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This paper proposes a novel fixed inducing points online Bayesian calibration (FIPO-BC) 
algorithm to efficiently learn the model parameters using a benchmark database. The 
standard Bayesian calibration (STD-BC) algorithm provides a statistical method to calibrate 
the parameters of computationally expensive models. However, the STD-BC algorithm does 
not scale well with regard to the number of data points and also it lacks an online learning 
capability. The proposed FIPO-BC algorithm greatly improves the computational efficiency 
of the algorithm and, in addition, enables online calibration to be performed by executing 
the calibration on a set of predefined inducing points.
To demonstrate the procedure of the FIPO-BC algorithm, two tests are performed, finding 
the optimal value and exploring the posterior distribution of 1) the parameter in a simple 
function, and 2) the high-wave number damping factor in a scale-resolving turbulence 
model (scale adaptive simulation shear-stress transport model/SAS-SST). The results (such 
as the calibrated model parameter and its posterior distribution) of FIPO-BC with different 
inducing points are compared to those of STD-BC. It is found that FIPO-BC and STD-BC 
can provide very similar results, once the predefined set of inducing points in FIPO-
BC is sufficiently fine. Given that fewer datapoints are needed in the proposed FIPO-BC 
algorithm, compared to the STD-BC algorithm, it will be a more computational efficient 
algorithm. In our demonstration test cases, the proposed FIPO-BC algorithm is at least 
ten times faster than the STD-BC algorithm. Meanwhile, the online feature of the FIPO-BC 
allows continuous updating of the calibration outputs and potentially reduces the workload 
on generating the database.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Computational modelling is now an integral tool to predict and understand complex physical systems in many branches 
of science and engineering. Computational modelling enables engineers and scientists to analyse physical phenomena which 
cannot be easily measured by experiments and reduces the time and financial cost of analysing complex systems. However, 
a computational model is normally subject to various types of errors, such as discretisation error, parametric uncertainty 
error, and model error. The discretisation error, parametric uncertainty error and model error all contribute to the total 
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error in a mathematical or computational model. It is only by assessing and reducing each of the components to the total 
error that one can assess the accuracy of a given mathematical or computational model. The discretisation and parametric 
uncertainty errors are relatively easy to reduce, depending upon the computational resources and experimental data avail-
able. However, the model error is normally linked to the underlying mathematical model not representing the exact physics 
of the system being analysed. Therefore, model error is particularly challenging to both rigorously analyse and reduce in 
magnitude. In many applications, such as turbulence modelling, the model parameter is determined based upon approxima-
tions or simplified conditions. Therefore, model parameter calibration with respect to (w.r.t.) the benchmark data becomes 
important to improve the overall performance and accuracy of the model against experimental data and results.

The determination of the model parameters through calibration, data adjustment or data assimilation enables the model 
to more accurately represent the underlying physics of a system being analysed. By this definition, it is natural to cali-
brate the model parameters using the best-fit principle. However, the best-fit principle does not consider the uncertainties 
that the data may be subjected to, such as the observational/numerical discretisation errors, which should be considered 
in determining the agreement between two databases [1–4]. Kennedy and O’Hagan [5] proposed a Bayesian approach to 
calibrating the computational model by representing model bias and computer model outputs as the Gaussian processes. 
The method automatically integrates the uncertainties into the calibration process by treating them as Gaussian noise. For 
simplicity, we will refer to Kennedy and O’Hagan’s approach as standard Bayesian Calibration (STD-BC).

Since the development of STD-BC, the concept was adopted and further developed by many researchers in different 
areas of science and engineering. For example, Bayarri et al. [6–8] applied the method to validate models for resistance spot 
welding, dynamic stress and vehicle collision modelling. In computational fluid dynamic (CFD) simulation, it was applied to 
tuning the model parameters and inferring the true physical value [9,10], quantifying the inverse uncertainty [11–18] and 
informing the design of supercomputer simulations [19]. Recently, Wu et al. [20,21] modularised the STD-BC by dividing the 
database into two different sets; a calibration set and an inverse uncertainty quantification set. This framework has been 
successfully applied in Liu et al. [22] to carry out the inverse uncertainty quantification of the correlation in two-fluid model 
based multiphase-CFD simulations. Wu et al. [23] furtherly discussed the “lack of identifiability” issue of inverse uncertainty 
quantification using the Bayesian calibration. Karagiannis and Lin [24] proposed a mixture Bayesian Calibration framework, 
which can represent the real system by the mixture of the outputs of available computer models with different fidelity 
level.

Despite the successful applications listed above, the STC-BC is impractical for science and engineering problems involving 
very large data sets [25]. This is due to the poor scaling of inverting the covariance matrix with respect to (w.r.t.) the size 
of the data sets involved. Assuming we have a data set of size N (including numerical and benchmark data), there will 
be an N-by-N covariance matrix to invert. The computational complexity to invert an N-by-N matrix is N3. To solve this 
problem, Higdon et al. [26,27] followed the definition of Kennedy and O’Hagan but suggested to decompose the model 
output and model discrepancy using singular value decomposition (SVD). The weights generated in the SVD of the numerical 
output are treated as a function of the model parameters and spatial coordinate. The concept of the STD-BC is then applied 
to the weight functions. Zhang and Fu [16,17] improved the efficiency of the original Bayesian UQ framework by using 
the adaptive HDMR technique to decompose the original high dimensional problems into several lower-dimensional sub-
problems. These treatments sub-sequentially improve efficiency, however, it does not invoke the online learning capability. 
Once more benchmark data becomes available, users have to execute, from scratch, the whole procedure with a larger 
dataset. The work presented in this paper aims to provide a solution to improve the efficiency of the STD-BC and enable 
the online capability using methods developed within the research literature on Gaussian processes (GP).

GP is a naïve Bayesian supervised machine learning algorithm. By assuming the data follows an adjoint multivariate 
Gaussian distribution, it offers the potential to determine the mean and variances of the unknown. As is the case with the 
STD-BC, the poor scalability of the inversion of the covariance matrix has limited the usage of the GP. In recent years, many 
efforts had been made to develop a sparse Gaussian processes for very large data sets. A detailed review can be found 
in [28]. In general, there are several ways to increase the sparsity of a GP, such as the Nyström GP [29,30], deterministic 
training conditional (DTC) GP [31], and kernel interpolation for scalable structured GP (KISS-GP) [32]. In this paper, we 
propose to adapt the stochastic variational inference GP (SVI-GP) method [33] to improve the efficiency of the Bayesian 
calibration and enable the online learning capability. We name the new method ‘fixed inducing points online Bayesian 
calibration’ (FIPO-BC).

The rest of this paper is organised as follows: A brief introduction to the SVI-GP and STD-BC is given in section 2 which 
is followed by the description of FIPO-BC in section 3. In section 4, we summarise the results of a toy case, while section 5
is contributed to calibrate a key model parameter in a scale resolving turbulence model (SAS-SST model). This paper is 
closed by a summary and discussion of future work in Section 5.

2. Background

According to Kennedy and O’Hagan [5], the physical process f (·), noisy observation yi ∈ R, and model outputs h (·, ·) at 
xi ∈ Rd has the following form:

yi = f (xi) + εi = h (xi,ϑ) + δ (xi) + εi, (1)
2
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where εi is the observation error and is subject to the normal distribution (N (0, β−1
exp)) with zero mean and standard 

deviation 
√

β−1
exp , δ (·) is the numerical model inadequacy and ϑ ∈ Rθ is the vector of model parameters. The Bayesian 

calibration assumes the numerical dataset and observations is a joint GP and then proceeds to find the most plausible ϑ via 
maximise the marginal likelihood.

2.1. Stochastic variational inference Gaussian processes (SVI-GP)

Before further description of the Bayesian calibration method, a concise description of Gaussian processes [34,35] and 
stochastic variational inference Gaussian processes (SVI-GP) [33] are given in this section. This allows us to introduce nota-
tion and expressions which will be used in the description of STD-BC and FIPO-BC methods.

The standard GP assumes that any finite subset of 
{

f (x) | x ∈ Rd
}

follows an adjoint Gaussian distribution. Considering 
the vector of noisy observations y = {yi ∈ R}n

i=1 taken at n locations X = {
xi ∈ Rd

}n
i=1. In the standard GP, we have

p (y | f ) = N (y | f , β−1
exp I) (2)

p ( f | X) = N ( f | 0, K ee) (3)

Using Eq. (2 & 3), we define the prior of the real-valued function f (x) as an adjoint multivariant Gaussian distribu-
tion with zero means (0) and covariance matrix (K ee). K ee is an n × n matrix, whose elements are calculated using a 
predefined covariance function which is typically dependent upon a set of hyperparameters. Hyperparameters can be se-
lected by maximising the marginal likelihood p (y | X) = N

(
y | 0, K ee + β−1

exp I
)
. The posterior GP of unknown y∗ at x∗ is 

N
(

y∗ | K ∗ K −1
ee y, K ∗∗ − K ∗ K −1

ee (K ∗)T + β−1
exp

)
, where K ∗ is a 1 × n covariance vector and K ∗∗ is calculated at x∗ using 

the covariance function. The need to invert the n × n covariance matrix K ee means a GP has a computational complexity of 
O

(
n3

)
.

The key idea of the SVI-GP method (or similar sparse GP approaches) is to expand the probability space of the GP with 
inducing points (or auxiliaries) [36]. Assuming, we can find inducing variables u that are conditioned on m inducing points 
Z = {zi}m

i=1 where m � n. We augment the GP prior as

p ( f | X) = p ( f | u, Z , X) p (u | Z) (4)

Similar to p ( f | X),

p (u | Z) = N (u | 0, K uu), (5)

where K uu is a m ×m covariance matrix evaluated between all inducing points. Let K eu (an n ×m matrix) be the covariance 
matrix between X and Z . We will then have

p ( f | u, Z , X) = N ( f | K eu K −1
uu u, K̃ ), (6)

where K̃ = K ee − K eu K −1
uu K ue and K ue is the transpose of K eu . The task then becomes finding the proper u and hy-

perparameters with knowledge of y. Parameters in q (u), including μ, S , and hyperparameters of the kernel function, are 
optimised using the lower boundary of p (y | X). In the SVI-GP, the objection function can be written as

LS V I−G P =
n∑

i=1

{
logN

(
yi | kT

i K −1
uu μ, β−1

exp

)
− k̃ii + ki K −1

uu S K −1
uu kT

i

2β−1
exp

}
− K L (q (u) | p (u)) (7)

with ki being the ith row of K eu and the k̃ii is the diagonal element of K̃ .
It is given in [33] that the gradients of L S V I−G P w.r.t. the parameters of q (u) are:⎧⎪⎪⎨

⎪⎪⎩
∂LS V I−G P

∂μ
= βexp K −1

uu K ue y − Λμ

∂LS V I−G P

∂ S
= 1

2
S−1 − 1

2
Λ

(8)

Λ in Eq. (8) is βexp K −1
uu K ue K eu K −1

uu + K −1
uu . When the training data is just one set and the hyperparameters are selected, 

the optimal parameters of q (u) are S = Λ and u = βexpΛ−1 K −1
uu K ue y. The computational complexity to evaluate L S V I−G P

is of O
(
nm2

)
.

Once the training data is supplied to the SVI-GP model sequentially, the stochastic variational inference is then used to 
approximate the parameters in q (u) and enables online training. The SVI algorithm works by taking steps in the direction 
of the approximate natural gradient, which is defined as the inverse Fisher information scaled usual gradient [33]. To use 
the natural gradient, it is worth reiterating the canonical parameters of q (u):
3
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⎧⎪⎨
⎪⎩

θ1 = S−1μ

θ2 = 1

2
S−1

(9)

The change of the canonical parameters in the natural gradient direction is then written as⎧⎪⎨
⎪⎩

θ2(t+1) = 1

2
S−1

(t) + γ

(
−1

2
Λ + 1

2
S−1

(t)

)

θ1(t+1) = S−1
(t) μ(t) + γ

(
βexp K −1

uu K ue y − S−1
(t) μ(t)

) (10)

In Eq. (10), γ represents the learning rate, while t is the iteration in the approximation of the parameters. For γ = 1, the 
optimal parameters obtained by Eq. (10) are the same as those obtained using Eq. (8). In practice for online training, the 
learning rate should be smaller than 1. In our experience, γ ≤ 0.2 works well. For the online training, the computational 
complexity to evaluate L S V I−G P is of O

(
ni m2

)
, where ni is the number of training data points in the ith data set.

Once q (u) is determined, the posterior GP mean and covariance can be approximated as described in [37]. There is 
difficulty in determining the optimised inducing inputs (z) as it will introduce a dependence on the training data if the 
optimisation procedure is done w.r.t. it. To solve this problem, a proper design of the inducing points can be used [33,36]. To 
further simplify the procedure, the uniformly distributed inducing point is adopted in this paper. Therefore, it is important 
to check the suitability of the predefined inducing point by a sensitivity study, which is akin to mesh sensitivity studies in 
CFD simulations. Once the SVI-GP model is converged on the number of inducing points, further increments of the inducing 
points will not result in a large difference in the surrogate model accuracy.

2.2. Standard Bayesian calibration (STD-BC) revisited

Consider observations y = {yi ∈ R}m1
i=1 at Xexp = {

xexp,i ∈ Rd
}m1

i=1, and simulation outputs h = {
hi, j = M

(
xnum, i,ϑ j

)}
at 

Xnum = {
xnum, i ∈ Rd

}n1

i=1 and a1 sets of model parameters θ = {
ϑ i ∈ Rθ

}a1

i=1. It should be noted that d and θ represent the 
dimension of xexp,i and ϑ i , respectively. The number of elements in h is N1 = a1n1. It is well known that numerical outputs 
are also subject to numerical error (βnum). Therefore, we assume h ∼N (0, Lnn), in which Lnn = K num + β−1

num I and K num is 
a N1 × N1 matrix where the element is evaluated using knum

{(
xnum,i,ϑk

)
,
(
xnum, j,ϑ l

)}
. Now, let us assume y ∼ N (0, Lee), 

where Lee = K ee + β−1
exp I and K ee = K num + K δ is the covariance matrix of true values ( f ). K δ is a m1 × m1 matrix for 

the model inadequacy with elements calculated using kδ

(
xexp,i, xexp, j

)
. The hyperparameters in the knum and kδ are ϕnum

and ϕδ , respectively. Also, it should be noted that, for simplicity, we imply that the number of grid/mesh in numerical 
simulations are the same.

Let us denote dT = [
h y

]
. According to the definition of the STD-BC [5], we then have

p
(
d | ϑ,ϕnum,ϕδ

) = N (d | 0, V B B) (11)

In Eq. (11),

V B B =
[

Lnn Cne

C en Lee

]
(12)

V B B is (m1 + N1)× (m1 + N1) matrix. C en is a m1 × N1 cross-covariance matrix and is designed to describe the relationship 
between numerical outputs and observations with ϑ . The elements in C en are evaluated using knum

{(
xi, j,ϑ i

)
,
(
xexp,k,ϑ

)}
and Cne = C T

en . It should be noted that we eliminated X = [
Xnum Xexp

]
in Eq. (11). It is noted in [5] that marginalised 

the effect of ϕnum and ϕδ would be too complex. Therefore, the optimal hyperparameters ϕ∗
num and ϕ∗

δ are suggested to be 
used. It should be noted that βnum and βexp are folded in ϕ∗

num and ϕ∗
δ here.

With fixed hyperparameters, the plausibility of ϑ is then expresses as

p
(
ϑ | d,ϕ∗

num,ϕ∗
δ

) = p (ϑ) p
(
d | ϑ,ϕ∗

num,ϕ∗
δ

)
∫

p (ϑ) p
(
d | ϑ,ϕ∗

num,ϕ∗
δ

)
dϑ

(13)

Then, the objective in the coupled calibration is to obtain argmaxϑ∈A p 
(
ϑ | d,ϕ∗

num, ϕ∗
δ

)
. The denominator in Eq. (13) is a 

constant and the prior of ϑ (p (ϑ)) should be as flat as possible to avoid strong bias. As a result, the shape and the max-
ima of p 

(
ϑ | d,ϕ∗

num, ϕ∗
δ

)
are effectively determined by p 

(
d | ϑ,ϕ∗

num, ϕδ

)
. Then argmaxϑ∈A p 

(
ϑ | d,ϕ∗

num, ϕ∗
δ

)
becomes 

argmaxϑ∈A p 
(
d | ϑ,ϕ∗

num,ϕ∗
δ

)
. The logarithm form of p 

(
d | ϑ,ϕ∗

num,ϕ∗
δ

)
can be written as

logp
(
d | ϑ,ϕ∗

num,ϕ∗
δ

) = −1

2
dT V −1

B B d − 1

2
log |V B B | − m1 + N1

2
log2π (14)

The STD-BC is then to solve argmaxϑ∈Alog
(

p
(
d | ϑ,ϕ∗

num,ϕ∗
δ

))
in which A ⊆ Rθ . For the sake of simplicity, we will write 

log
(

p
(
d | ϑ,ϕ∗

num,ϕ∗
δ

))
as log (p (d | ϑ)) in the following discussion.

The flow chart for STD-BC is illustrated in the Fig. 1. STD-BC contains three major steps:
4
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Fig. 1. Flow chart of the standard Bayesian calibration (STD-BC).

1. Determine a set of optimal hyperparameters (ϕ∗
num) for knum w.r.t. the marginal likelihood of h ∼N (0, Lnn).

2. Determine a set of optimal hyperparameters (ϕδ) for kδ with knowledge of ϕ∗
num .

3. Solve argmaxϑ∈Alog (p (d | ϑ)) to obtain calibrated ϑ or to obtain the posterior distribution of ϑ w.r.t. p (d | ϑ) for the 
inverse uncertainty quantification purpose.

3. Fixed inducing points online Bayesian calibration (FIPO-BC)

In the FIPO-BC framework, an extra layer formed by the inducing points is introduced to eliminate the dependence of 
the size of the covariance matrix on the available data. The form of the likelihood defined in the Bayesian calibration is 
applied to the variables on the inducing points. The likelihood is then marginalised w.r.t. the variational distribution of the 
inducing variables which is obtained using the SVI method.

Let ũ = {
ui = f

(
zexp,i

)
, zexp,i ∈ Rd

}
and W = {

wi, j = M
(
znum,i,ω j

)
, znum, i∈ Rd and ω j ∈ Rθ

}
to be the inducing vari-

ables for f and h. To differentiate the model parameter in the original dataset d, the ω j is used to represent the vector of 
model parameter here. Let Z exp = {

zexp,i ∈ Rd
}m2

i=1, Znum = {
znum,i∈ Rd

}n2

i=1, Ω = {
ω j ∈ Rθ

}a2
j=1, and Z = [

Znum Zexp
]
. So 

W contains N2 = a2n2 elements and N2 + m2 � N1 + m1. Let w̃ be the vectorised W and dT
S = [

w̃ ũ
]
. Similar to the 

STD-BC, we now define the p (dS | ϑ) as

p
(
dS | ϑ, ϕ̃∗

num, ϕ̃∗
δ

) = N (dS | 0, V S S) (15)

and

V S S =
[

Lw w C wu

C uw Luu

]
(16)

In Eq. (16), Lw w = K w w and Luu = K uu . K w w and K uu = K w w + K δ′ are the covariance matrix for w̃ and ũ, respectively. 
K δ′ is the covariance matrix with element calculated using kernel function kδ for the model inadequacy related to ũ. C uw

is the cross-covariance matrix for w̃ and ũ with element evaluated using knum and C wu = C T
uw .

We further write the variational distribution of w̃ and ũ to be

q
(

w̃
) = N

(
w̃ | M w̃ , S w w

)
(17)

q
(
ũ
) = N

(
ũ | M ũ, Suu

)
(18)

Let M T
S = [

M w̃ M ũ
]

and S =
[

S w w 0
0 Suu

]
, then

q (dS) = N (dS | M S , S) (19)

Expectation of p 
(
dS | ϑ, ϕ̃∗

num, ϕ̃∗
δ

)
given q (dS) is

〈
p

(
dS | ϑ, ϕ̃∗

num, ϕ̃∗
δ

)〉
q(dS )

= 1√
(2π)m2+N2 |V S S + S |

exp

(
−1

2
M T

s (V S S + S)−1 M s

)
(20)

= N (M s | 0, V S S + S)

By eliminating the hyperparameters in the expression, we can now comfortably write 
〈
p

(
dS | ϑ, ϕ̃∗

num, ϕ̃∗
δ

)〉
q(dS )

as 
p (M S | ϑ) and its logarithm form is
5
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log (p (M S | ϑ)) = −1

2
M T

s (V S S + S)−1
B B M s − 1

2
log |V S S + S | − m2 + N2

2
log (2π) (21)

The general flow chart of the FIPO-BC is illustrated in Fig. 2. The proposed FIPO-BC algorithm contains following steps:

1. Design the inducing points;
2. Determine a robust set of hyperparameters (ϕ̃∗

num) and infer the model output (M w̃ ) at the inducing points using the 
SVI-GP regarding to the whole set/a batch of model outputs;

3. Determine a robust set of hyperparameters (ϕ̃∗
δ ) and infer the measurements (M ũ) at the inducing points using the 

SVI-GP regarding to the whole set/a batch of the benchmark database;
4. Obtain the calibrated model parameters by solving argmaxϑ∈Alog (p (M S | ϑ)) or obtain the posterior probability distri-

bution of ϑ w.r.t. p (M S | ϑ).
5. Update the calibrated ϑ and posterior probability distribution of ϑ with knowledge (M w̃ , S w w , M ũ , and S uu) obtained 

in the previous FIPO-BC process, once more data is available.

Fig. 2. Flow chart of the fixed inducing points online Bayesian calibration framework.

The computational complexities for training the surrogate models in the STD-BC and FIPO-BC algorithms are O
(

N3
1 + m3

1

)
and O

(
N3

2 + m3
2

)
, respectively. The computational cost of calculating log (p (d | ϑ)) or log (p (M S | ϑ)) is dominated by the 

inversion of the covariance matrix. The (N1 + m1) × (N1 + m1) covariance matrix V B B in the STD-BC algorithm leads to 
a computational complexity of O

(
(N1 + m1)

3), while the V S S + S in the FIPO-BC algorithm leads to a computational 
complexity of O

(
(N2 + m2)

3). Since N2 � N1 and m2 � m1, the FIPO-BC algorithm is much more computationally efficient 
than the STD-BC algorithm. In the FIPO-BC algorithm, the calculation of log (p (M S | ϑ)) only relies on the parameters in the 
SVI-GP models. Hyperparameters (ϕ̃∗

num and ϕ̃∗
δ ) and q (dS ) in FIPO-BC can be continuously updated according to the new 

training data using the SVI method as described in section 2.1. Accordingly, the calibrated ϑ and/or posterior probability 
distribution of ϑ can be updated by repeating step 4. Therefore, the FIPO-BC algorithm can be used in an online manner. 
Since the size of the covariance matrix in log (p (M S | ϑ)) is the same in the off-line and on-line FIPO-BC, the computational 
complexity for calculating log (p (M S | ϑ)) therefore the same as well. Like the STD-BC algorithm, the accuracy of the FIPO-
BC algorithm is dependent on the validity of the surrogate models. Provided the SVI-GP models in the FIPO-BC algorithm 
can accurately represent the profile of the original data, the FIPO-BC algorithm will produce the similar outputs as the 
STD-BC algorithm.

4. Application of the FIPO-BC algorithm in a simple test case

This section verifies the implementation as well as demonstrating the practical application of the FIPO-BC algorithm 
by determining the parameter within a simple mathematical function. Both the STD-BC and FIPO-BC algorithms are used to 
identify the parameter in the mathematical function f (x) = xsin (4.0x). To distinguish the true function and model, the latter 
is expressed as h (x, C) = xsin (Cx). Moreover, forty measurements are manufactured by adding noise (ε ∼ N

(
0, 0.052

)
) to 

the function outputs. Outputs of h (x, C) are obtained using different values for C but the same mesh. Twenty constants 
are sampled in the uniform distribution U (0.0, 8.0) using the Latin hypercube sampling (LHS) method. Manufactured 
measurements and model outputs together with the profile of f (x) are presented in Fig. 3(a). Extra validation data is 
6
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Fig. 3. (a) Training dataset: (model outputs with different constant (xsin(Cx)) and manufactured measurements (benchmark database)); (b) Verification 
dataset.

Table 1
Number of points in the standard Bayesian calibration and resolution of fixed 
inducing points online Bayesian calibration.

Cases: C x Measurements Data points/Inducing points

STD-BC:

Standard BC 20 40 40 840

FIPO-BC:

Case 1 6 11 16 82
Case 2 9 16 21 165
Case 3 11 21 26 257
Case 4 17 26 31 473

generated to validate the hyperparameters of GP models in the calibration process. The validation dataset, shown in Fig. 3(b), 
contains twenty measurements and outputs of h (x, C) with ten C values sampled in the uniform distribution U (0.0, 8.0).

Four FIPO-BC cases with different sets of inducing point are generated. The details of the sets of the inducing points are 
documented in Table 1. From Case 1 to Case 4, the number of the inducing points gradually increases. Outputs of FIPO-
BC algorithm, including the calibrated model parameter, the posterior distribution of the parameter, and the profile of the 
objective function, are compared to those of STD-BC algorithm. The hyperparameters of the surrogate models are optimised 
using the adaptive Nelder-Mead algorithm [38]. The validity of the GP/SVI-GP models for h (x, C) and measurements (y) are 
checked using the validation dataset. For the sake of simplicity, the GP model is expressed as g and the SVI-GP model is 
expressed as gs . Several attempts to determine the optimal hyperparameters have been done. In each attempt, the initial 
searching point of the adaptive Nelder-Mead simplex algorithm is carefully selected. Only the best-performing model is 
considered in the following discussion.

The quantity-to-quantity (Q-Q) plot and the mean square error (MSE) are illustrated in Fig. 4. Outputs of gs (x, C) are very 
similar to those of h (x, C) except for Case 1, seeing Fig. 4(a). gs (x, C) in Case 1 is visibly different from the validation data 
with MSE ∼= 1.0E-1. The MSEs of gs (x, C) in Cases 2, 3 & 4 are smaller than 1.0E-4, while the MSE of g (x, C) in standard 
BC (STD-BC) is just above 1.0E-4. Interestingly, the MSE in Case 4 (∼1.0E-5) is larger than that in the Case 3 (∼1.0E-6). 
This observation may be explained by the non-marginalised hyperparameter effect, namely the results are not integrated 
w.r.t. the distribution of the hyperparameters. Since the MSE in both Case 3 and 4 are much smaller than the observational 
noise, such a difference is deemed to be ignorable. Furthermore, gs(x) and g (x) for the manufactured measurement almost 
overlap with each other, referring to Fig. 4(b). The MSEs (<1.0E-02) of gs(x) and g (x) are much smaller than the standard 
deviation (0.05) of ε . It is confident to claim that the surrogate models in the STD-BC case and last three FIPO-BC cases are 
valid.

The posterior distribution of C is obtained using the Metropolis-Hasting (MH) algorithm, by assuming that the prior 
distribution of C follows a uniform distribution in [0, 8]. 10,000 samples have been taken in each case. The posterior 
probability distribution functions (PDF) of C (represented in the form of histogram), the profiles of log marginal likelihood 
defined in both FIPO-BC and STD-BC, as well as maxima of the profiles are plotted in Fig. 5. Because of the deficiency of 
gs (x, C) in Case 1, the calibrated C is well away from 4.0. In other FIPO-BC cases and STD-BC, calibrated C is the same as 
the true value. With more inducing points added in the FIPO-BC, the profile of log (p (M S | ϑ)) becomes more and more 
akin to the profile of log (p (d | ϑ)) until the FIPO-BC is converged on the inducing points, i.e. outputs of Case 4 are similar
7
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Fig. 4. Validation for (a) surrogate models for h (x, C) (b) surrogate models for measurements in FIPO-BC and STD-BC.

Fig. 5. The posterior probability distribution functions (PDF) of C and the log marginal likelihood for cases of FIPO-BC (a) Case 1; (b) Case 2; (c) Case 3; (d) 
Case 4 and (e) the STD-BC case.

to outputs of Case 3. The posterior probability distribution function of C in Case 4 is very similar to the outcome of STD-BC. 
Although the effects of hyperparameter in the STD-BC and FIPO-BC are not integrated out (or marginalised), the shape of 
log (p (M S | ϑ)) is about the same as the log (p (d | ϑ)).

The CPU time per 1000 MH sampling in each case is presented in Fig. 6. The in-house Matlab code runs on a laptop 
with the Intel i7-7600U CPU. The time efficiency of MH sampling is greatly improved when using FIPO-BC algorithm. For 
instance, the CPU time per 1000 MH sampling in Case 3 is 135.8 s just a tenth of that in the STD-BC algorithm.

In order to demonstrate the online capability of the proposed method, the output of h (x, C) in the training dataset is 
split into four batches. Each batch is separately fed into the FIPO-BC solver of Case 3. The results are shown in Fig. 7, which 
includes the value of C used to generate the data in the batches, response surface of true model output approximated 
using the gs (x, C), as well as the calibrated value of C at each step. With more data supplied to the SVI-GP solver, the 
response surface gradually converges, and therefore to the calibrated value of C . The calibrated C with the first set of data 
(‘Batch-1’) is 3.92. With the ‘Batch-2’ supplied to the calibration, while ‘Batch-1’ is omitted, the calibrated C is 4.0. Although 
the calibrated C shifted to 4.01 with ‘Bath-3’ and ‘Bath-4’, such a small difference does not cause much difference in the 
function output. Therefore, it is reasonable to claim that the online FIPO-BC converges with dataset ‘Batch-2’.
8
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Fig. 6. CPU time(s) per 1000 MH sampling in each case.

Fig. 7. The online calibration of the parameter in the toy case using FIPO-BC. Each pane shows the response surface of the inducing output (W ) for the 
models as well as the calibrated parameter after a batch of model output using different C values, marked as solid points. Previously used (and discarded) 
C values and the calibrated constant are marked as empty points.

5. Calibrating Cs in a SAS-SST simulation

Turbulence modelling has been a continuous endeavour since the 1950s. The challenge is caused by the misalignment of 
the scale of a flow system and the turbulent eddies with the spatial scale of micrometre/millimetre and the time scale of 
microsecond/millisecond. Despite their small scale, the turbulent eddies dominate the behaviour of the turbulent flow. Major 
efforts have been spent in the development of turbulence models which describe the effect of turbulent eddies sufficiently 
well. In this section, the FIPO-BC algorithm is used to calibrate a damping factor (Cs ) in a scale-resolving CFD turbulence 
model (SAS-SST). The SAS-SST model [39,40] aims to generate turbulent eddies using information obtained from the mean 
flow. Unrealistic turbulent eddies in the high-wave number region may be introduced into the simulated turbulent flow 
system. As a result, a specific term is designed to filter those unphysical turbulent eddies. The damping factor (Cs) controls 
the size of the filter and is the key parameter in this term. It changes the balance of the modelled and resolved turbulence 
effect, and hence affecting the model accuracy.
9
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Fig. 8. (a) Profiles of U/Ub after the prism bluff-body predicted using SAS-SST model with different Cs , (b) mean square difference of U/Ub between 
different SAS-SST simulation and results obtained using Cs = 0.9.

Table 2
Numbers of the inducing points for calibrating Cs in SAS-SST using FIPO-BC and numbers 
of data point in the STD-BC.

Cases: Cs x-coordinate Measurements Inducing Points/Data points

FIPO-BC-1 6 36 11 227
FIPO-BC-2 9 36 16 340
FIPO-BC-3 11 36 21 417
FIPO-BC-4 11 41 26 477
FIPO-BC-5 11 46 26 532
STD-BC 11 121 54 1385

The FIPO-BC algorithm is applied to calibrate the Cs with regard to the streamwise velocity measurement of incom-
pressible flow passing a prism bluff body [41,42]. The SAS-SST model is implemented within the commercial CFD solver, 
STAR-CCM+ 12.04, using user-defined functions. Eleven SAS-SST simulations are performed to provide the database for the 
surrogate model of the numerical simulation. Except for Cs , other settings, such as boundary conditions and numerical 
set-up, are the same in these simulations. Further details about how the simulations are set-up can be found in [4]. The 
chosen Cs are 0.0, 0.1, . . . , 1.0. Each simulation takes more than 96,000 CPU hours to reach time-convergence. Experimen-
tal measurements and SAS-SST predictions of U/Ub just after the bluff-body are plotted in Fig. 8(a). After comparing the 
SAS-SST outputs to measurements graphically, it is clear that the SAS-SST with Cs = 0.8, 0.9, and 1.0 better matches the 
measurements. Hereby, we plot the mean square difference (MSD) between SAS-SST prediction using Cs = 0.9 and other 
SAS-SST predictions in Fig. 8(b). The MSD of simulation using C S = 1.0 is 6.6E-6. It suggests the SAS-SST using Cs between 
0.9 and 1.0 would produce almost the same U/Ub at the location.

The FIPO-BC with several different sets of inducing points are performed of which details are included in Table 2. In the 
first three cases, the number of the inducing points for Cs gradually increases from 6 to 11, while it is kept the same (36) 
on the spatial coordinate (X). Spatial inducing points increase to 41 and 46 in the last two cases, respectively. Again, the 
adaptive NM simplex algorithm is chosen to obtain the hyperparameters. But in this part of the study, the initial searching 
points are randomised. Dozens of adaptive NM searches have been made and the hyperparameters resulting in the most 
accurate surrogate model are chosen to show here. It should be noted that more attempt may require to obtain the proper 
hyperparameters for the surrogate models in other cases, since the initialization points are randomised.

Suitability checking of the surrogate models for CFD models and measurements are illustrated in Fig. 9. As in the toy case, 
the surrogate models in the FIPO-BCs are checked by using the inducing data points to predict the training dataset, whilst 
the leave-one-out cross-validation (LOO-CV) test is adopted to assess the validity of surrogate models in the STD-BC. As 
shown in Fig. 9(a), a visible improvement of surrogate model accuracy is achieved by refining the inducing points. Compared 
to the other FIPO-BC cases, data points produced in FIPO-BC-5 are closer to the equilibrium line in the quantity-to-quantity 
plot. With a small number of inducing points for spatial coordinate, the improvement on SVI prediction of CFD outputs due 
to refined Cs resolution is too small to be seen, referring to the MSE of FIPO-BC-1, 2, 3. As the number of inducing points for 
spatial coordinate increases, the MSE drops from ∼4.0E-4 to ∼9.0E-5 in FIPO-BC-4 and 5. Additionally, the surrogate model 
for CFD models in the STD-BC also performs well (MSE∼=1.0E-4). As shown in Fig. 9(b), the SVI-GP model for measurement 
converges at FIPO-BC-2, containing 16 inducing points. The MSEs of SVI-GP predictions of measurements are around 3.0E-3 
10
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Fig. 9. Validation of surrogate models for (a) CFD outputs (b) measurements in FIPO-BC cases and STD-BC (Leave-one-out test is adopted to validate the 
surrogate models in STD-BC).

Fig. 10. The posterior PDF of Cs and the distributions log marginal likelihood for the FIPO-BC cases and the STD-BC case.

in FIPO-BC cases, except for FIPO-BC-1. Interestingly, the STD-GP model for the measurements in the STD-BC shows worse 
accuracy comparing to the SVI grid converged SVI-GP models, as its MSE is ∼2.0E-02. This may be due to the sparsely 
distributed noisy data points and the LOO-CV test.

Fig. 10 illustrates the histogram of the posterior PDF of Cs (obtained using the MH algorithm), as well as profiles of 
log marginal likelihood and maximums in FIPO-BC cases and STD-BC are plotted. As the inducing points refined, the shape 
of log (p (M s | Cs)) becomes more like that of log (p (d | Cs)). Since the effect of hyperparameters is not marginalised, the 
range of the marginal likelihood greatly varies and causes differences in the posterior PDF. For instance, the ranges of 
log (p (M s | Cs)) in FIPO-BC-2 and FIPO-BC-4 are much larger than that in the other cases. Subsequently, the posterior 
distribution of Cs in these three cases is more concentrated than others. The maximum values in the log marginal likelihood 
of all cases are 1.0, 0.83, 0.89, 0.92, 0.92, and 0.9 for FIPO-BC-1, 2, 3, 4, 5 and STD-BC respectively. Since the SAS-SST 
prediction using C S ∈ [0.9, 1.0] can be deemed to be similar due to the very small MSD between them. It is reasonable to 
claim the inducing points convergence is achieved at FIPO-BC-4. Fig. 11 illustrates the computing efficiency (represented by 
CPU time(s) per 1000 MH sampling) of different cases. As expected, the time spent on MH sampling greatly reduces in all 
FIPO-BC cases. Even for FIPO-BC-5 (with finest SVI grid), CPU time(s) per 1000 MH sampling is less than a tenth of that of 
the STD-BC.

To demonstrate the online FIPO-BC, the original data is split into four different data batches and fed into the FIPO-BC 
solver sequentially, whilst the inducing is the same as that used in FIPO-BC-5. The results of this online calibration are 
shown in Fig. 12. Each pane of Fig. 12 includes the Cs used to generate the numerical outputs, response surface of absolute 
error (|numerical output – SVGP prediction|), as well as the optimal Cs . Clearly, with more data supplied to the FIPO-BC 
11
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Fig. 11. CPU time(s) per 1000 MH sampling in each case for exploring posterior distribution of Cs .

Fig. 12. The online calibration of Cs in SAS-SST model. Each pane shows the response surface of the inducing output for the models as well as the calibrated 
Cs after a batch of model output using different Cs , marked as solid points. The Cs used to generate model outputs considered in the previous step (but 
discarded the current step) and previously obtained calibrated value are marked as empty points.

solver, the absolute error is reduced across the parameter space. Meanwhile, the optimal Cs continuously improves. The 
optimal Cs obtained using ‘Batch-1, 2, 3 & 4’ are 0.5, 1.0, 1.0, and 0.94, respectively. It worth reiterating that the model 
outputs using any Cs between 0.9 and 1.0 are deemed to be the same because of ignorable differences. In particular, the 
absolute errors produced at the stage of ‘Batch-3’ and ‘Batch-4’ are very similar. It can be claimed with confidence that the 
calibration and posterior PDF approximation can be achieved only using Batch-1, 2 & 3, which means fewer CFD simulations 
are actually needed.
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6. Summary and discussion

We have proposed a novel fixed inducing points online Bayesian calibration framework (FIPO-BC) algorithm for improving 
the accuracy of numerical simulations of science and engineering problems. The framework improves the computational 
efficiency and enables the online learning capability of the STD-BC algorithm by incorporating the SVI-GP. In term of the 
same training data, the FIPO-BC algorithm can use far fewer data points, resulting in a much smaller covariance matrix, and 
hence producing a much more computationally efficient algorithm. In our demonstration cases, the FIPO-BC is at least 10 
times faster than the STD-BC. The new approach also allows online updates of the calibrated model parameter with data 
being supplied to the solver sequentially. The procedure of using the FIPO-BC algorithm is demonstrated by using it first to 
calibrate the parameter in a simple mathematical function, and then to calibrate an essential parameter of scale-resolving 
CFD modelling method, SAS-SST. The performance of the FIPO-BC algorithm is compared against the STD-BC algorithm. It 
has been demonstrated in both test cases that the FIPO-BC algorithm provides the same calibrated parameter as the STD-BC 
algorithm, once the FIPO-BC algorithm is converged on the number of inducing points. Due to the online learning capability 
of the FIPO-BC algorithm, the calibration can be achieved using less data.

Like the STD-BC algorithm, the posterior distribution of the parameter will be affected by the optimal hyperparameters. 
Both the STD-BC and FIPO-BC algorithms require marginalisation to eliminate this effect. In order to enable the algorithms 
to utilise marginalisation requires additional computational resources. However, the inclusion of marginalisation within the 
FIPO-BC algorithm would be more computationally efficient than the STD-BC algorithm with marginalisation. The FIPO-BC 
algorithm with marginalisation will be investigated in future work. By using the inducing points with the SVI-GP model, the 
FIPO-BC algorithm can handle much more training data compared to the STD-BC algorithm. It is possible to use the FIPO-BC 
algorithm in large data set applications if the dataset can be represented by a few thousand inducing data points. Extra 
research work is required to make the current algorithm more generic for large data sets. Moreover, the current framework 
requires prior knowledge of the possible range of the ‘true’ model parameter. However, the true model parameter may be 
located outside the prior defined range as more measurements revealed. In such a case, the FIPO-BC algorithm can only 
generate the best model parameter within the predefined range. One of the solutions is to allow the inducing points to be 
expanded with more measurements. Future research work has been planned to resolve this issue.
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