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A semi-implicit finite difference time domain (FDTD) numerical Maxwell solver is 
developed for full electromagnetic Particle-in-Cell (PIC) codes for the simulations of 
plasma-based acceleration. The solver projects the volumetric Yee lattice into planes 
transverse to a selected axis (the particle acceleration direction). The scheme - by design 
- removes the numerical dispersion of electromagnetic waves running parallel the selected 
axis. The fields locations in the transverse plane are selected so that the scheme is Lorentz-
invariant for relativistic transformations along the selected axis. The solver results in 
“Galilean shift” of transverse fields by exactly one cell per time step. This eases greatly the 
problem of numerical Cerenkov instability (NCI). The fields positions build rhombi in plane 
(RIP) patterns. The RIP scheme uses a compact local stencil that makes it perfectly suitable 
for massively parallel processing via domain decomposition along all three dimensions. No 
global/local spectral methods are involved.

© 2020 Published by Elsevier Inc.

1. Introduction

Plasma-based particle acceleration is a rapidly developing route towards future compact accelerators [1–3]. The reason is 
that plasma supports fields orders of magnitude higher than conventional accelerators [5,6,4]. Thus, particle acceleration can 
be accomplished on much shorter distances as compared with the solid-state accelerating structures. However, the plasma 
is a highly nonlinear medium and requires accurate and computationally efficient numerical modeling to understand and 
tune the acceleration process. The main workhorse for plasma simulations are Particle-in-Cell codes [7–12] (a much longer 
though still incomplete list of PIC codes can be found on the web, see e.g. [13]). These provide the most appropriate de-
scription of plasma as an ensemble of particles pushed according to the relativistic equations of motion using self-consistent 
electromagnetic fields, which are maintained on a spatial grid [14].

From a numerical point of view, plasma-based acceleration represents a classic multi-scale problem. Here, we have the 
long scale of acceleration distance that can range from centimeters [15] to several meters [16,17], and the short scale of 
plasma wavelength that ranges from a few micrometers to near millimeter scales. In addition, if the plasma wave is created 
by a laser pulse, there is additionally the laser wavelength scale in the sub-micron range. This natural scale disparity makes 
the simulations of plasma-based acceleration so computationally demanding.

Presently, two types of PIC codes are used to simulate the plasma-based accelerator structures: (i) universal full elec-
tromagnetic PIC codes like [7–12], which solve the unabridged set of Maxwell equations and (ii) quasi-static PIC codes like 
[20,8,18,19] (and many others), which analytically separate the short scale of plasma wavelength and the long propagation 
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distance scale. The quasi-static PIC codes are proven to be both accurate and very computationally efficient when simulating 
beam-driven plasma-based wake field acceleration (PBWFA). Unfortunately, the quasi-static approximation for the Maxwell 
equations eliminates any radiation. Thus, the laser pulse driver has to be described in an envelope approximation [20]. 
Further, the quasi-static codes fail at simulating sharp plasma boundaries and self-trapping of particles from background 
plasma.

For this reason, we here consider full electromagnetic (EM) PIC codes which are usually applied for Laser Wake Field 
Acceleration (LWFA) in plasmas. The full EM PIC correctly describes the laser evolution even in highly nonlinear regimes. 
The full EM PIC codes are computationally very expensive because they do not separate the different scales.

A significant scale adjustment can be made if one makes a Lorentz transformation of the system into a reference frame 
moving in the direction of acceleration with a relativistic speed. This leads to the Lorentz contraction of the propagation 
distance with the relativistic factor γ = 1/

√
1 − V 2/c2, where V is the relative velocity of the reference frame. Simultane-

ously, the driver - and its wavelength - become longer at nearly the same factor. This so-called “Lorentz-boost” [21] evens 
the scale disparity and potentially gives a large computational speed up at the cost of not properly resolving backward 
propagating waves.

However, in “Lorentz-boosted” PIC simulations, the background plasma - both electrons and ions - is moving backward 
at a relativistic velocity. This moving plasma is a source of free energy that can be easily transformed into high amplitude 
noise fields. The major numerical mechanism for this parasitic conversion is the Cerenkov resonance [24]. The problem 
of most existing FDTD Maxwell solvers is that they employ the Yee lattice [25] (with a few exceptions like FBPIC [22]
and INF&RNO [23]): individual components of the electromagnetic fields are located at staggered positions in space. The 
resulting numerical scheme includes a Courant stability restriction on the time step which leads to numerical dispersion. 
This results in electromagnetic waves with phase velocities below the vacuum speed of light. Thus, the relativistic particles 
may stay in resonance with the waves and radiate. This non-physical Cerenkov radiation plagues the Lorentz-boosted PIC 
simulations [26]. Moreover, even normal PIC simulations in the laboratory frame suffer from the numerical Cerenkov effect 
[27,28]. Any high density bunch of relativistic particles - e.g. the accelerated witness bunch - emits Cerenkov radiation as 
well. This affects the bunch energy and emittance [29].

In principle, the Yee scheme can be modified - or extended - by using additional neighboring cells with the goal to tune 
the numerical dispersion so that the Cerenkov resonance is avoided in the zero order [30,31]. This reduces the Cerenkov 
instability, but does not eliminate it. One of the reasons is that the Yee lattice itself is not Lorentz-invariant. The individual 
field components are located all at different positions staggered in space. In the boosted frame, the fields are Lorentz-
transformed and find themselves at the wrong positions. For example, when the boosted frame moves in the X−direction, 
the pairs E y, Bz and Ez, B y transform one into another. Yet, they are located at different positions within the Yee lattice 
cell. In addition, the aliasing leads to numerical Cerenkov resonances at wavenumbers from higher Brillouin zones on the 
numerical grid.

The different positions of the field pairs E y, Bz and Ez, B y on the Yee lattice also cause another problem relevant to the 
high energy physics. When we want to simulate high current relativistic beams [32], this spatial staggering may lead to a 
beam numerical self-interaction. A real beam of ultra-relativistic, γ � 1, particles has a small physical self-interaction due 
to the difference of these fields with the transverse force q 

(
E⊥ + β||e|| × B⊥

)
. Here e|| is the unit vector in the propagation 

direction and 1 − β|| = 1 − v ||/c ≈ 1/2γ 2 is the relative difference of the particles longitudinal velocity v || from the speed 
of light c. For 50 GeV electrons with γ ≈ 105, this real difference is as small as 1 − β|| ≈ 5 · 10−11. The transverse self-fields 
E⊥ and B⊥ of the ultra-relativistic bunch are also nearly equal with the same miniscule relative difference. However, the 
Yee lattice defines these fields at staggered positions in space and time. These fields must be interpolated to the same time 
and to individual particle positions. This interpolation leads to errors and differences between the transverse fields acting 
on the particle. As a consequence, the bunch self-action due to the numerical errors is many orders of magnitude larger 
than the real one. This results not only in the bunch numerical self-focusing/defocusing and emittance growth, but also in 
significant numerical bremsstrahlung and stopping - when these effects are included in the PIC code. A similar inaccuracy 
can occur in the interaction of laser with a co-propagating relativistic beam (see the appendix in [33]).

We conclude, the Yee lattice is not optimal for simulating high energy applications.

2. Limitations of pseudo-spectral methods

Recently, pseudo-spectral methods originally proposed by Haber et al. [34], shortly discussed in [14] and used by O. 
Buneman in his TRISTAN code [35] have seen a remarkable revival [10]. The seeming advantage of the spectral methods 
is that they are dispersionless and provide an “infinite order” of approximation, even calling the method after Haber “a 
pseudo-spectral analytical time-domain (PSATD) algorithm” [36].

Indeed, following Sommerfeld [37] we can write the Maxwell equations in the Fourier space as

∂ F̂

∂t
= ick × F̂ − Ĵ (1)

where Ĵ = F F T [J] is the Fourier image of the real current while F̂ = F F T [F] is the Fourier image of the complex electro-
magnetic field F = E + iB. It is straightforward to show that the numerical scheme advancing the fields from the time step 
n to n + 1 in the form
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F̂n+1 = CkF̂n + iSk × F̂n − C̃kĴn+1/2 + iS̃k × Ĵn+1/2 +
(

C̃k − 1
)(

ek · Ĵn+1/2
)

ek + (1 − Ck)
(

ek · F̂n
)

ek (2)

is dispersionless in vacuum and provides second order approximation for the plasma currents. Here, Ck = cos(ckτ ), C̃k =
cos(ckτ/2), Sk = ek sin(ckτ ), S̃k = ek sin(ckτ/2), τ is the time step, k = |k|, ek = k/k.

The FFT-based solvers are intrinsically global. This means, they need information about fields in the full simulation do-
main to update the local field at a particular point in space. This contradicts the causality principle of the special relativity: 
only fields within cτ distance from the space point may cause the local fields to change. The propagator (2) explicitly 
separates the fields and currents into the propagating transverse fields and non-propagating longitudinal fields.

Indeed, the longitudinal part of the field is Fn|| =
(

ek · F̂n
)

ek , and the transverse part is Fn⊥ = Fn −
(

ek · F̂n
)

ek , so that 
F = F|| + F⊥ . The same is valid for the current J = J|| + J⊥ . The Eq. (2) projected onto the vector ek is

F̂ ||
n+1 = F̂ n|| − Ĵ n+1/2

|| (3)

The transverse field components are updated according to

F̂n+1
⊥ = CkF̂n⊥ + iSk × F̂n⊥ − C̃kĴn+1/2

⊥ + iS̃k × Ĵn+1/2
⊥ (4)

We see that the transverse fields (4) propagate with the speed of light. The longitudinal component (3) does not propagate 
anywhere. Taking divergence of (3) we arrive at the Poisson equation.

Computationally, one can use spectral algorithms that are “local” to one simulation sub-domain [38,39]. In this case, an 
ultra-high order finite differences scheme can be designed. The resulting convolution is then efficiently computed within 
one sub-domain with the help of a spectral transformation. The resulting schemes show excellent parallel scalability [39]

Although the spectral solver (2) removes the numerical dispersion, it does not remove aliasing errors and the numerical 
Cerenkov instability in pseudo-spectral codes persists, even when at a lower rate [40,41]. In an effort to remove the Cerenkov 
instability in pseudo-spectral codes, filtering currents of the most unstable modes is often applied [42,43]. This artificial 
filtering, however, may lead to additional unphysical effects in the pseudo-spectral simulations.

Another approach is elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by 
using Galilean coordinates [44]. This approach removes relative motion between the numerical grid and the streaming 
plasma: the grid cells flow together with the plasma. Unfortunately, this trick works only in one direction and does not help 
removing numerical Cerenkov emission of the high current bunch being accelerated in the opposite direction.

We conclude that pseudo-spectral methods are far from ideal candidates for PIC simulations and that a better FDTD 
method is required. In this work, a new FDTD solver is presented that does not employ spectral transformations and yet 
has the unique property of having no numerical dispersion along one selected spatial axis. The positions of the transverse 
field pairs 

(
E y, Bz

) (
Ez, B y

)
are colocated in the RIP scheme. This is Lorentz-invariant and greatly improves the accuracy in 

calculating the transverse force acting on a relativistic particle moving along the X−axis.

3. The general X-dispersionless Maxwell solver

We here develop a FDTD 3D Maxwell solver that has no dispersion for plane waves propagating in vacuum in one 
selected direction. In plasma-based acceleration this is usually the direction of particle acceleration: the driving laser optical 
axis. The solver should retain its dispersionless properties not only in vacuum, but also inside dense plasmas, i.e. the 
optimal time step/grid step relation should not be compromised by the presence of plasma. The solver must not use spectral 
transformations and should have a compact local stencil. This is the pre-requisite for efficient parallelization via domain 
decomposition. In short, we develop an efficient Maxwell solver for full three-dimensional problems where one axis is 
distinguished from the two others (e.g. the laser- or beam-propagation axis).

We select the X−direction for dispersionless propagation. For electromagnetic waves propagating in X , we have the 
Maxwell equations

1

c

∂ Ex

∂t
= �x (5)

1

c

∂ E y

∂t
= −∂ Bz

∂x
+ �y (6)

1

c

∂ Ez

∂t
= ∂ B y

∂x
+ �z (7)

1

c

∂ Bx

∂t
= �x (8)

1

c

∂ B y

∂t
= ∂ Ez

∂x
+ �y (9)

1 ∂ Bz = −∂ E y + �z (10)

c ∂t ∂x
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Here, the vector

�x = ∂ Bz

∂ y
− ∂ B y

∂z
− J x (11)

�y = ∂ Bx

∂z
− J y (12)

�z = −∂ Bx

∂ y
− J z (13)

combines the vacuum diffraction E and the medium response (currents) J, while

�x = −∂ E y

∂z
+ ∂ Ez

∂ y
(14)

�y = −∂ Ez

∂x
(15)

�z = ∂ E y

∂x
(16)

is the vacuum diffraction operator for B.
We use a semi-implicit trapezoidal (sometimes called “implicit midpoint”) scheme for the discretization of the transverse 

fields on a 3D grid. We write here explicitly the i−index along the X−axis only as the scheme can be easily generalized for 
arbitrary transverse geometries (e.g. Cartesian, or cylindrical, etc.):

En+1
y(i+1)

+ En+1
y(i) − En

y(i+1)
− En

y(i)

2cτ
= −−Bn+1

z(i) + Bn+1
z(i+1)

− Bn
z(i) + Bn

z(i+1)

2hx
+ �

n+1/2
y(i+1/2)

(17)

En+1
z(i+1)

+ En+1
z(i) − En

z(i+1)
− En

z(i)

2cτ
= −Bn+1

y(i) + Bn+1
y(i+1)

− Bn
y(i) + Bn

y(i+1)

2hx
+ �

n+1/2
z(i+1/2)

(18)

En+1
x(i) − En

x(i)

cτ
= �

n+1/2
x(i) (19)

Bn+1
y(i) + Bn+1

y(i+1)
− Bn

y(i) − Bn
y(i+1)

2cτ
= −En+1

z(i) + En+1
z(i+1)

− En
z(i) + En

z(i+1)

2hx
+ �

n+1/2
y(i+1/2)

(20)

Bn+1
z(i) + Bn+1

z(i+1)
− Bn

z(i) − Bn
z(i+1)

2cτ
= −−En+1

y(i) + En+1
y(i+1)

− En
y(i) + En

y(i+1)

2hx
+ �

n+1/2
z(i+1/2)

(21)

Bn+1
x(i) − Bn

x(i)

cτ
= �

n+1/2
x(i) (22)

Here, τ is the time step and hx is the spatial grid step in the X−direction.
These equations (17)-(22) build a system of coupled linear equations relating the updated fields at the time step n + 1

with already known fields at the time steps n and n + 1/2. Although this implicit system of linear equations can generally 
be solved using a fast matrix inversion method (the system has a sparse matrix), we will be interested in the special case
cτ = hx = �. In this particular case, the inversion is straightforward.

First, we add Eqs. (17)+(21) and (18)+(20) to obtain transport components

T +(n+1)
y(i) = En+1

y(i) + Bn+1
z(i) = En

y(i−1) + Bn
z(i−1) + �

(
�

n+1/2
y(i−1/2)

+ �
n+1/2
z(i−1/2)

)
(23)

T +(n+1)
z(i) = En+1

z(i) + Bn+1
y(i) = En

z(i+1) + Bn
y(i+1) + �

(
�

n+1/2
z(i+1/2)

+ �
n+1/2
y(i+1/2)

)
(24)

or simply

T +(n+1)
y(i) = T +(n)

y(i−1)
+ �

(
�

n+1/2
y(i−1/2)

+ �
n+1/2
z(i−1/2)

)
(25)

T +(n+1)
z(i) = T +(n)

z(i+1)
+ �

(
�

n+1/2
z(i+1/2)

+ �
n+1/2
y(i+1/2)

)
(26)

Then, we subtract the same Eqs. (17)-(21) and (18)-(20) to obtain

T −(n+1)
y(i) = En+1

y(i) − Bn+1
z(i) = En

y(i+1) − Bn
z(i+1) + �

(
�

n+1/2
y(i+1/2)

− �
n+1/2
z(i+1/2)

)
(27)

T −(n+1)
z(i) = En+1

z(i) − Bn+1
y(i) = En

z(i−1) − Bn
y(i−1) + �

(
�

n+1/2
z(i−1/2)

− �
n+1/2
y(i−1/2)

)
(28)
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or

T −(n+1)
y(i) = T −(n)

y(i+1)
+ �

(
�

n+1/2
y(i+1/2)

− �
n+1/2
z(i+1/2)

)
(29)

T −(n+1)
z(i) = T −(n)

z(i−1)
+ �

(
�

n+1/2
z(i−1/2)

− �
n+1/2
y(i−1/2)

)
(30)

These are the marching equations. The transport components T +/−
y,z must be shifted one cell in the corresponding direction 

and the diffraction/refraction terms be correctly added.
This marching has a form of “Galiliean field shift” exactly by single cell per time step. Thus, instead of shifting the 

grid following the relativistic plasma [44], the RIP solver shifts the transverse fields so that the relativistic particle sees 
the same fields when it enters the new cell. In one-dimensional geometry, the new algorithm defaults to the well known 
advective algorithm introduced by Birdsall and Langdon [14]. In [24], and as reported also in [14], on the stability of various 
electromagnetic PIC schemes, it is stated that “the improved stability associated with the advective differencing schemes 
is due not so much to the dispersionless vacuum transport of the fields, per se, as to the less conventional methods of 
determining the mesh current usually employed with advective differencing”.

For the fields, we get

En+1
y(i) = 1

2

(
En

y(i−1) + En
y(i+1)

)
− 1

2

(
Bn

z(i+1) − Bn
z(i−1)

)
(31)

+�

2

(
�

n+1/2
y(i−1/2)

+ �
n+1/2
z(i−1/2)

+ �
n+1/2
y(i+1/2)

− �
n+1/2
z(i+1/2)

)
En+1

z(i) = 1

2

(
En

z(i−1) + En
z(i+1)

)
+ 1

2

(
Bn

y(i+1) − Bn
y(i−1)

)
(32)

+�

2

(
�

n+1/2
z(i−1/2)

− �
n+1/2
y(i−1/2)

+ �
n+1/2
z(i+1/2)

+ �
n+1/2
y(i+1/2)

)
Bn+1

y(i) = 1

2

(
Bn

y(i−1) + Bn
y(i+1)

)
+ 1

2

(
En

z(i+1) − En
z(i−1)

)
(33)

+�

2

(
−�

n+1/2
z(i−1/2)

+ �
n+1/2
y(i−1/2)

+ �
n+1/2
z(i+1/2)

+ �
n+1/2
y(i+1/2)

)
Bn+1

z(i) = 1

2

(
Bn

z(i−1) + Bn
z(i+1)

)
− 1

2

(
En

y(i+1) − En
y(i−1)

)
(34)

+�

2

(
�

n+1/2
y(i−1/2)

+ �
n+1/2
z(i−1/2)

− �
n+1/2
z(i+1/2)

+ �
n+1/2
y(i+1/2)

)
or simply

E(n+1)
y(i) = T +(n+1)

y(i) +T −(n+1)
y(i)

2 (35)

E(n+1)
z(i) = T +(n+1)

z(i) +T −(n+1)
z(i)

2 (36)

B(n+1)
y(i) = T +(n+1)

y(i) −T −(n+1)
y(i)

2 (37)

B(n+1)
z(i) = T +(n+1)

z(i) −T −(n+1)
z(i)

2 (38)

4. The three-dimensional RIP Maxwell solver in Cartesian coordinates

Let us now look at the diffraction/refraction terms. For simplicity, we use Cartesian coordinates.
We project the Yee lattice onto the (Y , Z) plane. The grid becomes planar and has the form of Rhombi-in-Plane (RIP), as 

shown in Fig. 1. The pairs of transverse fields are now combined at positions according to the transport properties (23)-(24). 
The pair Ey, Bz is located at the rhombi vertices (i, j +1/2, k). The pair Ez, By is located at the rhombi vertices (i, j, k +1/2). 
The longitudinal field Ex we place at point (i, j, k) which is the center of the full integer rhombus. The longitudinal field Bx
we place at the center of the half integer rhombus (i, j + 1/2, k + 1/2). The grid is shown in Fig. 1.

Then, the diffraction/refraction terms at the half time step will be:

�
n+1/2
y(i+1/2, j+1/2,k)

=
(

∂ Bx

∂z
− j y

)
|n+1/2
i+1/2, j+1/2,k = −1

2

(
jn+1/2

y,(i, j+1/2,k)
+ jn+1/2

y,(i+1, j+1/2,k)

)
+ (39)

+ Bn+1/2
x(i, j+1/2,k+1/2)

+ Bn+1/2
x(i+1, j+1/2,k+1/2)

− Bn+1/2
x(i, j+1/2,k−1/2)

− Bn+1/2
x(i+1, j+1/2,k−1/2)
2hz
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Fig. 1. (Color online.) The “rhombi-in-plane” RIP. grid.

�
n+1/2
z(i+1/2, j,k+1/2)

=
(

−∂ Bx

∂ y
− j y

)
|n+1/2
i+1/2, j,k+1/2 = −1

2

(
jn+1/2
z,(i, j,k+1/2)

+ jn+1/2
z,(i+1, j,k+1/2)

)
− (40)

− Bn+1/2
x(i, j+1/2,k+1/2)

+ Bn+1/2
x(i+1, j+1/2,k+1/2)

− Bn+1/2
x(i, j−1/2,k+1/2)

− Bn+1/2
x(i+1, j−1/2,k+1/2)

2hy

�
n+1/2
x(i, j,k)

=
(

∂ Bz

∂ y
− ∂ B y

∂z
+ jx

)
|n+1/2
i, j,k = − jn+1/2

x,(i, j,k)
(41)

+ Bn+1/2
z(i, j+1/2,k)

− Bn+1/2
z(i, j−1/2,k)

hy
− Bn+1/2

y(i, j,k+1/2)
− Bn+1/2

y(i, j,k−1/2)

hz

�
n+1/2
y(i+1/2, j,k+1/2)

= − En+1/2
x(i, j,k+1)

+ En+1/2
x(i+1, j,k+1)

− En+1/2
x(i, j,k)

− En+1/2
x(i+1, j,k)

2hz
(42)

�
n+1/2
z(i+1/2, j+1/2,k)

= En+1/2
x(i, j+1,k)

+ En+1/2
x(i+1, j+1,k)

− En+1/2
x(i, j,k)

− En+1/2
x(i+1, j,k)

2hy
(43)

�
n+1/2
x(i, j+1/2,k+1/2)

= −
(

∂ Ez

∂ y
− ∂ E y

∂z

)
|n+1/2
i, j+1/2,k+1/2 = (44)

− En+1/2
z(i, j+1,k+1/2)

− En+1/2
z(i, j,k+1/2)

hy
+ En+1/2

y(i, j+1/2,k+1)
− En+1/2

y(i, j−1/2,k+1/2)

hz

Similar formulas are obtained for the fields at the half-time steps, where all fields and currents are shifted by a half time 
step.

The use of the transport vectors T⊥ makes the boundary conditions in the x−direction trivial. One sets the inbound T 
vectors equal to the incident laser pulse and outbound T vectors to zero at the boundaries. This procedure absorbs waves 
normally incident on the boundaries exactly.

It seems that we have to maintain two sets of fields for each time step: fields at the full step and at the half step. 
The particles however, can be pushed just once per time step. For the particle push we use the symplectic semi-implicit 
mid-point scheme of Higuera and Hary [45] (pushers of Boris [46] and Vay [47] produce hardly discernible results) at the 
full time step:

pn+1/2
α = pn−1/2

α + τq

(
En + 1

γ mc
p × Bn

)
(45)

where p = (pn+1/2
α + pn−1/2

α )/2 and γ = √
1 + p2/m2c2.

These momenta are used to generate currents jn+1/2 at the half time steps. Currents at the full time step required to 
push the half-time step fields can be obtained by simple averaging on the grid

jn = 1 (
jn−1/2 + jn+1/2

)
(46)
2
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To ensure the Lorentz invariance and charge conservation of the scheme, the current components are defined within the 
cell at the same positions as the corresponding E−field components.

5. Conservation laws on the RIP grid

The RIP scheme places fields in a transverse plane as seen in Fig. 1. These field locations are perfectly suited for con-
servative definition of the currents, charges, field divergence and curl on the grid. The simple rule is that the trapezoidal 
formula must be applied in the longitudinal direction, while in the transverse direction, the usual Yee (spatial leap-frog) 
formula remains valid.

5.1. Generalized rigorous charge conservation

The numerical continuity equation on the RIP grid has the form

c
ρn+1

i+1/2. j,k − ρn
i+1/2. j,k

�
= − 1

�

(
jn+1/2
x(i+1, j,k)

− jn+1/2
x(i, j,k)

)
(47)

− 1

2hy

(
jn+1/2

y(i+1, j+1/2,k)
+ jn+1/2

y(i, j+1/2,k)
− jn+1/2

y(i+1, j−1/2,k)
− jn+1/2

y(i, j−1/2,k)

)

− 1

2hz

(
jn+1/2
z(i+1, j,k+1/2)

+ jn+1/2
z(i, j,k+1/2)

− jn+1/2
z(i+1, j,k−1/2)

− jn+1/2
z(i, j,k−1/2)

)
The charge conservation on the grid can be enforced in various ways. One can correct currents and solve an elliptic 

problem after each time step [14]. One can automatically calculate currents inside the cell co that the charge is locally 
conserved [48]. One can move particles in a zig-zag along the axises [49]. The charge-conserving closure is not unique and 
an infinite number of other schemes can be easily generated like charge splitting curvy trajectory particle motion, etc. All 
these schemes generate different curl currents on the grid and thus have different noise properties.

However, the only true 2-nd order accurate current closure is the rigorous charge conservation method introduced orig-
inally by Villacenor and Buneman [50]. This scheme assumes the straight particle trajectory during the time step. All other 
methods fail to do so. The Esirkepov scheme [48] coincides with the Villacenor and Buneman scheme identically as long 
as the particle stays inside one cell during the time step. It gives different results, however, as soon as the particle crosses 
boundaries.

We use a generalized rigorous charge conservation (GRCC) method based on [50], compare also [51]. It is not limited to 
the Cartesian geometry and is valid for any particle shape. Let us suppose, we have selected a form-factor w for the current 
deposition by the numerical macro-particles. The macro-particle α will then induce an instantaneous current j(t) on the 
grid with components:

jx(i, j,k)(t) = wα
x (rα(t)) (48)

j y(i, j+1/2,k)(t) = wα
y (rα(t))

jz(i, j,k+1/2)(t) = wα
z (rα(t))

where rα(t) is the instantaneous particle position inside the cell. Depending on the form-factor, the particle may induce 
instantaneous currents at many grid cells. We write expressions for one cell only, as the others are analogous.

The particle starts its motion at the time step tn at the position rα(tn) and finishes at the time step tn+1 = tn + �/c
at the position rα(tn+1). The straight particle trajectory is parameterized as rα(t) = rα(tn) + (t − tn)/(tn+1 − tn)δrα , where 
δrα = rα(tn+1) − rα(tn). The current induced by the particle on the grid during the time step is then

jn+1/2 = c

�

1∫
0

wα(rα(tn) + τδrα)dτ = Wα(rα(tn), δrα) (49)

When the macroparticle crosses the cell boundaries, the integral (49) must be split along the straight particle trajectory in 
parts, where the particle center belongs to one particular cell.

For most popular particle shapes (box, triangle, quadratic, spline, etc.), the integration in (49) is done analytically (using 
any symbolic integration software) and the function Wα(rα(tn), δrα) is easily coded. Villacenor and Buneman did it explicitly 
for the case of Cartesian grid and a square box particle shape.

This described GRCC algorithm preserves the discretized Maxwell-Gauss equations automatically by the RIP scheme.
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5.2. Divergence conservation

In the same manner we define the curl and divergence of the fields. For example, ∇ · B is defined as

∇ · Bi+1/2, j+1/2,k+1/2 = Bx(i+1, j+1/2,k+1/2) − Bx(i−1, j+1/2,k+1/2)

�
(50)

+ B y(i+1, j+1,k+1/2) + B y(i, j+1,k+1/2) − B y(i+1, j,k+1/2) − B y(i, j,k+1/2)

2hy

+ Bz(i+1, j+1/2,k+1) + Bz(i, j+1/2,k+1) − Bz(i+1, j+1/2,k) − Bz(i, j+1/2,k)

2hz

at the middle cell position (i + 1/2, j + 1/2,k + 1/2). We average fields along the X−axis according to the trapezoidal rule 
while the usual leap-frog Yee rule is applied along the transverse coordinates. It is straightforward to check that the RIP 
scheme preserves ∇ · B defined in this way.

The fields at the half-time steps are required to calculate the diffraction terms only. Without diffraction, the need to 
maintain the additional set of fields at half-time steps vanishes and the RIP scheme becomes identical to the standard 1D 
PIC scheme [14], which is the workhorse of 1D plasma simulations due to its excellent stability and accuracy.

6. Dispersion and stability of the RIP scheme

We apply the plane-wave analysis to the marching equations (19), (22) and (31)-(34) with the refraction/diffraction 
terms (39)-(44) assuming F = F̃ exp (−iωt + ikr). For simplicity, we assume uniform plasma frequency ω2

p = 4πne2/γ and 
the linear current response to the electric field 2c

�
sin ωτ

2 J̃ = iq2nẼ. For the case of interest, cτ = hx = �, these equations 
become

2

�
sin

ω�

2c
cos

kx�

2
Ẽ y = − 2

�
sin

kx�

2
cos

ω�

2c
B̃z + 2

hz
sin

kzhz

2
cos

kx�

2
B̃x + ω2

p
�

2c sin ω�
2c

Ẽ y (51)

2

�
sin

ω�

2c
cos

kx�

2
Ẽ z = 2

�
sin

kx�

2
cos

ω�

2c
B̃ y − 2

hy
sin

kyhy

2
cos

kx�

2
B̃x + ω2

p
τ

2 sin ωτ
2

Ẽ z (52)

2

�
sin

ω�

2c
Ẽx = 2

hy
sin

kyhy

2
B̃ z − 2

hz
sin

kzhz

2
B̃ y + ω2

p
�

2c sin ω�
2c

Ẽx (53)

2

�
sin

ω�

2c
cos

kx�

2
B̃ y = 2

�
sin

kx�

2
cos

ω�

2c
Ẽz − 2

hz
sin

kzhz

2
cos

kxhx

2
Ẽx (54)

2

�
sin

ω�

2c
cos

kx�

2
B̃ z = − 2

�
sin

kx�

2
cos

ω�

2c
Ẽ y + 2

hy
sin

kyhy

2
cos

kxhx

2
Ẽx (55)

2

�
sin

ωτ

2
B̃x = 2

kyhy
sin

kyhy

2
Ẽ z − 2

kzhz
sin

kzhz

2
Ẽ y (56)

The dispersion relation in vacuum (ωp = 0) is rather simple:(
1

h2
y

sin2 kyhy

2
+ 1

h2
z

sin2 kzhz

2

)
+ 1

�2
sin2 �kx

2

(
1 − �2

(
1

h2
y

sin2 kyhy

2
+ 1

h2
z

sin2 kzhz

2

))

= 1

�2
sin2 �ω

2c
(57)

The stability condition in vacuum is

�2

(
1

h2
y

+ 1

h2
z

)
< 1 (58)

In the presence of plasmas, it is modified to

1

�2
>

1

h2
y

+ 1

h2
z

+ c2ω2
p

4
(59)

The RIP scheme combines dispersionless properties of the standard 1D solver along the X−axis with the Yee dispersion for 
waves running in the transverse direction. Indeed, setting ky = kz = 0 in the dispersion relation (57), we immediately obtain 
ω = ckx and the phase velocity
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Fig. 2. (Color online.) Intensity of fluctuating fields in the “streaming plasma” simulations. The Yee scheme is fully subject to the numerical Cerenkov 
instability and reaches saturation within a few plasma periods. The FFT-based solver avoids the first order numerical Cerenkov resonance and is subject to 
second order aliasing resonance. The RIP simulation of streaming plasma shows several orders of magnitude lower noise fields. The noise field growth rate 
is very low here. Mention that the FFT solver (2) is identical to the RIP solver for waves running along the X−axis. Yet, the FFT solver is subject to NCI 
because of aliasing. The stationary plasma case shows no instability at all in the RIP simulation.

V ph = ω

kx
= c (60)

for plane waves propagating in the X−direction.
Conversely, setting kx = 0, we obtain the usual 2D Yee dispersion relation for waves propagating in the transverse direc-

tion

1

h2
y

sin2 kyhy

2
+ 1

h2
z

sin2 kzhz

2
= 1

�2
sin2 �ω

2c
(61)

with all its known advantages and drawbacks.
Mention that the NDF scheme introduced in [52] has a different stability condition:

1

c2τ 2
>

1

h2
x

+ c2ω2
p

4
(62)

so that one can set cτ = hx only in vacuum. The presence of plasma, ωp > 0, one has to choose cτ < hx and the dispersion-
less properties of the NDF scheme are compromised.

7. Numerical tests of the RIP Maxwel solver

7.1. Numerical Cerenkov instability test

As a first test, we take the numerical Cerenkov instability. We compare the standard Yee solver, the FFT-based solver (2)
and the RIP solver, all implemented on the VLPL platform [8]. No artificial filtering of fields or currents is used. The initial 
configuration is a ellipsoidal plasma of Gaussian density profile n = n0 exp

(−r2/σ 2
)

consisting of electrons and protons 
moving in the X−direction with the average momentum < p0 > /mαc = (px0,0,0), where α denotes the particle type (α =
e, p), with mp/me = 1846. To seed the instability, the electrons have a small initial temperature < (p0− < p0 >)2 >= σ 2

p . In 
relativistically normalized units, the simulation parameters are: the peak plasma density is n0 = 1 with the corresponding 
non-relativistic plasma frequency ωp = √

4πn0e2/me . The initial particle momenta px0 = −10 and σp = 10−4. The grid steps 
were hy = hz = 1.88 c/ωp and hx = cτ = � = 0.63 c/ωp . As a diagnostics for the comparison, we selected the growth of the 
maximum local field intensity I = E2 + B2 on the grid. The results are shown in Fig. 2

We see that the fluctuating fields in simulations using the Yee scheme grow to the non-linear saturation within a few 
plasma oscillations. This is because the Yee solver is exposed to the first order Cerenkov resonance. The FFT-based solver is 
dispersionless and avoids the first order Cerenkov resonance. Still, the second order aliasing of the spectral FFT solver leads 
to the numerical Cerenkov instability, though at a lower growth rate as compared with the standard Yee solver.

In contrast, the RIP solver is free from NCI. The noise in the RIP scheme remains many orders of magnitude lower over a 
long simulation time of t = 100 · 2π/ωp . The very slow growth of the noise fields here has nothing to do with the Cerenkov 
resonance, but is the unavoidable “numerical heating” always present in PIC codes.

Finally, we do another simulation with a stationary plasma, < p0 > /mαc = (0,0,0), while keeping all other parameters 
the same. We observe here no numerical heating at all. Intensity of fluctuating noise fields remains constant over many 
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Fig. 3. (Color online.) Laser-plasma wake field acceleration in the bubble regime. The electron plasma density nenc , the accelerating electric field eEx/mcω
and the transverse electric field eE y/mcω are shown after the laser pulse propagated La = 300λ. The first row shows the Yee scheme simulation results 
for the longitudinal grid step hx = 0.05λ and time step τ = 0.04λ/c, the middle row gives the RIP scheme results with the same grid steps and time 
step τ = hx/c, and the last row shows RIP scheme results with two times rougher resolution in the propagation direction hx = cτ = 0.1λ. The numerical 
Cerenkov resonance in the Yee scheme is clearly seen in frame (c) as the short wavelength bow-like emission by the accelerated electron bunch.

hundreds of plasma periods here. The higher absolute level of the noise for the streaming plasma is the natural consequence 
of the larger initial noise current source in this case. Fig. 2 demonstrates clearly that the RIP scheme is much less subject to 
Cerenkov instability for plasmas drifting along the selected axis.

We stress here that the FFT-based method (2) is identical to the RIP solver for waves running in the X−direction. Yet, 
we observe a quite different behavior with respect to the numerical Cerenkov instability. The reason for this difference has 
to be studied further.

We mention here that the numerical Cerenkov instability of uniformly streaming plasma can be alleviated by using a 
co-moving grid as proposed by Lehe et al. [44]. The method exploits a Galilean transformation to a grid in which the 
background plasma does not stream through the cell boundaries. Yet, the dense bunch of accelerated particles moves in the 
opposite direction at twice the light speed relative to this grid and is fully exposed to the Cerenkov resonance.

7.2. Laser-driven plasma bubble

As the second numerical test, we select laser-plasma particle acceleration in the bubble regime [53]. A circularly polarized 
laser pulse with initial vector potential A = � 

[
a(ξ, r⊥)(ey + iez)exp(ikξ)

]
is used. Here, ξ = x − ct and the envelope shape 

has been selected as a ellipsoidal Gaussian a(ξ, r⊥) = a0 exp(−ξ2/σ 2|| − r2⊥/σ 2⊥) with the amplitude a0 = 5, length σ|| = 5λ

and radius σ⊥ = 5λ, where the laser wavelength λ = 2π/k. The plasma consisting of electrons and protons has an initial 
density n = 0.01 nc , where nc = meω

2/4πe2 is the critical density. At the plasma boundary, the density increases linearly
from n = 0 to n = 0.01 nc over a length L = 38 λ. The simulation results after an acceleration distance of La = 300 λ are 
shown in Fig. 3. The simulation box has the size 40λ × 40λ × 40λ. The grid steps are hx = 0.05λ, hy = 0.25λ, hz = 0.25λ

and the time step is τ = 0.045λ/c in the Yee simulation, and τ = hx/c in the RIP simulation.
We see that the trapped electron bunch of the bubble has a fine longitudinal structure in the Yee simulation. At the same 

time, the bubble accelerating field Ex is rippled with the short-wavelength radiation emitted by the relativistic electrons due 
to the numerical Cerenkov resonance. This numerical emission is clearly seen in Fig. 3(c) as the bow-like short wavelength 
radiation emanating from the dense electron bunch. The RIP simulation shows a rather smooth electron bunch and no 
signatures of numerical Cerenkov emission. The E y−field of the relativistic electron bunch has a clean quasi-static form: it 
is not bow-shaped, but perpendicular to the bunch. Further, a small additional numerical dephasing can be observed at the 
leading edge of the bubble.

To check the RIP scheme convergence, we did an additional simulation with rough resolution. We doubled the longitu-
dinal grid step and the time step to hx = cτ = 0.1λ, so that we have only 10 cells per laser wavelength. The results are 
shown in the last row in Fig. 3. One observes little difference from the higher resolution simulation, shown in the middle 
row in Fig. 3. Compare the phase of the laser pulse seen in the electron density perturbations in frames (f ) and (i). The RIP 
simulation even at this rough resolution accurately describes the laser phase. The Yee solver gives a completely wrong laser 
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Fig. 4. (Color online.) Ultra-low transverse emittance beam propagation in vacuum. The bunches carry charges of 6 nC or 0.6 nC. The initial normalized 
transverse emittance is εy = εz = 1 nm. The Yee solver shows fast emittance growth. The RIP solver preserves the emittance at sub-nm level.

phase as seen in the frame (b). At the resolution of just 10 cells per wavelength (or even smaller), the RIP solver is a good 
alternative to full electromagnetic PIC codes that employ the envelope approximation [23,54] when the laser pulse is short.

7.3. Ultra-low transverse emittance beam propagation in vacuum

Finally, we check how well the RIP scheme preserves the beam emittance. The future colliders and XFEL light sources 
must have beams with ultra-low transverse emittance. Emittances in the range of a few nanometers, or even picometers 
have to be realized. There are several approaches, how such beams can be generated using the conventional accelerators. 
Plasma-based acceleration also might reach such ultra-low beam emittances, using, e.g. the Trojan-horse injection [55]. Thus, 
very accurate simulation methods are required, where the emittance is preserved at picometer levels.

Lehe et al. [29] have shown that the Yee Maxwell solver has problems with emittance conservation and suggested an 
“improved” one that shows a better emittance preservation. There are several sources of emittance growth in PIC simu-
lations: numerical heating, numerical Cerenkov instability and the wrong field interpolation to the particle position due 
the staggered mesh. Lehe et al. modified the Yee solver to remove the zero-order Cerenkov resonance. This improved the 
emittance preservation [29].

In this sub-section, we simulate an electron bunch propagation in vacuum. The electron bunch has initial energy of 10 
GeV and normalized transverse emittance of εy = εz = 1 nm. The bunch has a Gaussian shape with σx = σy = σz = 1.41 μm. 
We simulate two cases, where the bunch carries either 0.6 nC or 6.0 nC charge. The simulations are done using the Yee or 
RIP solver for total propagation distance of 1 mm. The grid steps were hx = 0.1 μm, hy = hz = 0.15 μm. The time step for 
the Yee solver was cτ = 0.7hx .

The emittance evolution is shown in Fig. 4. The Yee solver shows a very fast initial jump of the bunch emittance due to 
the incorrect field interpolation to the particle positions on the staggered Yee mesh. The jump is higher for the higher bunch 
charge. Later, the bunch becomes unstable due to the numerical Cerenkov instability and the emittance grows steadily. After 
the full propagation distance of 1 mm, the final numerical emittance grew in the Yee simulations to 8.5 μm for the high 
current bunch of 6 nC and to 0.8 μm for the low current bunch of 0.6 nC.

The RIP solver shows an excellent conservation of the emittance. For the high-current bunch of 6 nC, the transverse 
emittance grew only by 10 pm, from 1 nm to 1.01 nm after the full 1 mm propagation distance. This miniscule emittance 
growth is physical: it is due to the Coulomb explosion of the high current bunch.

The bunch dynamics is shown in Fig. 5. It shows the normalized bunch density ne/nc and the transverse force acting 
on the electrons F y = e(E y − Bz)/mcω. Here, ω = 2πc/λ, λ = 1 μm and nc = mω2/4πe2. The frames (a) and (b) are taken 
for the RIP solver after the full 1 mm propagation distance, while the frames (c) and (d) are taken for the Yee solver after 
0.1 mm propagation. We take here the high current case of 6 nC charge bunch.

The Yee solver fails with the transverse force by many orders of magnitude. We also see the development of NCI in the 
transverse force causing self-modulation of the bunch tail. Apparently, the Yee solver is not the best choice when one wants 
to simulate low emittance bunches.

The RIP solver accurately reproduces the transverse force due to the self-interaction down to the machine precision. The 
normalized transverse force is at the level of F y = 3.7 · 10−7 in this case. Thus, the RIP Maxwell solver is perfectly suited to 
simulate bunches with sub-nanometer emittances.
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Fig. 5. (Color online.) Beam propagation in vacuum. The bunch carries the charge of 6 nC. The initial normalized transverse emittance is εy = εz = 1 nm. 
The frames show the bunch density n/nc and the combine transverse force F y = e(E y − Bz)/mcω. Here, ω = 2πc/λ, λ = 1 μm and nc = mω2/4πe2. The 
frames (a) and (b) are simulated with the RIP solver and taken after 1 mm propagation distance. The frames (c) and (d) are simulated with the Yee solver 
and are taken after 0.1 mm propagation. The RIP solver shows the correct transverse force due to the bunch self-action. The Yee solver is spoiled by poor 
force interpolation and the onset of numerical Cerenkov instability.

8. Discussion

The new RIP scheme is a compact stencil FDTD Maxwell solver that removes the numerical dispersion in one selected 
direction. For the waves propagating in the transverse direction, it corresponds to the Yee solver. The RIP scheme is local 
and does not use any global spectral method. This allows for efficient parallelization via domain decomposition in all three 
dimensions. The computational cost of the RIP solver is comparable with that of the standard Yee solver. The RIP solver can 
be used for simulations of quasi-1D physics problems like laser wake field acceleration. This RIP marching algorithm has a 
form of “Galiliean field shift” exactly by single cell per time step. Thus, instead of shifting the grid following the relativistic 
plasma [44], the RIP solver shifts the transverse fields so that the relativistic particle sees the same fields when it enters 
the new cell. Apparently, this procedure greatly reduces the numerical Cerenkov instability.
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