. Block index triples for which the terms in (56) are not equal to zero.
Term Block indices (i,j,k)

I (9,10,2) (10,9,2)

II (2,9,10) (2,10,9)

III (9,2,10) (10,2,9)

IV (8,10,1) (10,8,1)

V (1,8,10) (1,10,8)

VI (8,1,10) (10,1,8)

VII (1,8,10) (8,1,10) (2,9,10) (9,2,10) (8,10,10) (10,8,10) (9,10,10) (10,9,10)

VIII (10,1,8) (10,8,1) (10,2,9) (10,9,2) (10,8,10) (10,10,8) (10,9,10) (10,10,9)

IX (1,10,8) (8,10,1) (2,10,9) (9,10,2) (8,10,10) (10,10,8) (9,10,10) (10,10,9)

Lemma. The matrix J in (54) is skew-symmetric and satisfies the Jacobi identity,355

∑
l

(
∂Jab

∂ul
Jlc +

∂Jbc

∂ul
Jla +

∂Jca

∂ul
Jlb

)
= 0, ∀ a, b, c. (55)

356

Proof. The matrix J is written explicitly in Appendix A in a 10 × 10 block structure. From this, the skew-symmetry357

J� = −J is obvious. To prove the Jacobi identity we again take advantage of the 10 × 10 block structure of J and358

denote the (i, j)-th block by Ĵi, j(1 ≤ i ≤ 10, 1 ≤ j ≤ 10). Due to the fact that only very few blocks depend on the359

unknown u, namely Ĵ1,8, Ĵ8,1, Ĵ2,9, Ĵ9,2, Ĵ8,10, Ĵ10,8, Ĵ9,10 and Ĵ10,9 via Bx = Bx(Z, bx), By = By(Z, by) and Q0 = Q0(Z),360

the Jacobi identity (55) reduces to361

0 =
∂Ĵi, j

∂bx
Ĵ3,k=2︸������︷︷������︸
I

+
∂Ĵ j,k

∂bx
Ĵ3,i=2︸������︷︷������︸

II

+
∂Ĵk,i

∂bx
Ĵ3, j=2︸������︷︷������︸

III

+
∂Ĵi, j

∂by
Ĵ4,k=1︸������︷︷������︸

IV

+
∂Ĵ j,k

∂by
Ĵ4,i=1︸������︷︷������︸

V

+
∂Ĵk,i

∂by
Ĵ4, j=1︸������︷︷������︸

VI

+
∂Ĵi, j

∂Z
Ĵ7,k=10︸�������︷︷�������︸

VII

+
∂Ĵ j,k

∂Z
Ĵ7,i=10︸�������︷︷�������︸

VIII

+
∂Ĵk,i

∂Z
Ĵ7, j=10︸�������︷︷�������︸
IX

, ∀ i, j, k.

(56)

Here, we could already identify one block index in each term (e.g. k = 2 for term I or k = 1 for term IV). The362

other indices can be determined from the aforementioned dependencies of the matrices Bx, By and Q0 on bx/y and Z,363

respectively. In Tab. 1, we list the resulting block index combinations giving a non-zero contribution for each term364

I, . . . ,IX. Summing up terms corresponding to identical index triples leads to 18 different index triples listed in Tab.365

B.3 for which the Jacobi identity in the form (56) needs to proven. Since the Jacobi identity gives the same expression366

for cyclic permutations of (i, j, k), there are always three index triples which are equivalent. Consequently, there are367

only six distinct expressions that need to be checked. It is immediately clear that the last two expressions in Tab. B.3368

are equal to zero and that the first and second and the third and fourth expression, respectively, are the same up to the369

sign. The remaining two expressions only differ with respect to ∂Bx/∂bx and ∂By/∂by. Because of the definitions (52)370

of Bx and By, respectively, these terms are again equivalent which means that we only have to prove one combination371

explicitly, for example372

∑
l

∂(By(Z, by)W−1)ab

∂byl+1/2
(GM−1

0 )lc =
∑

l

∂(M−1
0 Q0(Z))ca

∂zl
(W−1)lb, ∀ a, b, c. (57)

Writing all matrix products explicitly yields373

∑
l,m,n,r

(Q1)�amδan
∂bym+1/2

∂byl+1/2︸����︷︷����︸
=δlm

δnb
1

wn
Glr(M

−1
0 )rc =

∑
l,m

(M−1
0 )cm

∂ϕ0
m(za)

∂zl︸���︷︷���︸
=δal(dϕ

0
m/dz)(za)

δlb
1

wl
. (58)
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As a next step, we eliminate all sums involving a Kronecker delta. This results in374

δab
1

wa

∑
m,r

ϕ1
m+1/2(za)Gmr(M

−1
0 )rc = δab

1

wa

∑
m

(M−1
0 )cm

dϕ0
m

dz
(za). (59)

Using that the discrete gradient matrix (49) can be written as Gmr = 2(δmr−1 − δmr)/h and performing the sum over m375

yields376

δab
1

wa

2

h

∑
r

(M−1
0 )rc(ϕ1

r−1/2(za) − ϕ1
r+1/2(za)) = δab

1

wa

∑
r

(M−1
0 )rc

dϕ0
r

dz
(za), (60)

where we have used the symmetry of the inverse of the mass matrix (M−1
0 )rc = (M−1

0 )cr. Furthermore, we renamed377

the summation index on the right-hand-side from m to r. Since the basis function on both sides are evaluated at the378

same particle position za it remains to show that379

ϕ1
r−1/2 − ϕ1

r+1/2 =
h
2

dϕ0
r

dz
, (61)

which is true due to our particular choice of basis functions satisfying the commuting diagram in Fig. 3. By using the380

mappings Fk and F−1
k in (35) from real space to the reference element I = [−1, 1] and by using the definition (39) of381

the LHPs (χn+1/2)n=0,...,p−1, we get382

ϕ1
r−1/2(Fk(s)) − ϕ1

r+1/2(Fk(s)) = χn−1/2(s) − χn+1/2(s)

=

p∑
m=n

d

ds
ηm(s) −

p∑
m=n+1

d

ds
ηm(s) =

d

ds
ηn(s)

=
d

ds
ηn(F−1

k (Fk(s))) =
d

ds
ϕ0

r (Fk(s)) =
dFk

ds
dϕ0

r

dz
=

h
2

dϕ0
r

dz
,

(62)

which completes the proof of the Jacobi identity (55).383

With the stated properties of J, we can define the following Poisson bracket, a bilinear, anti-symmetric bracket,384

that satisfies Leibniz’ rule and the Jacobi identity:385

{R, S } = ∇uR�J(u)∇uS (63)

where R, S : Rn → R, u �→ R, S (u) are functions of the dynamical variables u. This means that the time evolution of386

an arbitrary function R can be written as387

d

dt
R(u(t)) = ∇uR�

du
dt
=
↑

(54)

∇uR�J(u)∇uHh = {R,Hh}, (64)

and taking R = Hh and using the anti-symmetry of the bracket yields388

d

dt
Hh(u(t)) = {Hh,Hh} = −{Hh,Hh} = 0, (65)

which means that the semi-discrete system (54) exactly conserves the discrete Hamiltonian (53).389

Discretization in time. We once more follow [2] and choose a splitting scheme for the integration of the Hamil-390

tonian system (54) in time. For Hamiltonian systems there are in principle two options: The first one is to split the391

Poisson matrix J and to keep the full Hamiltonian. If each of the subsystems can then be solved analytically, this yields392

exact energy conservation. Or one splits the Hamiltonian while keeping the full Poisson matrix. This yields so-called393

Poisson integrators which have the advantage that some invariants, the so-called Casimir invariants of Hamiltonian394

systems, are preserved exactly even on the fully discretized level. We choose the latter option and consequently split395

the Hamiltonian (53) into the six parts396

Hh = HE + HB + HY + Hx + Hy + Hz, (66)
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in order to obtain six subsystems which still have the form (54), however, with a simpler Hamiltonian, respectively.397

We find that each of the subsystems can be solved analytically in the way listed in Appendix C, which means that398

we get a set of six Poisson integrators denoted by ΦE
Δt, Φ

B
Δt, Φ

Y
Δt, Φ

x
Δt, Φ

y
Δt and Φz

Δt, which can be applied successively399

in some specific order to advance u by a time step Δt. It is worth mentioning that qualitatively, the computation of400

the line integrals along the particle trajectories in the last integrator leads to a slight increase of computational costs401

compared to the standard scheme. The easiest composition is the first-order Lie-Trotter splitting [22], which consists402

of simply applying each integrator one after the other:403

ΦL
Δt := Φz

Δt ◦ Φy
Δt ◦ Φx

Δt ◦ ΦY
Δt ◦ ΦB

Δt ◦ ΦE
Δt. (67)

It is important to note that the input to each integrator must be the output of the previous integrator which has the404

consequence that if the magnetic field coefficients bx and by change, for instance, the matrices Bx/y = Bx/y(Z,bx/y)405

need to be updated. Furthermore, we use the second order, symmetric Strang splitting [23]406

ΦS
Δt := Φz

Δt/2 ◦ Φy
Δt/2 ◦ Φx

Δt/2 ◦ ΦY
Δt/2 ◦ ΦB

Δt/2 ◦ ΦE
Δt/2 ◦ ΦE

Δt ◦ ΦB
Δt ◦ ΦY

Δt ◦ Φx
Δt ◦ Φy

Δt ◦ Φz
Δt. (68)

Higher order splitting schemes can e.g. be found in [24].407

Algorithm. Finally, like it was done in the previous section, we want to summarize the algorithm for for numeri-408

cally solving the model (6) for transverse electromagnetic waves only:409

1. Create a periodic basis of Lagrange polynomials (ϕ0
j (z)) j=0,...,N0−1 of degree p on a domain L discretized by Nel410

elements using the definition of the shape functions (36) on the reference element I = [−1, 1] and the formulas411

(35) for transformations on the physical domain. This results in N0 = pNel.412

2. Create the corresponding basis of Lagrange histopolation polynomials (ϕ1
j+1/2(z)) j=0,...,N1−1 using the definition413

of the shape functions (40) on the reference element I = [−1, 1] and the formulas (35) for transformations on414

the physical domain. This results in N1 = pNel.415

3. Assemble the global mass matrices M0 and M1.416

4. Load the initial fields Ẽx(z, t = 0), Ẽy(z, t = 0), B̃x(z, t = 0), B̃y(z, t = 0), j̃cx(z, t = 0), j̃cy(z, t = 0) and use the417

projectors Π0 (37) and Π1 (41) in order to get the initial finite element coefficients e0
x, e0

y , b0
x, b0

y , y0
x, y0

y .418

5. Sample the initial positions (z0
k)k=1,...,Np

and velocities (v0
kx, v

0
ky, v

0
kz)k=1,...,Np

according to the sampling distribution419

(30) by using a random number generator and compute the weights wk = nh0L/Np.420

6. Assemble the matrices G (49), Q0(Z0) (48a), Q1(Z0) (51), Bx(Z0, b0
x) (52), By(Z0, b0

y) (52) and W (48b).421

7. Start the time loop:422

7.1 Apply one of the time integrators (67) (Lie-Trotter) or (68) (Strang) for a time step Δt in order to update423

en
x, en

y , bn
x, bn

y , yn
x, yn

y , Zn, Vn
x, Vn

y , Vn
z → en+1

x , en+1
y , bn+1

x , bn+1
y , yn+1

x , yn+1
y , Zn+1, Vn+1

x , Vn+1
y , Vn+1

z . The424

single integrators are listed in Appendix C.425

7.2 Go to 7.1426

4. Numerical experiments427

In this section, we present results of two runs performed with each algorithm developed in the previous two428

sections (Sec. 3.1 and Sec. 3.2). In the first run, we excite the instability stated in section 2.3 for a single wavenumber429

k, while in the second run we excite multiple modes without expecting an instability.430
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Fig. 5. Run 1 with parameters listed in Tab. 2: (a) Time evolution of the magnetic field energy EB, electric field energy EE and cold plasma
energy Ec obtained with standard finite element PIC methods from section 3.1 together with the expected growth rate from the analytical
dispersion relation (12). (b) Same as (a) for structure-preserving finite element PIC methods from section 3.2 with the Strang splitting
scheme (68).

4.1. Run 1: Single k-mode431

For the first run, we initialize the codes as follows: We choose an anisotropic Maxwellian for the energetic432

electrons and perturb the x-component of the magnetic wave field by B̃x(z, t = 0) = a sin(kz) in order to seed the433

instability for one particular k-mode. The amplitude a is chosen with respect to the background magnetic field such434

that it is small enough to start in the linear phase, but large enough to reach the nonlinear phase within a reasonable435

simulation time. All other field quantities are initially zero, which means that there is no electric field and cold436

plasma current at t = 0. All physical and numerical parameters of the run are listed in Tab. 2. Note that we have437

chosen a polynomial degree of p = 1 in order to get basis functions which are as similar as possible for the two438

codes since B-splines and Lagrange polynomials are the same only for this degree (see Fig. 2a). In this case, the439

main difference between the two codes is that the magnetic field is still expressed with piecewise linear functions440

for standard finite elements, but with piecewise constant functions for structure-preserving geometric finite elements.441

However, we would like to emphasize that there are no additional difficulties in using hogher order shape functions442

for both schemes.443

Table 2. Parameters for Run 1. In case of the structure-
preserving code, the polynomial degree refers to the Lagrange
polynomials that span the space V0.

Parameter Value
Parallel thermal velocity vth‖ 0.2c
Perpendicular thermal velocity vth⊥ 0.53c
Density ratio νh = nh0/nc0 0.06

Cold plasma frequency Ωpe 2|Ωce|
Wavenumber of perturbation k 2|Ωce|/c
Amplitude of perturbation a 10−4B0

Length of computational domain L 2π/k
Number of elements Nel 32

Polynomial degree p 1

Number of particles Np 105

Time step 0.0125|Ωce|

With the choice of parameters in Tab. 2, the numerical444

solution of the dispersion relation (12) yields an expected445

growth rate of γ ≈ 0.0447|Ωce|. In Fig. 5, we plot the re-446

sulting time evolution of the magnetic field energy EB, the447

electric field energy EE and the cold plasma energy Ec (see448

(53)) normalized to the total energy E = EB + EE + Ec + Eh449

together with the expected growth rate (which is 2γ in the450

case of energies). Note that most of the energy is carried451

by the energetic electrons which is why Eh would be orders452

of magnitude above the other curves in Fig. 5. Therefore,453

we do not show its evolution. Qualitatively, we observe a454

similar behavior for the two codes: First, as expected, all455

quantities grow exponentially, i.e. energy is transfered from456

the fast electrons to the electromagnetic field and the cold457

plasma. After this, the wave fields saturate when nonlinear458

terms start to play a role and the linear theory thus breaks459

down. In both cases, the numerical growth matches the an-460

alytical one very well and the curves end up at the same461

saturation level. However, the standard PIC code seems to be more sensitive to the noise induced by the random462
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Fig. 6. Run 1 with parameters listed in Tab. 2: (a) Initial (t = t0 = 0) and final (t = tf = 200 |Ωce |) distribution function in parallel direction
obtained with standard finite element PIC methods from section 3.1 . (b) Same as (a) for structure-preserving finite element PIC methods
from section 3.2 with the Strang splitting scheme (68). (c) Difference between the initial and final distribution corresponding to (a). (d)
Difference between the initial and final distribution corresponding to (b).

particle initialization, since it takes some time in the beginning until the exponential growth phase is reached (obvious463

for the electric field energy).464

In addition to the time evolution of the energies, we plot in Fig. 6 the distribution functions fh‖ = 2π
∫

fhv⊥ dv⊥465

for the parallel velocity at the beginning (t = t0 = 0) and at the end (t = tf = 200 |Ωce|) of the simulations. In both466

cases, we observe a flattening of the distribution functions around the resonant velocities, which are expected to be467

at vR = (ωr + |Ωce|)/k ≈ ±0.26 c for the wavenumber k = 2|Ωce|/c. This means that energetic electrons initially468

close to the resonant velocities gain energy in parallel direction which can more clearly be seen in the plots below469

where we show the difference in the initial and final distributions. In contrast to that, energetic electrons lose energy470

in perpendicular direction (not shown). A quantitative analysis yields that the energetic electrons lose more energy471

in perpendicular direction than what they gain in parallel direction, which is of course expected because the wave472

energies grow due to energy transfer from the energetic electrons to the wave. Qualitatively, the two algorithms do473

not result in visible differences regarding the distribution functions.474

Finally, we check the conservation of the total energy E in the system and show in Fig. 7 the evolution of its475

relative error |E(t) − E(0)|/E(0) with respect to time for three cases: For the first case (purple), which is standard PIC,476

we find an oscillation of the error on a nearly bounded level until t ≈ 40 |Ωce|. This is followed by a sudden increase477

of the error of about three orders of magnitude until a saturation phase is reached. Second, we plot the evolution478

of the relative error for geometric PIC with the first-order Lie-Trotter splitting (67) (brown) and we observe that the479

error is again oscillating, however, uniformly bounded during the whole simulation. This is expected for a symplectic480

integrator [25]. Third, we observe for geometric PIC with the Strang-splitting (68) (orange), which is second order481

in time, that the error is reduced by about three orders of magnitude and that it shows the same behavior as the Lie-482

Trotter splitting up to t ≈ 110|Ωce|, i.e. the error is oscillating and uniformly bounded. However, this is followed by a483

slow, linear increase of the error, where the oscillation vanishes.484

4.2. Run 2: Multiple k-modes485

So far we have initialized the code with a small perturbation of the x-component of the magnetic field for a single486

wavenumber k. Next, we want to excite multiple k-modes of the system at the same time. This can be achieved by487
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Fig. 7. Run 1 with parameters listed in Tab. 2: Time evolution of the relative error in the conservation of energy for three cases: Standard
finite element PIC (purple), structure-preserving finite element PIC with Lie-Trotter splitting (brown) and Strang splitting (orange).

directly using the fact that the random initialization of the particles in phase space induces a low-level noise in the488

system. In Fig. 8, one can see the normalized two-dimensional Discrete Fourier transform (DFT) of a run that has489

been initialized with a low density (νh = 0.002), isotropic Maxwellian (vth‖ = vth⊥ = 0.1 c) for the energetic electrons490

and no electromagnetic fields and cold current density. With this choice of parameters, there is no wave growth491

expected, however, by taking a look at the spectrum in the k-ω-plane in Fig. 7, we see that the particle noise leads to492

an excitation of all three characteristic waves (see Sec. 2.3) with a continuous spectrum in each quadrant. For both493
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Fig. 8. Run 2 with parameters vth‖ = vth⊥ = 0.1 c, νh = 0.002, Ωpe = 2|Ωce |, L = 80c/|Ωce |, Nel = 512, p = 1, Np = 1 · 105 and Δt = 0.05|Ωce |−1.
The simulation was run until tf = 300|Ωce |: (a) Normalized 2d Discrete Fourier Transform of the x-component of the magnetic field for
standard finite element PIC. (b) Same as (a) for structure preserving finite element PIC. (c) Comparison of the spectrum (a) with the real
part of the analytical dispersion relation (12). (d) Same as (c) for the spectrum (b).
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numerical methods, we obtain similar results for small wavenumbers and frequencies which we can compare to the494

real part of the dispersion relation (12) and for which we find a very good agreement. However, there is an obvious495

different behavior when it comes to higher wavenumbers. In case of standard PIC, the two branches corresponding496

to vacuum light waves ”bend down” which is not the case for structure-preserving PIC. Although it also differs from497

the expected straight line representing the speed of light, there are no unphysical modes as for standard PIC. This is498

also true for the Whistler branch below the electron cyclotron frequency Ωce. Whereas there are unphysical modes499

with a rather large intensity (red) for the highest wavenumbers k ≈ 20|Ωce|/c for standard PIC, this is not the case for500

structure-preserving PIC. The reason for this qualitative behavior is not obvious and needs to be analyzed further.501

5. Summary502

In this article, we have developed two different finite element particle-in-cell algorithms for a four-dimensional503

hybrid plasma model and compared the results for two test runs. The considered hybrid plasma model is a combined504

kinetic/fluid description for a magnetized plasma, which consists of cold (fluid) electrons and energetic (kinetic)505

electrons that move in a stationary, neutralizing background of ions. The model’s key physics content for wave506

propagation parallel to a uniform background magnetic field is that it predicts the existence of growing/damped507

modes due to energy exchange between the energetic electrons and waves which propagate in the cold plasma.508

For this case, first, a combination of one-dimensional B-spline finite elements for Maxwell’s equations and the509

momentum balance equation for the cold electrons and the standard particle-in-cell method with a Boris particle510

pusher for the Vlasov equation (one dimension in real space and three dimensions in velocity space) has been applied511

in an intuitive way without taking into account the geometric structure of the equations. Second, geometric finite512

element particle-in-cell methods [2] which use tools from finite element exterior calculus have been applied on the513

same model. By choosing finite elements spaces and projectors on these spaces satisfying a commuting diagram514

with the continuous spaces, a semi-discrete system (discrete in space and continuous in time) for the time evolution515

of all finite element coefficients and particle configurations has been derived. By proofing the skew-symmetry and516

the Jacobi identity of the Poisson matrix, it has been shown that the semi-discrete system exhibits a noncanonical517

Hamiltonian structure. The subsequent construction of Poisson time integrators by splitting the Hamiltonian and518

analytically solving the resulting subsystems has led to a uniformly bounded error in the conservation of energy for519

the first presented numerical experiment in the linear and nonlinear stage which is was not the case for standard PIC.520

Finally, the second numerical experiment revealed that standard PIC leads to spurious modes for large wavenumbers521

(compared to the inverse of the element size) which is not the case for structure-preserving geometric PIC.522
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Appendix B. Jacobi identity525

Table B.3. Block index triples for which the Jacobi identity needs to be proven.

(i,j,k) terms block matrix term explicit expression

(1,8,10) V+VII

(8,10,1) IV+IX
∂Ĵ8,10

∂by
Ĵ4,1 +

∂Ĵ1,8

∂Z Ĵ7,10
qe

meε0

(
∂(ByW

−1)

∂by
GM−1

0 − ∂(M
−1
0
Q0)

∂Z W−1

)

(10,1,8) VI+VIII

(1,10,8) V+IX

(10,8,1) IV+VIII
∂Ĵ10,8

∂by
Ĵ4,1 +

∂Ĵ8,1

∂Z Ĵ7,10 − qe

meε0

(
∂(ByW

−1)

∂by
GM−1

0 − ∂(M
−1
0
Q0)

∂Z W−1

)

(8,1,10) VI+VII

(2,9,10) II+VII

(9,10,2) I+IX
∂Ĵ9,10

∂bx
Ĵ3,2 +

∂Ĵ2,9

∂Z Ĵ7,10
qe

meε0

(
∂(BxW

−1)

∂bx
GM−1

0 − ∂(M
−1
0
Q0)

∂Z W−1

)

(10,2,9) III+VIII

(2,10,9) II+IX

(10,9,2) I+VIII
∂Ĵ10,9

∂bx
Ĵ3,2 +

∂Ĵ9,2

∂Z Ĵ7,10 − qe

meε0

(
∂(BxW

−1)

∂bx
GM−1

0 − ∂(M
−1
0
Q0)

∂Z W−1

)

(9,2,10) III+VII

(8,10,10) VII+IX

(10,10,8) VIII+IX
∂Ĵ8,10

∂Z Ĵ7,10 +
∂Ĵ10,8

∂Z Ĵ7,10 − qe

me

∂(ByW
−1)

∂Z W−1 +
qe

me

∂(ByW
−1)

∂Z W−1 = 0

(10,8,10) VII+VIII

(9,10,10) VII+IX
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∂Ĵ9,10
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me

∂(BxW
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Appendix C. Time integrators for Hamiltonian splitting526

Problem 1. For t ∈ [0,Δt] and u(t = 0) = u0 we have527

du
dt
= J(u)∇uHE(u) = J(u)∇u

[
ε0
2

(e�x M0ex + e�y M0ey)
]
. (C.1)

This can be solved analytically as528

dex

dt
= 0 =⇒ ex(Δt) = e0

x,

dey

dt
= 0 =⇒ ey(Δt) = e0

y ,

dbx

dt
=

1

ε0
GM−1

0 ε0M0ey =⇒ bx(Δt) = b0
x + ΔtGe0

y ,

dby

dt
= − 1

ε0
GM−1

0 ε0M0ex =⇒ by(Δt) = b0
y − ΔtGe0

x,

dyx

dt
= Ω2

peM
−1
0 ε0M0ex =⇒ yx(Δt) = y0

x + Δtε0Ω2
pee0

x,

dyy

dt
= Ω2

peM
−1
0 ε0M0ey =⇒ yy(Δt) = y0

y + Δtε0Ω2
pee0

y ,

dZ
dt
= 0 =⇒ Z(Δt) = Z0,

dVx

dt
=

qe

ε0me

(Q0)�M−1
0 ε0M0ex =⇒ Vx(Δt) = V0

x + Δt
qe

me

(Q0)�(Z0)e0
x,

dVy

dt
=

qe

ε0me

(Q0)�M−1
0 ε0M0ey =⇒ Vy(Δt) = V0

x + Δt
qe

me

(Q0)�(Z0)e0
y ,

dVz

dt
= 0 =⇒ Vz(Δt) = V0

z .

(C.2a)

(C.2b)

(C.2c)

(C.2d)

(C.2e)

(C.2f)

(C.2g)

(C.2h)

(C.2i)

(C.2j)

The corresponding integrator is denoted by u(Δt) = ΦE
Δt(u

0).529

530

Problem 2. For t ∈ [0,Δt] and u(t = 0) = u0 we have531

du
dt
= J(u)∇uHB(u) = J(u)∇u

[
1

2μ0

(b�x M1bx + b�y M1by)

]
. (C.3)

This can be solved analytically as532

dex

dt
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1

ε0
M−1

0 G�
1

μ0

M1by =⇒ ex(Δt) = e0
x + Δtc2M−1

0 G�M1b0
y ,

dey
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= − 1

ε0
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0 G�
1

μ0
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y − Δtc2M−1

0 G�M1b0
x,

dbx

dt
= 0 =⇒ bx(Δt) = b0
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y ,

dyx

dt
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= 0 =⇒ yy(Δt) = y0

y ,

(C.4a)

(C.4b)

(C.4c)

(C.4d)

(C.4e)

(C.4f)
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533

dZ
dt
= 0 =⇒ Z(Δt) = Z0,

dVx

dt
= 0 =⇒ Vx(Δt) = V0

x,

dVy

dt
= 0 =⇒ Vy(Δt) = V0

y ,

dVz

dt
= 0 =⇒ Vz(Δt) = V0

z .

(C.4g)

(C.4h)

(C.4i)

(C.4j)

The corresponding integrator is denoted by u(Δt) = ΦB
Δt(u

0).534

535

Problem 3. For t ∈ [0,Δt] and u(t = 0) = u0, we have536

du
dt
= J(u)∇uHY (u) = J(u)∇u

⎡⎢⎢⎢⎢⎣ 1

2ε0Ω
2
pe

(y�x M0yx + y�y M0yy)
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This can be solved analytically as537
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(C.6b)
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The corresponding integrator is denoted by u(Δt) = ΦY
Δt(u
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Problem 4. For t ∈ [0,Δt] and u(t = 0) = u0, we have541

du
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= J(u)∇uHx(u) = J(u)∇u

(me

2
V�x WVx

)
. (C.7)
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This can be solved analytically as542

dex

dt
= − qe

ε0me

M−1
0 Q0meWVx =⇒ ex(Δt) = e0

y − Δt
qe

ε0
M−1

0 Q0(Z0)WV0
x,

dey

dt
= 0 =⇒ ey(Δt) = e0

y ,

dbx

dt
= 0 =⇒ bx(Δt) = b0

x,

dby

dt
= 0 =⇒ by(Δt) = b0

y ,

dyx

dt
= 0 =⇒ yx(Δt) = y0

x,

dyy

dt
= 0 =⇒ yy(Δt) = y0

y ,

dZ
dt
= 0 =⇒ Z(Δt) = Z0,

dVx

dt
= 0 =⇒ Vx(Δt) = V0

x,

dVy

dt
= −Ωce

m
W−1meWVx =⇒ Vy(Δt) = V0

y − ΔtΩceV0
x,

dVz

dt
=

qe

m2
e

ByW
−1meWVx =⇒ Vz(Δt) = V0

z + Δt
qe

me

By(Z0, b0
y)V0

x.

(C.8a)

(C.8b)

(C.8c)

(C.8d)

(C.8e)

(C.8f)

(C.8g)

(C.8h)

(C.8i)

(C.8j)

The corresponding integrator is denoted by u(Δt) = Φy
Δt(u

0).543

544

Problem 5. For t ∈ [0,Δt] and u(t = 0) = u0, we have545

du
dt
= J(u)∇uHy(u) = J(u)∇u

(me

2
V�y WVy

)
. (C.9)

This can be solved analytically as546

dex

dt
= 0 =⇒ ex(Δt) = e0

x,

dey

dt
= − qe

ε0me

M−1
0 Q0meWVy =⇒ ey(Δt) = e0

y − Δt
qe

ε0
M−1

0 Q0(Z0)WV0
y ,

dbx

dt
= 0 =⇒ bx(Δt) = b0

x,

dby

dt
= 0 =⇒ by(Δt) = b0

y ,

dyx

dt
= 0 =⇒ yx(Δt) = y0

x,

dyy

dt
= 0 =⇒ yy(Δt) = y0

y ,

dZ
dt
= 0 =⇒ Z(Δt) = Z0,

dVx

dt
=
Ωce

m
W−1meWVy =⇒ Vx(Δt) = V0

x + ΔtΩceV0
y ,

dVy

dt
= 0 =⇒ Vy(Δt) = V0

y ,

dVz

dt
= − qe

m2
e

BxW
−1meWVy =⇒ Vz(Δt) = V0

z − Δt
qe

me

Bx(Z0, b0
x)V0

y .

(C.10a)

(C.10b)

(C.10c)

(C.10d)

(C.10e)

(C.10f)

(C.10g)

(C.10h)

(C.10i)

(C.10j)

The corresponding integrator is denoted by u(Δt) = Φy
Δt(u

0).547

548
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Problem 6. For t ∈ [0,Δt] and u(t = 0) = u0, we have549

du
dt
= J(u)∇uHz(u) = J(u)∇u

(me

2
V�z WVz

)
. (C.11)

This can be solved analytically as550

dex

dt
= 0 =⇒ ex(Δt) = e0

x,

dey

dt
= 0 =⇒ ey(Δt) = e0

y ,

dbx

dt
= 0 =⇒ bx(Δt) = b0

x,

dby

dt
= 0 =⇒ by(Δt) = b0

y ,

dyx

dt
= 0 =⇒ yx(Δt) = y0

x,

dyy

dt
= 0 =⇒ yy(Δt) = y0

y ,

dZ
dt
=

1

m
W−1meWVz =⇒ Z(Δt) = Z0 + ΔtV0

z ,

dVx

dt
= − qe

m2
e

ByW
−1meWVz =⇒ Vx(Δt) = V0

x −
qe

me

∫ Δt

0

By(Z(s), b0
y)dsV0

z

dVy

dt
=

qe

m2
e

BxW
−1meWVz =⇒ Vy(Δt) = V0

y +
qe

me

∫ Δt

0

Bx(Z(s), b0
x)dsV0

z

dVz

dt
= 0 =⇒ Vz(Δt) = V0

z .

(C.12a)

(C.12b)

(C.12c)

(C.12d)

(C.12e)

(C.12f)

(C.12g)

(C.12h)

(C.12i)

(C.12j)

The corresponding integrator is denoted by u(Δt) = Φz
Δt(u

0). Note that the integrals can be computed exactly along551

each particle trajectories as the basis functions are piecewise polynomials.552
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